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Measuring mental workload in assistive 
wearable devices: a review
Charlotte Marchand1, Jozina B. De Graaf2 and Nathanaël Jarrassé1*  

Abstract 

As wearable assistive devices, such as prostheses and exoskeletons, become increasingly sophisticated and effective, 
the mental workload associated with their use remains high and becomes a major challenge to their ecological use 
and long-term adoption. Numerous methods of measuring mental workload co-exist, making analysis of this research 
topic difficult. The aim of this review is to examine how mental workload resulting from the use of wearable assistive 
devices has been measured, in order to gain insight into the specific possibilities and limitations of this field. Literature 
searches were conducted in the main scientific databases and 60 articles measuring the mental workload induced 
by the use of a wearable assistive device were included in this study. Three main families of methods were identified, 
the most common being ’dual task’ and ’subjective assessment’ methods, followed by those based on ’physiologi-
cal measures’, which included a wide variety of methods. The variability of the measurements was particularly high, 
making comparison difficult. There is as yet no evidence that any particular method of measuring mental workload 
is more appropriate to the field of wearable assistive devices. Each method has intrinsic limitations such as subjectiv-
ity, imprecision, robustness or complexity of implementation or interpretation. A promising metric seems to be the 
measurement of brain activity, as it is the only method that is directly related to mental workload. Finally, regardless of 
the measurement method chosen, special attention should be paid to the measurement of mental workload in the 
context of wearable assistive devices. In particular, certain practical considerations, such as ecological situations and 
environments or the level of expertise of the participants tested, may be essential to ensure the validity of the mental 
workload assessed.
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Introduction
Wearable assistive devices aim to improve the mobil-
ity of their users, either by preserving or enhancing the 
motor performance of able-bodied people or by restor-
ing the motor abilities of disabled people. Advances in 
mechatronics and robotics over the past few years have 
allowed for a significant acceleration in the develop-
ment of increasingly sophisticated and efficient assis-
tive devices [1]. However, a major challenge remains and 
tends to worsen due to the increasing complexity of these 

tools: the mental workload associated with using these 
devices [2, 3]. Mental workload was already identified as 
a critical criterion for acceptance of assistive devices in 
the 1970s and the rise of myoelectric prostheses [4], but 
it is still possible that it will increase with the growing 
complexity of the devices.

Although quite intuitive and widely used, the concept 
of mental workload comes with a plurality of definitions 
[5], which depend mainly on the context of the study. 
Globally, it can be described as “how hard the brain is 
working to meet task demands” [6]. In a human-com-
puter interaction context such as that of wearable assis-
tive devices, mental workload can be considered as the 
“demand placed on the user by the system” [7]. However, 
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the mental workload depends on many parameters, nota-
bly on the intrinsic difficulty of the task performed but 
also on the subjective experience of the user. Thus, for 
the same task, two people will not have the same men-
tal workload, depending on their initial capacities, their 
experience, their reaction to time pressure or fatigue, etc.

Depending on the scenario and the user’s cognitive 
abilities, the mental workload induced by the use of an 
assistive device may be such that the user may be unable 
to perform a parallel task or fully exploit the capabilities 
of the device, which could eventually lead to its abandon-
ment [8]. For example, a robotic rehabilitation device 
that is too complex to use could negatively impact the 
patient’s motivation [9] and limit his or her involvement 
in the recovery process [10], greatly affecting the overall 
beneficial therapeutic effect [11]. Upper limb prosthesis 
wearers tend to compensate for the slowness and cum-
bersomeness of prosthesis control by relying on compen-
satory body movements [12], and may end up using the 
motorized prosthesis as a mere rigid tool or replacing 
it with overuse of their intact limb [13]. While walking 
is considered an activity requiring little or no cognitive 
effort for an able-bodied person, the use of a lower limb 
prosthesis or exoskeleton requires a high level of concen-
tration [14], preventing the user from walking on uneven 
ground at the risk of falling [15], or performing a second 
parallel task such as holding a conversation [16]. The 
use of an exoskeleton to enhance physical performance 
should also not hinder the wearer in performing tasks 
such as giving orders or reading a map in the case of a 
soldier [3].

The mental workload caused by the use of assistive 
devices thus becomes a major consideration for the eco-
logical/realistic use of assistive devices and their long-
term adoption. This will only be possible if the balance 
between the benefits and burdens of use is strongly in 
favor of using the device. It is therefore crucial to be able 
to assess the mental workload imposed by the use of 
assistive devices, to ensure that the devices designed gen-
erate a minimal mental workload so that they can actu-
ally be usable and used.

However, measuring mental workload is quite complex. 
Measurement methods are numerous and variable, and 
the current literature does not specify which methods are 
appropriate for measuring the mental workload associ-
ated with the use of a wearable assistive device. Although 
studies on mental workload measurement already exist 
[7, 17–19], they focus primarily on physiological meas-
ures and none are applied to the field of assistive robotics. 
Only [20] focused on wearable assistive robotics but only 
provided a quick comparison of mental workload meas-
urement methods for electromyography-based prosthetic 
devices. In [21], the authors announce that they will 

publish different measures of cognitive performance dur-
ing walking, applied to the use of lower limb prosthesis. 
So, as this topic is clearly gaining interest, the purpose of 
this review is to examine how mental workload related to 
the use of wearable assistive devices has been previously 
measured, to better understand their advantages and 
disadvantages, and to determine the most appropriate 
method based on the application.

Overview
Methodology
A literature search was conducted in major scientific 
databases (including PubMed, IEEEXplore, ScienceDi-
rect, and Google Scholar), using combinations of the 
following keywords: prosthesis, exoskeleton, orthosis 
and cognitive, mental and load, workload, effort, bur-
den, demand, cost, strain. An initial selection of articles 
was made, and their references were manually searched 
for additional articles. Based on these results, stud-
ies measuring the mental workload induced by the use 
of a wearable assistive device (real or simulated, with 
disabled or able-bodied subjects) were included in this 
review. Because this review focuses on different meth-
ods of measuring mental workload, a large number of 
articles simply mentioning the mental workload induced 
by an assistive wearable device without measuring it 
were excluded. In the end, 60 articles were selected for 
this analysis, all published before June 2021. Some arti-
cles using questionnaires as a measurement method (see 
below) may be missing from this selection, as it is difficult 
to find all studies using customized questionnaires or not 
mentioned in the abstract.

Measurement methods
Techniques for measuring mental workload when using 
wearable assistive device applications can be classified in 
the same way as for other applications: subjective assess-
ments, secondary task procedures, physiological meas-
ures, and modeling.

• Subjective assessments are based on questionnaires 
that allow the participant to assess his or her own 
mental workload through rating scales for items such 
as mental effort, fatigue, frustration, etc.

• Secondary task procedures are performance-based 
measures using a dual-task paradigm: the participant 
is asked to perform a secondary task simultaneously 
with the primary task. His or her performance on 
the secondary task then reflects the mental workload 
induced by the primary task.

• Various physiological measures are related to a per-
son’s cognitive functioning and can therefore be used 
to measure mental workload. Five different types of 
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measures are considered in this review: ocular activ-
ity, skin-based measures, cardiac activity, respiratory 
activity and brain activity.

• Cognitive modelling allows to estimate the complex-
ity of a task and the time needed to perform it by 
breaking it down into small simulated mental steps. 
It can therefore be used to evaluate the mental work-
load induced by a task without having to actually per-
form it.

Figure  1 presents the distribution of methods for the 
studies considered in this review. Subjective question-
naires and secondary task procedures are currently the 
two most widely used techniques for measuring mental 
workload in wearable assistive device applications (45% 
and 40% of studies, respectively). Among physiologi-
cal measures, the measure of brain activity is the most 
investigated. In addition, various studies apply several 
measurement strategies in combination. In particular, 
when collecting physiological data, different parameters 
(cardiac activity, respiratory activity, etc.) are often inves-
tigated at the same time, and a questionnaire or a second-
ary task procedure can also be applied.

Major facts
A growing number of articles mention that using a 
prosthesis is cognitively demanding (for example, for 
a Google Scholar search: prosthesis “mental workload” 
yields 1380 results, 1110 of which have been published 
since 2010, and 521 since 2018) as it becomes clear that 
despite advances in technology, the mental workload is 
not decreasing. However, only a small portion of these 
articles actually measured this mental workload. Figure 2 

shows the chronological distribution of the studies con-
sidered in this review. It can be seen that although the 
number of articles per year is increasing, it remains low, 
with a maximum of 12 publications in 2019.

Figure  3 shows the distribution of the objectives of 
the studies considered. Many of the studies use men-
tal workload measurement as a tool to compare or test 
the cognitive cost of using certain assistive technology 
innovations (shown in blue in Fig. 3). In particular, con-
trol modes, sensory feedback, training modalities and 
new device designs are evaluated. A second part of the 
papers attempts to validate a means of measuring mental 
workload for a wearable assistive device application (in 
red in Fig. 3). A third part deals with the study of men-
tal workload itself (in yellow on the Fig. 3): their objective 
is to understand the cognitive difficulty of using a device 
(compared to healthy subjects for example), the possible 
adaptations to this cognitive difficulty, or the effects of a 
cognitive task simultaneous to the use of the device.
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Of the selected studies, the largest proportion involved 
prosthetics (80%) compared to exoskeletons (20%). This 
is likely due to the fact that advanced bionic prostheses 
have been developed and available (even commercially) 
for more than a decade, whereas exoskeletons are rather 
new technological tools that are still in the develop-
ment phase and have not yet faced usability issues such 
as mental workload. There are also slightly more studies 
on upper extremity devices (55%) than on lower extrem-
ity devices (45%). This difference is more pronounced for 
prostheses (60% for upper limb prostheses and 40% for 
lower limb prostheses) and can probably be explained by 
the major difference in the control between lower limb 
and upper limb systems. Indeed, lower limb prostheses 
typically offer discrete action control (i.e., a signal to be 
produced or a bodily motor behavior to be performed in 
order to activate a predefined assistance for a given task, 
such as standing or walking), whereas upper limb devices 
typically require users to continuously control the device 
at the joints. Controlling an upper limb prosthesis is 
therefore an important cause of increased mental work-
load and may explain the greater number of articles on 
upper limb prostheses. On the contrary, for exoskele-
tons, there are more studies for the lower limb than for 
the upper limb, which may be due to the greater number 
of lower limb exoskeletons developed to date. Figure  4 
shows the distribution of upper limb device studies (in 
blue) and lower limb device studies (in red).

In the following section, the different types of meth-
ods used to assess mental workload when using port-
able assistive devices are described and analyzed. A table 
resuming the used mental workload measurements for all 
references can be found in Appendix.

Mental workload measurement methods
Subjective ratings
Although there are several standardized questionnaires 
for assessing mental workload (SWAT, RSME, etc.), the 

NASA-TLX (Task Load Index) [22, 23] is the only one 
used in the studies selected for this review. This question-
naire evaluates mental workload according to 6 aspects: 
mental demand, physical demand, perceived perfor-
mance, temporal demand, effort, and frustration. Each 
item is rated by the subject using a bipolar scale giv-
ing a score between 0 and 100. A weighting procedure 
applied to each item then calculates the subject’s total 
mental workload or task load index [24–27]. However, an 
increasing number of studies use the raw workload index, 
which is the arithmetic mean of the 6 items [3, 28–37]. 
The independent analysis of the 6 subscales can also be 
used to differentiate between two tasks and determine 
which aspects of mental workload have the most impact 
on the subject [3, 29, 30, 32–34, 38–43].

Some researchers have added new subscales to the 
NASA-TLX to supplement it. For example, a “Conflict-
ing Work Demand” item was added in [40], and an item 
regarding perceived embodiment of the prosthesis was 
added in [35]. Various similar questionnaires, but more 
specific to the field of wearable assistive robotics, were 
also introduced, either to replace the NASA-TLX [44, 45] 
or to complement it [35, 40].

Questionnaires (especially the NASA-TLX) have been 
widely used for many years and remain the standard. 
They are easy to implement and their reliability has been 
proven in various domains [23]; however, they remain 
subjective methods and therefore susceptible to bias by 
individual factors. For example, they depend heavily on 
the memory (in the case of extended protocols or mul-
tiple conditions, for instance) and self-analysis abilities 
of the participants, who can sometimes get lost between 
the perception of their own performance and the mental 
workload felt.

Dual‑task paradigms
Mental workload is related to performance, but is not the 
same thing. For example, an increase in mental workload 
does not necessarily imply a decrease in the subject’s per-
formance if the subject is able to maintain his or her level 
of performance by increasing effort or changing strategy. 
However, the two concepts are related and this is why dual-
task paradigms, which are performance-based measures, 
are among the most widely used methods for measuring 
mental workload. In a dual-task paradigm, the subject is 
asked to perform a second cognitively demanding or atten-
tion-demanding task in parallel with his or her primary 
task (which in our specific case is the use of a prosthesis or 
exoskeleton). If the mental processing of the second task 
conflicts with that of the first task, the performance on 
one or both tasks will be decreased in order to continue 
the execution of the tasks. It is then possible to compare 
the performance obtained for different task conditions: 
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4

Fig. 4 Distribution of upper limb devices studies (in blue) and 
lower limb devices studies (in red) among the considered studies on 
assistive devices
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the lower the performance, the higher the mental work-
load associated with the task condition. Depending on the 
task on which the user is asked to concentrate, the perfor-
mance of the primary task and/or the secondary task can 
be analyzed. Without trying to measure mental workload 
precisely, dual tasks are also used to have a more realistic 
context and/or to verify that the user is able to perform an 
action while using the device [3, 28, 46–50].

In the context of wearable assistive devices, different 
types of tests have been used. These are mainly mathe-
matical tests (subtraction by 7 or 3, addition, etc.) [45, 46, 
50–55], verbal fluency tests (vocabulary, spelling, etc. ) 
[45, 50, 51, 54, 56, 57] and memory tests [47, 58, 59]. Sev-
eral studies also use approaches based on audio stimuli 
[3, 4, 52, 60, 61] or visual stimuli [3, 16, 33, 40, 52, 62]. 
However, these visual tasks are typically used with lower 
limb devices, as the use of upper limb devices already 
requires a high level of visual attention. For these devices, 
various secondary tasks that can be performed with the 
subject’s intact limb have been used [49, 63].

Dual-task paradigms may be of interest to the field of 
wearable assistive robotics, as cognitive and motor activi-
ties have been shown to be interdependent. In particu-
lar, there are interactions between walking and cognition: 
the addition of a second cognitive task disrupts the qual-
ity of walking, even in able-bodied individuals [64]. This 
is most noticeable in people with lower limb prostheses, 
who report a great need for concentration during walk-
ing. Thus, studies of lower limb prostheses using a dual 
task to measure mental workload typically examine vari-
ations in subjects’ gait in addition to cognitive task per-
formance through several gait characteristics, such as 
walking speed, cadence, stride time, step length, sway, 
asymmetry [14, 16, 45, 51, 52, 65–67].

In conclusion, although dual-task paradigms are a pop-
ular method, approximately 25% of the studies selected 
for this review report non-significant differences in 
mental workload when measured with a dual-task para-
digm. The reasons often cited for this lack of difference 
in mental workload are a too small difference in difficulty 
between the two main tasks that are compared, or a sec-
ond task that is not challenging enough.

Physiological measures
Ocular activity
Ocular activity monitoring provides several parameters 
that can be used to measure mental workload, such as 
pupil dilation, blink rate, gaze, etc. Among these different 
parameters, only pupil dilation, which corresponds to the 
variation in pupil size, has been used to estimate mental 
workload in the context of upper limb prosthesis appli-
cations. Indeed, pupil dilation has been shown to reflect 
mental effort and attention [68]. Larger pupil size tends to 

indicate more intense cognitive processing. This method 
has been particularly used to estimate mental workload 
for upper limb prosthesis applications. Using a Facelab 
eye-tracking system emitting infrared light, researchers 
in [69–71] measured pupil diameter as significantly larger 
when the prosthesis control mode was rated as more dif-
ficult by the user. With Tobii Pro2 eyeglasses, researchers 
in [72] also found a larger pupil diameter when the user 
experienced difficulty controlling their prosthetic hand.

In conclusion, pupillometric data appear to be a reli-
able metric for measuring mental workload. However, 
they must be used in a controlled environment, as the 
data can be corrupted due to changes in ambient light for 
example. Also, with a fixed eye-tracking system such as 
that of [69–71], the location of the subject relative to the 
system is very important, and data can be lost if he/she is 
misplaced or moves too much. This is probably why it has 
only been used for upper body devices and in laboratory 
environments, not in ecologically valid situations.

Skin‑based measures
Electrodermal activity (EDA), also known as galvanic 
skin response, refers to the change in electrical proper-
ties of the skin in response to sympathetic nervous sys-
tem activity on the sweat glands. The EDA measurement 
consists of two different components: skin conductance 
level (SCL), which corresponds to tonic changes in skin 
conductance, and skin conductance response (SCR), 
which corresponds to phasic changes in skin conduct-
ance measured by the number and intensity of spikes. 
SCL and SCR have been shown to increase with mental 
demand [73–75].

SCL increased when using a more mentally demanding 
interface to control an arm exoskeleton [38]. However, no 
significant effect of SCL was observed between two dif-
ferent modalities of prosthesis feedback [24, 25], or when 
introducing a cognitive task during walking with a lower 
limb prosthesis [33]. Regarding the SCR measure, the 
researchers of [33] extracted the frequency and ampli-
tude of EDA spikes. However, neither measure changed 
significantly when adding a cognitively demanding task 
during walking with a lower limb prosthesis [33] or when 
using a hand prosthesis [25].

In conclusion, while skin measures have been shown to 
be well-established indicators of mental workload in gen-
eral [76], only one of the studies in this review obtained a 
significant result using this type of measure [38]. This is 
likely due to the fact that skin measures are very sensitive 
to physical load and therefore not suitable for tasks requir-
ing physical activity. For example, the physical effect of 
walking in [33] may have hidden the effect of mental work-
load on the EDA. Also, conductivity and skin temperature 
change quite slowly: it takes several minutes for them to 
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change with the level of mental workload, which could 
explain the lack of results in [24, 25]. So, the influence of 
the physical activity and the slow electrodermal response, 
skin measurements may not be suitable for measuring 
mental workload when using assistive wearable devices.

Cardiac activity
The electrical activity of the heart is measured by electro-
cardiography (ECG), and several measures related to men-
tal workload can be extracted, including heart rate (HR) 
and heart rate variability (HRV), the latter being a measure 
of the variation of time between each heartbeat. HR and 
HRV are well-established indicators of mental workload in 
a variety of domains because of the interactions between 
the autonomic nervous system and the cardiovascular sys-
tem. Whereas an increase in HR is generally positively cor-
related with an increase in mental workload [73, 74, 77], a 
reduced HRV has been linked to poorer cognitive perfor-
mance and higher cognitive demand [77, 78].

In [33], an increase in HR was observed both when a 
mentally demanding secondary task was introduced 
when walking with a lower limb prosthesis, and when the 
walking task was made more complex. It decreased when 
adding audio-visual feedback to an upper limb prosthesis 
[24, 25], suggesting that the added feedback reduces the 
cognitive demand of prosthesis use. However, no signifi-
cant difference in mean HR was observed for an increase 
in prosthesis task speed [4], or when changing the con-
trol mode of an exoskeleton [38].

HRV can be analyzed both in the time domain and in 
the frequency domain. In both cases, a reduced HRV is 
related to a higher mental workload. In the time domain, 
the SDANN characteristic is the Standard Deviation 
of the Average instantaneous heart rate intervals (NN 
intervals) calculated over a moving window. It was sig-
nificantly lower in those with difficulty using a BCI-con-
trolled manual exoskeleton [39], and significantly lower 
for a more mentally demanding exoskeleton control 
mode [38]. Furthermore, it decreased over time in both 
control modes, suggesting increasing mental fatigue of 
participants as the experiment progressed. Similarly, the 
RMSSD feature, the square root of the mean squared 
differences of successive NN intervals, significantly 
decreased when a mentally demanding secondary task 
was introduced during walking with a lower limb pros-
thesis in [33]. In the frequency domain, reserchers in 
[24, 25] investigated changes in the 0.1 Hz component 
of HRV from a resting state, but no statistical difference 
was found. In [33], the ratio of low-frequency HRV com-
ponents (0.04–0.15 Hz) to high-frequency HRV compo-
nents (0.15–0.4 Hz) differed significantly between the 
walking condition, but not between with and without an 
added parallel cognitive task.

In conclusion, like skin measurements, HR and HRV 
are related to mental workload, but they are also highly 
sensitive to physical load and may not be the most appro-
priate measurements for wearable assistive device appli-
cations that typically require physical activity.

Respiratory measures
Respiratory measurements can include a variety of meas-
ures. Among these, respiratory rate, or breathing fre-
quency, has been found to increase with mental workload 
and stress [74]. Although respiratory rate can be meas-
ured by electro-physiological methods, it has primarily 
been measured from the change in chest circumference 
during breathing. Using this measurement technique, 
researchers in [33] found that respiratory rate was one 
of the most sensitive physiological parameters to mental 
workload. Indeed, respiratory rate increased significantly 
when an additional cognitively demanding task was 
added while walking with a lower limb prosthesis. How-
ever, in [38], the control mode of the exoskeleton had no 
influence on respiratory rate. Similarly, in [4], subjects’ 
respiratory rate did not change as a function of the dif-
ficulty of the grasping task, and in [25], respiratory rate 
did not allow for conclusions about the mental workload 
induced by different sensory feedback modes.

In conclusion, although respiratory rate is related to 
stress and mental workload, it is also strongly influenced 
by physical activity. In [33], the difference in physical 
demand between symmetric and asymmetric walking 
was sufficient to induce a significant difference in res-
piratory rate. Furthermore, patients requiring an assis-
tive wearable device are often frail, and the use of the 
device represents a significant physical effort for them, 
strongly impacting their breathing. Thus, respiratory rate 
as a method for measuring mental workload may not be 
appropriate for wearable assistive device tasks.

Brain activity
The physiological measures presented above provide an 
indirect evaluation of mental workload. Access to brain 
activity could allow a direct assessment. To date, two 
methods have been used: electroencephalography (EEG) 
and functional near-infrared spectroscopy (fNIRS). fNIRS 
measures changes in the relative concentrations of oxy-
genated and deoxygenated hemoglobin in the cortex due 
to neuronal activity [79]. It has only recently been used to 
assess workload during prosthetic use. In [80, 81], fNIRS 
showed a higher level of brain activity in lower limb pros-
thesis users than in controls for the same walking task. 
The introduction of a secondary cognitive task resulted in 
increased brain activity in [81]. fNIRS also discriminated 
the use of a prosthetic hand with or without sensory feed-
back in [82]. EEG, which measures the electrical activity of 



Page 7 of 15Marchand et al. J NeuroEngineering Rehabil          (2021) 18:160  

the brain (mainly pyramidal neurons), has been widely used 
and we will go into more detail about this method. Differ-
ent aspects of EEG signals can be evaluated, especially in 
the time and frequency domain as we will see below.

Time domain A first EEG approach is based on event-
related potentials (ERPs), which are spikes in the temporal 
EEG signal, time-locked to discrete stimuli (auditory, visual, 
somatosensory...) to which the participant does not neces-
sarily have to pay attention. The ERP amplitude is inversely 
proportional to the mental workload of the main task at 
hand: the higher the cognitive demand, the lower the ERP 
amplitude evoked by the stimulus, reflecting a reduced 
availability of mental resources for processing the audi-
tory or visual stimulus [83]. ERP components are named 
with a letter representing their polarity (P for positive, N 
for negative) and a number that indicates their latency (in 
ms) between the stimulus and the peak. The P300 compo-
nent (also often referred to as P3), which appears approxi-
mately 300 ms after a stimulus, is one of the most studied 
ERP components, although the P200 component and “late 
positive potentials” (LPP) have also been studied in relation 
to mental workload. These components are usually meas-
ured on electrodes located on the midline of the head (i.e., 
mainly, but not exclusively, on Pz and Cz).

Researchers in [44] measured ERPs on Pz to distinguish 
mental workload during an easy level of upper limb pros-
thesis control from that during a difficult level. The results 
showed an inverse relationship between mental workload 
and the amplitude of P200, P300, and LPP. Regarding the 
lower extremity, researchers in [84] provided a proof-
of-concept protocol using the P300 to measure mental 
workload in a population of seated, standing, and tread-
mill walking control participants. The P300 was able to 
distinguish sitting from walking after 30 minutes of task 
execution. For lower extremity devices, the P300 suggests 
that walking with a prosthesis without sensory feedback 
requires a greater mental workload than with sensory feed-
back [85, 86]. In the study [41], the P300 component meas-
ured on Cz also showed a significant difference between 
performing a task in the sitting condition and when walk-
ing with a prosthesis. In the same study, other ERP com-
ponents were found to be relevant for measuring mental 
workload in a more subtle way. Indeed, the late positive 
potential at the Pz electrode and the P200 component at 
Fz, Cz, and Pz showed significant differences between easy 
and difficult levels of the task, while the P200 at Cz differ-
entiated an intermediate level between easy and difficult. 
These examples show that EEG can distinguish mental 
workload between different conditions without adding an 
active task unrelated to the experimental condition, mak-
ing the assessment not only direct but also ecological.

Frequency domain A second approach uses the frequency 
characteristics of EEG signals. Brain waves are divided 

according to their frequency into several sub-bands: delta 
(1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 
Hz) and gamma (30–80 Hz). Different functions have been 
attributed to these frequency bands, some of which may be 
related to mental workload. For example, delta oscillations 
have been found to be dependent on the activity of moti-
vational systems, alpha oscillations on attention and theta 
oscillations on emotional regulation [87]. It has also been 
suggested that frontal theta may be a mechanism of cog-
nitive control [88]. Not surprisingly, studies have assessed 
mental workload by power, entropy, and connectivity 
between regions for these EEG frequency bands.

The beta band ( ∼ 14–35 Hz) has not been shown to vary 
with workload during walking with a prosthesis [25]. In 
contrast, alpha band power ( ∼ 8–13 Hz) has been shown 
to be inversely related to mental workload during control 
of a manual prosthesis [89]. Indeed, by manipulating the 
feedback modality, alpha power was shown to decrease 
more when the NASA-TLX mental workload score was 
higher [25]. Similarly, an overall reduction in alpha power 
was observed when participants used a prosthetic hand 
instead of their natural limb [90, 91]. When walking with 
a prosthesis, low ( ∼ 8–10 Hz) and high ( ∼ 11–13 Hz) 
alpha power decreased as cognitive-motor task demands 
increased (due to cognitive task difficulty and/or task con-
dition) [41, 43]. Gamma band power ( ∼ 36–44 Hz) also 
decreased in the face of more difficult walking [43]. Con-
versely, theta band power ( ∼ 4–7 Hz) was positively cor-
related with mental workload, increasing in the frontal 
region as cognitive-motor task demand increased [41, 43]. 
As might be expected from these results, the theta to alpha 
power ratio shows changes in mental workload [92]. The 
power of the fronto-theta/parietal-alpha (FT/PA) ratio 
increased with task difficulty [41, 43], as did the power 
of the fronto-theta/frontal-alpha (FT/FA) ratio [43]. The 
statistical entropy of the alpha band seems also positively 
related to mental workload: a rise in the entropy is hypoth-
esized to reflect a less organized and more complex way 
of functioning of the brain [93]. In [42, 94], it increased 
with the mental fatigue of the participant and the diffi-
culty of the task, and increased slower when the interface 
of prosthesis control is adaptive to the mental state of the 
participant. Finally, diminution of high-alpha connectivity 
between Fz (motor planning) and T7 (verbal-analytical) 
regions of the brain has been linked to a less conscious, less 
explicit control of a prosthesis [90]. Conscious control pro-
cesses require considerable cognitive resources and there-
fore contribute to increase the mental workload. Overall, 
these results show that the relationship between workload 
and EEG signals is extremely complex but promising.

In conclusion, measurements of brain activity using 
methods such as EEG or fNIRS are interesting because 
they seem, by definition, to be directly related to mental 
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workload. This field is evolving rapidly and the litera-
ture on the subject (outside the field of portable assistive 
robotics) is vast and growing. EEG measurements appear 
to have been used successfully in several above men-
tioned studies where the participants walked with a lower 
limb prosthesis [41, 43, 84–86, 91]. The development of 
wireless devices offers the possibility of making measure-
ments under more realistic conditions. However, meas-
urement of brain activity is not easily affordable, as EEG 
and fNIRS equipment are generally expensive, and signal 
processing remains complex.

Cognitive modeling
Cognitive modeling differs from previous methods in 
that it aims to predict user performance in a task without 
performing an experiment, but by modeling how a user 
would interact with the system. Various computational 
models have been developed since the 1980s, mainly for 
the human-computer interaction domain.

Only one study has used cognitive modeling to assess 
the mental workload associated with the use of a wear-
able assistive device: researchers in [71] used a model 
from the GOMS family (Goals, Operators, Methods and 
Selection rules) to compare two modes of control of an 
upper limb prosthesis. To do this, a task with the pros-
thesis was divided into elementary operations belonging 
to three different categories: perceptual (visual, auditory, 
etc.), motor (movement of the arm, etc.) and cognitive 
(memorization of information, choices, etc.). A duration 
is associated to each operation, which finally allows to 
estimate the total duration required for the task.

The task with the prosthesis was modeled twice: once 
for a conventional myoelectric control mode, and once 
for a pattern recognition control mode. The pattern rec-
ognition control mode was shown to require fewer cogni-
tive and motor operations for the same task. This would 
predict that this control mode will be less demanding 
than the other for this task. Furthermore, although the 
times calculated with the GOMS model are considerably 
less than those actually required to complete the task, the 
relative times of the different steps are similar.

In conclusion, a GOMS model can be used to predict/
compare the usability of a prosthesis and the associated 
mental workload for a specific task, and possibly improve 
the human-machine interface to reduce the workload. 
Unlike other methods that provide a more global esti-
mate, cognitive modeling allows a more detailed study of 
the origin of the demand difference by studying the dis-
tribution of operators in the categories. However, it only 
considers an expert user and focuses more on the intrin-
sic difficulty of the task, and not on the subjective experi-
ence of the user, the latter being an important component 
of the mental workload.

Discussion
Given the different articles reviewed, several analyses 
can be performed. In the following section, we first pro-
vide some general observations about the field, then dis-
cuss the general challenges of accuracy and robustness 
in quantifying mental workload, and finally we consider 
several practical considerations related to the specificity 
of the wearable assistive robotics field.

A growing and unsolved research question
While the measurement of mental workload has been 
extensively studied for over 40 years [5], it is only recently 
that the field of wearable assistive device research has 
begun to focus on it. This recent interest coincides with 
an increase in both the technological advances of these 
devices and the inherent complexity of their control and 
use. Given the distribution of methods (shown in Fig. 1), 
the fairly large number of studies on the validation of new 
metrics (shown in Fig. 3), and reviews of the literature, it 
is evident that the measurement of mental workload for 
wearable assistive devices remains an unresolved chal-
lenge, and that there is not yet an effective, universally 
agreed-upon method. Indeed, while subjective assess-
ments and dual-task paradigms are the most commonly 
used methods, they suffer from imprecision. Methods 
based on physiological measures do not seem to be an 
effective alternative for various reasons, as mentioned 
above. Although there seems to be a growing interest in 
measuring brain activity, it is the most complex physi-
ological measure to assess and interpret. Yet, research 
in the latter area is a hot topic, and thus it is the meas-
ure most likely to evolve. It is also and above all the only 
measure that is directly related to mental workload. As for 
the cognitive modelling method, it has so far been applied 
to too few studies to be able to assess its value in this area.

The limited precision and robustness in measuring 
the mental workload
Robustness of physiological measurements Mental work-
load measures based on physiological measures are fun-
damentally influenced by many factors, some of which are 
difficult to control. Indeed, apart from the direct measure-
ment of brain activity, other physiological measures cap-
ture the reactions of the autonomic nervous system. Thus, 
even if the measures used are indeed related to mental 
workload, their variation may also reflect the variation of 
many other parameters (environmental or internal). There 
is therefore a significant risk of misinterpreting a physi-
ological signal believing that a variation is due to mental 
workload when in fact it is due to another phenomenon.

Physiological measures are, for example, very sensi-
tive to physical activity. So, although a priori not included 
in (or even opposed to) mental workload by definition, 
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physical workload is an important variable to take into 
account when measuring mental workload. There is a risk 
of observing false positives in increases in mental workload 
(e.g., in [40]), the increase in heart rate is due to the squat-
ting position and not to the mental workload) or on the 
contrary false negatives, the mental workload being hidden 
by the physical demand [33]. It is therefore crucial to care-
fully examine the effect of physical load, especially in the 
field of wearable assistive devices for which cognitive and 
motor actions are obviously often used as evaluation tasks.

The influence of psychological factors. Psychological 
variations are often considered part of mental workload, 
although the exact definition of mental workload and 
whether or not psychological load (such as the “emotional 
load”) should be included are still under discussion [95]. 
In the context of sport, psychological workload has been 
referred to as the set of psychological demands a person 
faces that are primarily and directly associated with their 
life in and out of sport [96]. The field of wearable assistive 
devices is different in many ways, but there are some com-
monalities, particularly the physical aspects and the need to 
succeed. Therefore, as in sports performance, the same task 
repeated twice by varying a single psychological parameter 
(e.g., family, social) may yield two different measures of 
mental workload, even if the objective difficulty of the task 
has not changed. The distinction between psychological 
workload and mental workload is not necessarily impor-
tant, but it can become a concern when trying to determine 
the cause of increased mental workload. Indeed, a physi-
ological measurement does not allow to identify which 
parameter creates a variation in mental workload, since 
only an overall measurement is obtained. On the other 
hand, a well-designed questionnaire could allow this, as the 
user should be able to differentiate between intrinsic dif-
ficulty and psychological factors. Cognitive modeling does 
not take into account any psychological aspects and focuses 
only on the intrinsic difficulty of the task.

Limited coherence of results A major difficulty in the anal-
ysis of existing work lies in the absence of a precise and uni-
fied definition of mental workload. Indeed, even if the global 
concept may seem simple, there is a multiplicity of phenom-
ena considered with their associated metrics. As the aim of 
this review is not to discuss the definition of mental work-
load, we have considered it as an open concept, bringing 
together the many different variables used to characterize 
it. But the multiplicity of measures can lead to inconsist-
ency between the different results obtained. Recognizing 
the difficulty of characterizing mental workload, many stud-
ies used multiple measurement methods at the same time 
to obtain a more reliable measure. In particular, many stud-
ies used a subjective questionnaire in addition to the objec-
tive measure to confirm the latter [25, 33, 38, 40–45]. There 
are also studies using multiple measures at the same time, 

including various physiological measures [25, 33, 38]. If the 
simultaneous use of several measures most often allows the 
refinement of the measurement, the results obtained can 
sometimes be inconsistent or contradictory, as has been 
found in several studies [25, 44]. Indeed, each measure-
ment method accesses mental workload in a different way: 
the dual-task paradigm focuses rather on attention manage-
ment issues, physiological measures (outside brain activity) 
on autonomic nervous system variations, etc. Their different 
origins and influences may therefore lead to different meas-
ures of mental workload, which makes it difficult to com-
pare the different metrics within the same study.

Comparison of the results obtained by the different 
studies is even more difficult, if not impossible. In addi-
tion to the variability of the parameters, the experimental 
setup and protocols used to characterize mental work-
load reinforce the difficulty of comparing results between 
studies, and thus in the present cases, the performance of 
assistive devices. Even the NASA-TLX, which has been 
widely used since its inception in 1988, can hardly provide 
an absolute reference for comparing mental workload lev-
els. This lack of consensus may be detrimental since only 
a local comparison with control conditions in a given pro-
tocol is possible. Finally, in some studies, the inter-subject 
variability itself (and sometimes the intra-subject variabil-
ity when several measurements are made during the day, 
due to the influence of environmental factors) strongly 
hampers the validity of the conclusions drawn.

Temporal aspects In most of the studies included in 
this review, measured data are used to calculate a level of 
mental workload after experimentation, not in real time 
(except for some specific applications, such as an adaptive 
interface in [42]). Indeed, the data obtained with most of 
the measurement methods considered require significant 
offline post-processing. Since the purpose of these stud-
ies is mainly to compare mental workload levels in differ-
ent situations, this is not necessarily a problem. Also, the 
fact that the data require post-processing steps does not 
necessarily prevent good temporal accuracy of the meas-
urement. However, there are also many measures that 
provide low-frequency information (such as the slowly 
evolving EDA) and considering only the full record over 
the task may allow for relevant analysis. Other metrics, 
although recorded continuously, may need to be averaged 
over a period of time to provide a representative meas-
ure because they are not robust to physical load or envi-
ronmental factors (e.g., heart rate, pupil dilation). So, at 
the end they only provide a global estimate of the men-
tal workload of the task. Finally, subjective evaluations, 
by their very nature, can only provide data at a specific 
time, usually at the end of the task. To have an intermedi-
ate measure, one would have to interrupt the task and fill 
out a questionnaire, which can interfere with the correct 
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execution of the task. Therefore, such a single measure of 
mental workload on a complete task gives a less detailed 
and probably less accurate assessment of mental work-
load than a continuous measure with high temporal accu-
racy. Such an overall estimate, however, does not provide 
a clear understanding or identification of the origins or 
underlying factors of mental workload.

Practical considerations
Setup complexity In addition to subjective assessments, 
dual-task paradigms, and cognitive modeling, the use of 
physiological measures tends to complicate the experi-
mental setup with additional sensors for participants to 
wear (which can cause interacting problems with the sen-
sors that are used to interact with assistive devices, or 
simply interfere with users’ natural abilities). It also adds 
experimental steps to set them up (the EEG being particu-
larly time consuming) and sometimes to calibrate them. 
In addition, the cost of some of the required equipment 
(EEG system, eye tracker, etc.) may be a major factor min-
imizing the generalization of these, especially for intangi-
ble methods. Finally, some of the physiological measures 
require specific technical expertise to be processed and 
analyzed, which may limit their adoption outside specific 
research institutions. All of these aspects constitute a real 
barrier to the generalization of these methods.

Ecological measurements As observed, some parameters 
and protocols require standardized environments or con-
trolled experimental conditions to avoid the influence of 
external variables (such as variation in light for pupil dila-
tion, unexpected situations causing additional stress, an 
imposed strategy for performing a task under different 
conditions, or uncalibrated objects used in a task resulting 
in a variation in physical load). The assessment performed 
may not be fully representative of the actual use of the 
assistive devices. This is true for most approaches, because 
while this is more of an issue for physiological measures, 
even subjective assessments require standardized tasks 
and protocols to perform comparative score analyses.

Naive or expert users The mental workload of naive par-
ticipants learning to use a wearable assistive device is dif-
ferent from that measured after some time of use, once 
they have become experts in the use of the device. There-
fore, it is crucial to take into account the level of expertise 
of the participants in the experiment. Indeed, with users 
who are becoming familiar with a device, what is being 
measured may not be the mental workload induced by 
using the assistive device but rather by discovering and 
learning how to use it. One device may be difficult to 
grasp but easy to use once learned, while another moder-
ately complex device may be easier to handle at first but 
will always be difficult to use. To account for this learning 
effect, studies could perform multiple measurements over 

different sessions, as [60] did over three days of experimen-
tation. Also, since studies on measuring mental workload 
in the field are always a comparison between two devices 
(or modalities such as control mode, feedback, etc.), par-
ticipants should have the same level of expertise in both 
modalities. However, it is difficult to organize a research 
experiment with participants who are experts in two dif-
ferent devices, especially with patients. For this reason, 
some teams try to assemble patients who are nearly naive 
to both devices and train them to have similar proficiency 
in both devices [54]. Other teams choose patients who 
have already experienced using their own assistive device 
and give them extensive training, up to several months, for 
another device [16, 45]. In any case, these aspects should 
definitely be taken into account to avoid any possible bias 
by confusing the level of expertise of the users with the dif-
ficulty of using a device when measuring mental workload.

Conclusions
The field of wearable assistive devices is growing and 
becoming more mature, with research questions going 
beyond the technical aspects, including the ergonomics 
and usability of the devices. Consequently, there is a grow-
ing need for methods to measure and analyze the mental 
workload generated by these technologies. In this review, 
we summarized the methods used to assess the men-
tal workload generated by the use of a wearable assistive 
device in 60 publications. The variability of the measures 
was particularly large, making their comparison difficult. 
Three main families of methods were identified. Subjec-
tive assessments and dual-task paradigms are the most 
commonly used methods, but they suffer from impreci-
sion. Methods based on physiological measures, encom-
passing a wide variety of metrics, are also widely used for 
their objective dimension, but they are not very robust and 
therefore do not offer an optimal alternative. The measure-
ment of brain activity, which is directly related to mental 
workload, is of growing interest in the literature and is the 
most likely to evolve profoundly. There is thus no con-
sensus yet on a particular method of measuring mental 
workload that would be the most suitable for the field of 
wearable assistive devices. Regardless of the method cho-
sen, several practical aspects must be carefully considered 
in this field, such as the impact of physical activity, psycho-
logical aspects, the level of expertise of the subjects and 
the ecological validity of the measurements. Ultimately, 
it is clear that the path to developing reliable measures 
requires a more fundamental understanding of mental 
workload, its definition, processes and influencing factors.

Appendix
See Table 1.
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