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Abstract
This paper is dedicated to the study of a one-dimensional congestion model, consisting

of two different phases. In the congested phase, the pressure is free and the dynamics is in-
compressible, whereas in the non-congested phase, the fluid obeys a pressureless compressible
dynamics.

We investigate the Cauchy problem for initial data which are small perturbations in the
non-congested zone of travelling wave profiles. We prove two different results. First, we show
that for arbitrarily large perturbations, the Cauchy problem is locally well-posed in weighted
Sobolev spaces. The solution we obtain takes the form (vs, us)(t, x − x̃(t)), where x < x̃(t)
is the congested zone and x > x̃(t) is the non-congested zone. The set {x = x̃(t)} is a free
surface, whose evolution is coupled with the one of the solution. Second, we prove that if
the initial perturbation is sufficiently small, then the solution is global. This stability result
relies on coercivity properties of the linearized operator around a travelling wave, and on the
introduction of a new unknown which satisfies better estimates than the original one. In this
case, we also prove that travelling waves are asymptotically stable.
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1 Introduction
The purpose of this paper is to construct solutions of the fluid system

∂tv − ∂xu = 0, (1.1a)

∂tu + ∂xp − µ∂x
(

1

v
∂xu

)
= 0, (1.1b)

v ≥ 1, (v − 1)p = 0, p ≥ 0, (1.1c)

v|t=0 = v0, u|t=0 = u0, (1.1d)

for a large class of initial data (v0, u0), with

(v , u)(t, x) −→
x→±∞

(v±, u±).

The variable v represents the specific volume of the fluid, that is the inverse of the density, while
u denotes its velocity. Equations (1.1) are actually a reformulation in Lagrangian coordinates of
the constrained Navier-Stokes system introduced in [7]. We further assume that

v− = 1, v+ > 1, u− > u+. (1.2)
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We do not impose a limit condition on the pressure variable p which is actually linked to (v , u).
The pressure is indeed seen as a Lagrange multiplier associated to the constraint ∂xu ≥ 0 on
{v = 1}.

Let us recall a few facts about system (1.1), and be more specific about the contents of the
present paper. It describes a partially congested system, consisting of two different phases. In the
phase {v > 1} (non-congested phase where ρ = 1/v < 1), the pressure vanishes and the dynamic is
compressible. In the phase {v = 1} (congested phase), the pressure is activated and the dynamic
is incompressible.
From the modelling point of view, the system (1.1) may apply in various contexts. A first example
is given by the dynamics of two-phase flows in presence of pure-phase (or saturation) regions as
described by Bouchut et al. in [4]. In this context, the constrained variable is the volume fraction
which has to stay between 0 and 1, the extremal values corresponding to the pure-phase states.
Another domain of application of Equations (1.1) is the modeling of collective motion (like crowds
or vehicular traffic, see for instance [2, 11, 20]). There, the maximal density limit (or equivalently
the minimal specific volume) corresponds to a microscopic packing constraint, constraint which
is locally achieved when the agents are in contact. In this framework, models of type (1.1) are
called hard congestion models (see [19]). Finally, let us also mention the connections between (1.1)
and models for wave-structure interactions developed in the very recent years by Lannes [16] and
Godlewski et al. [12]. A similar constraint to (1.1c) can be indeed formulated to express the two
possible states of the flow: pressurized in the “interior” domain at the contact with the structure
(the height being then constrained by the structure), free in the exterior domain.

It can be easily checked that there exist travelling wave solutions (ū, v̄)(x−st) for (1.1). These
were constructed in [10] and their main features are recalled below in Lemma 2.1. They consist of a
congested zone for x−st < 0, and of a non-congested zone for x−st > 0, in which v̄ is the solution
of a logistic equation (see Figure 1 below). The setting of the current paper is the following: we
consider initial data (u0, v0) which are perturbations of the travelling wave profiles (ū, v̄) in the
non-congested zone x > 0 only. In other words, u0(x) = ū(x) = u− and v0(x) = v− = 1 for
x < 0. Under compatibility conditions on the initial data, we prove that there exists a local
strong solution of (1.1). Furthermore, this solution is global provided the initial perturbation is
sufficiently small.

Originally, the study of density constrained fluid systems begins with the proof of the exis-
tence of global weak solutions by Lions and Masmoudi [17] for the multi-dimensional free-congested
Navier-Stokes equations. The result is achieved via a penalty approach: the equations are approx-
imated by a fully compressible Navier-Stokes system in which the maximal density constraint has
been relaxed and the (compressible) pressure plays the role of the penalty function. Later, the
same type result was obtained in [22] by means of a soft congestion approximation which consists
of a fully compressible Navier-Stokes system with a singular pressure law blowing up as the density
approaches 1. Contrary to the former study, the maximal density constraint is satisfied even at the
approximate level which can be useful from the numerical point of view (see for instance [11,21]),
and relevant from the physical point of view if one thinks for instance of the influence of repulsive
social forces in collective motion. If the constructed weak solutions can theoretically couple the
free and congested states, the previous existence results do not give any information about the
congested domain and about the time evolution of its boundary. In other words, it is not clear
whether free and congested states actually co-exist within a given weak solution.
The existence of more regular solutions to (1.1) for initial mixed compressible-incompressible
data is, up to our knowledge, a largely open problem. Comparatively to other compressible-
incompressible free boundary problems like the ones studied in [24] or in [9], we have to handle the
fact that the interface between the free (compressible) domain and the congested (incompressible)
domain is not closed, i.e. matter passes through the boundary and the volume of the congested
region evolves with time. Besides, the identification of appropriate transmission conditions across
the interface is a non-trivial issue which is for instance raised in [8] by Bresch and Renardy. In
the hyperbolic framework of wave-structure interactions (WSI), the recent study of Iguchi and
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Lannes [14] provides a one-dimensional existence result in Hm, m ≥ 2 (regularity of the solution
in the “exterior” domain, which is called the free domain in our framework). This result has been
then extended to the dispersive Boussinesq case in [1,6], and to the two-dimensional axisymmetric
case in [3]. Finally, the study [18] includes viscosity effects, still in an axisymmetric configura-
tion. The congestion problem (1.1) is similar to the viscous WSI problem [18] in the sense that
it can be formulated as a mixed initial-boundary value problem with a implicit coupling of the
(parabolic) PDEs describing the dynamics in the free/exterior zone with a nonlinear ODE. This
ODE (see (2.15) below) represents the evolution of the free-congested interface in (1.1), while
in [18] the ODE models the vertical motion of the structure (the contact line between the fluid
and the structure is there constant due to the axisymmetric hypothesis).

As said before, partially congested propagation fronts (ū, v̄)(x−st) for the viscous system (1.1)
have already been identified in the previous study [10]. These traveling waves are such that v̄ , ū
and the (effective) flux p̄ − µ∂xū are continuous across the free-congested interface. But the core
of [10] is devoted to the analysis of approximate traveling waves (vε, uε)ε>0 solutions to the soft
congestion approximation of (1.1). Under some smallness condition (quantified in terms of ε) on
the initial perturbation, the profiles (vε, uε)ε>0 are shown to be asymptotically stable. This result
is achieved by means of weighted energy estimates, it relies on the use of integrated variables and
a reformulation of the system in the variables (vε,wε) where wε := uε − µ∂x ln vε is the so-called
effective velocity. Roughly speaking, the use of this new velocity induces regularization effects
on the specific volume vε, effects previously identified (among others) by Shelukhin [23], Bresch,
Desjardins [5], Vasseur [25], Haspot [13]. The use of the integrated variables is related to the
structure of the dissipation and source terms. As detailed in Section 4.1 below, it enables the
derivation of uniform-in-time energy estimates on the solution.
Unfortunately, as ε → 0 the smallness condition on the initial perturbations degenerates and no
stability can be inferred directly for the limit profiles (v̄ , ū).

The present study contains three main results related to initial perturbations of the profile
(v̄ , ū) in the free zone. We demonstrate a local well-posedness result for large data as well as a
global result for small initial perturbations. Finally, we prove the asymptotic stability the profile
(v̄ , ū). Similarly to the case ε > 0 described above, our analysis is based on energy estimates and
the use of the effective velocity to rewrite the equation on the specific volume (1.1a) as a parabolic
equation with a nonlinear diffusion. One significant difference between the two studies is that
w satisfies in the present case a pure transport equation in the free domain due to the absence
of pressure in that region. As a consequence, the two equations in v and w can be decoupled,
which simplifies somehow the dynamics and the derivation of estimates on v . One the other hand,
and more importantly, the analysis (in particular the global-in-time existence proof) is made here
more difficult as a result of the dynamics of the new free boundary, i.e. the interface between the
free and congested domains, which is coupled to the dynamics of (u, v) itself through a continuity
condition imposed at the interface (see (2.2)-(2.3)). Similarly to the WSI problem tackled by
Iguchi and Lannes [14], we introduce a new variable which allows us to have a good control of the
motion of the interface.

These results are presented in the next section.

2 Main results and strategy
As explained in the introduction, we will construct solutions in the vicinity of the travelling wave
solution (ū, v̄)(x− st). Hence we first recall some features of the profile (ū, v̄):

Lemma 2.1 ([10]). Assume that u− > u+, v+ > 1, and let

s :=
u− − u+

v+ − 1
.

Then there exists a unique (up to a shift) travelling wave solution of (1.1). This travelling wave
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propagates at speed s and is of the form (ū, v̄)(x− st). Furthermore,

v̄(x) =

 1 if x ≤ 0,
v+

1 + (v+ − 1) exp(−sv+x/µ)
if x > 0,

.

ū = u+ + sv+ − sv̄ = u− + sv− − sv̄ .

In the zone x < 0, the pressure is constant and equal to p− = s2(v+ − 1). Eventually, introducing
the effective velocity w̄ = ū − µ∂x ln v̄ , we have

w̄(x) = u−1x<0 + u+1x>0.

The profile is represented in Figure 1. Let us now explicit our assumptions on the initial

Figure 1: On the left: the profiles v̄ and p̄, on the right: the profiles ū and w̄ .

data (u0, v0):

(H1) Partially congested initial data: (u0, v0) ∈ (ū, v̄) +L1(R), and such that u0(x) = ū(x) = u−,
v0(x) = v̄(x) = 1 if x < 0;

(H2) Regularity: 1x>0(u0 − ū, v0 − ū) ∈ H3(R+) and 1x>0
√
x∂kxw0 ∈ L2(R+) for k = 1, 2, where

w0 = u0 − µ∂x ln v0;

(H3) Compatibility: u0(0+) = u−, v0(0+) = 1, and[
− (∂xu0)2

∂xv0
− µ∂xv0∂xu

0 + µ∂2
xu0

]
|x=0+

= 0; (2.1)

(H4) Non-degeneracy: ∂xv0(0+) > 0, ∂xu0(0+) < 0 and v0(x) > 1 for x > 0;

(H5) Decay: 1x>0V
0 ∈ L2(R+), where V 0(x) := −

∫∞
x

(v0 − v̄), and 1x>0(1 +
√
x)W 0 ∈ L2(R+),

where W 0 := −
∫∞
x

(w0 − u+).

Under these assumptions, the solution of (1.1) associated with (u0, v0), if it exists, will not be
a travelling wave. However, it is reasonable to expect such a solution to be congested in a zone
x < x̃(t), and non-congested in a zone x > x̃(t), where the free boundary x = x̃(t) is an unknown
of the problem. The dynamics of the interface is actually encoded in the continuity condition that
we impose on the specific volume, namely:

v(t, x̃(t)) = 1 ∀ t. (2.2)
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By differentiating the relation with respect to time, we then get:

x̃′(t) = −
∂tv|x=x̃+

∂xv|x=x̃+

. (2.3)

The free boundary problem (1.1) differs from “classical” free boundary problems associated with
a kinematic condition at the interface. In that latter case, the regularity of x̃′ is the same as the
regularity of the solution at the boundary, while there is here a loss of one derivative for x̃′ with
respect to the solution v. The boundary condition (2.3) is fully nonlinear (see the study of Iguchi,
Lannes [14] ). Eventually, using the mass equation, we get the dynamics of x̃:

x̃′(t) = −
∂xu|x=x̃+

∂xv|x=x̃+

. (2.4)

We actually prove the following result:

Theorem 2.2 (Local in time result). Let (u0, v0) satisfying the assumptions (H1)-(H5).
Then there exists T > 0 and x̃ ∈ H2

loc([0, T [), with x̃(0) = 0, x̃′(0) = −[∂xu0

∂xv0 ]x=0, such that (1.1)
has a unique maximal solution (u, v) of the form (u, v)(t, x) = (us, vs)(t, x− x̃(t)) on the interval
[0, T [, where us(t, x) = u−, vs(t, x) = 1 and ps(t, x) = −µ(∂xus)|x=0+ for x < 0. Furthermore,

vs(t, x) > 1 for all t ∈ [0, T [, x > 0, (2.5)

and the solution (us, vs) has the following regularity in the free domain:

vs − v̄ , us − ū ∈ L∞([0, T [;H3(R+)), (2.6)

∂t(vs − v̄), ∂t(us − ū) ∈ L∞([0, T [;H1(R+)) ∩ L2(]0, T [;H2(R+)). (2.7)

Eventually, the pressure in the congested domain satisfies

ps ∈ H1(0, T ). (2.8)

Our second result shows the global existence of the solution provided the initial perturbation
is small.

Theorem 2.3. Let (u0, v0) satisfying the assumptions (H1)-(H5), and let

E0 := ‖v0 − v̄‖2H3(R+) + ‖u0 − ū‖2H3(R+) + ‖w0 − u+‖2L2(R+) + ‖V 0‖2L2(R+)

+ ‖(1 +
√
x)W 0‖2L2(R+) + ‖(1 +

√
x)∂xw0‖2L2(R+) + ‖(1 +

√
x)∂2

xw0‖2L2(R+).

Assume moreover that
1{x>0}

√
x∂3

xw0 ∈ L2(R). (2.9)

Then, there exist constants c0, δ0 > 0 depending only on the parameters of the problem s, µ, v+, u±,
such that for all δ ∈ (0, δ0), if

E0 ≤ c0δ2, ‖(1 +
√
x)∂kxw0‖L2(R+) ≤ c0δ3/2, ∀ δ ∈ (0, δ0), k = 1, 2, 3, (2.10)

then the solution (x̃, us, vs) is global, and

‖vs − v̄‖L∞(R+,H3(R+)) + ‖us − ū‖L∞(R+,H3(R+)) + ‖x̃′ − s‖H1(R+) ≤ Cδ.

Furthermore

|x̃′(t)− s|+ sup
x∈R
|(us, vs, ps)(t, x)− (ū, v̄ , p̄)(x)| −→ 0 as t→ +∞, (2.11)

where p̄(x) = p−1{x<0}.
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The strategy of proof is the following. We work in the shifted variable x− x̃(t). Since (u, v) is
expected to be constant in x − x̃(t) < 0, we only consider the system satisfied by (us, vs) in the
positive half-line, which reads

∂tvs − x̃′(t)∂xvs − ∂xus = 0, t > 0, x > 0 (2.12a)

∂tus − x̃′(t)∂xus − µ∂x
(

1

vs
∂xus

)
= 0, t > 0, x > 0 (2.12b)

(vs, us)|x=0 = (1, u−), lim
x→∞

(vs(t, x), us(t, x)) = (v+, u+) ∀ t > 0. (2.12c)

We have already seen that the dynamics of x̃ is coupled with the dynamics of (vs, us) through (2.4).
In order to construct a solution of (2.12), it will be more convenient to modify the equation
on vs in order to make the regularizing effects of the diffusion more explicit. Indeed, setting
ws = us − µ∂x ln vs, we find that equation (2.12a) can be written as

∂tvs − x̃′(t)∂xvs − µ∂2
x ln vs = ∂xws, t > 0, x > 0.

Moreover,
∂tws − x̃′(t)∂xws = 0, t > 0, x > 0, (2.13)

therefore ws(t, x) = w0(x+ x̃(t)) for all t > 0, x > 0 provided x̃′(t) > 0 for all t > 0. In particular,
letting x→ 0+, we obtain

u− − µ∂xvs|x=0+ = w0(x̃(t)). (2.14)

Gathering (2.14) and (2.4) leads to

x̃′(t) = −µ
∂xus|x=0+

u− −w0(x̃(t))
. (2.15)

Since ws(t, x) = w0(·+ x̃(t)), the equation on vs rewrites

∂tvs − x̃′(t)∂xvs − µ∂xx ln vs = ∂xw0(x+ x̃(t)), t > 0, x > 0,

vs|x=0 = 1, lim
x→∞

vs(t, x) = v+,

vs|t=0 = v0.

(2.16)

Thus we will build a solution (x̃, vs, us) of (2.15)-(2.16)-(2.12b) thanks to the following fixed point
argument:

1. For any given ỹ ∈ H2
loc(R+), such that ỹ(0) = 0 and ỹ′(0) = −

∂xu0
|x=0+

∂xv0
|x=0+

, we consider the

solution v of the equation

∂tv − ỹ′(t)∂xv − µ∂xx ln v = ∂xw0(x+ ỹ(t)), t > 0, x > 0,

v|x=0 = 1, lim
x→∞

v(t, x) = v+,

v|t=0 = v0.

(2.17)

We prove that under suitable conditions on the initial data, there exists a unique solution
v ∈ v̄ + L∞loc(R+, H

1(R+)), and we derive higher regularity estimates.

2. We then consider the unique solution u ∈ ū + L∞loc(R+, H
1(R+)) of

∂tu− ỹ′(t)∂xu− µ∂x
(

1

v
∂xu

)
= 0 t > 0, x > 0,

u|x=0 = u−, lim
x→∞

u(t, x) = u+,

u|t=0 = u0,

(2.18)

where v is the solution of (2.17). Once again, we derive regularity estimates on u.
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3. Eventually, we define

z̃(t) := −µ
∫ t

0

∂xu(τ, 0)

u− −w0(ỹ(τ))
dτ,

and we consider the application T : ỹ ∈ H2(0, T ) 7→ z̃ ∈ H2(0, T ).
We prove that for T > 0 small enough the application T is a contraction, and therefore has
a unique fixed point.

We then need to prove that the solution (x̃, vs, us) provided by the fixed point of T is global
when the initial energy is small (see Hypothesis (2.10)). First, we will show that the passage to
the integrated variables allows us to remove the exponential dependency with respect to time in
the energy estimates. Next, we prove in Section 6 that if the initial data is sufficiently small, then
‖x̃′− s‖H1 remains bounded (and small) on the existence time of the solution. The key ingredient
to get this property is the introduction of the new unknown g1 = −s(v− v̄)−µ∂x

(
v−v̄

v̄
)

= A(v− v̄)
where ∂xA is the linearized operator around v̄ . We exhibit coercivity properties for the linearized
operator, and we prove that g1 satisfies an equation of the type

∂tg1 +A∂xg1 = quadratic terms.

Whence we deduce good estimates on both g1 and x̃′ − s.
We finally need to check that the solution (x̃, vs, us) of (2.15)-(2.16)-(2.12b) is indeed a solution

of the original problem. Since system (2.12) has been modified, this is not completely obvious.
In fact, we need to check that the function ws = us − µ ln vs is indeed equal to w0(x+ x̃(t)). To
that end, let us compute the equation satisfied by ws if vs is the solution of (2.16) and if us is the
solution of (2.12b). Combining (2.16) and (2.12b), we have

∂tws − x̃′(t)∂xws − µ∂x
(

1

vs
∂xws

)
= −µ∂x

(
1

vs
∂xw0(x+ x̃(t))

)
. (2.19)

Furthermore, the condition us|x=0+ = u− ensure that

ws|x=0+ = u− − µ∂xvs|x=0+ ,

and using the equation (2.16) together with (2.15)

∂xws|x=0+ = ∂xus|x=0+ − µ∂xx ln vs|x=0+

=
w0(x̃(t))− u−

µ
x̃′(t) + x̃′(t)∂xvs|x=0+ + ∂xw0(x̃(t)).

Taking a linear combination of these two equations leads to

µ∂xws|x=0+ + x̃′(t)ws|x=0+ = x̃′(t)w0(x̃(t)) + µ∂xw0(x̃(t)). (2.20)

It can be easily proved that the unique solution of (2.19)-(2.20) endowed with the initial data w0 is
the function w0(x+ x̃(t)). Thus the function (vs, us) constructed as the solution of (2.16)-(2.12b),
where x̃ is the solution of (2.15), is in fact a solution of (2.12). We extend this solution in x < 0
by setting vs(t, x) = 1, us(t, x) = u−, and we set

ps(t, x) = −µ∂xus|x=0+ = x̃′(t)(u− −w0(x̃(t))) ∀x < 0.

Eventually, we come back to the original variables and set (v, u, p)(t, x) = (vs, us, ps)(t, x− x̃(t)).
Then it is easily checked that (v, u, p) is a solution of the original system (1.1).

Remark 2.4 (About the regularity of x̃). In the above discussion, we have claimed that we will
prove the existence of a fixed point x̃ in H2

loc(R+). Let us discuss why this regularity is required
on x̃. First, we need a control of x̃′ in L∞(R+) in order to control the transport equation (2.13)
satisfied by ws. Next, we see in (2.15) that the control in L∞ of x̃ requires a bound on ∂xus
in L∞(R+ × R+), while this latter bound would a priori rely on a control of x̃′′ in L2

loc(R+) (see
Proposition A.1 in the Appendix). Therefore the regularity x̃ ∈ H2

loc(R+) is the minimal regularity
which allows us to formally close the fixed point argument.
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Remark 2.5 (More general perturbations). This study is concerned with perturbations only af-
fecting the “free part” of the travelling wave profile (v̄ , ū, p̄). This allows us to concentrate the
analysis on the free domain {x > x̃(t)}. Nevertheless, it would be interesting to study more general
perturbations of (v̄ , ū, p̄), including for instance a free zone {v0 > 1} in {x < 0}. It would be then
necessary to analyze the coupled dynamics between the two disconnected free domains through
the interior congested phase. This is actually out of the scope of the present paper and it is left
for future work.

The organization of the paper is the following. Given the discussion above, the goal is to
construct a fixed point of the application T . Most of the proof is devoted to the derivation of
suitable energy estimates on vs. We first prove the well-posedness of equation (2.17) in Section 3.
Higher regularity estimates on vs and estimates for the solution us of (2.18) are then derived in
Section 4. We prove in Section 5 that T is a contraction and get therefore the local-wellposedness
result stated in Theorem 2.2. Eventually, for small initial perturbations, we extend in Section 6
the local solutions and show the asymptotic stability of the profiles (v̄ , ū) which completes the
proof of Theorem 2.3. We have postponed to the Appendix several technical results.

Notation.

Throughout the paper, we denote by C a constant depending only on the parameters of the
problem, i.e. u+, u−, v+, s, and µ.

3 Well-posedness of equation (2.17)
This section is devoted to the proof of well-posedness of equation (2.17), and to the derivation of
some preliminary bounds. In order to alleviate the notation, we drop the indices s. Throughout
this section, we assume that ỹ is a given function in H2(0, T ), such that ỹ(0) = 0, ỹ′(t) > 0 for all
t ∈ [0, T ], and satisfying the compatibility condition

ỹ′(0) = −
∂xu0
|x=0+

∂xv0
|x=0+

. (3.1)

We approximate equation (2.17) by considering an equation in a truncated, bounded domain.
We derive L∞, L1 and energy bounds on the sequence of approximated solutions, which are all
uniform in R. Passing to the limit as the domain fills out the whole half-line, we recover the
well-posedness of (2.17).

Therefore, for R ≥ 2, we consider the following equation in (0, T )× (0, R)
∂tv

R(t, x)− ỹ′(t)∂xvR(t, x)− µ∂xxa(vR(t, x)) = (χR∂xw0)(x+ ỹ(t)), (3.2a)
vR|t=0 = v0,R, (3.2b)

vR|x=0 = 1, vR|x=R = v̄|x=R, (3.2c)

where the nonlinearity in the diffusion term has been changed in order to avoid degeneracy. The
function a ∈ C∞(R) is such that a(x) = ln(x) for x ∈ [1/2, C̄] where C̄ := 2 sup v0. Note that
with this choice, C̄ ≥ v+. We also assume that there exists ν > 0 such that ν ≤ a′(x) ≤ ν−1 for
all x ∈ R. The initial data v0,R is defined by v0,R = v0χR + v̄|x=R(1 − χR), where χR ∈ C∞(R)
satisfies χR(x) = 1 if x ≤ R− 2 and χR(x) = 0 if x ≥ R− 1. This change in the initial condition
and in the source term ensures that the compatibility conditions at first and second order are
satisfied at t = 0, x = R, namely

vR|t=0,x=R = v̄|x=R, ỹ′(0)∂xv
R
|t=0,x=R + µ(∂2

x ln vR)|t=0,x=R = 0. (3.3)

The following result is a straightforward consequence of Theorem 6.2 in Chapter 5 of [15]:
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Lemma 3.1 (Theorem 6.2 in [15]). There exists α > 0 such that system (3.2) has a unique solution
vR ∈ C([0, T ]× [0, R]) such that ∂tvR ∈ Cα((0, T )× (0, R)) and ∂xxvR ∈ Cα((0, T )× (0, R)).

Proof. We merely check the assumptions of [15, Theorem 6.2, Chapter 5]. Due to the assumptions
on the function a, we only need to verify that the initial data satisfies the compatibility conditions.
Note that the function (t, x) ∈ (0, T ) × (0, R) 7→ v0,R(x) coincides with vR on the sets {t = 0},
{x = 0} and {x = R}. Furthermore, thanks to (3.1) and to (3.3) we have the compatibility
condition(

ỹ′(0)∂xv0,R + µ∂xx ln v0,R
)
|x=0

= ∂xw0
|x=0,

(
ỹ′(0)∂xv0,R + µ∂xx ln v0,R

)
|x=R

= 0. (3.4)

We infer that the assumptions of Theorem 6.1 in [15, Chapter 5] are satisfied, and ∂tvR, ∂xxvR ∈
Cα([0, T ]× [0, R]) for some α > 0.

3.1 Local-in-time L∞ estimate
Lemma 3.2. Let T > 0 be arbitrary. Assume that there exists M ≥ 1 such that

1

M
≤ ỹ′(t) ≤M ∀ t ∈ [0, T ], inf

x∈[0,1]
∂xv0(x) ≥ 1

M
. (3.5)

Then there exists T0 ∈ (0, T ], depending only on ‖∂xw0‖L∞(R+), sup v0, M and on the parameters
of the system, such that for all t ∈ [0, T0],

1 < vR(t, x) ≤ C̄ ∀x ∈ (0, R), (3.6)

where C̄ = 2 sup v0 is the constant involved in the definition of a. As a consequence, a(vR) =
ln(vR) almost everywhere.

Proof. The proof relies on the maximum principle. We construct by hand a super and a sub-
solution, which give the desired estimates.

• Sub-solution. We set
v(t, x) = 1 + g(x) exp(−At),

where A > 0 is a parameter that will be chosen later on and where the function g will be
chosen so that 0 ≤ g ≤ (v+− 1)/2. It follows that a(v) = ln(v). We will also take T0 so that
exp(−AT0) = 1/2. With this choice, we have, on the one hand

∂tv − ỹ′(t)∂xv − µ∂2
xa(v)

= −Ae−Atg(x)− ỹ′(t)g′(x)e−At − µ∂2
x ln(1 + g(x)e−At)

= −Ae−Atg(x)− ỹ′(t)g′(x)e−At − µ
g′′(x)e−At

1 + g(x)e−At
+ µ

(g′(x))2e−2At

(1 + g(x)e−At)2
. (3.7)

On the other hand,
(χR∂xw0)(x+ ỹ(t)) ≥ −‖∂xw0‖∞.

We choose the function g as follows:

– For x ≤ x0 ≤ 1, we take g(x) = α1x + α2x
2, with α1 > 0 small enough and α2 > 0.

Then, if x0 is small enough, g(x0) = α1x0 + α2x
2
0 ≤ 1, and therefore

−Ae−Atg(x)− ỹ′(t)g′(x)e−At − µ
g′′(x)e−At

1 + g(x)e−At
≤ −µα2.
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Choose α2 so that µα2 ≥ 2‖∂xw0‖∞, and choose 0 < α1 ≤ 1/(2M). Then for x0 small
enough, v(0, x) ≤ v0(x) for all x ∈ [0, x0]. Furthermore, the last term in (3.7) can be
treated as a perturbation provided α1 and x0 are small enough. It can be checked that
it is sufficient to take α2

1 ≤ α2/8 and x0 ≤ α1/(2α2).

– For x ≥ x0, we choose g to be monotone increasing and such that 1 + g ≤ v0 a.e. and
g ≤ (v+ − 1)/2. We then choose A so that

A

4
g(x0) ≥ ‖∂xw0‖∞,

Ag(x0) ≥ 4µ(‖g′′‖∞ + ‖g′‖2∞).

It follows that the right-hand side of (3.7) is lower that −‖∂xw0‖∞.

Note that by construction, we have v ≤ vR on the sets {t = 0}∪{x = 0}∪{x = R} provided
R is large enough.

Thus, by the maximum principle, v ≤ vR.

• Super-solution: We take
v(t, x) := C1

(
2− e−At

)
,

where C1 ≥ sup v0. We keep choosing T0 so that exp(−AT0) = 1/2. Then

∂tv − ỹ′(t)∂xv − µ∂2
xa(v) = C1Ae

−At.

Take A so that C1A/2 ≥ ‖∂xw0‖∞. Then v is a super-solution of (3.2), and by the maximum
principle, vR ≤ v.

Remark 3.3. The use of the maximum principle is actually not necessary for the local existence
results that follow. Indeed, since we work in high regularity spaces, we could adapt our fixed point
argument by linearizing our different systems around the profile (v̄ , ū), treat the non-linear term
perturbatively and use the inequality ‖v− v̄‖L∞(R+) ≤ ‖v− v̄‖1/2L2(R+)‖∂x(v− v̄)‖1/2L2(R+). However,
since this would lead to unnecessary technicalities, we have decided to use the maximum principle
in this paper.

3.2 L1 estimate
Anticipating Section 4.1 and the derivation of uniform-in-time estimates on g = v − v̄ , we aim
at proving that g(t, ·) ∈ L1(R+) for all times t ≥ 0. This property will be used in Section 4.1 to
justify the passage to the integrated quantity V .

The goal of this Subsection is to prove the next Lemma

Lemma 3.4. Assume that v0− v̄ ∈ L1(R+), and that the assumptions of Lemma 3.2 are satisfied.
Then there exists a constant C, depending only on T0, sup v0, M (see (3.5)) and the parameters
of the system, such that the solution vR of (3.2) provided by Lemma 3.1 satisfies the following
estimate:

sup
t∈[0,T0]

‖vR − v̄‖L1(0,R) ≤ C
[
‖v0,R − v̄‖L1(0,R) + ‖∂xw0‖L1(R+) + ‖∂xv̄‖L1(R+)

]
. (3.8)
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Proof. Using the equation satisfied by v̄ , we have

∂t(v
R − v̄)− ỹ′(t)∂x(vR − v̄)− µ∂2

x

(
ln vR − ln v̄) = (χR∂xw0)(x+ ỹ(t)) + (ỹ′(t)− s)∂xv̄ . (3.9)

For n > 0, let us introduce jn ∈ C2(R) defined by

jn(r) =

√
r2 +

1

n
−
√

1

n
∀r ∈ R

which is a smooth, convex, approximation of the function r 7→ |r| as n → +∞. Hence, j′n(r) =
r/
√
r2 + 1/n is an approximation of the sign function, and jn(0) = j′n(0) = 0. Multiplying (3.9)

by j′n
(
vR−v̄

v̄

)
, integrating the result between 0 and R and noting that (vR − v̄)|x=0,R = 0, we get∫ R

0

v̄ ∂tjn

(
vR − v̄

v̄

)
dx− ỹ′(t)

∫ R

0

∂x(vR − v̄) j′n

(
vR − v̄

v̄

)
dx

+ µ

∫ R

0

j′′n

(
vR − v̄

v̄

)
∂x ln

(
vR

v̄

)
∂x

(
vR − v̄

v̄

)
dx

=

∫ R

0

(χR∂xw0)(x+ ỹ(t)) j′n

(
vR − v̄

v̄

)
dx+ (ỹ′(t)− s)

∫ R

0

∂xv̄ j′n

(
vR − v̄

v̄

)
dx.

Since vR−v̄
v̄ ≥ 1

v+
− 1 > −1, we have

µ

∫ R

0

j′′n

(
vR − v̄

v̄

)
∂x ln

(
vR

v̄

)
∂x

(
vR − v̄

v̄

)
dx

= µ

∫ R

0

1

1 + vR−v̄
v̄

j′′n

(
vR − v̄

v̄

)(
∂x

(
vR − v̄

v̄

))2

dx ≥ 0,

and, thanks to the boundary conditions (vR − v̄)|x=0,R = 0,

ỹ′(t)

∫ R

0

∂x(vR − v̄) j′n

(
vR − v̄

v̄

)
dx

= ỹ′(t)

∫ R

0

v̄ ∂x

(
vR − v̄

v̄

)
j′n

(
vR − v̄

v̄

)
dx+ ỹ′(t)

∫ R

0

v̄
∂xv̄
v̄2

(vR − v̄) j′n

(
vR − v̄

v̄

)
dx

= ỹ′(t)

∫ R

0

v̄ ∂xjn

(
vR − v̄

v̄

)
dx+ ỹ′(t)

∫ R

0

vR − v̄
v̄

∂xv̄ j′n

(
vR − v̄

v̄

)
dx

= −ỹ′(t)
∫ R

0

∂xv̄ jn

(
vR − v̄

v̄

)
dx+ ỹ′(t)

∫ R

0

vR − v̄
v̄

∂xv̄ j′n

(
vR − v̄

v̄

)
dx.

Hence, using once again the L∞ control of vR from Lemma 3.2, we get∫ R

0

v̄ jn

(
vR − v̄

v̄

)
(t) dx−

∫ R

0

|v0,R − v̄ | dx

≤ C‖ỹ′‖L1(0,t)‖∂xv̄‖L1(R+) + t‖∂xw0‖L1(R+) + ‖ỹ′(·)− s‖L1(0,t)‖∂xv̄‖L1(R+).

where we have used the fact that jn(r) ≤ |r|. Passing to the limit n → +∞ and using Fatou’s
lemma, we finally obtain (3.8).

3.3 Energy estimates and existence of v
The goal of this subsection is to prove the existence and uniqueness of v ∈ L∞([0, T ], H1

loc(R+))∩
L2([0, T ], H2(R+)) solution to (2.17). We proceed in two steps. First we derive classical a priori
estimates on vR, exponentially growing with time but independent of R. These estimates ensure
the existence of v by passing to the limit in (3.9) as R→ +∞.
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Lemma 3.5. Assume that 1 ≤ vR(t, x) ≤ C̄ for all t ≤ T0, x ∈ (0, R), where we recall that
C̄ = 2 sup v0, and that there exists M ≥ 1 such that M−1 ≤ ỹ′(t) ≤M for all t ∈ [0, T0].

There exists a constant C, depending only on s, µ, v+,M , and C̄, such that the solution vR

of (3.2) satisfies

d

dt
‖(vR − v̄)(t)‖2H1(0,R) + ‖∂x(vR − v̄)(t)‖2L2(0,R) + ‖∂tvR(t)‖2L2(0,R)

≤ C
(
‖(vR − v̄)(t)‖2L2(0,R) + ‖∂xw0(·+ ỹ(t))‖2L2(R+) + |ỹ′(t)− s|2

)
∀ t ∈ (0, T0), (3.10)

so that, by a Gronwall inequality,

sup
t∈[0,T ]

‖(vR − v̄)(t)‖2H1(0,R) + ‖∂x(vR − v̄)‖2L2((0,T )×(0,R)) + ‖∂tvR‖2L2((0,T )×(0,R))

≤ C
(
‖vR,0 − v̄‖2H1(0,R) + ‖

√
x∂xw0‖2L2(R+) + ‖ỹ′ − s‖2L2(0,T )

)
exp(CT )

for all T ≤ T0.

Remark 3.6. Note that throughout this section and the next ones (i.e. in all energy estimates),
the constant C might depend on C̄, hence on sup v0. Hence, all constants will depend on the
initial size of the perturbation.

Proof. This is an immediate consequence of Lemma B.1 in the Appendix. We set ḡ = v̄ , g = vR−v̄ ,
G = (χR∂xw0)(x+ ỹ(t))+(ỹ′(t)−s)∂xv̄ . It can be easily checked that the assumptions of Lemma
B.1 are satisfied. Furthermore, v̄ does not depend on time, and its W 2,∞ norm only depends on
µ, s and v+.

There only remains to evaluate ‖G‖L2 . We use Lemma C.1 in the Appendix and we find

‖G‖L2((0,T )×(0,R)) ≤ C
(
‖∂xv̄‖L2(R+)‖ỹ′ − s‖L2(0,T ) + ‖

√
x∂xw0‖L2(R+)

)
.

This concludes the proof of the Lemma.

We are now ready to prove the existence and uniqueness of v.

Lemma 3.7. Let ỹ ∈ H2(0, T ) such that ỹ(0) = 0 and ỹ satisfies (3.1). Assume that that there
exists a constant M > 1 such that ỹ, v0 satisfy (3.5). There exists T0 ≤ T , depending on M and on
the parameters of the problem, such that there exists a unique solution v ∈ L∞([0, T0], H1

loc(R+))∩
L2([0, T0], H2(R+)) to

∂tv(t, x)− ỹ′(t)∂xv(t, x)− µ∂xx ln v(t, x) = ∂xw0(x+ ỹ(t)),

v|t=0 = v0,

v|x=0 = 1, limx→+∞ v(t, x) = v+ ∀ t ≥ 0,

(3.11)

and such that ∂tv ∈ L2((0, T0) × R+). Furthermore, there exists a constant C > 0 depending
M,v+, u±, s, µ such that v satisfies the estimate

E1(T0) := ‖v − v̄‖2L∞((0,T0),H1 + ‖∂x(v − v̄)‖2L2((0,T0)×R+) + ‖∂tv‖2L2((0,T0)×R+)

≤ C
(
‖v0 − v̄‖2H1(R+) + ‖

√
x∂xw0‖2L2(R+) + ‖ỹ′ − s‖2L2(0,T0)

)
eCT0 ,

(3.12)

‖∂2
x(v − v̄)‖L2((0,T0)×R+) ≤ C(E1(T0) + inf(1, T0)E1(T0)2).
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Proof. We consider the function vR, which satisfies the estimates of Lemmas 3.2 and 3.5.
Extending vR to [0, T0] × R+ by taking vR(t, x) = v̄(x = R) for x ≥ R, the following limits

hold:

• Up to a subsequence, vR → v in L2([0, T0]×K) for any compact set K ⊂ R+;

• vR
∗
⇀ v w∗ − L∞([0, T0]× R+)

• vR − v̄ ⇀ v − v̄ w −H1([0, T0]× R+);

Thanks to the strong compactness property, we can pass to the limit in (3.2) and we infer that v
satisfies

∂tv(t, x)− ỹ′(t)∂xv(t, x)− µ∂xx ln v(t, x) = ∂xw0(x+ ỹ(t)).

Passing to the limit in the estimates on vR, we also know that v satisfies the estimates of Lemmas
3.2 and 3.5. This completes the proof of existence. Additionally, using the last item of Lemma
B.1, we obtain the estimate on ∂2

x(v − v̄).
Uniqueness is quite classical. For instance, if v1, v2 are two solutions, then setting v̂ = v1− v2,

we find that v̂ satisfies
∂tv̂ − ỹ′(t)∂xv̂ − µ∂xx ln

(
1 +

v̂

v2

)
= 0.

Multiplying the above equation by v̂ and integrating by parts, we find that

d

dt

∫ ∞
0

|v̂|2 dx+ µ

∫ ∞
0

(∂xv̂)2

v1
dx ≤ C‖∂xv2‖2L∞(R+)

∫ ∞
0

|v̂|2dx.

Writing

‖∂xv2(t)‖L∞(R+) ≤ ‖∂x(v2(t)− v̄)‖L∞(R+) + ‖∂xv̄‖L∞(R+)

≤ ‖∂x(v2 − v̄)‖1/2L∞([0,T ],L2(R+))‖∂xx(v2(t)− v̄)‖1/2L2(R+) + ‖∂xv̄‖L∞(R+)

and using a Gronwall type argument, we infer that v̂ ≡ 0.

4 Energy estimates on v and u

This section is devoted to the derivation of high regularity estimates on v − v̄ and u − ū, where
v, u are respectively solutions of (2.17) and (2.18). The existence and uniqueness of v follows from
Lemma 3.7. Preliminary energy estimates on v were derived in the previous section (see (4.8)).
However, these estimates are not completely satisfactory, because of the exponential growth in
the right-hand side. This exponential growth is not really a problem for the local well-posedness
result we will prove in the next section (see Theorem 2.2), but it could prevent us from proving
the global stability in section 6. Fortunately, we are able to prove that energy bounds hold without
the exponential loss.

The outline of this section is the following:

1. We first revisit the energy estimates from Lemma 3.5 in order to prove that there is no
exponential growth of the energy. To that end, we consider the equation satisfied by the
integrated variable V := −

∫ +∞
x

(v − v̄) and derive energy estimates for V .

2. We then prove higher order regularity estimates for v. More precisely, we prove that v− v̄ ∈
L∞t (H3) ∩W 1,∞

t (H1) ∩H1
t (H2) ∩H2

t (L2).

3. The existence and uniqueness of u then follows from classical results on linear parabolic
equations with smooth coefficients. We also derive energy estimates for u− ū inW 1,∞

t (H1)∩
H1
t (H2) ∩H2

t (L2).
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As in the previous section, we consider a given function ỹ ∈ H2(0, T ) such that ỹ(0) = 0 and
satisfying (3.1). We assume throughout this section that the existence time T of the solution v of
(2.17) is such that 1 < v ≤ C̄ = 2 sup v0 a.e. (see Lemma 3.2), and that there exists a constant
M ≥ 1 such that

M−1 ≤ ỹ′(t) ≤M ∀t ∈ [0, T ],

M−1 ≤ ∂xv0
|x=0 ≤M.

(4.1)

We shall see that the total initial energy is

E0 := ‖v0 − v̄‖2H3(R+) + ‖u0 − ū‖2H3(R+) + ‖V 0‖2L2(R+) (4.2)

+ ‖(1 +
√
x)W 0‖2L2(R+) + ‖(1 +

√
x)∂xw0‖2L2(R+) + ‖(1 +

√
x)∂2

xw0‖2L2(R+),

where W 0(x) := −
∫∞
x

(w0 − u+).
The energy at time T is defined by

ET := E0 + ‖ỹ′ − s‖2H1(0,T ). (4.3)

Let us now state the results we shall prove for u and v:

Proposition 4.1 (Energy estimates for v). Assume that ỹ′(0) = −∂xu0
|x=0

∂xv0
|x=0

and that ỹ and v0

satisfy (4.1). There exists a universal constant p > 1, a constant C depending on µ, v+, s, C̄ and
M , and a time T 0 > 0 depending only on E0 and on ‖ỹ′ − s‖L2([0,T ]), such that if T ≤ T 0, then

‖v − v̄‖2L∞([0,T ],H2(R+)) + ‖∂tv‖2L∞([0,T ],L2(R+)) + ‖∂tv‖2L2([0,T ],H1(R+)) ≤ CET ,

and

‖∂t∂xv‖2L∞((0,T ),L2(R+)) + ‖∂3
x(v − v̄)‖2L∞([0,T ],L2(R+)) + ‖∂2

t v‖2L2([0,T ]×R+) + ‖∂2
x∂tv‖2L2([0,T ]×R+)

≤ CET (1 + ET )p.

A similar result holds for u:

Proposition 4.2 (Energy estimates for u). Assume that ỹ′(0) = −∂xu0
|x=0

∂xv0
|x=0

and that ỹ satisfies

(4.1). Assume furthermore that

∂xu0
|x=0

(
ỹ′(0)− µ(∂xv0)|x=0

)
+ µ(∂2

xu0)|x=0 = 0, (4.4)

Then there exists a time T 0 > 0 depending only on E0 and on ‖ỹ′ − s‖L2([0,T ]), such that for all
0 < T < T 0, with the same notation as in Proposition 4.1,

‖u− ū‖2H1([0,T ],H2(R+)) + ‖u− ū‖2W 1,∞([0,T ],H1(R+)) + ‖u− ū‖2H2([0,T ],L2(R+)) ≤ CET (1 + ET )p.

Remark 4.3. Recalling the compatibility condition ỹ′(0) = −(∂xu0/∂xv0)|x=0, the compatibility
condition (4.4) actually amounts to[

− (∂xu0)2

∂xv0
− µ∂xv0∂xu0 + µ∂2

xu0

]
|x=0

= 0,

which is exactly (H3). Notice that this second compatibility condition only involves the initial
data u0, v0. In other words, no further condition on ỹ is required.

We now turn towards the proof of these two propositions, following the outline above. In order
to alleviate the notation, we introduce the following quantities:

g := v − v̄ , h := u− ū.
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4.1 Uniform in time estimates for g = v − v̄
As announced previously, the first step consists in removing the exponential dependency with
respect to time in (4.8). For that purpose, we use the integrated variable

V (t, x) := −
∫ +∞

x

(v − v̄)(t, z) dz. (4.5)

Using Lemma 3.4 and passing to the limit as R→∞, we recall that V is well-defined and uniformly
bounded in L∞([0, T ] × R+). Furthermore, using the identity s∂xv̄ + µ∂xx ln v̄ = 0, we find that
g is a solution of

∂tg − ỹ′∂xg − µ∂xx ln
(

1 +
g

v̄

)
= ∂xw0(x+ ỹ(t))− µ

s
(ỹ′ − s)∂xx ln v̄ . (4.6)

Integrating the above equation with respect to x, we find that V is solution to

∂tV − ỹ′(t)∂xV − µ∂x ln

(
1 +

∂xV

v̄

)
=
(
w0(x+ ỹ(t))− u+

)
− µ

s
(ỹ′ − s)∂x ln

v̄
v+

= ∂xW
0(x+ ỹ(t))− µ

s
(ỹ′ − s)∂x ln

v̄
v+
, (4.7)

where W 0(x) = −
∫∞
x

(w0 − u+). As detailed below, we expect to control ‖∂xV ‖L2([0,T ]×R+) =
‖v − v̄‖L2([0,T ]×R+) uniformly with respect to the time T . Replacing this estimate in (3.10), we
get the following result.

Lemma 4.4. The solution v constructed in Lemma 3.7 satisfies the following estimate

E1(T ) ≤ C

[
‖V 0‖2L2(R+) + ‖(1 +

√
x)W 0‖2L2(R+) + ‖v0 − v̄‖2H1(R+) (4.8)

+ ‖
√
x∂xw0‖2L2(R+) + ‖ỹ′ − s‖2L2(0,T )

]
≤ CET ,

where the energy E1(T ) was defined in Lemma 3.7.

Note that the upper bound on E1(T ) only depends on E0 and on ‖ỹ′ − s‖L2(0,T ). Hence,
assuming that T is such that inf(1, T )ET ≤ 1, we obtain the first set of inequalities announced in
Proposition 4.1.

Proof. We multiply Eq. (4.7) by V and integrate over R+:

d

dt

∫ +∞

0

|V |2

2
dx+

ỹ′(t)

2
(V|x=0)2 + µ

∫
R+

ln

(
1 +

∂xV

v̄

)
∂xV dx

=

∫
R+

∂xW
0(x+ ỹ(t)) V dx+

µ

s

(
ỹ′(t)− s

) ∫
R+

∂x ln
v̄
v+

V dx

= −
∫
R+

W 0(x+ ỹ(t)) ∂xV dx−
µ

s

(
ỹ′(t)− s

) ∫
R+

ln
v̄
v+

∂xV dx

−
[
W 0
|x=ỹ(t) +

µ

s

(
ỹ′(t)− s

)
ln

1

v+

]
V|x=0.
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Using Lemma 3.2, we recall that

∂xV

v̄
=
v − v̄

v̄
∈
[

1

v+
− 1,

C̄

v+
− 1

]
.

Observing that

µ

∫
R+

ln

(
1 +

∂xV

v̄

)
∂xV ≥ c0

∫
R+

|∂xV |2

for some c0 = c0(µ, C̄, v+) > 0, we have by the Cauchy-Schwarz inequality

d

dt

∫
R+

|V |2

2
dx+

ỹ′(t)

2
(V|x=0)2 + c0

∫
R+

|∂xV |2

≤ c0
2

∫
R+

|∂xV |2 +
ỹ′(t)

4
(V|x=0)2

+ C
[
‖W 0(·+ ỹ(t))‖2L2(R+) + (W 0

|x=ỹ(t))
2 + |ỹ′(t)− s|2

(
‖v̄ − v+‖2L2(R+) + |v+ − 1|

)]
for some positive constant C = C(c0, µ, s,M). Using Lemma C.1 in the Appendix, we have

‖W 0(·+ ỹ)‖L2((0,T )×R+) ≤ C‖
√
xW 0‖L2(R+),

‖W 0(ỹ(·))‖L2(0,T ) ≤ C‖W 0‖L2(R+). (4.9)

Hence

E0(T ) := sup
t∈[0,T ]

[
‖V (t)‖2L2(R+) + ỹ′(t)(V|x=0)2

]
+ ‖v − v̄‖2L2([0,T ]×R+)

≤ C

[
‖V 0‖2L2(R+) + ‖(1 +

√
x)W 0‖2L2(R+)

+ ‖ỹ′(t)− s‖2L2(0,T )

(
‖v̄ − v+‖2L2(R+) + |v+ − 1|

)]

≤ C

[
‖V 0‖2L2(R+) + ‖(1 +

√
x)W 0‖2L2(R+) + ‖ỹ′(t)− s‖2L2(0,T )

]
(4.10)

≤ CET . (4.11)

By Lemma 3.7, we have

d

dt
‖(v − v̄)(t)‖2H1(R+) + ‖∂x(v − v̄)‖2L2(R+) + ‖∂tv‖2L2(R+)

≤ C
(
‖(v − v̄)(t)‖2L2(R+) + ‖∂xv̄‖2L2(R+)|ỹ

′ − s|2 + ‖∂xw0(·+ ỹ(t))‖2L2(R+)

)
so that

E1(T ) = sup
t∈[0,T ]

‖(v − v̄)(t)‖2H1(R+) + ‖∂x(v − v̄)‖2L2([0,T ]×R+) + ‖∂tv‖2L2([0,T ]×R+)

≤ ‖v0 − v̄‖2H1 + C
(
E0(T ) + ‖ỹ′ − s‖2L2(0,T ) + ‖

√
x∂xw0‖2L2(R+)

)
≤ CET .

This concludes the proof of the lemma.
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4.2 Higher order regularity estimates for g = v − v̄
This section is devoted to the derivation of energy estimates in L∞([0, T ], H3(R+)) for v − v̄ , in
L∞([0, T ], H1(R+)) ∩ L2([0, T ], H2(R+)) for ∂tv, and in L2([0, T ]× R+) for ∂2

t v.
We split the rest of the proof of Proposition 4.1 into two steps corresponding to Lemmas 4.5

and 4.6.

Lemma 4.5 (Higher regularity - I). Assume that ỹ′(0) = −∂xu0
|x=0

∂xv0
|x=0

and that inf(1, T 1/2)E1(T ) ≤ 1.

The solution v of (3.11) satisfies

v − v̄ ∈ L∞([0, T ], H2(R+)),

∂t(v − v̄) ∈ L∞([0, T ];L2(R+)) ∩ L2([0, T ];H1(R+)).

Furthermore, the following estimate holds:

E2(T ) := sup
t∈[0,T ]

[
‖∂t(v − v̄)(t)‖2L2(R+) + ‖∂2

x(v − v̄)(t)‖2L2(R+)

]
+‖∂t∂x(v − v̄)‖2L2([0,T ]×R+) ≤ ET . (4.12)

Proof. Let us first derive formally these regularity estimates, and then explain how they can be
proved rigorously. We recall that we have set g := v − v̄ .

Differentiating (3.11) with respect to time leads to

∂t∂tg − µ∂x
(

1

v
∂x∂tg

)
= ∂tF − µ∂x

(
∂tv

v2
∂xg

)
(4.13)

where we have denoted

F = ∂xw0(x+ ỹ(t)) + ỹ′(t)∂xg + (ỹ′ − s)∂xv̄ + µ∂x

(
∂xv̄
vv̄

g

)
. (4.14)

Multiplying by ∂tg(= ∂tv) and integrating we get

d

dt

∫
R+

|∂tg|2

2
+ µ

∫
R+

|∂x∂tg|2

v
+ µ

[
1

v
∂x∂tg ∂tg

]
|x=0︸ ︷︷ ︸

=0

=

∫
R+

∂tF∂tg + µ

∫
R+

∂tv

v2
∂xg∂x∂tg + µ

[
∂tv

v2
∂xg ∂tg

]
|x=0︸ ︷︷ ︸

=0

We estimate the two terms of the RHS as follows∣∣∣∣∣
∫
R+

∂tF∂tg

∣∣∣∣∣ ≤ ‖∂tF‖L2(R+)‖∂tg‖L2(R+)

≤ µ

4

∫
R+

|∂x∂tg|2

v
+ |ỹ′(t)|2‖∂2

xw0(·+ ỹ(t))‖2L2(R+)

+ C|ỹ′′(t)|(‖∂xg‖L2(R+) + ‖∂xv̄‖L2(R+))‖∂tg‖L2(R+)

+ C‖∂tg‖2L2(R+)

(
‖∂xg‖L∞(R+) + |ỹ′(t)|2 + 1

)
,
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and ∣∣∣∣∣µ
∫
R+

∂tv

v2
∂xg∂x∂tg

∣∣∣∣∣ ≤ µ

4

∫
R+

|∂x∂tg|2

v
+ µ

∫
R+

|∂tg|2

v3
|∂xg|2

≤ µ

4

∫
R+

|∂x∂tg|2

v
+ C‖∂xg‖2L∞(R+)‖∂tg‖

2
L2(R+).

Hence, using Young’s inequality and recalling that ỹ′ ≤M ,

d

dt
‖∂tg(t)‖2L2(R+) + µ‖∂t∂xg‖2L2(R+)

≤ C
[
|ỹ′(t)|2‖∂2

xw0(·+ ỹ(t))‖2L2(R+) + |ỹ′′(t)|(‖∂xg‖L2(R+) + ‖∂xv̄‖L2(R+))‖∂tg‖L2(R+)

]
+ C(1 + ‖∂xg‖L2(R+)‖∂2

xg‖L2(R+))‖∂tg‖2L2(R+)

≤ C
[
‖∂2
xw0(·+ ỹ(t))‖2L2(R+) + |ỹ′′(t)|2 + ‖∂tg‖2L2(R+)

]
+ C

(
‖∂xg‖L2(R+)‖∂2

xg‖L2(R+) + ‖∂xg‖2L2(R+)

)
‖∂tg‖2L2 .

Applying Gronwall’s inequality, we deduce that

sup
t∈[0,T ]

‖∂tg(t)‖2L2(R+) + ‖∂t∂xg‖2L2([0,T ],L2(R+)

≤ C
[
‖(∂tg)|t=0‖2L2(R+) + ‖

√
x∂2

xw0‖2L2(R+) + ‖ỹ′′‖2L2(0,T ) + ‖∂tg‖2L2([0,T ]×R+)

]
× eC[‖∂xg‖L2L2‖∂2

xg‖L2L2+‖∂xg‖2L2L2 ].

We now use the control of ‖∂xg‖L2(R+) and ‖∂2
xg‖L2(R+) provided by Lemma 4.4. Note that

thanks to the assumption inf(1, T )ET ≤ 1, we have ‖∂2
xg‖L2((0,T )×R+) ≤ CE1

1/2. Moreover, we
have ‖∂xg‖L2((0,T )×R+) ≤ C inf(1, T 1/2)E

1/2
1 (for small times, we use the L∞(L2) estimate). It

follows that

exp
(
C[‖∂xg‖L2L2‖∂2

xg‖L2L2 + ‖∂xg‖2L2L2 ]
)
≤ exp

(
C inf(1, T 1/2)E1

)
≤ C

(for some different constant C).
As a consequence, we obtain

sup
t∈[0,T ]

‖∂tg‖2L2(R+) + ‖∂t∂xg‖2L2([0,T ],L2(R+) (4.15)

≤ C
[
‖(∂tg)|t=0‖2L2(R+) + ‖

√
x∂2

xw0‖2L2(R+) + ‖ỹ′′‖2L2(0,T ) + E1

]
.

Next, using (4.14), we have

‖(∂tg)|t=0‖2L2(R+) ≤ ‖F|t=0‖2L2(R+) + ‖g|t=0‖2H2(R+)

≤ ‖∂xw0‖2L2(R+) + C‖v0 − v̄‖2H2(R+) + C|ỹ′(0)− s|2. (4.16)

Gathering (4.15) and (4.16), we obtain the inequality announced in the statement of the Lemma.
To complete the proof, it remains to estimate ∂2

xg in L∞L2. For that purpose, we write

µ2

∫
R+

∣∣∣∣∂x(∂xgv
)∣∣∣∣2 (t) =

∫
R+

|∂tg − F |2(t)

≤ 2‖∂tg(t)‖2L2(R+) + 2‖F (t)‖2L2(R+)
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for any t ∈ [0, T ]. Hence, considering the sup in time and combining with (4.15), we get,

sup
t∈[0,T ]

µ2

4

∥∥∥∥∂x(∂xgv
)∥∥∥∥2

L2(R+)

≤ C
[
‖v0 − v̄‖2H2 + ‖(1 +

√
x)∂xw0‖2L2 + ‖

√
x∂2

xw0‖2L2‖ỹ′′‖2L2(0,T ) + ‖ỹ′ − s‖2L∞(0,T )

]
.

Using the compatibility condition ỹ′(0) = −(∂xu0/∂xv0)|x=0, we obtain

‖ỹ′ − s‖L∞([0,T ]) ≤ |ỹ′(0)− s|+ C‖ỹ′ − s‖1/2L2(0,T )‖ỹ
′′‖1/2L2(0,T )

≤ C
(
‖u0 − ū‖H2 + ‖v0 − v̄‖H2 + ‖ỹ′ − s‖1/2L2(0,T )‖ỹ

′′‖1/2L2(0,T )

)
. (4.17)

Using the estimate on E1 leads to the desired inequality.

Let us now say a few words about a more rigorous derivation of these estimates. Once again,
we consider the approximation vR solution to (3.2). We can perform the previous estimates for vR,
and we obtain uniform bounds in R. Passing to the limit R→ +∞, we get inequality (4.12).

Lemma 4.6 (Higher regularity - II). Assume that ỹ′(0) = −∂xu0
|x=0

∂xv0
|x=0

. The solution v of (3.11)

satisfies v − v̄ ∈ L∞([0, T ], H3(R+)), and ∂t(v − v̄) ∈ L∞([0, T ];H1(R+)) ∩ L2([0, T ];H2(R+)).
Furthermore, the following estimate holds: assume that inf(1, T 1/2)ET ≤ 1. Then, for some

p > 1,

E3 := sup
t∈[0,T ]

[
‖∂x∂t(v − v̄)(t)‖2L2(R+) + ‖∂3

x(v − v̄)‖2L2(R+)

]
+ ‖∂2

t (v − v̄)‖2L2([0,T ]×R+) + ‖∂2
x∂t(v − v̄)‖2L2([0,T ]×R+)

≤ ET (1 + ET )p. (4.18)

Proof. Let us now consider (4.13) as a linear parabolic equation on ∂t(v − v̄) = ∂tg, with ho-
mogeneous boundary conditions, endowed with the initial data ỹ′(0)∂xv0 + µ∂xx ln v0 + ∂xw0 =
ỹ′(0)∂xv0 + ∂xu0. Thanks to the compatibility condition (3.1), the initial condition belongs to
H1

0 (R), and we can apply estimate (A.4) in Proposition A.1 in the Appendix. Indeed, setting
a = 1/v, we have ∂ta = −∂tvv2 , ∂xa = −∂xvv2 . Using Lemma 4.5, we infer that ‖∂ta‖L∞(L2) ≤ E

1/2
2

and
‖∂xa‖L∞([0,T ];L4(R+)) ≤ C

(
1 + E

1/2
2

)
.

Moreover, setting

f = ∂tF − µ∂x
(
∂tv

v2
∂x(v − v̄)

)
,

we have, as shown in the course of the proof of Lemma 4.5,

‖f‖L2([0,T ]×R+) ≤ C‖∂tF‖L2((0,T )×R+) + C‖∂x(v − v̄)‖L∞‖∂x∂tv‖L2L2

+C‖∂tv‖L2L∞‖∂2
x(v − v̄))‖L∞L2 + C‖∂xv‖L∞‖∂tv‖L2L2‖∂x(v − v̄)‖L∞

≤ CE1/2
T (1 + ET ).

Hence, according to Proposition A.1

sup
t∈[0,T ]

‖∂x∂tg‖2L2(R+) + ‖∂2
t g‖2L2([0,T ]×R+) + ‖∂2

x∂tg‖2L2([0,T ]×R+)

≤ C‖∂x∂tg|t=0‖2L2(R+) + CET (1 + ET )2.
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We have
[∂t∂xg]|t=0 − µ

[
∂2
x

(
1

v
∂xg

)]
t=0

= [∂xF ]|t=0

where

∂xF = ∂2
xw0(·+ ỹ(t)) + ỹ′(t)∂2

xg + (ỹ′ − s)∂2
xv̄ + µ∂2

x

(
∂xv̄
vv̄

g

)
,

so that ∥∥(∂t,xg)|t=0

∥∥
L2(R+)

≤ C
(
‖g|t=0‖H3(R+)(1 + ‖g|t=0‖2H3(R+))

+ ‖∂2
xw0‖L2(R+) + |ỹ′(0)− s|‖∂2

xv̄‖L2(R+)

)
.

We then estimate ỹ′(0)− s as in (4.17), so that
∥∥(∂t,xg)|t=0

∥∥
L2(R+)

≤ CE1/2
0 (1 + E0). To conclude,

coming back to

µ∂2
x

(
1

v
∂xg

)
= ∂t(∂xg)− ∂xF

we have

sup
t∈[0,T ]

µ2

∫
R+

∣∣∣∣∂2
x

(
1

v
∂xg

)
(t)

∣∣∣∣2
≤ 2‖∂t∂xg‖2L∞([0,T ];L2(R+)) + 2‖∂xF‖2L∞([0,T ];L2(R+)),

with

‖∂xF‖L∞([0,T ];L2(R+)) ≤ C

[
‖∂2
xw0‖L2(R+) + ‖g‖L∞([0,T ],H2(R+))

+ ‖b‖L∞(0,T ) + ‖g‖L∞((0,T ),H2)(1 + ‖g‖L∞((0,T ),H2)2

]
.

Finally, using the previous estimates as well as the inequality (4.17), we obtain, for some p ≥ 1,

sup
t∈[0,T ]

‖∂3
xg‖2L2(R+) ≤ CET (1 + ET )p.

Gathering the estimates of Lemmas 4.4, 4.5 and 4.6, we obtain Proposition 4.1.

4.3 Estimates on h = u− ū
This subsection is devoted to the study of (2.18) satisfied by u, which we rewrite in terms of
h := u− ū

∂th− ỹ′(t)∂xh− µ∂x
(

1

v
∂xh

)
= (ỹ′ − s)∂xū + µ∂x

((
1

v
− 1

v̄

)
∂xū

)
, t > 0, x > 0,

h|x=0 = 0, lim
x→∞

h(t, x) = 0,

h|t=0 = u0 − ū,

(4.19)

where v is the solution of (2.17) constructed in the previous subsections. The goal is to prove
Proposition 4.2.

Throughout this subsection, we use the notations introduced in (4.2), (4.3), and we assume
that the time T is such that inf(1, T )Ē1 ≤ 1, where Ē1 was introduced in Lemma 4.4. We also
assume that assumption (4.1) is satisfied.

Our first result is the classical energy estimate for (4.19):
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Lemma 4.7 (Existence and energy estimates). There exists a unique u ∈ ū +L∞([0, T ];H1(R+))
solution to (4.19) which is such that:

E4(T ) := sup
t∈[0,T ]

‖(u− ū)(t)‖2H1(R+) + ‖∂x(u− ū)‖2L2([0,T ];H1(R+)) + ‖∂t(u− ū)‖2L2([0,T ]×R+)

≤ ET (1 + ET )p (4.20)

for some p ≥ 1.

Proof. The existence and uniqueness of u in ū + L∞([0, T ], L2(R+)) ∩ L2([0, T ], H1(R+)) follows
from classical variational arguments. The energy estimates in L∞([0, T ], H1) ∩ L2([0, T ], H2) are
a consequence of Proposition A.1 in the Appendix, setting b(t, x) = −ỹ′(t), c ≡ 0, a = 1/v, and

f = (ỹ′ − s)∂xū + µ∂x

((
1

v
− 1

v̄

)
∂xū

)
.

We obtain in particular, using the lower bound a ≥ C̄−1 and setting h = u− ū,

‖h‖L∞([0,T ],L2(R+)) + ‖∂xh‖L2((0,T )×R+)

≤ C
(
‖u0 − ū‖L2(R+) + ‖ỹ′ − s‖L2(0,T )‖ū − u+‖L2(R+) + ‖v − v̄‖L2([0,T ],L2(R+))

)
, (4.21)

and the right-hand side is bounded by (ET )1/2.
Furthermore, note that with the notations of Lemma 4.4

‖∂ta‖L∞([0,T ],L2(R+)) ≤ ‖∂tv‖L∞([0,T ],L2(R+)) ≤ E
1/2
1 ,

‖∂xa‖L∞([0,T ],L4(R+)) ≤ C
(
1 + ‖∂x(v − v̄)‖L∞([0,T ],H1(R+))

)
≤ C

(
1 + E

1/2
1

)
.

The estimate announced in the Proposition follows easily from Proposition A.1.

Remark 4.8. Note that, compared to Proposition A.1 and Lemma 3.5 concerning the L∞L2

estimate on v − v̄ , we do not have the exponential dependency with respect to T in (4.21).
This results from the divergence structure of the diffusion term (∂x

(
∂xh
v

)
here, compared to

∂2
x ln

(
v
v̄
)
in Lemma 3.5), but also from the structure of the source term f . Indeed f = ∂xF with

F = (ỹ′(t)− s)(ū − u+) +
(

1
v −

1
v̄
)
∂xū, therefore∣∣∣∣∣

∫ T

0

∫
R+

f h dxdt

∣∣∣∣∣ ≤ Cη‖F‖2L2([0,T ]×R+) + η‖∂xh‖2L2([0,T ]×R+),

where the second term is absorbed in the left-hand side of the energy inequality. Hence, compared
to Proposition A.1, we can close the energy estimate without need of ‖u− ū‖L2([0,T ]×R+).

Lemma 4.9 (Improved regularity). Under the compatibility condition (4.4), namely

∂xu0
|x=0

(
ỹ′(0)− µ(∂xv0)|x=0

)
+ µ(∂2

xu0)|x=0 = 0,

the solution u to (4.19) is such that:

E5(T ) := ‖∂t,x(u− ū)‖2L∞[0,T ];L2(R+)) + ‖∂2
t (u− ū)‖2L2([0,T ]×R+) + ‖∂t∂2

x(u− ū)‖2L2([0,T ]×R+)

≤ ET (1 + ET )p (4.22)

for some integer p ≥ 1.
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Proof. We begin with the control of ∂th = ∂t(u − ū) in L∞([0, T ];L2(R+)) ∩ L2([0, T ];H1(R+))
using estimate (A.5) from Proposition A.1 and Lemma 4.7:

‖∂th‖2L∞([0,T ];L2(R+)) + ‖∂t,xh‖2L2((0,T )×R+)

≤ C
(
‖u0 − ū‖2H2(R+) + (1 + ‖ỹ′′‖2L2(0,T ) + E2)E4

)
+ C‖ỹ′′‖2L2(0,T ) + C‖∂tg‖2L2([0,T ];H1(R+))(1 + ‖∂xg‖2L∞([0,T ];L2(R+)))

≤ ET (1 + ET )
p
. (4.23)

Now, we see ∂th as the solution to the problem

∂t(∂th)− ỹ′(t)∂t,xh− µ∂t
(

1

v
∂t,xh

)
= H (4.24)

with

H = ỹ′′(t)∂xh+ ỹ′′(t)∂xū − µ∂x
(
∂tv

v2
∂xh

)
− µ∂x

(
∂tv

v2
∂xū

)
,

endowed with the initial condition

∂th|t=0 = ỹ′(0)∂xu0 + µ∂x

(
1

v0
∂xu0

)
.

Under the compatibility condition (4.4), we ensure that ∂th|t=0,x=0 = 0. We can now apply
Proposition A.1 and we get thanks to (A.4)

‖∂t,xh‖2L∞([0,T ];L2(R+)) + ‖∂2
t h‖2L2([0,T ]×R+) + ‖∂t∂2

xh‖2L2([0,T ]×R+)

≤ C

[
‖∂t∂xh|t=0‖2L2(R+) + ‖ỹ′′‖2L2(0,T )‖∂xh‖

2
L∞([0,T ];L2(R+)) + ‖ỹ′′‖2L2(0,T )

+ ‖∂tv‖2L∞([0,T ];H1(R+))

(
1 + ‖∂x(v − v̄)‖2L∞([0,T ];H1(R+))

)
‖∂xh‖2L2([0,T ];H1(R+))

+ ‖∂tv‖2L2([0,T ];H1(R+))

(
1 + ‖v − v̄‖2L∞([0,T ];H1(R+))

)
+
(
‖∂tv‖L∞([0,T ];L2(R+)) + ‖∂tv‖2L∞([0,T ];L2(R+)) + ‖∂xv‖2L∞([0,T ];L4(R+))

+ ‖∂xv‖4L∞([0,T ];L4(R+)) + ‖ỹ′‖2L∞(0,T )

)
‖∂t,xh‖2L2([0,T ]×R+)

]
.

The right-hand side is controlled as follows. Proposition 4.1 allows us to upper-bound v and
its derivatives. We also use (4.23) to estimate ‖∂t,xh‖L2L2 and Lemma 4.7 to estimate h in
L∞(H1) ∩ L2(H2). Next, using (4.19), we observe that

∂t∂xh|t=0 = ỹ′(0)∂2
x(u0 − ū) + (ỹ′(0)− s)∂2

xū + µ∂2
x

(
1

v0
∂x(u0 − ū)

)
+ µ∂2

x

((
1

v0
− 1

v̄

)
∂xū

)
and therefore, using the compatibility condition ỹ′(0) = −∂xu0

x=0/∂xv0
|x=0,

‖∂t∂xh|t=0‖L2(R+)

≤ C
(
‖∂x(u0 − ū)‖H2(R+) + ‖v0 − v̄‖H2(R+)

) (
1 + |ỹ′(0)− s|+ ‖v0 − v̄‖H2(R+)

)
+ C|ỹ′(0)− s|

≤ CE1/2
0

(
1 + E1/2

0

)
.

Gathering all the estimates, we find that

‖∂t,xh‖2L∞L2 + ‖∂2
t h‖2L2L2 + ‖∂t∂2

xh‖2L2L2 ≤ ET (1 + ET )
p

for some large and computable constant p > 1.
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5 Existence and uniqueness of local solutions
The purpose of this section is to prove Theorem 2.2, following the strategy outlined in section 2.
We shall construct the solution x̃ of (2.15) as the fixed point of a nonlinear application T , whose
definition we now recall: T : ỹ ∈ H2(0, T ) 7→ z̃ ∈ H2(0, T ), where

z̃′(t) = −µ ∂xu(t, 0)

u− −w0(ỹ(t))
, z̃(0) = 0

and u is the unique solution of (2.18). As a consequence, recalling that s = −µ∂xū|x=0/(u−−u+),

z̃′ − s = −µ
(∂xu− ∂xū)|x=0(t)

u− −w0(ỹ(t))
− µ∂xū|x=0

w0(ỹ(t))− u+

(u− −w0(ỹ(t)))(u− − u+)

= −µ
(∂xu− ∂xū)|x=0(t)

u− −w0(ỹ(t))
+ s

w0(ỹ(t))− u+

u− −w0(ỹ(t))
. (5.1)

We will first prove that for any initial data satisfying (H1)-(H5), the application T has an
invariant set provided T is chosen sufficiently small. We will then prove that T is a contraction
on this invariant set.

Let us define

IM :=
{
ỹ ∈ H2([0, T ]), ỹ(0) = 0, ỹ′(0) = −

∂xu0
|x=0

∂xv0
|x=0

and M−1 ≤ ỹ′(t) ≤M ∀t ∈ [0, T ], ‖ỹ′ − s‖H1([0,T ]) ≤M
}
.

The set IM will be our invariant set provided M is chosen sufficiently large, and T sufficiently
small. Without loss of generality, we will assume that M ≥ 1.
Following the previous section (see (4.2) and (4.3)), we set

E0 := ‖v0 − v̄‖2H3(R+) + ‖u0 − ū‖2H3(R+) + ‖V 0‖2L2(R+)

+ ‖(1 +
√
x)W 0‖2L2(R+) + ‖(1 +

√
x)∂xw0‖2L2(R+) + ‖(1 +

√
x)∂2

xw0‖2L2(R+),

ET := E0 + ‖ỹ′ − s‖2H1([0,T ]).

Theorem 2.2 is an immediate consequence of the following result:

Proposition 5.1. Let M > 1 be such that√
2

M
≤ ∂xv0

|x=0 ≤
√
M

2
, E0 ≤M2, −

√
M

2
≤ ∂xu0

|x=0 ≤ −
√

2

M
. (5.2)

Then there exists T > 0 depending on M and the parameters of the system, such that T has a
unique fixed point on IM .

5.1 T has an invariant set
First, notice that by definition, z̃(0) = 0 and

z̃′(0) = −µ
∂xu0
|x=0

u− −w0(0)
·

We recall that w0 = u0 − µ∂x ln v0, so that u− −w0(0) = µ∂xv0
|x=0. It follows that

z̃′(0) = −
∂xu0
|x=0

∂xv0
|x=0

·
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We assume that M ≥ 1 is chosen so that (5.2) is satisfied. Notice that these conditions ensure
that

2

M
≤ ỹ′(0) = z̃′(0) = −

∂xu0
|x=0

∂xv0
|x=0

≤ M

2
.

Since
z̃′(0)−

√
t‖z̃′′‖L2(0,T ) ≤ z̃′(t) ≤ z̃′(0) +

√
t‖z̃′′‖L2(0,T ),

it suffices to prove that ‖z̃′ − s‖H1(0,T ) ≤ M for T sufficiently small (depending on M), and to
further choose T so that

√
TM ≤ (2M)−1, i.e. T ≤ (4M4)−1.

Now, let us consider the solutions v, u of (2.17), (2.18) respectively. Using the notation of
Lemma 4.4, we have

E1 ≤ C(E0 + ‖ỹ′ − s‖2L2(0,T )) ≤ CM .

(We recall that the constant C in the above inequality may depend on M). Now, let us choose
TM so that inf(1, TM )CM ≤ 1. Then the solutions v, u of (2.17), (2.18) satisfy the estimates of
Propositions 4.1 and 4.2.

Let us now turn towards the bound on ‖ỹ′ − s‖H1(0,T ). Note that ET ≤ 2M2 according to our
choice of M . We also note that

u− −w0(0) =
1

µ
∂xv0
|x=0 ≥

1

µ

√
2

M
.

Since ‖ỹ′‖L∞(0,T ) ≤M and ‖∂xw0‖∞ ≤ E1/2
0 ≤M , we obtain, for t ∈ [0, T ],

u− −w0(ỹ(t)) ≥ 1

µ

√
2

M
− ‖ỹ′‖∞t‖∂xw0‖∞ ≥

1

µ
√
M

(5.3)

provided T ≤ CM−5/2. We infer, using (5.1),

‖z̃′ − s‖L2(0,T ) ≤ CM
(
‖∂x(u− ū)‖L2((0,T ),L∞) + T 1/2‖w0 − u+‖∞

)
≤ CME1/2

T T 1/2 ≤ CMT 1/2.

Thus, for T sufficiently small, the right-hand side is smaller than M/2.
We now consider z̃′′. We recall that we set h = u− ū. Using that

z̃′′(t) = −µ
(∂t∂xu)|x=0

u− −w0(ỹ(t))
+ µ

(∂xu)|x=0

(u− −w0(ỹ(t)))2
ỹ′(t)∂xw0(ỹ(t))

= −µ
∂t∂xh|x=0

u− −w0(ỹ(t))
+ µ

∂xh|x=0

(u− −w0(ỹ(t)))2
ỹ′(t)∂xw0(ỹ(t)) (5.4)

+ sỹ′(t)∂xw0(ỹ(t))
u− − u+

(u− −w0(ỹ(t)))2
, (5.5)

it follows that

‖z̃′′‖L2(0,T ) ≤ C
√
M‖∂t∂xh‖L2((0,T ),L∞(R+)) + CM3‖∂xh‖L2((0,T ),L∞(R+))

+ CM3T 1/2.

We now use Proposition 4.2: there exists a constant p ≥ 1 such that

‖∂t∂xh‖2L∞((0,T ),L2) + ‖∂t∂2
xh‖2L2((0,T )×R+) ≤ CMM

2p+2.

Hence

‖∂t∂xh‖L2((0,T ),L∞(R+)) ≤ C‖∂t∂xh‖
1/2
L2((0,T )×R+)‖∂t∂

2
xh‖

1/2
L2((0,T )×R+)

≤ CMT 1/4Mp+1.
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Similarly,

‖∂xh‖L2((0,T ),L∞(R+)) ≤ T 1/4‖∂xh‖1/2L∞([0,T ];L2(R+))‖∂
2
xh‖

1/2
L2([0,T ]×R+)

≤ CMT 1/4Mp.

Hence, choosing T sufficiently small (depending on M), we obtain

‖z̃′′‖L2(0,T ) ≤
M

2
.

We deduce that IM is stable by T .

5.2 T is a contraction on IM
Let ỹ1, ỹ2 ∈ IM . We consider the associated solutions vi, ui of (2.17), (2.18), and we set z̃i =
T (ỹi) ∈ IM . We define Dv = v1 − v2, Du = u1 − u2.

Let us now evaluate z̃′1 − z̃′2 and z̃′′1 − z̃′′2 . First, we have

z̃′1(t)− z̃′2(t) = −µ
∂xDu|x=0

u− −w0(ỹ1)
− µ∂xu2|x=0

w0(ỹ1)−w0(ỹ2)

(u− −w0(ỹ1))(u− −w0(ỹ2))
,

so that, using Lemma C.2 and (5.3)

‖z̃′1 − z̃′2‖L2(0,T ) ≤ C‖∂xDu|x=0‖L2(0,T ) + C‖∂xu2|x=0‖L∞(0,T )‖ỹ′1 − ỹ′2‖L2(0,T ). (5.6)

The constant C depends on parameters of the problem, on Sobolev norms of w0, and on M . In a
similar way, using identity (5.4), we find that

‖z̃′′1 − z̃′′2 ‖L2(0,T ) ≤ C
(
‖∂t∂xDu|x=0‖L2(0,T ) + ‖∂xDu|x=0‖L2(0,T )

)
(5.7)

+ C
(
‖∂xu2|x=0‖L∞(0,T ) + ‖∂t∂xu2|x=0‖L2(0,T )

)
‖ỹ′1 − ỹ′2‖L2(0,T ).

There remains to evaluate the traces of ∂t∂xDu and ∂xDu at x = 0 in terms of ỹ1 − ỹ2. In
order to do so, we follow the order of the energy estimates in the previous sections and start by
evaluating Dv. Note that Dv is a solution of

∂tDv − ỹ′1∂xDv − µ∂xx ln

(
1 +

Dv

v2

)
= (ỹ′1 − ỹ′2)∂xv2,

Dv|x=0 = 0, lim
x→∞

Dv(t, x) = 0,

Dv|t=0 = 0.

We apply Lemma B.1 in the Appendix to the function Dv, with ḡ = v2, G = (ỹ′1 − ỹ′2)∂xv2.
Since T ≤ TM , exp(‖∂xv2‖L∞((0,T )×R+)TM ) ≤ CM , and

It follows that

‖Dv‖L∞((0,T ),H1(R+)) + ‖∂tDv‖L2((0,T )×R+) + ‖∂xDv‖L2((0,T )×R+)

≤ C‖ỹ′1 − ỹ′2‖L2(0,T )

(
‖∂x(v2 − v̄)‖L∞((0,T ),L2(R+)) + ‖∂xv̄‖L2(R+)

)
exp

(
‖∂xv2‖L∞((0,T )×R+)T

)
≤ CM‖ỹ′1 − ỹ′2‖L2(0,T ),

and ∥∥∥∥∂2
x

(
Dv

v2

)∥∥∥∥
L2((0,T )×R+)

≤ CM
(
‖ỹ′1 − ỹ′2‖L2(0,T ) + T 1/2‖ỹ′1 − ỹ′2‖2L2(0,T )

)
≤ CM‖ỹ′1 − ỹ′2‖L2(0,T )
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Following the estimates of Section 4.2 (see also Proposition A.1 in the Appendix), we infer that

‖∂tDv‖2L∞((0,T ),H1(R+)) + ‖∂x∂tDv‖2L2((0,T ),H1(R+)) + ‖∂2
xDv‖2L∞((0,T ),H1(R+))

≤ CM (‖ỹ′1 − ỹ′2‖2L2(0,T ) + ‖ỹ′′1 − ỹ′′2‖2L2(0,T )).

We now turn towards the estimates on Du, which satisfies the equation

∂tDu − ỹ′1∂xDu − µ∂x
(

1

v1
∂xDu

)
= S

with
S := (ỹ′1 − ỹ′2)∂xu2 + µ∂x

((
1

v1
− 1

v2

)
∂xu2

)
.

In order to complete the energy estimates on Du, we need to evaluate S and ∂tS in L2([0, T ]×R+).
We have

‖S‖L2([0,T ]×R+) ≤ ‖∂xu2‖L∞([0,T ],L2(R+))‖ỹ′1 − ỹ′2‖L2(0,T )

+ C
(
‖Dv‖L∞([0,T ]×R+)‖∂2

xu2‖L2([0,T ]×R+)

+ ‖∂xDv‖L∞([0,T ],L2(R+))‖∂xu2‖L2([0,T ],L∞(R+))

+ ‖Dv‖L∞([0,T ]×R+)‖∂x(v1 + v2)‖L∞([0,T ]×R+)‖∂xu2‖L2([0,T ],L∞(R+))

)
≤ CM‖ỹ′1 − ỹ′2‖L2(0,T )

and similarly,

‖∂tS‖L2([0,T ]×R+) ≤ CM‖ỹ′1 − ỹ′2‖H1(0,T ).

Using once again Proposition A.1 in the Appendix, we obtain

‖Du‖L∞((0,T ),H1(R+)) + ‖∂xDu‖L2((0,T ),H1(R+)) + ‖∂tDu‖L2((0,T )×R+)

≤ CM‖ỹ′1 − ỹ′2‖L2(0,T )

and
‖∂tDu‖L∞((0,T ),H1(R+)) + ‖∂x∂tDu‖L2((0,T ),H1(R+)) ≤ CM‖ỹ′1 − ỹ′2‖H1(0,T ).

We are now ready to prove the contraction property. We focus on the estimate of z̃′′1 − z̃′′2 ,
since

‖z̃′1 − z̃′2‖L2(0,T ) ≤
T√
2
‖z̃′′1 − z̃′′2 ‖L2(0,T ).

Using the estimates on Du, we obtain

‖(∂t∂xDu)|x=0‖L2(0,T ) + ‖∂xDu|x=0‖L2(0,T )

≤ C
(
‖∂t∂xDu‖1/2L2((0,T )×R+)‖∂t∂

2
xDu‖1/2L2((0,T )×R+) + ‖∂xDu‖1/2L2((0,T )×R+)‖∂

2
xDu‖1/2L2((0,T )×R+)

)
≤ CT 1/4

(
‖∂t∂xDu‖1/2L∞((0,T ),L2(R+))‖∂t∂

2
xDu‖1/2L2((0,T )×R+)

+ ‖∂xDu‖1/2L∞((0,T ),L2(R+))‖∂
2
xDu‖1/2L2((0,T )×R+)

)
≤ CMT 1/4‖ỹ′1 − ỹ′2‖H1(0,T ).

Furthermore,

‖∂xu2|x=0‖L∞(0,T ) + ‖∂t∂xu2|x=0‖L2(0,T ) ≤ |∂xū|x=0+ |+ CET (1 + ET )p ≤ CM .

It follows that

‖z̃′′1 − z̃′′2 ‖L2(0,T ) ≤ CMT 1/4‖ỹ′1 − ỹ′2‖H1(0,T ) + CM‖ỹ′1 − ỹ′2‖L2(0,T ) ≤ CMT 1/4‖ỹ′1 − ỹ′2‖H1(0,T ).

Hence, for T sufficiently small (depending on M), T is a contraction on IM .
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5.3 Conclusion
We deduce from the previous subsections that there exists TM > 0 such that for all T ≤ TM , T has
a unique fixed point in IM . Let us consider the solution (vs, us) associated with this fixed point.
According to the argument at the end of section 2, (x̃, vs, us) is a solution of (2.16). Furthermore,
vs and us satisfy the properties listed in Propositions 4.1 and 4.2 respectively, and vs also satisfies
the L∞ estimates of Lemma 3.2, provided TM is small enough.

Thus (x̃, vs, us) satisfy all the properties listed in Theorem 2.2. Eventually, the pressure in the
congested domain is given by

ps(t, x) = ps(t) = x̃′(t)(u− −w0(x̃(t))).

Since x̃ ∈ H2(0, T ), ps ∈ H1(0, T ). This completes the proof of Theorem 2.2.

6 Global solutions: existence for small data and stability
In this section, we start from a strong solution (us, vs) provided by Theorem 2.2 (see the previous
section). We prove that if E0 is small enough, the existence time of the solution is infinite.
Furthermore, the travelling wave is asymptotically stable. Once again, we drop the indices s
throughout the section in order to alleviate the notation.

Let us now introduce our setting. We assume that E0 ≤ c0δ
2, where δ is a small constant,

E0 is the initial energy, defined in (4.2) and c0 is a constant depending only on the parameters
of the problem, to be defined later on. At this stage, we merely choose c0 small enough so
that ‖v0 − v̄‖L∞(R+) ≤ δ/2. We denote by T ∗ the maximal existence time of the solution. For
T ∈]0, T ∗[ small enough, using a continuity argument together with the dominated convergence
theorem, ‖x̃′ − s‖H1([0,T ]) + ‖v − v̄‖L∞([0,T ]×R+) ≤ δ. We set

T̄ := sup
{
T ∈]0, T ∗[, ‖x̃′ − s‖H1([0,T ]) ≤ δ

}
.

The global existence of the solution relies on the following bootstrap result:

Proposition 6.1. There exist constants c0, δ0 > 0, depending only on the parameters of the
problem s, µ, v+, such that the following result holds.

For all δ ∈ (0, δ0), if E0 ≤ c0δ2, and ‖(1 +
√
x)∂kxw0‖L2(R+) ≤ c0δ3/2 for k = 1, 2, 3, then

∀T ∈ [0, T̄ ], ‖x̃′ − s‖H1([0,T ]) ≤
δ

2
.

The proof of Proposition 6.1 is the main purpose of this section. Before describing the strategy
of the proof, let us deduce the global existence result of Theorem 2.3 from Proposition 6.1. First,
it is clear from Proposition 6.1 and from a simple continuity argument that T̄ = T ∗. Second,
notice that for all T < T̄ , ET = E0 + ‖x̃′ − s‖2H1(0,T ) ≤ 2δ2 ≤ 1 provided δ0 ≤ 1/

√
2 and c0 ≤ 1.

Hence the total energy remains bounded on (0, T ∗). Classically, this implies that the solution is
global. Let us explain why in the present context.

First, note that for all t ∈ [0, T̄ [,

s

2
≤ s− ‖x̃′ − s‖L∞ ≤ x̃′(t) ≤ s+ ‖x̃′ − s‖L∞ ≤

3s

2
(6.1)

provided δ is sufficiently small.
As a consequence, as long as 1 ≤ v ≤ 2(v+ + 1), the estimates of Propositions 4.1 and 4.2

hold, with a constant C depending only on the parameters of the problem s, µ, v+, u± (note that
we chose here C̄ = 2(v+ + 1)). Hence, let us introduce

T̄ ′ := sup
{
T ∈ (0, T̄ ), 1 ≤ v ≤ 2(v+ + 1)

}
.
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By continuity, if δ is small enough, we have T̄ ′ > 0. Furthermore, there exists a constant C
depending only on the parameters of the problem such that

‖∂x(v − v̄)‖L∞((0,T̄ ′)×R+) ≤ Cδ.

Consequently, for all t ∈ [0, T̄ ′],

inf
x∈[0,1]

∂xv(t, x) ≥ inf
x∈[0,1]

∂xv̄(x)− ‖∂x(v − v̄)‖∞ ≥
1

2
inf

x∈[0,1]
∂xv̄(x) > 0

provided δ is small enough.
Now, let us prove that T̄ ′ = T̄ provided δ is small enough. We argue by contradiction and

assume that T̄ ′ < T̄ . We then consider the Cauchy problem at t = T̄ ′, and we apply Lemma
3.2. Then (3.5) is satisfied, with a constant M depending only on the parameters of the problem.
Furthermore,

sup
x
v(T̄ ′, x) ≤ sup v̄ + ‖v(T̄ ′)− v̄‖L∞(R+) ≤ v+ + CET̄ ′ ≤ v+ +

1

2

provided δ is small enough. As a consequence, there exists a time τ > 0, depending only on the
parameters of the problem, such that

1 < v(t, x) ≤ 2

(
v+ +

1

2

)
= 2v+ + 1

for all t ∈ [T̄ ′, inf(T̄ , T̄ ′ + τ)]. This contradicts the definition of T̄ ′, and we infer that T̄ ′ = T̄ .
Thus the constants in Propositions 4.1 and 4.2 and in all Lemmas of section 4 depend only

on s, µ, v+, u± for all estimates bearing on the interval [0, T̄ ]. At last, let us emphasize that since
ET ≤ 1 for all T ≤ T̄ , the condition inf(1, T 1/2)E1(T ) ≤ 1 of Lemmas 4.5, 4.6 etc. is always
satisfied.

It then follows from Proposition 5.1 that the time TM on which the fixed point argument is valid
depends only on the parameters of the problem s, µ, v+, u±. By a classical induction argument, we
may solve the Cauchy problem on [nTM , (n+ 1)TM ] for all n ≥ 0, and we deduce that T ∗ = +∞.

Let us now explain our strategy of proof of Proposition 6.1. It relies on two sets of estimates:

• The first set of estimates was obtained in Propositions 4.1 and 4.2. It ensures that if δ is
small enough, as long as T ≤ T̄ , setting g := v − v̄ , h := u− ū,

‖g‖L∞([0,T ],H3(R+)) + ‖∂tg‖L∞([0,T ],H1(R+)) + ‖∂tg‖L2((0,T ),H2(R+))

≤ C(E1/2
0 + ‖x̃′ − s‖H1(0,T )), (6.2)

‖h‖L∞([0,T ],H1(R+)) + ‖∂th‖L2([0,T ],H2(R+)) + ‖∂2
t h‖L2((0,T )×R+)

≤ C(E1/2
0 + ‖x̃′ − s‖H1(0,T )), (6.3)

where the constant C depends only on the parameters of the problem, namely s, µ, v+ and
u+, as explained above (recall that ET ≤ 1 for all T < T̄ ).

From there, using the equations (4.6) and (4.19) on g and h respectively, we also deduce
that for all T ≤ T̄ ,

‖g‖L2((0,T ),H4(R+)) + ‖h‖L2((0,T ),H4(R+))

≤ C
(
E1/2

0 + ‖(1 +
√
x)∂3

xw0‖L2(R+) + ‖x̃′ − s‖H1(0,T )

)
. (6.4)

• The second set of estimates relies on a coercivity inequality for the linearized operator around
v̄ , which will be the main focus of this section. One crucial observation lies in the fact that

28



∂xv̄ belongs to the kernel of this linearized operator1. This allows us to define a new unknown

g1 := −s(v − v̄)− µ∂x
(

v − v̄
v̄

)
, (6.5)

which will satisfy better estimates than g = v − v̄ (cf Remark 6.2).

In order to keep the presentation as simple as possible, we will start with the case when
w0 ≡ u+, which contains the main ideas of the proof. In subsection 6.2, we will address the
case of non-constant w0, and we will point out the main differences with the simplified case. We
conclude this section with a proof of the long time stability in subsection 6.3

6.1 Case w 0 ≡ u+

In this section, we assume that w0 is constant and equal to u+. The equation satisfied by v on
[0, T ∗[ is therefore

∂tv − x̃′∂xv − µ∂2
x ln v = 0,

v|x=0 = 1, lim
x→∞

v(t, x) = v+,

v|t=0 = v0.

In the rest of this section, we introduce the linearized operator around v̄ , namely ∂xA, where

A := −sId− µ∂x
( ·

v̄

)
.

We also set β(t) = x̃′(t)− s and g = v − v̄ , as in the previous sections. The equation on g can be
written as

∂tg + ∂xAg = β∂xv̄ + β∂xg + µ∂2
x

(
ln
(

1 +
g

v̄

)
− g

v̄

)
,

g|t=0 = v0 − v̄ ,
g|x=0 = 0.

(6.6)

Let us comment a little on the structure of this equation. We will prove that the operators ∂xA
and A∂x enjoy nice coercivity properties (see Lemma 6.3 below). The second and third terms in
the right-hand side of (6.6) are quadratic and will be treated perturbatively, using the first set
of estimates on g, namely (6.2) and (6.4). Eventually, ∂xv̄ ∈ kerA. Hence the first term in the
right-hand side disappears when A is applied to the equation. As a consequence, g1 = Ag satisfies
the equation

∂tg1 +A∂xg1 = βA∂xg + µA∂2
x

(
ln
(

1 +
g

v̄

)
− g

v̄

)
,

g1|t=0 = A
(
v0 − v̄

)
.

(6.7)

From definition (6.5) and estimates (6.2), (6.4), we know that

g1 ∈ L∞((0, T̄ ), H2(R+)), g1 ∈ L2((0, T̄ ), H3(R+))

and that ∂tg1 ∈ L∞((0, T̄ ), L2(R+)) ∩ L2((0, T̄ ), H1(R+)).
(6.8)

Using the identity u− µ∂x ln v = u+, we also infer that h− µ∂x ln(1 + g/v̄) = 0. Using (6.3) and
(6.4), we deduce that

g1 ∈ L2((0, T̄ ), H4(R+)), ∂tg1 ∈ L2((0, T̄ ), H2(R+)) and ∂2
t g1 ∈ L2((0, T̄ )× R+) (6.9)

Remark 6.2. In Equation (6.7), all the terms in the right-hand side are quadratic (recall that
‖g‖ . E1/2

0 + ‖β‖), so that g1 can be expected to satisfy better estimates than g.
1Note that this is a classical property of nonlinear equations with constant coefficients, linearized around a given

stationary solution. It is related to the (formal) space invariance of the equation.
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Before addressing the estimates on g1 = Ag, let us derive some information on the traces of
∂kxg1 at x = 0 for k = 0, 1, 2. Since w0 = u+, we know that

u(t, x)− µ∂x ln v(t, x) = u+ ∀t > 0, x > 0.

As a consequence,
∂xv|x=0 =

u− − u+

µ
= ∂xv̄|x=0,

and thus g1|x=0 = ∂xg|x=0 = 0. Taking the trace of (6.6) at x = 0 (which is legitimate since all
terms belong to L2((0, T̄ ), H2(R+)), we find that

∂xg1|x=0 = β∂xv̄|x=0 = β
s(v+ − 1)

µ
. (6.10)

We now take the trace of (6.7) at x = 0, noticing that all terms in (6.7) belong to L2((0, T ), H1(R+)).
Note that

A∂xg = ∂xg1 + [A, ∂x]g = ∂xg1 + µ∂x

(
∂xv̄
v̄2

g

)
. (6.11)

Furthermore, ln(1+X)−X is quadratic close toX = 0, and we recall that (g)|x=0 = (∂xg)|x=0 = 0.
It follows that (

A∂2
x

(
ln
(

1 +
g

v̄

)
− g

v̄

))
|x=0

= 0.

We infer from (6.7) and (6.11) that

(A∂xg1)|x=0 = β(A∂xg)|x=0 = β∂xg1|x=0 = β2 s(v+ − 1)

µ
,

and thus

µ∂x

(
∂xg1

v̄

)
|x=0

= −s∂xg1|x=0 − β∂xg1|x=0 (6.12)

= −β s
2(v+ − 1)

µ
− β2 s(v+ − 1)

µ
. (6.13)

Let us now state a Lemma giving some coercivity properties on A:

Lemma 6.3 (Coercivity properties of ∂xA and A∂x).

• Estimate for A∂x: let ϕ ∈ H2(R+). Then∫ ∞
0

(A∂xϕ) ϕ = µ

∫ ∞
0

(∂xϕ)2

v̄
+
s

2
(ϕ(0))2 + µϕ′(0)ϕ(0)

≥ µ

v+

∫ ∞
0

(∂xϕ)2 +
s

2
(ϕ(0))2 + µϕ′(0)ϕ(0).

• Estimate for ∂xA: let ϕ ∈ H2(R+). Then, for any weight function ρ ∈ C2
b (R+) such that

ρ > 0 a.e.∫ ∞
0

(∂xAϕ)
ϕ

v̄
ρ ≥ µ

∫ ∞
0

(
∂x
ϕ

v̄

)2

ρ− C‖ρ‖W 2,∞

∫ ∞
0

ϕ2

+ϕ2(0)
(s

2
ρ(0)− µ

2
ρ′(0)

)
+ µ∂x

(ϕ
v̄

)
|x=0

ϕ(0)ρ(0).

The proof of Lemma 6.3 is straightforward and provided in Appendix D for the reader’s con-
venience.
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We are now ready to tackle the estimates on g1. In the following, we denote by C any constant
depending only on the parameters of the problem (i.e. v+, u±, s, µ).

�L∞(L2) ∩ L2(H1) estimate:
We multiply equation (6.7) by g1. Using the first point in Lemma 6.3 together with the

observation (6.11), we obtain

1

2

d

dt

∫ ∞
0

g2
1 +

µ

v+

∫ ∞
0

(∂xg1)2 ≤
∣∣∣∣µβ ∫ ∞

0

∂x

(
∂xv̄
v̄2

g

)
g1

∣∣∣∣+ µ

∣∣∣∣∫ ∞
0

A∂2
x

(
ln
(

1 +
g

v̄

)
− g

v̄

)
g1

∣∣∣∣ .
(6.14)

We now evaluate separately the two terms in the right-hand side.

• Integrating by parts the first term, we obtain∣∣∣∣∫ ∞
0

∂x

(
∂xv̄
v̄2

g

)
g1

∣∣∣∣ ≤ C‖∂xg1‖L2(R+)‖g‖L2(R+).

Recalling that
‖g‖2L∞([0,T̄ ],L2(R+)) ≤ E0 + C‖β‖2L2(0,T̄ ),

we obtain ∣∣∣∣µβ ∫ ∞
0

∂x

(
∂xv̄
v̄2

g

)
g1

∣∣∣∣ ≤ µ

4v+
‖∂xg1‖2L2(R+) + C(E0 + ‖β‖2L2(0,T̄ ))|β|

2.

• Using the definition of the differential operator A and integrating by parts, we have∣∣∣∣∫ ∞
0

A∂2
x

(
ln
(

1 +
g

v̄

)
− g

v̄

)
g1

∣∣∣∣
≤ C

∣∣∣∣∫ ∞
0

∂x

(
ln
(

1 +
g

v̄

)
− g

v̄

)
∂xg1

∣∣∣∣+ C

∣∣∣∣∫ ∞
0

∂2
x

(
ln
(

1 +
g

v̄

)
− g

v̄

)
∂xg1

∣∣∣∣ .
We now consider the nonlinear term. We have

∂x

(
ln
(

1 +
g

v̄

)
− g

v̄

)
= −∂x

( g
v̄

) g
v̄

1 + g
v̄
,

∂2
x

(
ln
(

1 +
g

v̄

)
− g

v̄

)
= −∂2

x

( g
v̄

) g
v̄

1 + g
v̄
−
(
∂x

( g
v̄

))2 1

(1 + g
v̄ )2

.

(6.15)

Consequently, recalling that v̄ + g = v ≥ 1, we have∣∣∣∣∫ ∞
0

A∂2
x

(
ln
(

1 +
g

v̄

)
− g

v̄

)
g1

∣∣∣∣
≤ C‖∂xg1‖L2(R+)

(
‖g‖L∞(R+)

∥∥∥∂x ( gv̄ )∥∥∥H1(R+)
+
∥∥∥∂x ( gv̄ )∥∥∥2

L4(R+)

)
≤ C‖∂xg1‖L2(R+)‖g‖W 1,∞(R+)

∥∥∥∂x ( gv̄ )∥∥∥H1(R+)
.

Since
‖g‖L∞([0,T̄ ],W 1,∞(R+)) ≤ ‖g‖L∞([0,T̄ ],H2(R+)) ≤ C(E1/2

0 + ‖β‖H1(0,T̄ )),

we obtain eventually∣∣∣∣µ∫ ∞
0

A∂2
x

(
ln
(

1 +
g

v̄

)
− g

v̄

)
g1

∣∣∣∣ ≤ µ

4v+
‖∂xg1‖2L2(R+)+C(E0+‖β‖2H1(0,T̄ ))

∥∥∥∂x ( gv̄ )∥∥∥2

H1(R+)
.
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Gathering all the terms, we are led to

d

dt

∫ ∞
0

g2
1 +

µ

v+

∫ ∞
0

(∂xg1)2 ≤ C(E0 + ‖β‖2H1(0,T̄ ))

(
|β|2 +

∥∥∥∂x ( gv̄ )∥∥∥2

H1(R+)

)
.

Integrating in time and using the bound

‖g‖L2([0,T̄ ],H2(R+)) ≤ C(E1/2
0 + ‖β‖H1(0,T̄ )),

we get

‖g1‖2L∞([0,T̄ ],L2(R+)) +
µ

v+
‖∂xg1‖2L2([0,T̄ ],L2(R+)) ≤ E0 + C(E0 + ‖β‖2H1(0,T̄ ))

2. (6.16)

�L∞(H1) ∩L2(H2) estimate: Differentiating (6.7) with respect to x, we obtain, using (6.11)

∂t∂xg1 + ∂xA∂xg1 = β∂2
xg1 + µβ∂2

x

(
∂xv̄
v̄2

g

)
+ µ∂xA∂2

x

(
ln
(

1 +
g

v̄

)
− g

v̄

)
. (6.17)

We also recall (6.12):

∂xg1|x=0 = β
s(v+ − 1)

µ
, µ∂x

(
∂xg1

v̄

)
|x=0

= −s∂xg1|x=0 − β∂xg1|x=0.

We multiply (6.17) by ∂xg1ρ/v̄ , where ρ ∈ C2
b (R+) is a weight function that will be chosen momen-

tarily, and such that ρ ≥ 1. Using the second part of Lemma 6.3 and replacing µ∂x
(
∂xg1

v̄

)
|x=0

,

we have ∫ ∞
0

(∂xA∂xg1) ∂xg1
ρ

v̄
≥ µ

∫ ∞
0

(
∂x

(
∂xg1

v̄

))2

ρ− C‖ρ‖W 2,∞

∫ ∞
0

(∂xg1)2

+
(
∂xg1|x=0

)2 (−s
2
ρ(0)− µ

2
ρ′(0)− βρ(0)

)
.

We now choose the function ρ so that the last term is positive at main order. More precisely,
we take

ρ(0) = 2, ρ′(0) = −4s

µ
, 1 ≤ ρ(x) ≤ 2 ∀x ∈ R+.

Then∫ ∞
0

(∂xA∂xg1) ∂xg1
ρ

v̄
≥ µ

∫ ∞
0

(
∂x
∂xg1

v̄

)2

+ β2 s
3(v+ − 1)2

µ2
− C‖ρ‖W 2,∞

∫ ∞
0

(∂xg1)2 − C|β|3.

(6.18)
Note that the term ‖∂xg1‖L2 is controlled thanks to (6.16).

We now address the terms in the right-hand side of (6.17).

• The first term is easily bounded thanks to the L2L2 bound (6.16) on ∂xg1. We have∫ ∞
0

∂2
xg1∂xg1

ρ

v̄
= −1

2

∫ ∞
0

(∂xg1)2∂x

(ρ
v̄

)
− (∂xg1|x=0)2,

so that ∣∣∣∣β ∫ ∞
0

∂2
xg1∂xg1

ρ

v̄

∣∣∣∣ ≤ C|β|‖∂xg1‖2L2(R+) + C|β|3.

• For the second term in the right-hand side, we use the bounds on g. We have∣∣∣∣µβ ∫ ∞
0

∂2
x

(
∂xv̄
v̄2

g

)
∂xg1

ρ

v̄

∣∣∣∣ ≤ C|β|‖∂xg1‖L2(R+)‖g‖H2(R+).
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• Let us now address the nonlinear term, which is quadratic in g. Integrating by parts and
recalling that A∂2

x(ln(1 + g/v̄)− g/v̄) vanishes at x = 0, we have∫ ∞
0

∂xA∂2
x

(
ln
(

1 +
g

v̄

)
− g

v̄

)
∂xg1

ρ

v̄

= −
∫ ∞

0

A∂2
x

(
ln
(

1 +
g

v̄

)
− g

v̄

)(
∂x
∂xg1

v̄

)
ρ

−
∫ ∞

0

A∂2
x

(
ln
(

1 +
g

v̄

)
− g

v̄

)(∂xg1

v̄

)
∂xρ.

Furthermore, by definition of the operator A,

A∂2
x

(
ln
(

1 +
g

v̄

)
− g

v̄

)
= −s∂2

x

(
ln
(

1 +
g

v̄

)
− g

v̄

)
−µ∂x

(
1

v̄
∂2
x

(
ln
(

1 +
g

v̄

)
− g

v̄

))
.

Remembering (6.15), we obtain∣∣∣A∂2
x

(
ln
(

1 +
g

v̄

)
− g

v̄

)∣∣∣
≤ C

(∣∣∣∂3
x

g

v̄

∣∣∣ ‖g‖L∞ +
∣∣∣∂2
x

g

v̄

∣∣∣ ‖g‖W 1,∞ +
∣∣∣∂x gv̄ ∣∣∣2 +

∣∣∣∂x gv̄ ∣∣∣3
)
.

As a consequence,∣∣∣∣µ∫ ∞
0

∂xA∂2
x

(
ln
(

1 +
g

v̄

)
− g

v̄

)
∂xg1

ρ

v̄

∣∣∣∣
≤ C

(∥∥∥∥∂x ∂xg1

v̄

∥∥∥∥
L2(R+)

+ ‖∂xg1‖L2(R+)

)(
‖g‖L∞t,x‖∂xg‖H2(R+) + ‖g‖W 1,∞

t,x
‖g‖H2(R+)

)
.

(6.19)

In the inequality above, we have used the fact that ‖g‖L∞([0,T̄ ],W 1,∞) remains small, so that
the cubic term |∂x(g/v̄)|3 remains smaller than |∂x(g/v̄)|2.

Gathering all the terms and using several times the Cauchy-Schwarz inequality, we obtain,
with c = s3(v+ − 1)2/µ2

1

2

d

dt

∫ ∞
0

(∂xg1)2 ρ

v̄
+
µ

2

∫ ∞
0

(
∂x
∂xg1

v̄

)2

+ cβ2

≤ C
(
1 + ‖β‖L∞(0,T̄ )

) ∫ ∞
0

(∂xg1)2 + C|β|3 + C|β|2‖g‖2H2(R+)

+C‖g‖2L∞([0,T̄ ]×R+)‖g‖
2
H3(R+) + C‖g‖2L∞([0,T̄ ],W 1,∞(R+))‖g‖

2
H2(R+).

Recall that ‖β‖L∞(0,T̄ ) . ‖β‖H1(0,T̄ ) ≤ 1 for δ small enough. Integrating with respect to time and
using (6.16), we get

‖∂xg1‖2L∞([0,T̄ ],L2) +

∥∥∥∥∂x ∂xg1

v̄

∥∥∥∥2

L2([0,T̄ ]×R+)

+ ‖β‖2L2([0,T̄ ])

≤ CE0 + C(E0 + ‖β‖2H1(0,T̄ ))
2 + C(E1/2

0 + ‖β‖H1(0,T̄ ))‖β‖2L2(0,T̄ ). (6.20)

Note additionally that the last term in the right hand side can be absorbed in the left-hand side
provided E1/2

0 + ‖β‖H1(0,T̄ ) is small enough.
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�W 1,∞(L2) ∩H1(H1) estimate: Let us now consider the time derivative of g1 satisfying ∂t(∂tg1) +A∂x∂tg1 = βA∂x∂tg + µA∂2
x∂t

(
ln
(

1 +
g

v̄

)
− g

v̄

)
+ β′A∂xg,

(∂tg1)|x=0 = 0.
(6.21)

Recall that we have by (6.11):

A∂x∂tg = ∂x∂tg1 + µ∂x∂t

(
∂xv̄
v̄2

g

)
.

Multiplying Equation (6.21) by ∂tg1 and using once again Lemma 6.3, we get

1

2

d

dt

∫
R+

|∂tg1|2 +
µ

v+

∫
R+

|∂x∂tg1|2

≤ µ|β|

∣∣∣∣∣
∫
R+

∂x∂t

(
∂xv̄
v̄2

g

)
∂tg1

∣∣∣∣∣+ µ

∣∣∣∣∣
∫
R+

A∂2
x∂t

(
ln
(

1 +
g

v̄

)
− g

v̄

)
∂tg1

∣∣∣∣∣
+ |β′|

∣∣∣∣∣
∫
R+

A∂xg∂tg1

∣∣∣∣∣ .
Integrating by parts and using the Cauchy-Schwarz inequality together with (6.2), we have for the
different terms of the right-hand side:

• First

µ|β|

∣∣∣∣∣
∫
R+

∂x∂t

(
∂xv̄
v̄2

g

)
∂tg1

∣∣∣∣∣ ≤ µ

4v+
‖∂t∂xg1‖2L2(R+) + C‖∂tg‖2L∞([0,T̄ ],L2(R+))|β|

2;

• Next, for the nonlinear term, we differentiate (6.15) with respect to time, which yields

µ

∣∣∣∣∣
∫
R+

A∂2
x∂t

(
ln
(

1 +
g

v̄

)
− g

v̄

)
∂tg1

∣∣∣∣∣
≤ sµ

∣∣∣∣∣
∫
R+

∂t∂x

(
ln
(

1 +
g

v̄

)
− g

v̄

)
∂t∂xg1

∣∣∣∣∣+ µ2

∣∣∣∣∣
∫
R+

1

v̄
∂t∂

2
x

(
ln
(

1 +
g

v̄

)
− g

v̄

)
∂t∂xg1

∣∣∣∣∣
≤ µ

4v+
‖∂t∂xg1‖2L2 + C

(
‖g‖2

W 1,∞
t,x

∥∥∥∂t∂x ( gv̄ )∥∥∥2

H1(R+)
+ ‖∂tg‖2L∞t,x‖g‖

2
H2(R+)

)
+ C‖∂tg‖2L∞t,x

∥∥∥∂x ( gv̄ )∥∥∥2

L4(R+)
;

• Finally, recalling (6.11)

|β′|

∣∣∣∣∣
∫
R+

A∂xg∂tg1

∣∣∣∣∣
≤ |β′|

∣∣∣∣∣
∫
R+

[
g1 + µ

∂xv̄
v̄2

g
]
∂x∂tg1

∣∣∣∣∣
≤ µ

4v+
‖∂t∂xg1‖2L2(R+) + C|β′|2

(
‖g1‖2L∞([0,T̄ ],L2(R+)) + ‖g‖2L∞([0,T̄ ],L2(R+))

)
.

Eventually, we obtain after time integration of all previous terms and the use of the estimates
(6.16) on g1, (6.2) on g

‖∂tg1‖2L∞([0,T̄ ],L2(R+)) + ‖∂t∂xg1‖2L2((0,T̄ )×R+) ≤ C
[
E0 + (E0 + ‖β‖2H1(0,T̄ ))

2
]
. (6.22)
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�W 1,∞(H1) ∩H1(H2) estimate: We differentiate Eq (6.17) with respect to time:

∂t(∂t∂xg1) + ∂xA∂t∂xg1 = β∂2
x∂tg1 + β′∂2

xg1 + µβ′∂2
x

(
∂xv̄
v̄2

g

)
(6.23)

+ µβ∂2
x

(
∂xv̄
v̄2

∂tg

)
+ µ∂xA∂2

x∂t

(
ln
(

1 +
g

v̄

)
− g

v̄

)
.

This equation is endowed with the following boundary condition, which is to be understood in a
weak sense

µ∂x

(
∂t∂xg1

v̄

)
|x=0

= −β′(∂xg1)|x=0 − (β + s)(∂t∂xg1)|x=0

= −β′(2β + s)s
(v+ − 1)

µ
. (6.24)

In other words, for any test function ψ ∈ L2((0, T ), H1(R+)), for almost every t ∈ [0, T ] (recall
the regularities (6.8)-(6.9) on g1),

〈∂t(∂t∂xg1)(t), ψ(t)〉H−1,H1 −
∫ ∞

0

A(∂t∂xg1) ∂xψ +

(
s∂t∂xg1|x=0 − β′(2β + s)s

(v+ − 1)

µ

)
ψ|x=0

= −
∫ ∞

0

µA∂2
x∂t

(
ln
(

1 +
g

v̄

)
− g

v̄

)
∂xψ(t, x) (6.25)

+

∫ ∞
0

[
β∂2

x∂tg1 + β′∂2
xg1 + µβ′∂2

x

(
∂xv̄
v̄2

g

)
+ µβ∂2

x

(
∂xv̄
v̄2

∂tg

)]
ψ.

In particular, we have used the fact that

µ∂3
x∂t

(
ln
(

1 +
g

v̄

)
− g

v̄

)
|x=0

= 0

in a weak sense. The weak formulation (6.25) can be obtained by writing the weak formulation
of (6.17) associated with ∂xg1, taking a test function of the form ∂tψ with ψ ∈ C1([0, T̄ [, H1(R+)),
and integrating by parts in time.

Similarly to the L∞(H1) estimate we take ψ = ∂x(∂tg1)ρ/v̄ in the weak formulation above,
with the same weight function ρ satisfying ρ(0) = 2, ρ′(0) = − 4s

µ , 1 ≤ ρ(x) ≤ 2 ∀x ∈ R+, and we
evaluate each term separately. At the boundary x = 0, we have

(∂t∂xg1)|x=0 =
s(v+ − 1)

µ
β′, (6.26)

and the equality holds in L2(0, T ).

• For the transport-diffusion term we have, replacing ψ by ∂x∂tg1ρ/v̄ in the left-hand side of (6.25)
and using Lemma 6.3,

−
∫ ∞

0

A(∂t∂xg1) ∂x

(
∂x∂tg1

ρ

v̄

)
+

(
s∂t∂xg1|x=0 − β′(2β + s)s

(v+ − 1)

µ

)(
∂x∂tg1

ρ

v̄

)
|x=0

≥ µ
∫
R+

(
∂x

(
∂x∂tg1

v̄

))2

ρ− C‖ρ‖W 2,∞

∫
R+

(
∂x∂tg1

)2
+
(
∂t∂xg1|x=0

)2 (s
2
ρ(0)− µ

2
ρ′(0)

)
− β′(2β + s)s

(v+ − 1)

µ

(
∂t∂xg1

)
|x=0

ρ(0),
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so that, with the boundary condition (6.26) and with a computation identical to (6.18), the right-
hand side of the above inequality is equal to

µ

∫
R+

(
∂x

(
∂x∂tg1

v̄

))2

ρ− C‖ρ‖W 2,∞

∫
R+

(
∂x∂tg1

)2
+ 2

s3(v+ − 1)2

µ2
|β′|2 − 4

s2(v+ − 1)2

µ2
β|β′|2.

Similarly to the L∞(H1) estimate, the last term will be absorbed in the penultimate one when
‖β‖L∞ ≤ δ is small enough, while the second integral is controlled thanks to the previous H1(H1)-
estimate.

In the right-hand side of our estimate, we have to control the following integrals

I1 = β

∫
R+

∂2
x∂tg1 ∂t∂xg1

ρ

v̄

I2 = β′
∫
R+

∂2
xg1∂t∂xg1

ρ

v̄

I3 = µβ′
∫
R+

∂2
x

(
∂xv̄
v̄2

g

)
∂t∂xg1

ρ

v̄

I4 = µβ

∫
R+

∂2
x

(
∂xv̄
v̄2

∂tg

)
∂t∂xg1

ρ

v̄

I5 = µ

∫
R+

A∂2
x∂t

(
ln
(

1 +
g

v̄

)
− g

v̄

)
∂x

(
∂t∂xg1

ρ

v̄

)
.

• The first integral is controlled via an integration by parts:

|I1| ≤
|β|
2

∫
R+

(∂t∂xg1)2∂x

(ρ
v̄

)
+ β (∂t∂xg1)

2
|x=0

≤ C|β|‖∂t∂xg1‖2L2(R+) + C|β′|2β.

• For I2, I3, I4, the Cauchy-Schwarz inequality yields

|I2|+ |I3|+ |I4| ≤ ‖∂x∂tg1‖2L2(R+) + C|β′|2
(
‖∂2
xg1‖2L∞([0,T̄ ],L2(R+)) + ‖g‖2L∞([0,T̄ ],H2(R+))

)
+ ‖β‖2L∞(0,T̄ )‖∂tg(t)‖2H2(R+).

• For the nonlinear term I5, we have similarly to (6.19):∣∣∣∣µ∫ ∞
0

A∂2
x∂t

(
ln
(

1 +
g

v̄

)
− g

v̄

)
∂x

(
∂t∂xg1

ρ

v̄

)∣∣∣∣
≤ C

(∥∥∥∥∂x ∂x∂tg1

v̄

∥∥∥∥
L2(R+)

+ ‖∂t∂xg1‖L2(R+)

)

×

(
‖g‖L∞t,x‖∂t∂xg‖H2(R+) + ‖∂tg‖W 1,∞

t,x
‖g‖H2(R+) + ‖g‖W 1,∞

t,x
(‖∂tg‖H2(R+) + ‖g‖H3(R+))

)
.

To control ‖∂t∂xg‖H2(R+), we write in the case w0 ≡ u+:

µ∂t∂
3
x ln

(
1 +

g

v̄

)
= µ∂t∂

3
x ln

v

v̄
= ∂t∂

2
x(u− ū),

so that ‖∂t∂xg‖H2(R+) ≤ C(‖∂th‖H2(R+) + ‖∂tg‖H2(R+)), where we recall that h = u− ū.

36



Gathering all terms and integrating in time, we get, using (6.2), (6.3) and (6.16)

‖∂t∂xg1‖2L∞([0,T̄ ],L2(R+)) +

∥∥∥∥∂x ∂x∂tg1

v̄

∥∥∥∥2

L2([0,T̄ ]×R+)

+ ‖β′‖2L2([0,T̄ ])

≤ CE0 + C(E0 + ‖β‖2H1(0,T̄ ))
2 + C(E1/2

0 + ‖β‖H1(0,T̄ ))‖β′‖2L2(0,T̄ ). (6.27)

Observing that the last term in the right-hand side can be absorbed in the left-hand side provided
E1/2

0 + ‖β‖H1(0,T̄ ) is small enough, we obtain eventually

‖∂t∂xg1‖2L∞([0,T̄ ],L2) +

∥∥∥∥∂x(∂t∂xg1

v̄

)∥∥∥∥2

L2([0,T̄ ]×R+)

+ ‖β′‖2L2([0,T̄ ]) ≤ C

[
E0 + (E0 + ‖β‖2H1(0,T̄ ))

2

]
.

(6.28)

�Conclusion: Combining (6.20) and (6.28), we deduce that for E0 ≤ cδ2 with c > 0 small
enough (depending only on the parameters µ, v+, u±),

‖β‖2H1([0,T̄ ]) ≤ C
(
E0 + (E0 + ‖β‖2H1(0,T̄ ))

2
)
≤ Cc0δ2 + Cδ4 ≤ δ2

4
.

This completes the proof of Proposition 6.1 in the case w0 ≡ u+. Note that in this case ∂kxw0 = 0
for k = 1, 2, 3. Hence the additional conditions on w0 are automatically satisfied.

6.2 Case when w 0 is arbitrary
In the case when w0 is not constant, the estimates of the previous section involve new contributions
coming both from the equations, which contain additional terms linked to ∂xw0, and from the
boundary x = 0, since (∂xg)|x=0 (and thus (g1)|x=0) is not equal to 0 anymore. More precisely,

∂tg1 +A∂xg1 = βA∂xg + µA∂2
x

(
ln
(

1 +
g

v̄

)
− g

v̄

)
+A∂xw0(x+ x̃(t)),

g1|t=0 = A
(
v0 − v̄

)
,

(6.29)

with at the boundary x = 0

(g1)|x=0 = −sg|x=0︸ ︷︷ ︸
=0

− µ
(
∂x

( g
v̄

))
|x=0

= −µ(∂x(v − v̄))|x=0 = w0(x̃)− u+ (6.30)

since u(t, x)− µ∂x ln v(t, x) = w0(x+ x̃(t)) for all t, x.
Nevertheless, we will show that these new contributions are all controlled provided ‖w0 −

u+‖L∞(R+) and ‖(1 +
√
x)∂kxw0‖L2(R+), k = 1, 2, 3, are small. We recall that using the definition

of g1 together with the estimates (6.3) and with the equation on u, we have the regularities (6.8)-
(6.9):

g1 ∈ L2((0, T̄ ), H3(R+)), ∂tg1 ∈ L2((0, T̄ ), H2(R+)), ∂2
t g1 ∈ L2((0, T̄ )× R+).

As a consequence,
∂kxg1|x=0, ∂t∂

l
xg1|x=0 ∈ L2(0, T̄ )

for 0 ≤ k ≤ 3 and 0 ≤ l ≤ 1.

Estimates on the traces Let us detail the different traces associated to g1 that will be involved
in the estimates and how they are controlled in L2([0, T̄ ])

Lemma 6.4 (Trace estimates). Assume that ‖w0 − u+‖W 1,∞(R+) ≤ 1. Then
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• Estimates on g1|x=0:

‖(g1)|x=0‖2L2(0,T̄ ) + ‖(∂tg1)|x=0‖2L2(0,T̄ ) ≤ C‖(1 +
√
x)∂xw0‖2L2(R+) ≤ CE0; (6.31)

• Estimates on ∂xg1|x=0:

∂xg1|x=0 = β
s(v+ − 1)

µ
+R1, (6.32)

where

‖R1‖H1(0,T̄ ) ≤ C
(
‖β‖H1(0,T̄ )‖w0 − u+‖W 1,∞(R+) + ‖w0 − u+‖2W 1,4(R+) + ‖∂xw0‖H1(R+)

)
.

• Estimates on the traces of the nonlinear term:

∂kx

(
ln
(

1 +
g

v̄

)
− g

v̄

)
|x=0

= Tk, k = 1, 2, 3,

with

T1 =
[
∂x

( g
v̄

) g
v̄

]
|x=0

= 0,

‖T2‖H1(0,T̄ ) ≤ C‖w0 − u+‖2W 1,4(R+),

‖T3‖H1(0,T̄ ) ≤ C
(
‖β‖H1(0,T̄ )‖w0 − u+‖W 1,∞(R+) + ‖w0 − u+‖2W 2,4(R+)

)
.

(6.33)

• Estimates on ∂2
xg1|x=0:

µ

[
∂x

(
∂xg1

v̄

)]
|x=0

= −(s+ β)(∂xg1)|x=0 −R2, (6.34)

where

‖R2‖H1(0,T̄ ) ≤ C
(
‖β‖H1(0,T̄ )‖w0 − u+‖W 1,∞(R+) + ‖w0 − u+‖2W 2,4(R+) + ‖∂xw0‖H2(R+)

)
.

(6.35)

Proof. Throughout the proof, we recall that for all t ∈ [0, T̄ ], x̃′ satisfies (6.1), so that

st

2
≤ x̃(t) ≤ 3st

2
.

• First, the estimate on g1 follows directly from (6.30), writing

(w0(x̃)− u+)2 = −2

∫ ∞
x̃

(w0(x)− u+)∂xw0(x) dx = −2

∫ ∞
0

1{x>x̃}(w0(x)− u+)∂xw0(x) dx

and using the same kind of trick as in the proof of Lemma C.1.
For the time derivative, we write

∂tg1|x=0 = x̃′∂xw0(x̃)

and integrate in time.
• Estimates on ∂xg1|x=0: First, we have by (6.30)

∂2
x

(
ln
(

1 +
g

v̄

)
− g

v̄

)
|x=0

= −
(
∂2
x

( g
v̄

) g/v̄
1 + g/v̄

)
|x=0

+
(
∂x

( g
v̄

))2

|x=0

(
1

(1 + g/v̄)2

)
|x=0

=
1

µ2
(w0(x̃)− u+)2 =: T2 (6.36)
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Note that the estimate of (6.33) with k = 2 follows.
Next, taking the trace of the equation satisfied by g (6.6) (with the additional ∂xw0 in the

right-hand side), we infer that

(∂xg1)|x=0 = β(∂xv)|x=0 + µ∂2
x

(
ln
(

1 +
g

v̄

)
− g

v̄

)
|x=0

+ ∂xw0(x̃)

=
u− −w0(x̃)

µ
β + µT2 + ∂xw0(x̃) (6.37)

= β
s(v+ − 1)

µ
+R1,

with

R1 := β
u+ −w0(x̃)

µ
+ µT2 + ∂xw0(x̃).

We then bound R1 in H1(0, T ). We have

‖R1‖H1(0,T̄ ) ≤ C
(
‖β‖H1(0,T̄ )‖w0 − u+‖L∞(R+) + ‖β‖L2(0,T̄ )‖∂xw0‖L∞(R+)

+ ‖T2‖H1(0,T̄ ) + ‖∂xw0‖H1(R+)

)
.

• Estimate of T3: we have

∂3
x

(
ln
(

1 +
g

v̄

)
− g

v̄

)
= −∂3

x

( g
v̄

) g
v̄

1 + g
v̄
− 3

(1 + g
v̄ )2

∂x

( g
v̄

)
∂2
x

( g
v̄

)
+

2

(1 + g
v̄ )3

(
∂x

( g
v̄

))3

,

and

µ

1 + g
v̄
∂2
x

( g
v̄

)
− µ

(1 + g
v̄ )2

(
∂x

( g
v̄

))2

= µ∂x

(
∂x
(
g
v̄
)

1 + g
v̄

)
= µ∂2

x ln
(

1 +
g

v̄

)
= ∂x(u− ū)− ∂xw0(x+ x̃).

By (5.1), we have

(∂x(u− ū))|x=0 =
s

µ
(w0(x̃)− u+)− β

µ
(u− −w0(x̃))

= −βs(v+ − 1) +
β + s

µ
(w0(x̃)− u+), (6.38)

and therefore[
∂2
x

( g
v̄

)]
|x=0

=
(
∂x

( g
v̄

))2

|x=0
+

1

µ

[
(∂x(u− ū))|x=0 − ∂xw0(x̃)

]
=

(w0(x̃)− u+)2

µ2
− β s(v+ − 1)

µ
+
β + s

µ2
(w0(x̃)− u+)− ∂xw0(x̃)

µ
.

It follows that

T3 = −3
[
∂2
x

( g
v̄

)]
|x=0

[
∂x

( g
v̄

)]
|x=0

+ 2
[
∂x

( g
v̄

)]3
|x=0

= −3β
s(v+ − 1)

µ2
(w0(x̃)− u+) + 3(β + s)

(w0(x̃)− u+)2

µ3

− 3

µ2
∂xw0(x̃)(w0(x̃)− u+) +

(w0(x̃)− u+)3

µ3
.
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Note that (w0(x̃) − u+)3 can be considered as negligible compared to (w0(x̃) − u+)2 since we
assume that ‖w0 − u+‖W 1,∞(R+) ≤ 1. Hence, taking the H1 norm of the right-hand side, we
obtain

‖T3‖H1(0,T̄ ) ≤ C
(
‖β‖H1(0,T̄ )‖w0 − u+‖W 1,∞(R+) + ‖w0 − u+‖2W 2,4(R+)

)
.

• Traces of ∂2
xg1:

We have
µ

(
∂x
∂xg1

v̄

)
|x=0

= −s(∂xg1)|x=0 − (A∂xg1)|x=0

where, thanks to (6.29)-(6.30) and (6.11):

(A∂xg1)|x=0 = β(A∂xg)|x=0 + µ
[
A∂2

x

(
ln
(

1 +
g

v̄

)
− g

v̄

)]
|x=0

+ (A∂xw0(x+ x̃))|x=0 − (∂tg1)|x=0

= β(∂xg1)|x=0 + µβ

[
∂x

(
∂xv̄
v̄2

g

)]
|x=0

+ µ
[
A∂2

x

(
ln
(

1 +
g

v̄

)
− g

v̄

)]
|x=0

+ s(v+ − 2)∂xw0(x̃)− µ∂2
xw0(x̃)− x̃′(t)∂xw0(x̃).

Hence, we deduce that

µ

(
∂x
∂xg1

v̄

)
|x=0

= −(s+ β)(∂xg1)|x=0 −R2, (6.39)

with, compared to (6.12), a remainder:

R2 = µβ

[
∂x

(
∂xv̄
v̄2

g

)]
|x=0

+ µ
[
A∂2

x

(
ln
(

1 +
g

v̄

)
− g

v̄

)]
|x=0

+ s(v+ − 2)∂xw0(x̃)− µ∂2
xw0(x̃)− x̃′(t)∂xw0(x̃).

Let us now estimate R2. We have by definition of A

µ
[
A∂2

x

(
ln
(

1 +
g

v̄

)
− g

v̄

)]
|x=0

= −sµ
[
∂2
x

(
ln
(

1 +
g

v̄

)
− g

v̄
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|x=0
− µ2

[
∂x

(
1

v̄
∂2
x

(
ln
(

1 +
g

v̄

)
− g

v̄

))]
|x=0

=
(
µ(∂xv̄)|0 − s

)
µ
[
∂2
x

(
ln
(

1 +
g

v̄

)
− g

v̄

)]
|x=0
− µ2

[
∂3
x

(
ln
(

1 +
g

v̄

)
− g

v̄

)]
|x=0

= (v+ − 2)sµT2 − µ2T3.

Replacing in the expression of R2 and using (6.30), we obtain

R2 =
s(v+ − 1)

µ
β(w0(x̃)− u+) + (v+ − 2)sµT2 − µ2T3

+s(v+ − 2)∂xw0(x̃)− µ∂2
xw0(x̃)− x̃′(t)∂xw0(x̃).

Thus

‖R2‖H1(0,T̄ ) ≤ C
(
‖β‖H1‖w0 − u+‖W 1,∞(R+) + ‖T2‖H1(0,T̄ ) + ‖T3‖H1(0,T̄ ) + ‖∂xw0‖H2(R+)

)
≤ C

(
‖β‖H1(0,T̄ )‖w0 − u+‖W 1,∞(R+) + ‖w0 − u+‖2W 2,4(R+) + ‖∂xw0‖H2(R+)

)
.
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Estimates on g1 We now turn towards the energy estimates for g1. As announced before, we
focus on the additional terms coming either from the boundary terms or from the non-zero source
term involving ∂xw0.

�L∞(L2) ∩ L2(H1) estimate: Multiplying (6.29) by g1 and proceeding as in the previous
subsection, we have now

1

2

d

dt

∫ ∞
0

g2
1 +

µ

v+

∫ ∞
0

(∂xg1)2

≤ C(E0 + ‖β‖2H1(0,T̄ ))
(
|β|2 + ‖g(t)‖2H2(R+)

)
(6.40)

+

∣∣∣∣∣
∫
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A∂xw0(x+ x̃)g1

∣∣∣∣∣+
s+ β

2
(g1)2

|x=0 + µ
∣∣(g1)|x=0(∂xg1)|x=0

∣∣
+ µ2

∣∣∣∣(∂2
x

(
ln
(

1 +
g

v̄

)
− g

v̄

))
|x=0

(g1)|x=0

∣∣∣∣+ sµ

∣∣∣∣∂x (ln
(

1 +
g

v̄

)
− g

v̄

)
|x=0

∣∣∣∣︸ ︷︷ ︸
=0

|(∂xg1)|x=0|

where the two last lines contain the additional contributions compared to the case w0 ≡ u+

(cf. (6.14)).
We treat the integral involving ∂xw0 as follows:∫

R+

A∂xw0(x+ x̃)g1 = s

∫
R+

(w0(x+ x̃)− u+)∂xg1 + µ

∫
R+

∂xw0

v̄
∂xg1

+ s(w0(x̃)− u+)(g1)|x=0 + µ∂xw0(x̃)(g1)|x=0

so that∣∣∣∣∣
∫
R+

A∂xw0(x+ x̃)g1

∣∣∣∣∣ ≤ µ

8v+

∫
R+

(∂xg1)2 + s|w0(x̃)− u+||(g1)|x=0|+ µ|∂xw0(x̃)||(g1)|x=0|

+ C
[
‖w0(x+ x̃)− u+‖2L2(R+) + ‖∂xw0(·+ x̃)‖2L2(R+)

]
,

where the first integral can be absorbed in the left-hand side of (6.40).
We then come back to (6.40) and integrate in time. The traces of g1, ∂xg1 and of the nonlinear

term are estimated thanks to Lemma 6.4. Note in particular that by the Cauchy-Schwarz inequality
and the assumption ‖w0 − u+‖W 1,∞(R+) ≤ 1∫ T

0

∣∣(g1)|x=0(∂xg1)|x=0

∣∣ ≤ C‖(1 +
√
x)∂xw0‖L2(R+)

(
‖β‖H1(0,T̄ ) + E1/2

0

)
≤ C‖β‖4H1(0,T̄ ) + C‖(1 +

√
x)∂xw0‖4/3L2(R+) + CE0.

Gathering all terms, we deduce that

‖g1‖2L∞([0,T̄ ],L2(R+) +
µ

v+
‖∂xg1‖2L2([0,T̄ ],L2(R+)

≤ C
(
E0 + ‖(1 +

√
x)∂xw0‖4/3L2(R+) + (E0 + ‖β‖2H1(0,T̄ ))

2
)
. (6.41)

�L∞(H1) ∩ L2(H2) estimate: Differentiating with respect to x Eq. (6.29), we obtain (6.17)
with the additional contribution ∂xA∂xw0 in the right-hand side. Following the same steps as in
the constant case w0 ≡ u+, we use Lemma 6.3 to handle the diffusion term:∫ ∞

0

(∂xA∂xg1) ∂xg1
ρ

v̄
≥ µ

∫ ∞
0

(
∂x

(
∂xg1

v̄

))2

ρ− C‖ρ‖W 2,∞

∫ ∞
0

(∂xg1)2

+
(
∂xg1|x=0

)2 (s
2
ρ(0)− µ

2
ρ′(0)

)
+ µ

(
∂x
∂xg1

v̄

)
|0

(∂xg1)|x=0ρ(0)
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Choosing once again ρ(0) = 2, ρ′(0) = −4s/µ and using (6.32), we have(
∂xg1|x=0

)2 (s
2
ρ(0)− µ

2
ρ′(0)

)
+ µ

(
∂x
∂xg1

v̄

)
|0

(∂xg1)|x=0ρ(0)

≥
(
s(v+ − 1)

µ

)2

(s+ β)β2 − C
(
R2

1 + |R1| |β|+ |R2| |β|+ |R2| |R1|
)
.

We then control the time integral of the second term in the right-hand side thanks to Lemma 6.4.
Following the same steps as in the constant case w0 ≡ u+, we can check that we have the

following other additional contributions:

• the additional integral involving ∂xA∂xw0 is treated by integration by parts with boundary
terms of the type ∂kxw0

|x=0(∂xg1)|x=0, k = 1, 2. The integral is easily controlled by use of the
Cauchy-Schwarz inequality;

• from the nonlinear term, we get the following boundary term:[
A∂2

x

(
ln
(

1 +
g

v̄

)
− g

v̄

)]
|x=0

(∂xg1)|x=0,

which we also treat using Lemma 6.4, noticing that[
A∂2

x

(
ln
(

1 +
g

v̄

)
− g

v̄

)]
|x=0

= −sT2 − µ∂x
(

1

v̄
∂2
x

(
ln
(

1 +
g

v̄

)
− g

v̄

))
|x=0

= s(v+ − 2)T2 − µT3. (6.42)

We obtain

‖∂xg1‖2L∞([0,T̄ ],L2) +

∥∥∥∥∂x ∂xg1

v̄

∥∥∥∥2

L2([0,T̄ ]×R+)

+ ‖β‖2L2([0,T̄ ])

≤ C
(
E0 +

∥∥(1 +
√
x)∂xw0

∥∥4/3

L2(R+)
+
∥∥∂xw0

∥∥4/3

H2(R+)
+ (E0 + ‖β‖2H1(0,T̄ ))

2
)
.

�W 1,∞(L2) ∩H1(H1) estimate: Differentiating with respect to time Equation (6.29), we get
Equation (6.21) with an additional term in the right-hand side, namely x̃′(t)A∂2

xw0(x + x̃(t)).
Multiplying the equation by ∂tg1 and integrating in space, we have, similarly to (6.40)

1

2

d

dt

∫ ∞
0

(∂tg1)2 +
µ

v+

∫ ∞
0

(∂t∂xg1)2

≤ C(E0 + ‖β‖2H1(0,T̄ ))
(
|β′|2 + |β|2 + ‖g‖2H2(R+) + ‖∂tg‖2H2(R+)

)
(6.43)

+

∣∣∣∣∣
∫
R+

x̃′(t)

∫
R+

A∂2
xw0(x+ x̃(t))∂tg1

∣∣∣∣∣
+
s+ β

2
(∂tg1)2

|x=0 + µ
∣∣(∂tg1)|x=0(∂t∂xg1)|x=0

∣∣+ µ2
∣∣∂tT2(∂tg1)|x=0

∣∣
+ |β′| |g1|x=0| |∂tg1|x=0|.

We first consider the integral term involving A∂2
xw0(x+ x̃(t)):

x̃′(t)

∫
R+

A∂2
xw0(x+ x̃(t))∂tg1

= −x̃′(t)
∫
R+

(
A∂xw0(x+ x̃(t)) + µ

(
∂xv̄
v̄2

∂xw0(x+ x̃(t))

))
∂x∂tg1

− x̃′(t)
[
A∂xw0(x+ x̃(t)) + µ

(
∂xv̄
v̄2

∂xw0(x+ x̃(t))

)]
|x=0

(∂tg1)|x=0.
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The integral is then controlled by a Cauchy-Schwarz inequality, using the trace estimates from
Lemma 6.4 together with Lemma C.1∫ T̄

0

∫
R+

∣∣∣∣x̃′(t)(A∂xw0(x+ x̃(t)) + µ

(
∂xv̄
v̄2

∂xw0(x+ x̃(t))

))
∂x∂tg1

∣∣∣∣
≤ µ

4v+
‖∂t∂xg1‖2L2((0,T̄ )×R+) + C

(
‖
√
x∂xw0‖2L2(R+) + ‖

√
x∂2

xw0‖2L2(R+)

)
+ C‖∂xw0‖H1‖(1 +

√
x)∂xw0‖L2 .

To conclude as in the constant case, we have to control the different boundary terms in (6.43).
Using Lemma 6.4, their L2(0, T̄ ) norm is bounded by

C
(
‖g1|x=0‖2H1(0,T̄ ) + ‖∂tT2‖2L2(0,T̄ ) + ‖∂tg1|x=0‖L2(0,T̄ )‖∂t∂xg1|x=0‖L2(0,T̄ )

+ ‖β′‖L2(0,T̄ )‖g1|x=0‖2H1(0,T̄ )

)
≤C

(
‖(1 +

√
x)∂xw0‖2L2 + ‖w0 − u+‖4W 1,4

)
+ C‖(1 +

√
x)∂xw0‖L2

(
‖β‖H1(0,T̄ ) + ‖w0 − u+‖2W 1,4 + ‖∂xw0‖L2

)
≤ C

(
‖β‖4H1(0,T̄ ) + ‖(1 +

√
x)∂xw0‖4/3L2 + E0

)
.

Note that we used here the smallness of E0. We obtain eventually

‖∂tg1‖2L∞([0,T̄ ],L2 + ‖∂x∂tg1‖2L2([0,T̄ ]×R+)

≤ C
(
E0 + (E0 + ‖β‖2H1(0,T̄ ))

2 + ‖(1 +
√
x)∂xw0‖4/3L2

)
.

�W 1,∞(H1) ∩ H1(H2) estimate: We differentiate the equation (6.17) satisfied by ∂xg1 with
respect to time:

∂t(∂t∂xg1) + ∂xA∂t∂xg1

= β∂2
x∂tg1 + β′∂2

xg1 + µβ′∂2
x

(
∂xv̄
v̄2

g

)
+ µβ∂2

x

(
∂xv̄
v̄2

∂tg

)
(6.44)

+ µ∂xA∂2
x∂t

(
ln
(

1 +
g

v̄

)
− g

v̄

)
+ x̃′(t)∂xA∂2

xw0(x+ x̃(t))

As in the constant case w0 ≡ u+, we aim at obtaining a control of ‖∂t∂xg1‖L∞(L2) + ‖β′‖L2 .
For that purpose, we want to use (∂t∂xg1)ρ/v̄ as a test function in the weak formulation asso-
ciated with (6.44). This weak formulation is similar to (6.25), with extra source and boundary
terms. Using (6.42) and Lemma 6.4, we find that for any test function ψ ∈ L∞((0, T̄ ), L2(R+)) ∩
L2((0, T̄ ), H1(R+)), for almost every t ∈ (0, T̄ ),

〈∂2
t ∂xg1(t), ψ(t)〉H−1,H1 −

∫ ∞
0

A(∂t∂xg1) ∂xψ

−
(
β∂t∂xg1|x=0 + β′∂xg1|x=0 + ∂tR2

)
ψ|x=0

= −
∫ ∞

0

µA∂2
x∂t

(
ln
(

1 +
g

v̄

)
− g

v̄

)
∂xψ(t, x) dx

+

∫ ∞
0

[
β∂2

x∂tg1 + β′∂2
xg1 + µβ′∂2

x

(
∂xv̄
v̄2

g

)
+ µβ∂2

x

(
∂xv̄
v̄2

∂tg

)]
ψ

+x̃′(t)

∫ ∞
0

∂xA∂2
xw0(x+ x̃(t))ψ

− [sµ(v+ − 2)∂tT2 − µ∂tT3]ψ|x=0.
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We now take ψ = (∂t∂xg1)ρ/v̄ , with ρ ∈ C2
b (R+) such that ρ(0) = 2, ρ′(0) = −4s/µ as before.

The diffusion term is treated as previously:

−
∫ ∞

0

A(∂t∂xg1) ∂x

(
∂x∂tg1

ρ

v̄

)
≥ µ

∫
R+

(
∂x

(
∂x∂tg1

v̄

))2

ρ− C‖ρ‖W 2,∞

∫
R+

(
∂x∂tg1

)2
+ 3s

(
∂t∂xg1|x=0

)2
.

Recalling (6.32), we have

(∂x∂tg1)|x=0 = β′
s(v+ − 1)

µ
+ ∂tR1. (6.45)

Gathering all the boundary terms of the left-hand side of the weak formulation, we obtain, using
once again Lemma 6.4

−2
(
β∂t∂xg1|x=0 + β′∂xg1|x=0 + ∂tR2

)
(∂t∂xg1)|x=0 + 3s

(
∂t∂xg1|x=0

)2
≥ C−1

(
∂t∂xg1|x=0

)2 − C ((β′)2(∂xg1|x=0)2 + (∂tR2)2
)

≥ C−1(β′)2 − C
(

(∂tR1)2 + |β′|2(‖β‖2H1(0,T̄ ) + ‖R1‖2H1(0,T̄ )) + (∂tR2)2
)
,

for some constant C ≥ 1 depending only on the parameters of the problem. Note that∫ T̄

0

(
(∂tR1)2 + |β′|2(‖β‖2H1(0,T̄ ) + ‖R1‖2H1(0,T̄ )) + (∂tR2)2

)
≤ C

(
E0 + (E0 + ‖β‖2H1(0,T̄ ))

2
)
.

The reader may check that the other additional boundary terms can be controlled as well.
Eventually, we are led to

‖∂t∂xg1‖2L∞([0,T̄ ],L2(R+) +

∫ T̄

0

∫ ∞
0

(
∂x

(
∂t∂xg1

v̄

))2

+ ‖β′‖2L2(0,T̄ )

≤ C
(
E0 + ‖(1 +

√
x)∂3

xw0‖2L2(R+) + (E0 + ‖β‖2H1(0,T̄ ))
2
)

+C‖∂t∂xg1‖2L2((0,T̄ )×R+)

≤ C
(
E0 + ‖(1 +

√
x)∂3

xw0‖2L2 + (E0 + ‖β‖2H1(0,T̄ ))
2 + ‖(1 +

√
x)∂xw0‖4/3L2(R+)

)
.

Conclusion

We infer that

‖β‖2H1(0,T̄ ) ≤ C

(
E0 + (E0 + ‖β‖2H1(0,T̄ ))

2 +

3∑
k=1

‖(1 +
√
x)∂kxw0‖4/3L2(R+)

)
.

Assume that
E0 ≤ c0δ2, ‖(1 +

√
x)∂kxw0‖L2(R+) ≤ c0δ3/2 for k = 1, 2, 3.

Then
‖β‖2H1(0,T̄ ) ≤ Cc0δ

2 + Cδ4.

Once again, choosing the constant c0 small enough, we obtain the desired result. This completes
the proof of Proposition 6.1.
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6.3 Long time behavior
Corollary 6.5. Assume that the hypotheses of Theorem 2.3 are satisfied.

Let (x̃, vs, us) be the unique global smooth solution to (2.15)-(2.16)-(2.12b) constructed in
Proposition 5.1. Then

|x̃′(t)− s|+ sup
x∈R+

∣∣∣(vs, us)(t, x)− (v̄ , ū)(x)
∣∣∣ −→ 0 as t→ +∞. (6.46)

Moreover, setting ps(t, x) = ps(t) = −µ[∂xus]|x=0, we also ensure that∣∣(ps − p−)(t)
∣∣ −→ 0 as t→ +∞,

where p− = −µ[∂xū]|x=0 = s2(v+ − 1) has been defined in Lemma 2.1.

Proof. The result easily follows from the controls of the solution (x̃, vs, us) and its time derivative.
For instance, vs− v̄ is controlled in L2∩L∞(R+;H1(R+)) and ∂tvs ∈ L2(R+;H1(R+)). Therefore,

‖(vs − v̄)(t)‖H1(R+) −→ 0 as t→ +∞,

and

sup
x∈R+

∣∣(vs − v̄)(t, x)
∣∣ ≤ C‖(vs − v̄)(t)‖1/2L2(R+)‖∂x(vs − v̄)(t)‖1/2L2(R+) −→ 0 as t→ +∞.

The long time behavior of us− ū and x̃′− s can be derived with the same arguments. Finally, the
long time behavior of ps is obtained through the control of ∂x(us − ū) in L2 ∩ L∞(R+;H1(R+))
and of ∂t∂x(us − ū) ∈ L2(R+;H1(R+)).
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A Linear parabolic equations with Dirichlet boundary con-
ditions

In this section, we consider equations of the type

∂tu+ ∂x(b(t, x)u) + c(t, x)u− ∂x(a(t, x)∂xu) = f(t, x), t > 0, x > 0

u|x=0 = 0, u|t=0 = u0.
(A.1)

We denote ΩT := (0, T )× R+. We will always assume that there exists α > 0 such that

a, b, c ∈ L∞([0, T ]× R+), inf
[0,T ]×R+

a ≥ α > 0. (A.2)

Note that under such assumptions, it is classical that for any f ∈ L2([0, T ], H−1(R+)), for any u0 ∈
L2(R+), equation (A.1) has a unique weak solution u ∈ L∞([0, T ], L2(R+)) ∩ L2([0, T ], H1

0 (R+)).
We will now derive regularity estimates for u. These estimates are quite standard, and can be
found in numerous textbooks on partial differential equations. Since they are used repeatedly in
this paper, we gathered them in the following Proposition, for which we provide a proof for the
reader’s convenience.

Proposition A.1. Let T > 0. Assume that a ∈ H1([0, T ];L2(R+)) ∩ L2([0, T ];H2(R+)), b ∈
W 1,∞(ΩT ), c ∈W 1,∞([0, T ], L∞(R+)).
Let u0 ∈ H1(R+) such that u0(0) = 0, and let f ∈ L2(ΩT ). Let u ∈ L∞([0, T ], L2(R+)) ∩
L2([0, T ], H1

0 (R+)) be the unique weak solution of (A.1).
Then u ∈ L∞([0, T ];H1(R+)) ∩H1([0, T ];L2(R+)) ∩ L2([0, T ];H2(R+)) and we have the clas-

sical energy estimate

A0 := ‖u‖2L∞([0,T ],L2) + ‖∂xu‖2L2(ΩT ) ≤ C(‖f‖2L2(ΩT ) + ‖u0‖2L2(R+))e
CT (A.3)

for some constant C = C(α, ‖b‖∞, ‖c‖∞), as well as the higher regularity estimates

A1 := ‖∂xu‖2L∞L2 + ‖∂tu‖2L2L2 + ‖∂2
xu‖2L2L2

≤ C

[
‖a‖L∞‖∂xu0‖2L2 +

(
‖∂xb‖2L2L∞ + ‖c‖2L2L∞

)
‖u‖2L∞L2 + ‖f‖2L2L2 (A.4)

+
(
‖∂ta‖L∞L2 + ‖∂ta‖2L∞L2 + ‖∂xa‖2L∞L4 + ‖∂xa‖4L∞L4 + ‖b‖2L∞

)
‖∂xu‖2L2L2

]
and

‖∂tu‖2L∞([0,T ],L2) + ‖∂x∂tu‖2L2L2

≤ C
[
‖u0‖2H2(R+)

(
1 + ‖b‖2L∞(H1) + ‖c‖2∞ + ‖a‖2L∞(H1)

)
+A0‖∂tb‖2L2L∞ (A.5)

+A1

(
‖∂tc‖2L2(ΩT ) + ‖c‖L∞ + ‖∂ta‖L∞L2 + ‖b‖∞ + 1

)
+ ‖∂tf‖2L2(ΩT )

]
(A.6)

Proof. The weak solution u of (A.1) can be defined as the limit as R → ∞ of the solution uR of
the linear equation in a bounded domain

∂tuR + ∂x(b(t, x)uR) + c(t, x)uR − ∂x(a(t, x)∂xuR) = f(t, x), t > 0, x ∈ (0, R)

uR|x=0 = uR|x=R = 0, u|t=0 = u0
R,

(A.7)

where u0
R = u0χR, where χR(x) = 1 if x ≤ R−2 and χR(x) = 0 if x ≥ R−1, with ‖χR‖W 2,∞ ≤ C.

In turn, the function uR is defined as the limit of the Galerkin approximation

uR,n(t, x) =

n∑
k=1

dR,nk (t)wk,R(x),
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where wk,R are eigenfunctions of the Laplacian with Dirichlet boundary conditions in (0, R),
normalized in L2, namely wk,R(x) = (2/R)1/2 sin(kπx/R). More precisely, for all k ∈ {1, · · · , n},
for a.e. t ∈ [0, T ]∫ R

0

∂tuR,n(t)wk,R −
∫ R

0

b(t)uR,n(t)∂xwk,R +

∫ R

0

c(t)uR,n(t)wk,R +

∫ R

0

a(t)∂xuR,n(t)∂xwk,R

=

∫ R

0

f(t)wk,R. (A.8)

The initial data uR,n|t=0 is the orthogonal projection in L2(0, R) of u0
R onto Span(w1,R, · · · , wn,R).

Energy estimate (A.3). The classical energy estimate is obtained by multiplying (A.8) by
dR,nk (t) and summing for k ∈ {1, · · · , n}. Using Cauchy-Schwarz inequalities, we infer that

d

dt
‖uR,n(t)‖2L2(0,R) +α‖∂xuR,n(t)‖2L2(0,R) ≤ ‖f(t)‖2L2(0,R) +

(
1 +
‖b‖2∞
α

+ ‖c‖∞
)
‖uR,n(t)‖2L2(0,R).

Integrating in time and recalling that ‖uR,n(t = 0)‖L2(0,R) ≤ ‖u0
R‖L2([0,R]) ≤ ‖u0‖L2(R+), we

deduce that uR,n satisfies (A.3) for all R,n. Passing to the limit as n → ∞, we deduce that uR
also satisfies (A.3).

Estimate (A.4). We first multiply (A.8) by (dR,nk )′(t) and sum for k ∈ {1, · · · , n}. After
integrations by parts in space and time, we get∫ R

0

a(t)

2
|∂xuR,n(t)|2 +

∫ t

0

∫ R

0

|∂tuR,n|2

=

∫ R

0

a(0)

2
|∂xuR,n(0)|2 −

∫ t

0

∫ R

0

∂x(buR,n)∂tuR,n −
∫ t

0

∫ R

0

cuR,n∂tuR,n

+

∫ t

0

∫ R

0

f ∂tuR,n +

∫ t

0

∫ R

0

∂ta

2
|∂xuR,n|2

and therefore∫ R

0

a(t)

2
|∂xuR,n(t)|2 +

1

2

∫ t

0

∫ R

0

|∂tuR,n|2

≤
∫ R

0

a(0)

2
|∂xuR,n(0)|2 +

∫ t

0

∫ R

0

|∂ta|
2
|∂xuR,n|2 (A.9)

+ C
[
‖b‖2L∞(ΩT )‖∂xuR,n‖

2
L2(ΩT ) + (‖∂xb‖2L2L∞ + ‖c‖2L2L∞)‖uR,n‖2L∞L2 + ‖f‖2L2(ΩT )

]
The crucial point here is to notice that thanks to the compatibility condition u0

R(0) = u0
R(R) = 0,

we have
‖∂xuR,n(t = 0)‖L2(0,R) ≤ ‖∂xu0

R‖L2(0,R) ≤ C‖u0‖H1(R+). (A.10)

Indeed,

∂xuR,n(t = 0) =

n∑
k=0

dR,nk (0)∂xwk,R.

Computing dR,nk (0) and using the compatibility conditions on u0
R, we infer that

dR,nk (0) =

√
2

R

∫ R

0

u0
R(x) sin

(
kπx

R

)
dx =

√
2

R

R

kπ

∫ R

0

∂xu
0
R(x) cos

(
kπx

R

)
dx.

Setting vk,R :=
√

2
R cos(kπx/R) for k ≥ 1, we notice that (vk,R)k≥1 is an orthonormal family in

L2(0, R), and that

∂xuR,n(t = 0) =

n∑
k=0

(
∂xu

0
R, vk,R

)
vk,R,
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where (·, ·) is the usual L2 scalar product. Inequality (A.10) then follows from the Bessel inequality.
Next, we multiply (A.8) by λRk d

R,n
k (t) where λRk is the k-th eigenvalue of the Laplacian. Sum-

ming for k ∈ {1, · · · , n}, we get after integrations by parts:

−
∫ t

0

∫ R

0

∂x(a∂xuR,n)∂2
xuR,n = −

∫ t

0

∫ R

0

∂x(buR,n)∂2
xuR,n −

∫ t

0

∫ R

0

cuR,n∂
2
xuR,n

+

∫ t

0

∫ R

0

f ∂2
xuR,n −

∫ t

0

∫ R

0

∂tuR,n∂
2
xuR,n.

Using the Cauchy-Schwarz inequality, we deduce that∫ t

0

∫ R

0

a|∂2
xuR,n|2

≤ C
[
‖∂tuR,n‖2L2(ΩT ) +

∫ t

0

∫ R

0

∣∣∣∣∂xa√a
∣∣∣∣2 |∂xuR,n|2 + ‖b‖2L∞(ΩT )‖∂xuR,n‖

2
L2(ΩT ) (A.11)

+ (‖∂xb‖2L2L∞ + ‖c‖2L2L∞)‖uR,n‖2L∞L2 + ‖f‖2L2(ΩT )

]
.

Combining (A.9) and (A.11), we obtain∫ R

0

a(t)

2
|∂xuR,n(t)|2 +

1

4

∫ t

0

∫ R

0

|∂tuR,n|2 +
1

4C

∫ t

0

∫ R

0

a|∂2
xuR,n|2

≤
∫ R

0

a(0)

2
|∂xuR,n(0)|2 +

∫ t

0

∫ R

0

|∂ta|
2
|∂xuR,n|2 +

1

4C

∫ t

0

∫ R

0

∣∣∣∣∂xa√a
∣∣∣∣2 |∂xuR,n|2

+ C
[
‖b‖2L∞(ΩT )‖∂xuR,n‖

2
L2(ΩT ) + (‖∂xb‖2L2L∞ + ‖c‖2L2L∞)‖uR,n‖2L∞L2 + ‖f‖2L2(ΩT )

]
.

Moreover, ∫ R

0

|∂ta||∂xuR,n|2 ≤ ‖∂ta‖L2(0,R)‖∂xuR,n‖L2(0,R)‖∂xuR,n‖L∞(0,R)

≤ C‖∂ta‖L2(0,R)‖∂xuR,n‖L2(0,R)‖∂xuR,n‖H1(0,R)

so that∫ t

0

∫ R

0

|∂ta||∂xuR,n|2 ≤ η‖∂2
xuR,n‖2L2(ΩT ) + Cη

(
‖∂ta‖L∞L2 + ‖∂ta‖2L∞L2

)
‖∂xuR,n‖2L2(ΩT ).

In the same manner,∫ t

0

∫ R

0

∣∣∣∣∂xa√a
∣∣∣∣2 |∂xuR,n|2 ≤ η‖∂2

xuR,n‖2L2(0,R) + Cη
(
‖∂xa‖2L∞L4 + ‖∂xa‖4L∞L4

)
‖∂xuR,n‖2L2(ΩT ).

As a consequence, choosing η small enough, and setting J(ξ) = ξ + ξ2 for ξ ∈ R,

α

∫ R

0

|∂xuR,n(t)|2 +

∫ t

0

∫ R

0

|∂tuR,n|2 + α

∫ t

0

∫ R

0

|∂2
xuR,n|2

≤ C

[
‖a‖L∞‖∂xuR,n(0)‖2L2(0,R) +

(
J (‖∂ta‖L∞L2) + J

(
‖∂xa‖2L∞L4

))
‖∂xuR,n‖2L2(ΩT )

+ ‖b‖2L∞(ΩT )‖∂xuR,n‖
2
L2(ΩT ) + (‖∂xb‖2L2L∞ + ‖c‖2L2L∞)‖uR,n‖2L∞L2 + ‖f‖2L2(ΩT )

]

48



and eventually, passing to the limit n→ +∞

‖∂xuR‖2L∞((0,T ),L2((0,R)) + ‖∂tuR‖2L2((0,T )×(0,R)) + ‖∂2
xuR‖2L2((0,T )×(0,R))

≤ C

[
‖a‖L∞‖∂xu0

R‖2L2 +
(
J (‖∂ta‖L∞L2) + J

(
‖∂xa‖2L∞L4

))
‖∂xuR‖2L2L2 + ‖b‖2L∞‖∂xuR‖2L2L2

+
(
‖∂xb‖2L2L∞ + ‖c‖2L2L∞

)
‖uR‖2L∞L2 + ‖f‖2L2L2

]
.

Estimate (A.5). In a last step, we differentiate (A.8) with respect to t. We find that u′R,n :=
∂tuR,n also satisfies a weak formulation similar to (A.8), namely

∫ R

0

∂tu
′
R,n(t)wk,R −

∫ R

0

b(t)u′R,n(t)∂xwk,R +

∫ R

0

c(t)u′R,n(t)wk,R +

∫ R

0

a(t)∂xu
′
R,n(t)∂xwk,R

=

∫ R

0

f̃R,n(t)wk,R +

∫ R

0

gR,n(t)∂xwk,R (A.12)

where
f̃R,n := ∂tf + ∂tcuR,n,

gR,n := −∂tbuR,n + ∂ta∂xuR,n

and with the initial data

u′R,n(0) = Pn
[
−∂x(b(t = 0)u0

R)− c(t = 0)u0
R + ∂x(a(t = 0)∂xu

0
R)
]
,

where Pn is the orthogonal projection in L2(0, R) onto Span(w1,R, · · · , wn,R). Using (A.4), we
obtain

‖f̃R,n‖L2((0,T )×(0,R)) ≤ C
(
‖∂tf‖L2(ΩT ) + ‖uR,n‖L∞([0,T ],H1(0,R))‖∂tc‖L2(ΩT )

)
,

‖gR,n‖L2((0,T )×(0,R)) ≤ C
[
‖uR,n‖L∞([0,T ],L2(0,R))‖∂tb‖L2([0,T ];L∞(R+))

+ ‖∂ta‖L∞([0,T ],L2(R+))‖∂xuR,n‖L2([0,T ],H1)

]
,

so that

‖u′R,n‖2L∞L2 + ‖∂xu′R,n‖2L2L2

≤ C
[
‖u0‖2H2(R+)

(
1 + ‖b‖2L∞(H1) + ‖c‖2∞ + ‖a‖2L∞(H1)

)
+A0‖∂tb‖2L2L∞

+A1

(
‖∂tc‖2L2(ΩT ) + ‖c‖L∞ + ‖∂ta‖L∞L2 + ‖b‖∞ + 1

)
+ ‖∂tf‖2L2(ΩT )

]
Passing to the limit as n→∞, we deduce that uR satisfies (A.5).

We then extend uR to (0, T ) × (0,+∞) in such a way that the extension satisfies the same
bounds as uR. The family thus obtained is compact in L2

loc([0, T ] × R+), and we can extract a
subsequence converging weakly in w∗ − L∞([0, T ], H2(R+), and whose time-derivative converges
weakly in w∗ − L∞([0, T ], L2(R+) and in w − L2([0, T ], H1(R+)). Passing to the limit in (A.7),
we find that the limit is a solution of (A.1), satisfying the estimates (A.3), (A.4) and (A.5).
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B L2 estimates for some nonlinear parabolic equations
In this section, we consider diffusion equations of the form

∂tg − ỹ′(t)∂xg − µ∂xx ln

(
1 +

g

ḡ

)
= G t ∈ (0, T ), x ∈ (0, R),

g|t=0 = g0 ∈ H1
0 ((0, R)),

g|x=0 = 0,

g|x=R = 0 if R <∞, lim
x→∞

g(t, x) = 0 if R = +∞.

(B.1)

We prove the following

Lemma B.1. Let G ∈ L2((0, T )× (0, R)), g0 ∈ H1
0 ((0, R)). Assume that ḡ ∈W 1,∞ ∩H1((0, T )×

(0, R)) and that ḡ|x=0 = 1. Assume furthermore that M−1 ≤ ỹ′(t) ≤ M for a.e. t ∈ (0, T ), for
some constant M ≥ 1.

Let g ∈ L∞([0, T ], H1(0, R)) be a solution of (B.1) such that ∂tg ∈ L2((0, T )×(0, R)). Assume
furthermore that 1 ≤ g + ḡ ≤ C̄, 1 ≤ ḡ ≤ C̄ a.e. for some constant C̄ > 1.

Then g/ḡ ∈ L∞([0, T ], H1(0, R)) ∩ L2((0, T ), H2((0, R))), and there exists a constant C de-
pending only on µ,M and ‖ḡ‖W 1,∞([0,T ]×[0,R]) such that

‖g‖L∞([0,T ],H1(0,R)) + ‖∂tg‖L2((0,T )×(0,R)) + ‖∂xg‖L2((0,T )×(0,R))

≤ C
(
‖g0‖H1 + ‖G‖L2((0,T )×(0,R)) + ‖g‖L2((0,T )×(0,R))

)
,

and, if R = +∞,∥∥∥∥∂2
x

(
g

ḡ

)∥∥∥∥
L2((0,T )×R+)

≤ C
(
‖g0‖H1 + ‖G‖L2((0,T )×R+) + ‖g‖L2((0,T )×R+)

)
+ C inf(1, T 1/2)

(
‖g0‖H1 + ‖G‖L2((0,T )×R+) + ‖g‖L2((0,T )×R+)

)2
.

Additionally, for all R > 0, g satisfies the exponential growth estimate

‖g‖L∞([0,T ],H1(0,R)) + ‖∂tg‖L2((0,T )×(0,R)) + ‖∂xg‖L2((0,T )×(0,R))

≤ C
(
‖g0‖H1 + ‖G‖L2((0,T )×(0,R))

)
exp((1 + ‖∂xḡ‖2∞)T ).

Proof. The proof is quite classical. The only subtlety lies in the derivation of the L∞(H1) estimate.
We only sketch the main steps in order to highlight the dependency on ḡ. Note that our purpose
here is merely to derive energy estimates once the regularity of the solution is known, rather than
proving extra regularity for the solution.
• We start with the L∞(L2) estimate. Multiplying (B.1) by g and integrating by parts, we

obtain
1

2

d

dt

∫ R

0

|g|2 + µ

∫ R

0

∂x( gḡ )

1 + g
ḡ

∂xg =

∫ R

0

Gg.

Recalling that ḡ ≥ 1, g + ḡ ≥ 1, we have∫ R

0

∂x( gḡ )

1 + g
ḡ

∂xg ≥
1

2

∫ R

0

(∂xg)2

g + ḡ
− 1

2
‖∂xḡ‖2∞

∫ R

0

g2,

and therefore

‖g‖L∞([0,T ],L2(0,R)) + ‖∂xg‖L2((0,T )×(0,R)) (B.2)

≤ C
(
‖g0‖L2(0,R) + ‖G‖L2((0,T )×(0,R)) + (1 + ‖∂xḡ‖∞)‖g‖L2((0,T )×(0,R))

)
.
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Note that we also obtain the exponential estimate

‖g‖L∞([0,T ],L2(0,R)) + ‖∂xg‖L2((0,T )×(0,R))

≤ C
(
‖g0‖L2(0,R) + ‖G‖L2((0,T )×(0,R))

)
exp((1 + ‖∂xḡ‖2∞)T ).

• Let us now tackle the L∞(H1) estimate. We multiply (B.1) by ∂t ln(1+ g
ḡ ) and examine each

term separately. We have

∫ R

0

∂tg∂t ln

(
1 +

g

ḡ

)
=

∫ R

0

(
∂t
g
ḡ

)2

1 + g
ḡ

ḡ −
∫ R

0

∂tḡ

ḡ
g
∂t
g
ḡ

1 + g
ḡ

≥ 1

2

∫ R

0

(
∂t
g
ḡ

)2

g + ḡ
ḡ2 − 1

2
‖∂tḡ‖2∞

∫ R

0

g2.

As for the diffusion term, we recognize a time derivative

−µ
∫ R

0

∂xx ln

(
1 +

g

ḡ

)
∂t ln

(
1 +

g

ḡ

)
= µ

∫ R

0

∂x ln

(
1 +

g

ḡ

)
∂t∂x ln

(
1 +

g

ḡ

)
=

µ

2

d

dt

∫ R

0

(
∂x ln

(
1 +

g

ḡ

))2

.

Transferring the transport term into the right-hand side and using a Cauchy-Schwarz inequality,
we obtain ∣∣∣∣∣

∫ R

0

(G− ỹ′(t)∂xg) ∂t ln

(
1 +

g

ḡ

)∣∣∣∣∣
≤ 1

4

∫ R

0

(
∂t
g
ḡ

)2

g + ḡ
ḡ2 + C

∫ R

0

(G2 + (∂xg)2).

Gathering all the terms and recalling that ḡ ≥ 1, g + ḡ ≤ C̄, we obtain∥∥∥∥∂t gḡ
∥∥∥∥
L2((0,T )×(0,R))

+

∥∥∥∥∂x gḡ
∥∥∥∥
L∞((0,T ),L2(0,R))

≤ C
(∥∥∥∥∂x g0

ḡ(t = 0)

∥∥∥∥
L2(0,R)

+ ‖G‖L2((0,T )×(0,R)) + ‖∂xg‖L2((0,T )×(0,R))

+‖∂tḡ‖∞‖g‖L2((0,T )×(0,R))

)
.

Recalling (B.2), we obtain the estimate announced in the Lemma for ‖∂xg‖L∞(H1) and ‖∂tg‖L2(L2).
• Let us now derive the estimate on the second derivative in the case R = +∞. Let us set

f = ∂x ln(1 + g
ḡ ). According to the previous estimates, we know that f ∈ L∞((0, T ), L2(R+).

Furthermore, using equation (B.1), we have

µ∂xf = ∂tg − ỹ′(t)∂xg −G ∈ L2((0, T )× R+).

Hence, using the previous estimates,

‖∂xf‖L2((0,T )×R+) ≤ C
(
‖∂tg‖L2((0,T )×R+) + ‖∂xg‖L2((0,T )×R+) + ‖G‖L2((0,T )×R+)

)
≤ C

(
‖g0‖H1(R+) + ‖g‖L2((0,T )×R+) + ‖G‖L2((0,T )×R+)

)
.
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In particular, the Gagliardo-Nirenberg-Sobolev inequality entails that

‖f‖L4((0,T )×R+) ≤ C

(∫ T

0

‖f(t)‖3L2(R+)‖∂xf(t)‖L2(R+)

)1/4

≤ C‖f‖1/2L∞((0,T ),L2(R+))‖f‖
1/4
L2((0,T )×R+)‖∂xf‖

1/4
L2((0,T )×R+)

≤ C
(
‖g0‖H1(R+) + ‖g‖L2((0,T )×R+) + ‖G‖L2((0,T )×R+)

)
.

Now

∂xf = ∂xx ln

(
1 +

g

ḡ

)
= ∂x

(
∂x

g
ḡ

1 + g
ḡ

)
=
∂xx

g
ḡ

1 + g
ḡ

− f2.

Thus

‖∂xxg‖L2((0,T )×R+)

≤ C
(
‖∂xf‖L2((0,T )×R+) + ‖f‖2L4((0,T )×R+)

)
≤ C

(
‖g0‖H1(R+) + ‖g‖L2((0,T )×R+) + ‖G‖L2((0,T )×R+)

)
+C inf(1, T 1/2)

(
‖g0‖H1(R+) + ‖g‖L2((0,T )×R+) + ‖G‖L2((0,T )×R+)

)2
.

C Two technical Lemmas
Lemma C.1. Let F ∈ L2(R+) such that

√
xF ∈ L2(R+), and let M ≥ 1. Let ỹ ∈ L∞([0, T ])

such that ỹ(t) ≥ t/M a.e. Then for all T > 0, R > 0∫ T

0

∫ R

0

F 2(x+ ỹ(t))dx dt ≤M
∫ ∞

0

zF 2(z) dz.

Proof. We write ∫ T

0

∫ R

0

F 2(x+ ỹ(t))dx dt =

∫ T

0

∫ R+ỹ(t)

ỹ(t)

F 2(z) dz dt

≤
∫ T

0

∫ ∞
0

1z>ỹ(t)F
2(z) dz dt.

Using the assumption on ỹ, we deduce∫ T

0

∫ R

0

F 2(x+ ỹ(t))dx dt ≤
∫ T

0

∫ ∞
0

1z>t/MF
2(z) dz dt

≤ M

∫ ∞
0

zF 2(z) dz.

Lemma C.2. Let ỹ1, ỹ2 ∈ L∞loc([0, T ]) and such that ỹ′i ∈ L2 ∩ L∞(0, T ). Assume that ỹ1(0) =
ỹ2(0) = 0 and thatM−1 ≤ ỹ′i ≤M for some constantM ≥ 1 and for i = 1, 2. Let w0 ∈W 1,∞(R+)
such that

√
x∂xw0,

√
x∂2

xw0 ∈ L2(R+).
Then there exists a constant C depending only on M such that

‖w0(ỹ1)−w0(ỹ2)‖L∞(0,T )

≤ C
(
‖
√
x∂xw0‖L2(R+) + ‖

√
x∂2

xw0‖L2(R+) + ‖∂xw0‖L∞(R+)

)
‖ỹ′1 − ỹ′2‖L2(0,T )

and
‖w0(ỹ1)−w0(ỹ2)‖L2(0,T ) ≤ C‖ỹ′1 − ỹ′2‖L2(0,T )‖

√
z∂xw0(z)‖L2(R+).
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Proof. First, using the Sobolev embedding H1(0, T ) ⊂ L∞(0, T ), we have

‖w0(ỹ1)−w0(ỹ2)‖L∞(0,T ) ≤ C
(
‖w0(ỹ1)−w0(ỹ2)‖L2(0,T ) + ‖∂t(w0(ỹ1)−w0(ỹ2))‖L2(0,T )

)
.

Let us start with the first term in the right-hand side. Using a Taylor formula,

w0(ỹ1(t))−w0(ỹ2(t)) = (ỹ1(t)− ỹ2(t))

∫ 1

0

∂xw0 (τ ỹ1(t) + (1− τ)ỹ2(t)) dτ.

For a.e. t ∈ [0, T ], the Cauchy-Schwarz inequality implies

|ỹ1(t)− ỹ2(t)| =
∣∣∣∣∫ t

0

(ỹ′1 − ỹ′2)

∣∣∣∣ ≤ t1/2‖ỹ′1 − ỹ′2‖L2(0,T ).

Hence, setting z = τ ỹ1(t) + (1− τ)ỹ2(t) and observing that z/M ≤ t ≤Mz,

‖w0(ỹ1)−w0(ỹ2)‖2L2(0,T ) ≤ ‖ỹ′1 − ỹ′2‖2L2(0,T )

∫ T

0

∫ 1

0

t
(
∂xw0 (τ ỹ1(t) + (1− τ)ỹ2(t))

)2
dτ dt

≤ M2‖ỹ′1 − ỹ′2‖2L2(0,T )

∫ MT

0

∫ 1

0

z(∂xw0(z))2 dτ dz

≤ M2‖ỹ′1 − ỹ′2‖2L2(0,T )‖
√
z∂xw0(z)‖2L2(R+).

The second term is treated in a similar fashion.

D Proof of Lemma 6.3
We recall that

A = −sId− µ∂x
( ·

v̄

)
.

Let ϕ ∈ H2(R+) be arbitrary.

• Integrating by parts and recalling that v̄(0) = 1,∫ ∞
0

(A∂xϕ)ϕ = −
∫ ∞

0

s∂xϕ ϕ− µ
∫ ∞

0

∂x

(
∂xϕ

v̄

)
ϕ

=
s

2
(ϕ(0))2 + µ

∫ ∞
0

(∂xϕ)2

v̄
+ µϕ(0)ϕ′(0).

• In a similar fashion, for any ρ ∈ C2
b (R+),∫ ∞

0

(∂xAϕ)
ϕ

v̄
ρ = −s

∫ ∞
0

∂xϕ
ϕ

v̄
ρ− µ

∫ ∞
0

(
∂2
x

(ϕ
v̄

))(ϕ
v̄

)
ρ

=
s

2
ϕ(0)2ρ(0) +

s

2

∫ ∞
0

ϕ2∂x

(ρ
v̄

)
+ µ

∫ ∞
0

(
∂x

(ϕ
v̄

))2

ρ

+µ

∫ ∞
0

(
∂x

(ϕ
v̄

))(ϕ
v̄

)
∂xρ+ µ∂x

(ϕ
v̄

)
|x=0

ϕ(0)ρ(0)

= µ

∫ ∞
0

(
∂x

(ϕ
v̄

))2

ρ+
s

2

∫ ∞
0

ϕ2∂x

(ρ
v̄

)
−µ

2

∫ ∞
0

(ϕ
v̄

)2

ρ′′

+
s

2
ϕ(0)2ρ(0)− µ

2
ϕ(0)2ρ′(0) + µ∂x

(ϕ
v̄

)
|x=0

ϕ(0)ρ(0).

The result follows.
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