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Many salt-marsh systems worldwide are currently threatened by drowning and lateral
erosion that are not counteracted by sufficient sediment supply. Here we analyze
the response of a salt-marsh system to changes in sediment availability and show
that, contrary to what would have been expected, marsh dynamics in the vertical
plane can be insensitive to large sediment supply. We integrate sedimentological,
geochronological, paleoecological, geophysical, and chemical analyses of salt-marsh
sediments accumulated over the past six centuries in the Southern Venice Lagoon (Italy),
and suggest that a time lag exists between enhanced river-fed clastic sediment input
and its signature in the salt-marsh succession. This time lag is likely caused by the
stocking of the sediment along the margins of pre-existing marshes, which started to
significantly expand horizontally – rather than accrete vertically – when sediment input
increased. When sediment input drastically decreased, wind waves re-suspended the
river-fed deposits and distributed them over the marsh platform, eventually allowing
for vertical accretion. Understanding the response of salt-marsh systems to changes in
sediment supply has important implications for the management of tidal landscapes and
the prediction of their evolution under the effects of natural and anthropogenic forcings.
Our results highlight that the study of ultra-recent sedimentary successions needs to be
carried out on the basis of a deep understanding of specific depositional dynamics.

Keywords: salt marsh, sediment supply, Venice Lagoon (Italy), coastal environment, vertical accretion rate

INTRODUCTION

Salt marshes are valuable ecosystems of great social, economical, ecological, and geomorphological
importance (Barbier et al., 2011). The accumulation of inorganic and organic sediments (e.g.,
Morris et al., 2002; D’Alpaos et al., 2007; Mudd et al., 2009; Roner et al., 2016) allows salt marshes
to face rates of relative sea-level rise (RSLR) up to a given threshold (Kirwan et al., 2010, 2016;
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D’Alpaos et al., 2011) and eventually to reach biogeomorphic
equilibrium conditions (D’Alpaos, 2011; Kirwan and Megonigal,
2013; Marani et al., 2013; Roner et al., 2016). In particular,
halophytic vegetation species colonizing tidal marshes contribute
to marsh vertical accretion by enhancing mineral deposition,
through direct capture of sediment particles (e.g., Leonard and
Luther, 1995; Li and Yang, 2009) and via reduction of turbulence
kinetic energy (e.g., Leonard and Croft, 2006; Mudd et al.,
2010), as well as organic sedimentation due to root growth and
litter deposition (e.g., Nyman et al., 2006; Neubauer, 2008). The
elevation of marsh surface, in turn, affects vegetation productivity
(e.g., Morris et al., 2002), in this way closing the bio-geomorphic
feedback. Salt-marsh accretion is mainly driven by inorganic
accumulation in more elevated and better-aerated soils typically
found along the marsh edges (e.g., Marani et al., 2006; Boaga
et al., 2014), while the organic component becomes important
in the low-lying inner part of marshes (e.g., D’Alpaos, 2011;
Roner et al., 2016).

The effects of natural changes and human interference on the
subtle equilibrium between vertical accretion and rates of RSLR
have often resulted in irreversible transformations, leading to a
significant decrease in salt-marsh extent worldwide during the
last century (Castillo et al., 2000; Carniello et al., 2009; Gedan
et al., 2009; FitzGerald and Hughes, 2019). High rates of RSLR
and the lack of clastic sediments are key factors driving salt-marsh
drowning worldwide (Morris et al., 2002; Marani et al., 2007;
Gedan et al., 2009; Valiela et al., 2009; Mudd, 2011; D’Alpaos
and Marani, 2016), whereas the effect of wind-wave erosion on
salt-marsh margins has been highlighted as the main process
responsible for their lateral retreat (Mariotti and Fagherazzi,
2010, 2013; Marani et al., 2011; Leonardi and Fagherazzi, 2014;
Leonardi et al., 2016; Finotello et al., 2020). Other second-order
processes, such as for example the establishment and expansion
of salt pans and ponds, can also lead to significant loss of marsh
surfaces (e.g., Mariotti, 2016; Ortiz et al., 2017; Schepers et al.,
2020; Wang et al., 2021).

Recent mathematical modeling suggests that salt-marsh
topography, and the related effects on biological productivity and
vertical accretion, could adjust to century-scale RSLR with a lag of
several decades (Allen, 1995; Kirwan and Murray, 2008; D’Alpaos
et al., 2011). Accordingly, salt-marsh elevation and accretion
rates might currently be out of equilibrium with modern rates
of RSLR, reflecting environmental conditions developed over
previous decades (Kirwan and Murray, 2008). Variations in
sediment supply are likely to have similar effects on the stability
of marshlands (Kirwan and Temmerman, 2009; Kirwan et al.,
2011). Therefore, a time lag is expected between changes in
sediment availability and new salt-marsh equilibrium conditions
in the vertical frame (D’Alpaos et al., 2011), though field shreds
of evidence for such behavior are still missing. On the contrary,
salt-marsh dynamics in the horizontal plane appears to respond
faster to changes in external forcings, chief among which are wind
waves and, yet again, external sediment supply (Marani et al.,
2011; Leonardi et al., 2016; Ladd et al., 2019; Finotello et al.,
2020). For instance, Kirwan et al. (2011) suggested that, during
the European settlement, salt marshes along the North American
coast underwent a marked and rapid expansion due to increased

sediment supply triggered by human-made deforestation, before
they started retreating toward a pre-settlement equilibrium.

Similarly to other coastal systems worldwide (Day et al.,
2000; Gedan et al., 2009), the Venice Lagoon (Italy) is currently
threatened by a severe loss of marshlands, with a decrease of
natural salt marshes from ca. 255 km2 in AD 1611 to 43 km2

in AD 2010 (Carniello et al., 2009; D’Alpaos, 2010; Tommasini
et al., 2019). Such a decrease was mainly observed in the Southern
Lagoon due to a severe reduction in sediment supply following
repeated man-made diversions of the Brenta River outside the
Lagoon, carried out to avoid the siltation of the lagoonal basin.
All these changes, which are recorded in historical documents
(D’Alpaos, 2010; Bondesan and Furlanetto, 2012) and preserved
in the stratigraphic record (Roner et al., 2017), make the Southern
portion of the Venice Lagoon a unique laboratory to understand
the evolution of salt marshes under the effects of changing
sediment supply.

In this paper, we use a multi-proxy approach that combines
sedimentological, geochronological, paleoecological, geophysical,
and chemical analyses of salt-marsh deposits accumulated over
the past six centuries to unravel the response of salt-marsh
platforms to changes in sediment supply in the vertical and
horizontal planes. The comparison between different datasets
shows a substantial time lag between the increase in river-
fed clastic sediment input and its signatures in salt-marsh
sedimentary successions. Understanding the response of salt
marshes to changes in external sediment supply has broad
implications for managing tidal landscapes and predicting their
evolution under the effects of natural and anthropogenic-induced
morphodynamic changes.

GEOMORPHOLOGICAL SETTING: THE
SOUTHERN VENICE LAGOON AND THE
BRENTA RIVER

The Venice Lagoon is an elongated waterbody located in the
northwestern Adriatic Sea, characterized by an area of about
550 km2, a semi-diurnal micro-tidal regime (maximum water
excursions of ±70 cm around mean sea level and average tidal
range of about 1.0 m), and a mean water depth over tidal flats of
about 1.5 m. The Lagoon is connected to the Adriatic Sea by the
Lido, Malamocco, and Chioggia inlets from North to South. The
study area (Punta Cane) is located in the Southern portion of the
Lagoon, about 10 km SW of the Malamocco inlet (Figures 1A,B).

The Southern Venice Lagoon hosts a ∼20 m thick Holocene
sedimentary succession, which overlays Pleistocene alluvial
deposits accumulated during the Last Glacial Maximum. Modern
lagoonal sedimentation, associated with the evolution of tidal
channels, tidal flats, subtidal platforms, and salt marshes, started
to accumulate ca. 2,000 years ago (Zecchin et al., 2009). The
volume of clastic sediments supplied to the Southern Lagoon
during the last millennium was essentially controlled by the
Brenta River, a 174 km long river draining the Dolomites
(Southern Italian Alps). Carbonates (dolomite), gneiss, phyllite,
granite, and volcanic rocks (e.g., andesite and rhyolite) are the
predominant rocks exposed in the upper part of the Brenta River
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FIGURE 1 | Geomoprohlogical setting and study area. (A) Location of the study area in the Southern Venice Lagoon. (B) Punta Cane salt-marsh area and the
current path of the Brenta River. (C) Location of the two sedimentary cores analyzed in this study, located in the Punta Cane salt-marsh area.

drainage basin, while carbonates are found in the lower basin
(Surian and Cisotto, 2007). During the past centuries, the Brenta
River was repeatedly diverted inside and outside the Venice
Lagoon (Figure 2; see also D’Alpaos, 2010). Specifically, the river
fed the Lagoon in the Punta Cane area during two time periods,
hereinafter named BR1 and BR2, going (i) from AD 1457 to
1548 (BR1), when two different riverine inlets were sequentially
activated, and (ii) from AD 1840 to 1896 (BR2). Given the
proximity to the former outlet of the Brenta River (Figures 1B,C,
2), the salt-marsh sedimentary succession of the Punta Cane area
represents a unique archive to investigate the effects of variations
in clastic sediment supply on salt-marsh evolution.

MATERIALS AND METHODS

In the Punta Cane area, salt-marsh deposits are about 1.80 m
thick and cover a palustrine unit (minimum thickness 2 m) made
up of peat with abundant reed fragments. A high-resolution
(i.e., decadal-scale) age model for this succession was recently
proposed by Roner et al. (2017) integrating radiocarbon dating
and 210Pb and 137Cs analyses. The model revealed that salt-marsh
deposition began around AD 1350, and allowed us to identify the
BR1 phase between −155 and −115 cm below the present-day
salt-marsh surface, as well as to highlight the signatures of the
BR2 phase between −65 and −60 cm (Figure 3).

In this study, we adopted a multi-proxy approach aimed to
detect the signature of sediment input sourced from the Brenta
River in the Punta Cane succession. In particular, we investigated
the upper 1.50 m thick marsh deposits (Figure 3) on the basis
of an approach that couples sedimentological, paleoecological,
geophysical, and chemical analyses. Results are here expressed as
a function of time (Figure 4) based on the age model proposed
by Roner et al. (2017). Sedimentological analyses include core
description and measurements of organic content and inorganic
fraction, as well as sediment grain size. We determined the
organic content (3 cm sample spacing) through a Loss On
Ignition process at 375◦C for 16 h (Ball, 1964; Morris et al.,

2016; Roner et al., 2016) and we calculated it as weight loss after
burning. We measured the grain size of the inorganic fraction
(3 cm sample spacing) through laser diffraction analysis, after
removal of organic components with hydrogen peroxide (H2O2;
Gray et al., 2010). Paleoecological analyses involved palynology
and foraminifera assemblages. We washed sediment samples
through a 63 µm mesh sieve to remove the fine fraction to
study foraminiferal assemblage characterizations, that have been
analyzed in two sedimentary intervals accumulated across phases
BR1 (9 samples, 3 cm spaced) and BR2 (15 samples, 3 cm spaced).
We counted foraminifera under a stereomicroscope and classified
them according to the taxonomic order of Loeblich and Tappan
(1987). Assemblage composition used in this study has been
compared with previous works on salt-marsh foraminifera in
the Venice Lagoon (Petrucci et al., 1983; Albani et al., 1984;
Serandrei-Barbero et al., 2004). For palynological investigations
(3 cm sample spacing), following the addition of Lycopodium
tablets to determine palynomorph concentration, we treated
38 pre-dried sediment samples with standard HCl, HF, and
KOH procedures. We counted palynomorphs by transmitted
light microscopy, at between 500x and 1,000x magnification.
We measured volumetric specific susceptibility (k) by using a
Bartington MS2C logging sensor with a spatial resolution of 2 cm.
Finally, we carried out an X-Ray Fluorescence analysis on the salt-
marsh succession using an Avaatech XRF Core Scanner at 10 kV
and a resolution of 1 cm down-core.

RESULTS

The salt-marsh deposits (see sedimentological log in Figure 3)
consist of horizontally laminated, sometimes bioturbated mud,
with scattered millimeter-thick laminae of fine to very-fine
grained sand. Mud is dominantly brownish and contains
abundant plant debris and in situ root remains. The accumulation
of salt-marsh deposits occurred in the upper part of the intertidal
zone, where mud settled down around high-water slack, at the
transition between flood and ebb tides. Sandy laminae were
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FIGURE 2 | The six panels (A–F) show the evolution of the Brenta River over the past millennium, reconstructed from the available historical maps (adapted from
D’Alpaos, 2010). Dates are reported in each individual panel, where red lines show the Brenta River diversions and the yellow dot indicates the Punta Cane area. In
(F) the green area represents the extent of the Brenta River delta reclamation at the beginning of the 20th century after its last introduction into the Venice Lagoon
(AD 1840–1896, see E).
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FIGURE 3 | On the left, schematic representation of the Punta Cane sedimentary succession. Yellow dots represent the depths of the dated samples. Each age
reports the mode value obtained from the age distribution, and the errors of the calibrated age interval at 68% of probability (after Roner et al., 2017). On the right,
sedimentological log of the Punta Cane succession built up from cores 1 and 28. The upper 1.5 m salt-marsh deposits represent the study interval. BR1 and BR2
phases indicate the intervals of the Brenta River feeding the Venice Lagoon.

FIGURE 4 | Results of the multi-proxy approach employed along the salt-marsh succession. From left to right, graphs represent the results of: sedimentological
analysis (organic matter content and grain size distribution); paleoecological analysis (foraminifera distribution: J = Jadammina macrescens, T = Trochammina inflate,
M = Miliammina fusca, C = calcareous species, i.e., Quinqueloculina seminulum, Ammonia beccarii, Haynesina paucilocula, Aubignyna perlucida; palynology:
Halophytes, Hydrophytes, Total pollen); geophysical analysis (magnetic susceptibility); geochemical analysis by XRF. The vertical axis is the time expressed in years
AD. Dates in red are those obtained from the chronological model proposed by Roner et al. (2017). Blue intervals BR1 and BR2 represent the two phases of the
Brenta River feeding the Venice Lagoon in the Punta Cane area. Red stripes S1 and S2 have been detected from the signal of the different proxies and represent the
signature of the Brenta River sedimentary input. Lined intervals Gm1 and Gm2 identify two gray mud intervals in the marsh deposit (see sedimentological log in
Figure 3) and represent the onset of S1 and S2, respectively.

generated during storms, when waves re-suspended sand and
mud from the tidal flats and subtidal platforms in front of
the marsh and delivered them onto the salt-marsh platform
(Carniello et al., 2009; Mariotti and Carr, 2014). The organic
matter produced by halophytic vegetation contributed to salt-
marsh accretion together with the inorganic component (Morris
et al., 2002; Roner et al., 2016). Two main intervals of grayish
mud with scarce plant debris, hereinafter Gm1 and Gm2
(Figures 3–5), occur within the salt-marsh succession. Following
the proposed age model, Gm1 and Gm2 intervals date back to AD
1580–1640 and AD 1900–1930, respectively, (Figures 4, 5).

The organic matter content (Figure 4) ranges between 8.5 and
27% and no significant trend or changes can be detected through
the salt-marsh succession, except for a major decrease (occurring
over a time span of ca. 15 year) observed at the base of the Gm1
interval (AD 1580–1640). The higher values at the bottom of the
core (20–27%) can be ascribed to bioturbation, which mixed the
underlying peat with salt-marsh mud.

The median grain size D50 (Figure 4) is in the range 15–
50 µm and no significant trend or changes are detected through
the study succession. The occurrence of small positive peaks
corresponds to the presence of the sandy laminae.
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FIGURE 5 | Ca/Si intensity ratio trend (see Figure 4), related to the signal of other detrital elements (titanium, potassium, and iron) to confirm the existence of the
two intervals S1 and S2. For dates on the vertical axis, BR1, BR2, S1, S2, Gm1, and Gm2 intervals refer to Figure 4 caption.

FIGURE 6 | Sketch showing the effects of the presence (above) and of the absence (below) of a fluvial sediment input on tidal marshes, according to the conceptual
model developed in the present study.

Foraminifera assemblage (Figure 4) shows that the two
studied intervals (ca. from AD 1450 to 1680 and from AD
1850 to 1950) accumulated in salt-marsh depositional settings.
Up to ca. AD 1910, the dominance of Trochammina inflata,
Jadammina macrescens, and Miliammina fusca points to a
typical assemblage of upper-marsh in the Venice Lagoon
(Petrucci et al., 1983). After AD 1910 to the 1950s, the
foraminifera assemblage is dominated by calcareous species
(predominantly Quinqueloculina seminulum, with secondary

contributions from the lagoonal species Ammonia beccarii,
Haynesina paucilocula, and Aubignyna perlucida) which, together
with the salt-marsh species T. inflata and J. macrescens, suggest
the presence of a middle-marsh environment (Levin et al., 1996;
Horton and Edwards, 2006).

Palynological evidence (Figure 4) suggests the predominance
of halophytic vegetation (mostly Amaranthaceae) and prominent
growth of vegetated salt marshes at ca. AD 1500 and 1880, except
for small-scale fluctuations in the retrieved signals and excluding
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major peak at the top of the core that corresponds to the present-
day marsh. On the other hand, hydrophyte presence (especially
Cyperaceae) increases in correspondence of Gm1 and Gm2 (i.e.,
at ca. AD 1600 and 1900), pointing to a freshwater riverine input.
The most pronounced drops in pollen concentration mark the
lower part of muddy Gm1 and Gm2 intervals.

Magnetic susceptibility (Figure 4) highlights quite constant
and low values (about 40 × 10−6 SI units) for phase BR1 with
an absolute minimum (5 × 10−6 SI units) in correspondence
of the bottom of the study succession (AD 1450), where salt-
marsh deposits are mixed with the basal peat by bioturbation.
A clear peak (>200 × 10−6 SI units) marks interval Gm1 around
AD 1620, consistently with the occurrence of detrital magnetic
elements sourced from rocks (i.e., granitoids) exposed in the
Brenta-River drainage basin. Moving upward, the susceptibility
exhibits a decreasing trend that is possibly correlated with the
slight increasing content in organic matter.

XRF analysis highlights two clear intervals where Ca/Si
(Figure 4) and content of detrital elements like Ti, K, and
Fe (Figure 5) show low and high values, respectively. The
lower interval covers ca. 130 year (from ca. AD 1580 to 1710),
while the more recent one corresponds to ca. 45 year (from
ca. AD 1900 to 1945). Both intervals are floored by the two
gray Gm1 and Gm2 mud layers, respectively. The negative
excursion in Ca/Si intensity ratio and the increase in Ti, K,
and Fe (Figure 5) is consistent with sediments deriving from
dismantling of lithotypes (i.e., granitoids) exposed in the Brenta
River drainage basin.

DISCUSSION

The study succession documents the evolution of a salt-marsh
depositional environment over a time period of 650 years,
thus including the two historically documented time-spans of
active fluvial input by the Brenta River (i.e., BR1 and BR2
periods). The dataset presented here shows that, despite the
large volume of sediments delivered by the Brenta River during
these stages – which determined during BR2 an expansion
of the total marsh area of 24 km2 according to the available
historical maps (Roner et al., 2017; Tommasini et al., 2019) –
the ratio between organic and inorganic sedimentation, as
well as the inorganic grain size, remained almost constant.
Moreover, an initially stable upper salt-marsh environment is also
documented by the foraminifera assemblage, whereas a middle-
marsh environment was suggested to occur in the early 20th
century (Figure 4). On the contrary, magnetic susceptibility,
XRF, and palynology proxies consistently point at two distinct
time intervals retaining the signatures of the Brenta River
sedimentary input, i.e.,: (i) S1 (AD 1580–1710), and (ii) S2
(AD 1900–1945; Figure 4). Because the sedimentary signatures,
S1 and S2, are younger than BR1 and BR2, respectively, it
emerges that the active delivery of river sediments to the salt-
marsh surface was delayed relative to the river input into
the Lagoon. We suggest that this time lag is due to the
temporary storage of river-fed deposits around the salt marshes
in the Punta Cane area, which significantly expanded when
the Brenta River was reintroduced into the Lagoon. The latter

process is indeed supported by the widespread presence of
halophytes around AD 1500 and AD 1880 (Figure 4). River-
fed deposits were essentially stored around pre-existing salt
marshes (Figure 6) promoting their further expansion, whereas
only a minimum amount of sediment was accumulated over
salt-marsh surfaces. This explains why neither a significant
increase in salt-marsh elevation nor a decrease in organic matter
production were observed.

With respect to the BR2 event, this interpretation is strongly
supported by Lanciani (1872), who documented an average
accumulation of 25 cm of sediments above the intertidal surfaces
when the Brenta River debouched into the Venice Lagoon
between AD 1867 and 1870. When the Brenta River was diverted
outside the Lagoon, the river-fed deposits were re-worked and re-
suspended by wind waves and spread over the marshes by wind
waves during periods of relatively high water levels (e.g., Mariotti
and Fagherazzi, 2013; Figure 6). In the Punta Cane succession,
this sediment pulse over the salt marshes clearly emerges from: (i)
the accumulation of the grayish mud layers, Gm1 and Gm2; (ii)
the dilution of the total pollen content; and (iii) the expansion
of hydrophytes. These processes are also followed by the high
values of the magnetic susceptibility and the detrital elements.
Based on the age model proposed by Roner et al. (2017), the
time lag between the onset of BR1 and S1 is about 120 years,
while between the onset of BR2 and S2 the time lag appears to
be about 60 years (Figure 4). The comparison of historical maps
highlights changes in the position of salt-marsh margins: during
the BR1 event, the marsh border was further away than during
BR2 (D’Alpaos, 2010; Roner et al., 2017) and, consequently, also
the source of the sediments was farther, requiring longer times to
be redistributed on the inner portion of the salt marsh, where the
study succession is currently located.

CONCLUSION

Our field observations confirm previous modeling results
suggesting the existence of a lag between a perturbation in
external forcings, i.e., a high sediment pulse for the study case
at hand, and the response of a salt-marsh system to such
perturbation (Kirwan and Murray, 2008; D’Alpaos et al., 2011).
However, it is worth noting that previous modeling approaches
(e.g., D’Alpaos et al., 2011) were typically based on a zero-
dimensional approximation, i.e., models considered one point
as representative of the whole marsh platform. Our study, on
the contrary, highlights that the spatial dynamics of the salt-
marsh system play a relevant role in the relaxation time required
for the system to reach new equilibrium conditions. Our results
clearly emphasize that investigations of ultra-recent sedimentary
successions cannot preclude a deep understanding of specific
depositional dynamics.
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