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Introduction

This paper enters the framework of the modelling of compressible multiphase flows. Numerous models have been developed in order to depict their dynamics as well as the thermodynamical disequilibrium between the phases [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials[END_REF][START_REF] Barberon | Finite volume simulation of cavitating flows[END_REF][START_REF] Kapila | Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations[END_REF]. several approaches exist, we focus here on the two-phase modelling. On the one hand, the two-fluid models consider that the two phases evolve with their own velocities, leading to a model composed of two Euler-type systems coupled through nonconservative terms involving so-called interfacial quantities and relaxation source terms [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials[END_REF]. In this paper, we concentrate on the one-velocity approach, so that the disequilibrium only concerns thermal and mechanical exchanges as well as mass transfer between the two phases. Such models, referred as homogeneous models [START_REF] Barberon | Finite volume simulation of cavitating flows[END_REF][START_REF] Hurisse | Application of an homogeneous model to simulate the heating of two-phase flows[END_REF][START_REF] Jung | Schémas numériques adaptés aux accélérateurs multicoeurs pour les écoulements bifluides[END_REF][START_REF] Mathis | A thermodynamically consistent model of a liquid-vapor fluid with a gas[END_REF], enjoy many pros (compared to two-fluid models), notably a conservative form and thus well defined schock relations. In the homogeneous approach, one can assume that the phases are at thermodynamical equilibrium, leading to the class of Homogeneous Equilibrium Models. In this case, the system corresponds to one Euler system (for the mixture conserved quantities) with a complex closure pressure law P (τ, e) which has to depict the thermodynamical behaviour of the mixture, for a given state of volume τ and internal energy e [START_REF] Faccanoni | Étude d'un modèle fin de changement de phase liquide-vapeur. Contribution à l'étude de la crise d'ébullition[END_REF]. Such models are often inoperable because of the complexity of the mixture pressure law. A convenient way to get rid of this complexity is to relax the pressure law by making it depend on additional quantities Y , for instance the fractions of volume α, of mass y and energy z of one of the two phases. Then the pressure law is P (τ, e, Y ) and the system is completed with additional equations on these fractions with source terms Γ(τ, e, Y ), which have to depict the relaxation towards the thermodynamical equilibrium Y eq , such that P (τ, e, Y eq ) = P (τ, e). Such models are called Homogeneous Relaxation Models (HRM) and have proved to be relevant alternative to two-fluid models [START_REF] Hurisse | Application of an homogeneous model to simulate the heating of two-phase flows[END_REF]. If there is a consensus on the convective part of HRM models, the derivation of the relaxation source term is still a prominent question. Indeed all the thermodynamical disequilibria are depicted by the dynamical system dY dt (t) = Γ(τ, e, Y ).
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) 1 
Admissible source terms have to fulfill two major constraints:

(1) Second principle of thermodynamics: the source term has to guarantee the growth of the thermodynamical entropy s(τ, e, Y ) of the mixture (and, similarly, the decrease of the mathematical entropy). A sufficient condition in the case of the Homogeneous Relaxation Models is to impose Γ(τ, e, Y ) • ∇ Y s(τ, e, Y ) ≥ 0;

(2) Asymptotic states: for a given state (τ, e) of the fluid, the source terms have to capture the right thermodynamical equilibrium, that is

lim t→∞ Y (t) = Y eq . (3) 
The aim of the present paper is to compare two possible forms of source terms. The first one, recently referred as BGK source term [START_REF] Hurisse | BGK source terms for out-of-equilibrium two-phase flow models[END_REF], corresponds to a linearization around the equilibrium state Y eq . Its apparition goes back to [START_REF] Barberon | Finite volume simulation of cavitating flows[END_REF][START_REF] Helluy | Simulation numérique des écoulements multiphasiques : de la théorie aux applications[END_REF][START_REF] Jaouen | Etude mathématique et numérique de stabilité pour des modeles hydrodynamiques avec transition de phase[END_REF] and is now used in multiphase configurations with complex phasic equation of state (EOS) [START_REF] Hurisse | Numerical simulations of steady and unsteady two-phase flows using a homogeneous model[END_REF][START_REF] Quibel | Simulation of water-vapor two-phase flows with non-condensable gas[END_REF]. The alternative source term corresponds to the gradient form of the mixture entropy, which directly fulfills (2) [START_REF] Mathis | A thermodynamically consistent model of a liquid-vapor fluid with a gas[END_REF].

In Section 2 the thermodynamics of the two-phase mixture is presented, considering that both phases satisfy a Stiffened Gas law and are immiscible. The thermodynamical equilibrium is defined as the result of the maximization of the mixture entropy and its standard properties are recalled. Section 3 and 4 gather properties of these two choices of source terms, when considering a mixture of two Stiffened Gases. The advantage of this particular equation of state is that it allows to obtain relevant results while keeping a reasonable degree of complexity. In both sections, we investigate the eligibility and consistency of the source terms and list their major features: asymptotic state, trajectories, numerical resolution... Some remarks will be given on the influence of relaxation time scales. In the concluding Section 5, a comparison is proposed.

Thermodynamics of an immiscible two-phase mixture

This section concerns the thermodynamical description of the two-phase mixture. We adopt an intensive description, which can be deduced from an extensive one, see [START_REF] Faccanoni | Admissible Equations of State for Immiscible and Miscible Mixtures[END_REF][START_REF] Jung | Schémas numériques adaptés aux accélérateurs multicoeurs pour les écoulements bifluides[END_REF] for a proper derivation. We consider a fluid of intensive volume τ and internal energy e, composed of two phases that we label k = 1, 2. Each phase k is depicted by its phasic intensive volume τ k and internal energy e k . Following standard thermodynamics, the phase k is entirely described by an entropy function, which properties are stated in the following paragraph.

Then while investigating the mixture intensive entropy, we characterize the thermodynamical equilibrium. It results from a maximization of the mixture entropy under the constraints of mass conservation, energy conservation and immiscibility of the two phases. These three constraints are expressed in terms of fractions of mass y k , energy z k and volume α k of the phase k, so that the maximization process provides a characterization of the equilibrium vector Y eq . Note that the miscible case is treated in Appendix A.

Phasic equation of state

We focus here on the intensive description of the phase k: a unit of mass can be described by its specific volume τ k > 0 and its specific energy e k > 0, using an entropy function (τ k , e k ) → s k (τ k , e k ). By adopting the Gibbs formalism, the entropy function complies with the following differential form

T k ds k = de k + P k dτ k , (4) 
where the phasic temperature T k and pressure P k are defined by

1 T k = ∂s k ∂e k τ k , P k = T k ∂s k ∂τ k e k . (5) 
The phasic chemical potential is defined by the relation

µ k = -T k s k + P k τ k + e k . (6) 
The phasic entropy functions are supposed to be

• strictly concave function of (τ k , e k ) on (R + * ) 2 , • of class C 2 , such that ∀(τ k , e k ) ∈ (R + * ) 2 , T k (τ k , e k ) > 0.
These standard assumptions derive from hypothesis usually made on the extensive entropies, see [START_REF] Jung | Schémas numériques adaptés aux accélérateurs multicoeurs pour les écoulements bifluides[END_REF].

In the sequel, we will focus on a particular choice of phasic equation of state, namely the Stiffened Gas equation. This equation has the advantage of being a quite realistic model while keeping a reasonable degree of complexity in the following analysis.

The phasic entropy function is defined by

s k (τ k , e k ) = C k (ln(e k -Q k -Π k τ k ) + (γ k -1) ln(τ k )) + s 0 k , (7) 
where C k > 0 is the heat capacity, -Π k is the minimal pressure, Q k is a reference enthalpy, γ k > 1 is the adiabatic coefficient and s 0 k > 0 is a reference specific entropy. This is an extension of the perfect gas law [START_REF] Métayer | Elaboration des lois d'etat d'un liquide et de sa vapeur pour les modeles d'ecoulements diphasiques[END_REF], which corresponds to the simpler case Π k = Q k = 0.

For further numerical experiments, we focus on parameters given in [START_REF] Quibel | Simulation of water-vapor two-phase flows with non-condensable gas[END_REF] for a liquid (with index 1) and vapor water (with index 2), which have been determined by an optimization process 

Parameters

τ k = α k y k τ, e k = z k y k e, (8) 
where y k ∈ [0, 1] is the mass fraction of the phase k, α k ∈ [0, 1] the volume fraction and z k ∈ [0, 1] the energy fraction. The mass and energy conservation impose that

y 1 + y 2 = 1, z 1 + z 2 = 1, (9) 
while assuming that the two phases are immiscible, the volume constraint is

α 1 + α 2 = 1. ( 10 
)
Note that Appendix A investigates the case of a miscible mixture which corresponds to the constraint α 1 = α 2 = 1.

In order to simplify notations, we note Y = (y, α, z) = (y 1 , α 1 , z 1 ) such that

   y 2 = 1 -y, α 2 = 1 -α, z 2 = 1 -z.
The intensive entropy of the mixture is given by

s(τ, e, Y ) = ys 1 α y τ, z y e + (1 -y)s 2 1 -α 1 -y τ, 1 -z 1 -y e . (11) 
It is defined on a convex subset of (R + ) 2 ×]0; 1[ 3 . Following [START_REF] Jung | Schémas numériques adaptés aux accélérateurs multicoeurs pour les écoulements bifluides[END_REF], in order to capture single phase configuration, namely Y = (0, 0, 0) (pure vapor) or Y = (1, 1, 1) (pure liquid), we extend the entropy function on

C := (R + ) 2 × (]0; 1[ 3 ∪0 R 3 ∪ 1 R 3 ), with notations 0 R 3 = (0, 0, 0) and 1 R 3 = (1, 1, 1), by s(τ, e, Y ) := s 1 (τ, e), if Y = 1 R 3 , s 2 (τ, e), if Y = 0 R 3 . (12) 
The expression [START_REF] Hurisse | Numerical simulations of steady and unsteady two-phase flows using a homogeneous model[END_REF] can be deduced from the extensive form of the mixture entropy, see [START_REF] Faccanoni | Étude d'un modèle fin de changement de phase liquide-vapeur. Contribution à l'étude de la crise d'ébullition[END_REF][START_REF] Faccanoni | Admissible Equations of State for Immiscible and Miscible Mixtures[END_REF][START_REF] Helluy | Simulation numérique des écoulements multiphasiques : de la théorie aux applications[END_REF][START_REF] Jung | Schémas numériques adaptés aux accélérateurs multicoeurs pour les écoulements bifluides[END_REF]. As a consequence, concavity properties result from those of the extensive entropy, namely:

• for a given Y , (τ, e) → s(τ, e, Y ) is concave,

• for a given (τ, e), Y → s(τ, e, Y ) is concave. In the case of a mixture of two Stiffened Gases, the entropy s is

s(τ, e, Y ) = yC 1 ln z y e -Q 1 -Π 1 α y τ + (γ 1 -1) ln α y τ + (1 -y)C 2 ln 1 -z 1 -y e -Q 2 -Π 2 1 -α 1 -y τ + (γ 2 -1) ln 1 -α 1 -y τ .
Definition 2.1. The set of admissible fractions for a given intensive state w = (τ, e)

∈ (R + * ) 2 is C w = {Y ∈]0; 1[ 3 ∪0 R 3 ∪ 1 R 3 , (τ, e, Y ) ∈ C}. ( 13 
) Proposition 2.2. For any couple w = (τ, e) ∈ (R + * ) 2 , C
w is an open unit cube subset bounded by two planes P 1 and P 2 :

C w = (y, α, z) ∈]0; 1[ 3 , z > Q 1 e y + Π 1 τ e α, (1 -z) > Q 2 e (1 -y) + Π 2 τ e (1 -α) ,
where

P 1 = {(y, α, z) ∈ R 3 , z = Q1 e y + Π1τ e α} and P 2 = {(y, α, z) ∈ R 3 , (1 -z) = Q2 e (1 -y) + Π2τ e (1 -α)}. Moreover, 0 R 3 ∈ P 1 and 1 R 3 ∈ P 2 .
Figure 1 represents the set of admissible fractions C w for a given state (τ = 0.01, e = 10 7 ) and Stiffened Gas law s k , k = 1, 2, with parameters (1). The planes P 1 and P 2 are represented in red and blue. Observe that the pure states 0 R 3 and 1 R 3 belong to the planes P 1 and P 2 respectively. In the case of perfect gases, the plane P 1 (resp. P 2 ) coincides with the plane {z = 0} (resp. {z = 1}). 1). The state 0 R 3 belongs to the plane P 1 (in red) and the state 1 R 3 to the plane P 2 (in blue), see Proposition 2.2. In this particular case, one remarks that E ∈ C w while B, C, G, I, J ∈ C w .

Thermodynamical equilibrium

The second law of thermodynamics states that for any thermodynamical evolution, the entropy of the mixture cannot decrease and that the equilibrium corresponds to the maximum of the entropy. Definition 2.3. For a given w = (τ, e) ∈ (R + * ) 2 , the equilibrium fraction Y eq ∈ C w maximises the mixture entropy Y → s(τ, e, Y ) on C w . In other words

Y eq (w) = arg max Y ∈Cw s(τ, e, Y ). ( 14 
)
The study of this optimization procedure has been the topic of numerous studies, notably for immiscible mixtures of Stiffened Gas law [START_REF] Faccanoni | Étude d'un modèle fin de changement de phase liquide-vapeur. Contribution à l'étude de la crise d'ébullition[END_REF][START_REF] Hurisse | Application of an homogeneous model to simulate the heating of two-phase flows[END_REF][START_REF] Hurisse | Numerical simulations of steady and unsteady two-phase flows using a homogeneous model[END_REF][START_REF] Quibel | Simulation of water-vapor two-phase flows with non-condensable gas[END_REF].

When the maximum is reached in the interior of the domain C w , then the equilibrium corresponds to a saturation state [START_REF] Helluy | Simulation numérique des écoulements multiphasiques : de la théorie aux applications[END_REF][START_REF] Jaouen | Etude mathématique et numérique de stabilité pour des modeles hydrodynamiques avec transition de phase[END_REF].

Proposition 2.4. When the maximum of the entropy is reached in the interior of the set of constraints C w , it is characterized by the equality of phasic pressures, temperatures and chemical potentials:

     P 1 (τ 1 , e 1 ) = P 2 (τ 2 , e 2 ), T 1 (τ 1 , e 1 ) = T 2 (τ 2 , e 2 ), µ 1 (τ 1 , e 1 ) = µ 2 (τ 2 , e 2 ). (15) 
Let us point out major features.

• When the maximum is reached in the interior of C w , it is not sure that Y eq is well defined. Indeed, the entropy function is only concave (and not strictly concave) on C w , so that Y eq is not necessarily uniquely defined, see Remark 2.5.

• The continuous extension of the mixture entropy guarantees that Y eq can take the values 0 R 3 or 1 R 3 , that correspond to the single phase equilibria. • The difficulty of the computation of Y eq directly depends of the chosen equations of state. For a mixture of two Stiffened Gases, it consists of a algebraic problem, given in [START_REF] Hurisse | Application of an homogeneous model to simulate the heating of two-phase flows[END_REF], but for more complex EOS such as Noble-Able-Stiffened Gases (NASG) or NASG-Chemkin laws [START_REF] Quibel | Simulation of water-vapor two-phase flows with non-condensable gas[END_REF], non explicit changes of variables lead to tedious computations, which become even worse when considering additional phases, see [START_REF] Hurisse | A homogeneous model for compressible three-phase flows involving heat and mass transfer[END_REF][START_REF] Quibel | Simulation of water-vapor two-phase flows with non-condensable gas[END_REF]. • In [START_REF] Helluy | Relaxation models of phase transition flows[END_REF], the authors affirm that the equilibrium is a single phase state in most cases. It would be interesting to verify this on a statistical study by choosing a relevant domain for (τ, e).

Remark 2.5. Attempts of proof concerning this strict concavity of the mixture entropy have been provided for instance in [START_REF] Hurisse | A homogeneous model for compressible three-phase flows involving heat and mass transfer[END_REF]. They rely on the study of the concavity of the extensive mixture.

The idea is to show, for a given extensive state W = (M, V, E) (with mass M , volume V and energy E), that the extensive mixture entropy S is a strictly concave function when restricted on the set H(M ) of the states whose total mass is equal to M . If this property is true, it follows the strict concavity of the intensive entropy.

In order to prove the strict concavity of S on H(M ), the idea is to show that the degeneracy manifold of S, ker ∇ 2 W S(W ) coincide with Vect(W ), that is to say:

∀W, ker ∇ 2 W S(W ) = Vect(W ). (16) 
If so, then the restriction of S on H(M ) is strictly concave since H(M ) ∩ ker ∇ 2 W S(W ) = {W }. However, only the inclusion Vect(W ) ⊂ ker ∇ 2 W S(W ) is shown [START_REF] Jung | Schémas numériques adaptés aux accélérateurs multicoeurs pour les écoulements bifluides[END_REF]. One remarks that ker ∇ 2 W S(W ) is a vectorial subset in the 6-dimensional space in the case of a two-phase flow. The second inclusion seems difficult to show.

Since the strict concavity property of the mixture entropy s is crucial to model a physically relevant system, a brief numerical study has been done on the sign of ∇ Y s(τ, e, Y ). No fraction such as ∇ Y s(τ, e, Y ) = 0 have been found for the case presented on Figure 1, for 10 9 values tested in ]0; 1[ 3 .

BGK-like source term

This first type of source terms corresponds to a BGK linearized form for two-phase mixture. It has been introduced in the homogeneous literature, first in the two-phase case [START_REF] Barberon | Finite volume simulation of cavitating flows[END_REF][START_REF] Helluy | Simulation numérique des écoulements multiphasiques : de la théorie aux applications[END_REF][START_REF] Hurisse | Application of an homogeneous model to simulate the heating of two-phase flows[END_REF][START_REF] Jaouen | Etude mathématique et numérique de stabilité pour des modeles hydrodynamiques avec transition de phase[END_REF] and more recently in the multiphase context [START_REF] Hurisse | A homogeneous model for compressible three-phase flows involving heat and mass transfer[END_REF][START_REF] Quibel | Simulation of water-vapor two-phase flows with non-condensable gas[END_REF].

For a given state (τ, e, Y ) ∈ C, supposing Y → s(τ, e, Y ) is strictly concave, there exists a unique equilibrium fraction state Y eq which maximises the entropy s, where Y eq only depends of (τ, e), see Definition 2.3.

Definition 3.1. For any state (τ, e, Y ) ∈ C, we define Γ 1 (τ, e, Y ) = 1 λ (Y eq (τ, e) -Y ), (17) 
where λ = (λ 1 , λ 2 , λ 3 ) is a time scales vector and 1 λ Y means the term by term product.

This definition involves time scales λ which generally depend on time and are distinct. They correspond respectively to the mass transfer, the mechanical and thermal relaxation times.

Eligibility and Consistency

. Let λ ∈ R * + be such that λ 1 = λ 2 = λ 3 = λ.
For any given state (τ, e) ∈ (R + * ) 2 , assume that the entropy function (τ, e, Y ) → s(τ, e, Y ) is strictly concave with respect to Y . Then, the source terms Γ 1 complies with the entropy growth criterion (2). Moreover, the stationary states of the dynamical system (1)-( 17) coincide with the possible thermodynamical equilibria of Definition 2.3.

Proof. It is obvious that the stationary states of the source term Γ 1 are vector Y eq of Definition 2.3. It remains to check the entropy growth. Let (τ, e, Y ) ∈ C be a given state. It holds

Γ 1 (Y ) • ∇ Y s(τ, e, Y ) = ( 1 λ (Y eq -Y )) • ∇ Y s(τ, e, Y ) = ( 1 λ (Y eq -Y )) • ∇ Y s(τ, e, Y ) = 1 λ (Y eq -Y ) • ∇ Y s(τ, e, Y ) ≥ 1 λ (s(τ, e, Y eq ) -s(τ, e, Y )) ≥ 0,
thanks to the concavity of Y → s(τ, e, Y ).

Note that invoking the concavity argument requires to consider a unique relaxation parameter λ. Recently a modification of BGK-like source terms which allows distinct time scales has been introduced in [START_REF] Hurisse | BGK source terms for out-of-equilibrium two-phase flow models[END_REF].

Proposition 3.2. Let (τ, e, Y 0 ) ∈ C be an initial state. The Cauchy problem dY dt (t) = Γ 1 (τ, e, Y (t)), t > 0 Y (0) = Y 0 , (18) 
admits a global solution Y given by

∀t ≥ 0, Y (t) = e -Λ(t) (e Λ(0) Y (0) + Y eq t 0 λ(s)e Λ(s) ds), ( 19 
)
where Λ is a primitive of 1/λ. In the case of a constant in time relaxation parameter λ, it holds

∀t ≥ 0, Y (t) = e -t/λ Y (0) + (1 -e -t/λ )Y eq . (20) 
This last expression can be interpreted as a barycenter of the initial state Y (0) and the equilibrium state Y eq . Trajectories of the solutions are exponential towards equilibrium fractions. Figure 2 illustrates this behaviour for a mixture of two Stiffened Gases with parameters (1). One observes the evolution in time of the fractions Y (t) for an initial state Y (0) = (0.5, 0.5, 0.5), with specific volume τ = 5.5.10 -3 and internal energy e = 10 8 . The time scale is constant in time and set to λ = 1. The equilibrium fractions, represented by the dotted lines, are reached at time t = 6s. Another important point is that the time when the asymptotic state is reached does not depend on the initial state of the fluid.

One major advantage of the BGK-like source term is that it can be explicitly integrated. However it requires to determine the equilibrium state Y eq for every considered state (τ, e, Y ) ∈ C, that is to say solve the maximization problem [START_REF] Jaouen | Etude mathématique et numérique de stabilité pour des modeles hydrodynamiques avec transition de phase[END_REF]. For two-phase mixture, and especially Stiffened Gas law, the maximization can be done explicitly [START_REF] Hurisse | Application of an homogeneous model to simulate the heating of two-phase flows[END_REF]. But when more complex EoS are considered and the number of phases increases, the maximization has to be realized with an appropriate optimization algorithm: one is proposed in the case of three Stiffened Gases in [START_REF] Bussac | Simulation of an Homogeneous Relaxation Model for a three-phase mixture with miscible phases[END_REF], another one uses a Broyden method for a mixture of two stiffened gases plus a NASG-Chemkin law in [START_REF] Quibel | Simulation of water-vapor two-phase flows with non-condensable gas[END_REF]. When coupled with the fluid dynamics, for instance through a time splitting approach, this maximization procedure has to be performed in each control volume and at each time step, leading to a complex resolution and higher CPU costs, see [START_REF] Bussac | Simulation of an Homogeneous Relaxation Model for a three-phase mixture with miscible phases[END_REF]. 1). The equilibrium state is represented by the dotted lines asymptotes.

Entropy gradient source term

The second type of source terms corresponds to the entropy gradient such that it directly satisfies the eligibility condition (2). Definition 4.1. For all (τ, e, Y ) ∈ C, the source term Γ 2 reads

Γ 2 (τ, e, Y ) = 1 λ Y (1 -Y )∇ Y s(τ, e, Y ), (21) 
with λ = (λ 1 , λ 2 , λ 3 ) relaxation parameters. Using the mixture entropy definition [START_REF] Hurisse | Numerical simulations of steady and unsteady two-phase flows using a homogeneous model[END_REF] and the phasic potentials ( 5)-( 6), Γ 2 rewrites

Γ 2 =    y(1-y) λ1 µ2 T2 -µ1 T1 α(1-α) λ2 τ P1 T1 -P2 T2 z(1-z) λ3 e 1 T1 -1 T2    .
In the case of a mixture of two Stiffened Gases, the definition domain of Γ 2 is C w , represented in Figure 1. The source term Γ 2 corresponds to the entropy gradient times Y (1 -Y ) (understood as term by term product). This modification is mandatory for numerical purposes. Indeed the set of definition of the mixture entropy

Y → s(Y ) is C w which is included in ]0; 1[ 3 . Thus a solution Y of the dynamical system Y (t) = ∇ Y s(τ, e, Y ) is such that Y (t) ∈]0; 1[ 3 ,
for all t > 0 (unless the dynamical system is not defined). However in numerical applications, this maximum principle is not guaranteed, even for smaller time steps, as illustrated in Figure 3-left. It corresponds to a mixture of two stiffened gases with parameters (1) depicted by the dynamical system Y (t) = ∇ Y s(τ, e, Y ) with initial state Y (0) = (0.5, 0.5, 0.5), τ = 8.10 -4 , e = 10 8 and λ = 1. One observes that the volume fraction becomes nonpositive at time t < 0.0025s. The correction term Y (1 -Y ) ensures the maximum principle as illustrated in Figure 3-right. Of course, this correction term modifies the trajectories, in particular the single phase equilibrium state seems to be reached at a longer time in the Figure 3 example. Every approximated solutions of the dynamical system (21) have been obtained with Adams-Bashforth plus backward differenciation formula types algorithms, using Python Scipy library. Remark 4.2. The source term Γ 2 involves the difference of phasic pressures which acts on the volume fraction equation. Such an expression is rather classical. It can be found in the two-fluid literature, for instance in Baer-Nunziato like model [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials[END_REF] and the derivation of such mechanical transfer term is now well understood [START_REF] Gavrilyuk | The structure of pressure relaxation terms: the one-velocity case[END_REF].

Eligibility and Consistency. Assume that there exists λ 0 ∈ R * + such that ∀t ≥ 0, ∀k = 1, 2, 3, λ k (t) < λ 0 . For any given state (τ, e) ∈ (R + * ) 2 , the source term Γ 2 complies with the entropy growth criterion (2).

Proof. Let us define

ζ = inf k 1 λ k Y k (1 -Y k ) . It holds Γ 2 (Y ) • ∇ Y s(τ, e, Y ) = 1 λ Y (1 -Y )∇ Y s • ∇ Y s = 3 k=1 1 λ k Y k (1 -Y k )(∂ Y k s) 2 ≥ ζ 3 k=1 (∂ Y k s) 2 ≥ ζ||∇ Y s|| 2 2 ≥ 0,
which concludes the proof.

Unlike the previous BGK-like source terms, solving exactly the system is out of reach. However existence en uniqueness of local solution to Cauchy problem is guaranteed by the Cauchy-Lipschitz theorem. The following purpose is to ensure that the stationary states of the dynamical system (1)-( 21), namely vector Ȳ such that Γ 2 ( Ȳ ) = 0, correspond to physically relevant thermodynamical equilibria of the two-phase mixture, in the sense of [START_REF] Bussac | Simulation of an Homogeneous Relaxation Model for a three-phase mixture with miscible phases[END_REF].

For a given state (τ, e)

∈ (R + * ) 2 , if Ȳ ∈]0; 1[ 3 , then Γ 2 ( Ȳ ) = 0 implies that ∇ Y s(τ, e, Ȳ ) = 0.
Hence Ȳ is such that [START_REF] Jung | Schémas numériques adaptés aux accélérateurs multicoeurs pour les écoulements bifluides[END_REF] holds and the thermodynamical equilibrium is a stationary state.

On the other hand, since Γ 2 is not defined on the border of the cube [0, 1] 3 , one cannot determine if single phase states Ȳ = 0 R 3 or Ȳ = 1 R 3 are stationary states of the dynamical system and if these states are attractive (using standard arguments like the jacobian linearization). In a similar way, (1, 0, 0) could be a stationary state of the dynamical system, even if it has no physical sense. The following result states that trajectories Y cannot reach the border of the cube [0, 1] 3 in the case of a mixture of two Stiffened Gases with parameters (1). Proof. The proof relies on vector field argument. We study the limits of Γ 2 in the neighbourhood of the different considered sets, by supposing that it is defined in these areas, that depends on the thermodynamical parameters.

• ∀(α, z) ∈]0; 1[ 2 , lim y→0 Γ 2 (Y ) = 0, k 1 , k 2 with k 1 ∈ R and k 2 ∈ R - * .
Since k 2 = 0, there is no possible equilibrium around the face {y = 0}. This case is illustrated on Figure 4 for several initial fractions Y (0) ∈]0, 1[ 3 (blue dots) with trajectories converging towards an asymptotic state (red triangle) corresponding to a saturation state. Observe that, since k 2 < 0, the curves are decreasing functions of α in the neighbourhood of the face {y = 0}.

• ∀(α, z) ∈]0; 1[ 2 , lim y→1 Γ 2 (Y ) = 0, k 1 , k 2 , k 1 ∈ R, k 2 ∈ R * + , • ∀(y, z) ∈]0; 1[ 2 , lim α→0 Γ 2 (Y ) = -∞, k 1 , k 2 , k 1 ∈ R * + , k 2 ∈ R, • ∀(y, z) ∈]0; 1[ 2 , lim α→1 Γ 2 (Y ) = +∞, k 1 , k 2 , k 1 ∈ R * -, k 2 ∈ R.
Concerning the planes {z = 0}, {z = 1}, there could exist couples (y, α) such that the following k 1 , k 2 are both null. Indeed, we have

∀(y, α) ∈]0; 1[ 2 , lim z→0,1 Γ 2 (Y ) = k 1 , k 2 , 0 , (k 1 , k 2 ) ∈ R 2 ,
and so rigorously, we cannot conclude. Let us introduce the notation lim f = * which means that f does not admit a limit or it cannot be determined. As edges are concerned, it holds: The initial data Y (0) ∈]0, 1[ 3 is represented by a blue dot and the corresponding asymptotic state is represented in red.

• ∀z ∈]0; 1[, lim y,α→0 Γ 2 (Y ) = * , 0, k 1 , k 1 ∈ R * -, • ∀z ∈]0; 1[, lim y,α→1 Γ 2 (Y ) = * , 0, k 1 , k 1 ∈ R * + , • ∀y ∈]0; 1[, lim α,z→0 Γ 2 (Y ) = -∞, k 1 , 0 , k 1 ∈ R * + , • ∀y ∈]0; 1[, lim α,z→1 Γ 2 (Y ) = +∞, k 1 , 0 , k 1 ∈ R * -, • ∀z ∈]0; 1[, lim y→0, α→1 Γ 2 (Y ) = * , k 1 , k 2 , (k 1 , k 2 ) ∈ (R * -) 2 , • ∀z ∈]0; 1[, lim y→1, α→0 Γ 2 (Y ) = * , k 1 , k 2 , (k 1 , k 2 ) ∈ (R * + ) 2 , • ∀y ∈]0; 1[, lim α→0, z→1 Γ 2 (Y ) = -∞, k 1 , k 2 , (k 1 , k 2 ) ∈ R 2 ,
• ∀y ∈]0; 1[, lim α→1, z→0 Γ 2 (Y ) = +∞, k 1 , k 2 , (k 1 , k 2 ) ∈ R 2 .
Four edges remain problematic because of undetermined limits. Finally, we can exclude four among the six corners:

• lim y→1, α,z→0 Γ 2 (Y ) = * , k 1 , 0 , k 1 ∈ R * + , • lim y→0, α,z→1 Γ 2 (Y ) = * , k 1 , 0 , k 1 ∈ R * -, • lim α→1, y,z→0 Γ 2 (Y ) = * , k 1 , 0 , k 1 ∈ R * -, • lim α→0, y,z→1 Γ 2 (Y ) = * , k 1 , 0 , k 1 ∈ R * + , .
For the two remaining corners (1, 1, 0) and (0, 0, 1), two components of Γ 2 do not admit a limit or the limit is undetermined.

We emphasize that these arguments do not apply for the two corners (1, 1, 0) and (0, 0, 1) and the two faces {z = 0}and {z = 1}. Some improvements may be done while considering specific parameters Q k and π k . For instance, the realistic parameters (1) exclude some of these last sets as one can see on Figure 1, since Γ 2 is not defined on these areas. In these cases, we could investigate what happens on the planes, where the same phenomena can occur. The same kind of arguments hold since being in the neighbourhood of a plane induce limits towards ±∞ for some components of Γ 2 .

When considering a perfect gas mixture, the proof holds true and the corners (1, 1, 0) and (0, 0, 1) and the two faces {z = 0} and {z = 1} are not reachable as well.

In practical simulations, we did not find any case of trajectories with asymptotic states belonging to these sets. Some trajectories are plotted in Figure 5 in the case of an immiscible mixture of two Stiffened Gases with parameters (1), using standard Python semi-implicit algorithm that are sufficient for a two Stiffened Gas mixture. All the curves correspond to a solution of the dynamical system (1)-( 21) with the initial data Y (0) = (0.5, 0.5, 0.5) with λ = 1. The internal energy is e = 10 8 and different specific volumes are considered. The green curve correspond to τ = 1.10 -3 and asymptotically converges towards the state 0 R 3 , that is to the presence of the phase 2 only. The blue curve corresponds to the case τ = 1.10 -2 and converges towards the single phase asymptotic state 1 R 3 (only the phase 1 is present). The red curve is obtained with τ = 5.5.10 -3 and corresponds to a saturation state Y eq ∈]0, 1[ 3 satisfying (2.4). 

Concluding comparison of the source terms

The BGK-like source terms provide very simple solutions, as soon as the equilibrium state Y eq is known for a given state (τ, e) ∈ (R + * ) 2 . The trajectories are of exponential type. In particular the time to return to equilibrium is always the same, no matter is the initial data. As the source term Γ 2 is concerned, we cannot give an explicit form of the solutions. In the general case, its trajectories are far more complex, notably non monotone, and the return to equilibrium directly depends on the initial state.

Figure 7 presents trajectories for a two stiffened gas mixture with parameters (1) . They are obtained, for both source terms, for a state τ = 5.5.10 -3 , e = 10 8 with a relaxation time λ = 1. The same initial state Y (0) = (0.5, 0.5, 0.5) is considered. One observes that the trajectories for the BGK-like system have the expected exponential behaviour. On the contrary, trajectories of the entropy gradient source term are non monotone. An interesting point is the time when the asymptotic state is reached: the source term Γ 2 achieves the thermodynamical equilibrium state faster than the BGK-like source term.

To finish a comparison in terms of numerical complexity is mandatory. The BGK-like source term requires to compute the equilibrium fractions Y eq for any state (τ, e). When complex EoS are used, or if we consider more phases, optimization algorithm have to be implemented, see [START_REF] Bussac | Simulation of an Homogeneous Relaxation Model for a three-phase mixture with miscible phases[END_REF][START_REF] Hurisse | Numerical simulations of steady and unsteady two-phase flows using a homogeneous model[END_REF][START_REF] Quibel | Simulation of water-vapor two-phase flows with non-condensable gas[END_REF]. When coupled with the fluid dynamics, such algorithms are very CPU consuming since they are called in every cell at every time step.

Such complexity could be avoided using the source term Γ 2 . Of course, when considering complex phasic EoS or a larger number of phases, such source term can be stiff but semi-implicit or high-order explicit time integration method can be used and provide expected asymptotic states.

Finally, the entropy gradient source term allows to easily consider with different relaxation times for the mechanical, thermal exchange or the mass transfer. This is not the case for the BGK-like source term which requires the maximization of the mixture entropy with a common relaxation time, even if some recent improvements have been done on this topic [START_REF] Hurisse | BGK source terms for out-of-equilibrium two-phase flow models[END_REF]. function (ρ k , k ) → sk (ρ k , k ). Note that sk = ρ k s k . We have the following relations, see [START_REF] Faccanoni | Admissible Equations of State for Immiscible and Miscible Mixtures[END_REF] for a more complete description

T k ds k = d k -µ k dρ k , (22) 
with the definitions

1 T k = ∂s k ∂ k ρ k , µ k = -T k ∂s k ∂ρ k k , (23) 
and the pressure verifies

P k = T k sk + ρ k µ k -k . (24) 
Similarly to the specific case, we suppose that the phasic volumic entropies are strictly concave functions of their variables.

In the miscible case, both phases share the same volume, which gives equal volume fractions α 1 = α 2 = 1 Consequently, we only have two constraints, namely mass and energy conservation

y 1 + y 2 = 1 z 1 + z 2 = 1 . ( 25 
)
Hence the description in the miscible case requires one variable less than in the immiscible one. A unit of volume is described by w = (ρ, ), where ρ is the volumic mass and is the volumic energy. We note in the following Ỹ = (y, z) = (y 1 , z 1 ) the fraction of mass and energy of the phase 1. Finally, the volumic mixture entropy s is given by s

(ρ, , Ỹ ) = s1 (yρ, z ) + s2 ((1 -y)ρ, (1 -z) ), (26) 
whose definition domain C is a convex subset of (R + )

2 × (]0; 1[ 2 ∪0 R 2 ∪ 1 R 2 )
, see [START_REF] Faccanoni | Admissible Equations of State for Immiscible and Miscible Mixtures[END_REF] for a derivation from the extensive setting. Since s is the sum and a composition of strictly concave and affine functions, we have the following results

• for a given Ỹ , (τ, e) → s(τ, e, Ỹ ) is strictly concave, • for a given (τ, e), Ỹ → s(τ, e, Ỹ ) is strictly concave.

When considering a miscible mixture of two Stiffened Gases, the definition domain C w of Ỹ → s(ρ, , Ỹ ) is a subset of ]0; 1[ 2 bounded by two lines

C w = {(y, z) ∈]0; 1[ 2 , z > Q 1 ρ y + Π 1 , z < - Q 2 ρ y - Π 2 + 1}. ( 27 
)
Following the Section 2.3, we can characterize the thermodynamical equilibrium of a miscible two-phase mixture. We emphasize two main differences: firstly, the entropy maximization is done in the two-dimensional space, and secondly, the equilibrium fractions are well defined thanks to the strict concavity of Ỹ → s(τ, e, Ỹ ).

Definition A.1. For a given w = (ρ, ) ∈ (R + * ) 2 , we define Ỹeq ∈ C w the equilibrium fraction which maximises the mixture entropy Ỹ → s(τ, e, Ỹ ) on C w:

Ỹeq ( w) = arg max Ỹ ∈ Cw s(ρ, , Ỹ ), (28) 
where

C w = { Ỹ ∈]0; 1[ 2 ∪0 R 2 ∪ 1 R 2 , (ρ, , Ỹ ) ∈ C}.
The properties of Section 2.3 can be stated for C w and Ỹeq , the main difference is the two-dimensional space framework.

When the maximum is reached in the interior of the domain C w , it is characterized by the equality of phasic temperatures and chemical potential, plus the Dalton's law on phasic pressures [START_REF] Faccanoni | Admissible Equations of State for Immiscible and Miscible Mixtures[END_REF][START_REF] Helluy | Pressure laws and fast Legendre transform[END_REF] :

    
T 1 (ρ 1 , 1 ) = T 2 (ρ 2 , 2 ) µ 1 (ρ 1 , 1 ) = µ 2 (ρ 2 , 2 ) P (ρ, , Ỹ ) = P 1 (ρ 1 , 1 ) + P 2 (ρ 2 , 2 ) .

(29)

We now define the miscible counterparts of the dynamical systems Γ 1 and Γ 2 .

For the BGK-like source terms, the main difference with the immiscible case is that the equilibrium state Y eq is always well defined since the mixture entropy is striclty concave. The properties of the system are the same: existence, trajectory behaviour.

The entropy gradient source terms can be defined in the same way that in the immiscible case, but once again in the two-dimensional space. It reads 

Γ2 (ρ, , Ỹ ) = 1 λ Ỹ (1 -Ỹ )∇ Ỹ s(ρ, , Ỹ ), (30) 

Figure 1 .

 1 Figure 1. Set of admissible fractions C w for τ = 0.01 and e = 10 7 and Stiffened Gas parameters (1). The state 0 R 3 belongs to the plane P 1 (in red) and the state 1 R 3 to the plane P 2 (in blue), see Proposition 2.2. In this particular case, one remarks that E ∈ C w while B, C, G, I, J ∈ C w .

Figure 2 .

 2 Figure 2. Trajectories of the system Γ 1 for the data Y (0) = (0.5, 0.5, 0.5), τ = 5.5.10 -3 , e = 10 8 and λ = 1. EOS parameters are given in Table (1). The equilibrium state is represented by the dotted lines asymptotes.

( a )

 a Trajectories for Γ2 = ∇Y s. (b) Trajectories for Γ2 = Y (1 -Y )∇Y s.

Figure 3 .

 3 Figure 3. Comparison of the trajectories of the solutions of Ẏ = ∇ Y s(τ, e, Y ) (left) and Ẏ = Y (1 -Y )∇ Y s(τ, e, Y ) (right) for a mixture of Stiffened Gases with parameters (1). The initial data is Y (0) = (0.5, 0.5, 0.5), with τ = 8.10 -4 , e = 10 8 and λ = 1.

Proposition 4 . 3 .

 43 Consider (τ, e) ∈ (R + * ) 2 . For all Y 0 ∈ (R + * ) 3 such that (τ, e, Y 0 ) ∈ C, there exists an unique maximal solution (I, Y ) ∈ R + ×]0; 1[ 3 , with Y : I →]0; 1[ 3 , of the system (1)-(21).

Proposition 4 . 4 (

 44 Exclusion of the border). Let (τ, e) ∈ (R + * ) 2 be a given state. For any initial data Y (0) ∈ ]0, 1[ 3 , a solution Y (t) of the system (1)-(21) cannot converge towards an asymptotic state belonging to the following sets:• faces: {y = 0}, {y = 1}, {α = 0}, {α = 1},• edges: {y = 0, α = 0}, {y = 1, α = 1}, {y = 0, α = 1}, {y = 1, α = 0}, {y = 0, z = 1}, {y = 1, z = 0}, {α = 0, z = 1}, {α = 1, z = 0}, • corners: (1; 0; 0), (0; 1; 0), (1; 0; 1), (0; 1; 1).

Figure 4 .

 4 Figure 4. Trajectories of the system (1)-(21) with different initial fractions Y (0) = (1.10 -10 , α, z) where (α, z) is randomly chosen in ]0; 1[ 2 . Initial states are represented by blue dots. Thermodynamical parameters are given in Table (1), τ = 5.10 -2 , e = 10 8 and λ = 1. The initial data Y (0) ∈]0, 1[ 3 is represented by a blue dot and the corresponding asymptotic state is represented in red.

Figure 5 .

 5 Figure 5. Examples of trajectories of the dynamical system Γ 2 with initial data Y (0) = (0.5, 0.5, 0.5) and e = 10 8 . The green curve is obtained with τ = 1.10 -3 and converges towards the single phase state 0 R 3 . The blue curve corresponds to τ = 1.10 -2 and converges towards the single phase state 1 R 3 . The red curve with τ = 5.5.10 -3 converges to a saturation state in the interior of the cube.

Figure 6

 6 Figure 6 illustrates possible asymptotic states of the dynamical system (1)-(21). For a given internal energy e = 10 8 , each trajectory corresponds to a given initial state (τ, e, Y (0)), where Y (0) and τ are determined randomly respectively in ]0, 1[ 3 and in ]5.10 -4 ; 1.10 -2 [. The initial fraction Y (0) is represented by a blue dot and the asymptotic states with final time t = 0.1 are plotted in red. One observes that the asymptotic states are distributed in the interior of the cube and the corners 0 R 3 and 1 R 3 appear to be accumulation points.

Figure 6 .

 6 Figure 6. Trajectories of the dynamical system Γ 2 with e = 10 8 and λ = 1. Each trajectory correspond to a randomly chosen pair (Y (0), τ ) ∈]0, 1[ 3 ×]5.10 -4 ; 1.10 -2 [ where the initial data Y (0) is represented by a blue dot. The corresponding asymptotic states are represented in red.

Figure 7 .

 7 Figure 7. Comparison of the trajectories of models Γ 1 and Γ 2 for the same initial data Y (0) = (0.5, 0.5, 0.5), τ = 5.5.10 -3 , e = 10 8 , λ = 1. While Γ 1 's trajectories are increasing exponential curves, Γ 2 's are not monotone. For the source term Γ 2 , the asymptotic state is reached at time t = 0.05s, and approximatively at time t = 3.5s for the source term Γ 1 . Asymptotic states are the same.

with λ = (λ 1 , λ 2 ) 1 T1 - 1 T2.

 1211 relaxation parameters. Using the mixture entropy definition (26) and the phasic potentials (Let us give similar properties of Proposition 4.4. It consists of studying the trajectories around the border of the square ]0; 1[ 2 . As in the immiscible case, the proof relies on vector field argument. The asymptotic behaviour of Γ2 is investigated in the neighbourhood of the edges of the square. Proposition A.2. Let (ρ, ) ∈ (R + * ) 2 be a given state. For any initial data Y (0) ∈]0; 1[ 2 , a solution Y of the system (1)-(30) cannot converge towards an asymptotic state belonging to the edges {y = 0} or {y = 1}. One remarks that this property can be stated for both edges {z = 0} and {z = 1} by choosing thermodynamical parameters and using the constraints (27). Some trajectories are represented on Figure 8 in the (y, z) plane. They correspond to data (Y (0), ρ) ∈ ]0, 1[ 2 ×]10 1 ; 10 3 [ chosen randomly, while = 10 13 . The initial states are represented by blue dots. The red triangles are asymptotic states and correspond to saturation states or single phase equilibria (top-right triangles).

Figure 8 .

 8 Figure 8. Trajectories of the dynamical system Γ2 with = 10 13 for a miscible mixture. Each trajectory correspond to a randomly chosen pair (Y (0), ρ) ∈]0, 1[ 2 ×]10 1 ; 10 3 [ where the initial data Y (0) is represented by a blue dot. The corresponding asymptotic states are represented in red. Thermodynamical parameters are given in Table (1) and λ = 1.

Table 1 .

 1 Stiffened Gas parameters 2.2. Mixture entropy function Let w = (τ, e) be the state vector of the two-phase fluid. It is composed of two phases of specific volume τ k and e k , such that

		Phase 1	Phase 2
	γ k	1.39864082368510	1.15442237458290
	C k	3.19641035947920×10 3	2.91668522329726×10 3
	Q k	-1.24606074764184 × 10 6 1.25942536895827 × 10 6
	Π k	4.79690712132593 × 10 8 -3.24993579473092 × 10 2
	s 0 k	-34597.52986978335	-33792.18353359583
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A. Miscible mixture

The volumic description is more adapted to a miscible mixture [START_REF] Helluy | Pressure laws and fast Legendre transform[END_REF]. A unit of volume of the phase k = 1, 2 is fully described by its volumic mass ρ k = 1/τ k > 0 and its volumic energy k = ρ k e k , using a volumic entropy