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Abstract. We introduce a term algebra as a new formal specification
language for the coordinating architectures of distributed systems con-
sisting of a finite yet unbounded number of components. The language
allows to describe infinite sets of systems whose coordination between
components share the same pattern, using inductive definitions similar
to the ones used to describe algebraic data types or recursive data struc-
tures. Further, we give a verification method for the parametric systems
described in this language, relying on the automatic synthesis of struc-
tural invariants that enable proving general safety properties (absence
of deadlocks and critical section violations). The invariants are defined
using the WSκS fragment of the monadic second order logic, known to
be decidable by a classical automata-logic connection. This reduces the
safety verification problem to checking satisfiability of a WSκS formula.
We implemented the invariant synthesis method into a prototype tool
and carried out verification experiments on a number of non-trivial mod-
els specified using the term algebra.

1 Introduction

The separation between behavior and coordination is a fundamental principle
in the design of large-scale distributed systems [16]. By behavior we mean a set
of traces of observable events. A component is a representation of a behavior,
by means of a (finite) state machine, whose actions are labeled by events. The
architecture of the system defines the interactions between components, as sets
of events that must occur simultaneously in several components. For instance,
Fig. 1a shows a token-ring systems, whose components are depicted in yellow
boxes (behaviors are modeled by the finite-state machines within the boxes) and
whose architecture is the set of connections between components (depicted with
solid lines). Such high-level models of real-life distributed systems are suitable
for reasoning about correctness in the early stages of system design, when details
related to network reliability or the implementation of coordination mechanisms,
by means of low-level synchronization mechanisms (e.g. semaphores, monitors,
compare-and-swap, etc.) are abstracted away.
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This modular view of a distributed system is key to scalable design methods
that exploit a conceptual hierarchy, in which each module is split into sub-
modules. For instance, a ring is a chain whose final output port is connected to
the initial input port, whereas a chain consists of a (head) component linked to a
separate (tail) chain (Fig. 1b). Furthermore, system designers are accustomed to
the use of predefined architectural patterns, that define the interactions between
(unboundedly large) sets of modules (e.g. crowds, rings, pipelines, stars, trees,
etc.). In this context, the contribution of the paper is three-fold.

1. We introduce a formal language to describe the coordinating architectures
of distributed systems parameterized by (i) the number of components of each
type that are active in the system, e.g. a system with n readers and m writers,
in which n and m are not known a priori and (ii) the pattern in which the inter-
actions occur (e.g. a pipeline, ring, star or more general hypergraph structures).
The language uses predicate symbols to hierarchically break the architecture
into sub-modules. The interpretation of these predicate symbols is defined in-
ductively by rewriting rules consisting of terms that contain predicate atoms, in
a way that recalls the usual definitions of algebraic datatypes [2] or heaps [18].

2. We tackle the parametric safety problem for systems described in this
language, which is checking that the reachable states of every jnstance stays
clear of a set of global error configurations, such as deadlocks or critical section
violations. We synthesize invariants directly from the syntactic description of the
system, generate WSκS formulæ [19] that are unsatisfiable only if every system
described by the given inductive definitions is safe and use off-the-shelf WSκS
solvers [11] for proving safety automatically. The invariant synthesis method
models the set of executions of a parametric system as a boolean (1-safe) Petri
net of unbounded size and computes structural invariants (trap invariants, linear
invariants) of this Petri net.

3. We implemented the invariant synthesis in a prototype tool and experi-
mented with a number of parametric component-based systems with non-trivial
architectural patterns, such as trees with root links, trees with linked leaves,
token-rings with or without a main controller, etc.

Example 1. Let us consider a distributed system consising of components of
type C, having two interaction ports, namely in and out and whose behavior
is described by a finite state machine with transitions q0

out−→ q1 and q1
in−→ q0.

These components are arranged in a ring, such that the out port of a component
is connected to the in port of its right neighbour, with the exception of the last
component, whose out port connects to the in port of the first component (Fig.
1a). The connections (interactions) in the system are described by the predicate
Ring(), defined inductively by the rules below:

Ring()← νy1 νy2 . 〈out(y2) · in(y1)〉(Chain(y1, y2)) (1)

Chain(x1, x2)← 〈out(x1) · in(x2)〉(Comp(x1),Comp(x2)) (2)

Chain(x1, x2)← νy1 . 〈out(x1) · in(y1)〉(Comp(x1),Chain(y1, x2)) (3)

Comp(x)← C(x) (4)
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Fig. 1. Recursive Specification of a Token-Ring System

Rule (1) states that a Ring() consist of a Chain(y1, y2), where y1 and y2 are
the indices of the first and last components1, respectively. The last out port is
connected to the first in port, written as out(y2) · in(y1). Rule (2) states that the
least Chain(x1, x2) consists of two instances of type C, namely C(x1) and C(x2),
and the out port of x1 connects to the in port of x2, described as out(x1)·in(x2).
Rule (3) gives the inductive step, namely that every Chain(x1, x2) consists of
a component C(x1) that interacts with a disjoint chain from y1 to x2. Here the
binder νy1 makes sure the value of y1 is different from the value of every other
variable in the system. Since this binder is used in a recursive rule, each identifier
in a subsequent unfolding of Chain(y1, x2) is guaranteed to be unique. Last, rule
(4) is used to instantiate (i.e. create new) components of type C. In principle, this
rule is not necessary, as any occurrence of a predicate Comp(y) can be replaced
by a component C(y), however it is considered for technical reasons related to
our invariant-based verification approach.

Fig. 1b shows the unfoldings of this set of recursive definitions. The sys-
tem depicted in Fig. 1a is obtained by an application of rule (1), followed by n
applications of rule (3), ending with an application of rule (2). The first two ap-
plications of (3) following the application of (1) are depicted in Fig. 1b, with rule
labels annotated (each application of rule (3) creates a fresh variable, denoted
by y11 , . . . , y

n
1 , respectively). �

2 Preliminaries

This section introduces preliminary definitions used throughout the paper. Given
sets A and B, we denote by A → B the set of total functions f : A → B. If

a = 〈a1, . . . , an〉 is a tuple of values from A, then f(a)
def
= 〈f(a1), . . . , f(an)〉. By

a · b we denote the concatenation of tuples a and b. For two positive integers
k, ` ∈ N, we denote by [k, `] the set {k, k + 1, . . . , `}, assumed to be empty if
k > `. The cardinality of a finite set A is denoted by |A|.
Trees Trees play a key role in the definition of parametric distributed systems
from the following section (§3). Let κ ≥ 1 be an integer constant, fixed through-
out this paper, and let [1, κ]∗ denote the set of finite sequences of integers between

1 First and last are understood here in the order of unfolding of the rewriting rules.



1 and κ, called nodes in the following. A κ-ary tree T is a partial function map-
ping [1, κ]∗ to a set of labels. The domain of T , denoted nodes(T ), is such that
wi ∈ nodes(T ) for some i ∈ [1, κ] only if w ∈ nodes(T ) and wj ∈ nodes(T ) for
all j ∈ [1, i− 1]. The root of T is the empty sequence ε, the children of a node
w ∈ nodes(T ) are {wi ∈ nodes(T ) | i ∈ [1, κ]} and the parent of a node wi, i ∈
[1, κ], is w. The leaves of T are leaves(T )

def
= {w ∈ nodes(T ) | w.1 6∈ nodes(T )}.

The subtree of T rooted at w is defined by nodes(T ↓w)
def
= {w′ | ww′ ∈ nodes(T )}

and T ↓w (w′)
def
= T (ww′), for all w′ ∈ nodes(T ↓w).

The invariant synthesis method uses the restriction of monadic second order
logic to trees of branching degree κ and quantification over finite sets only. Let
V1 = {x, y, z, . . .} and V2 = {X,Y, Z, . . .} be countably infinite sets of first and
second order variables, respectively. The formulæ of the WSκS logic are defined
inductively by the syntax:

τ ::= ε | x ∈ V1 | τ1.i, i ∈ [1, κ] terms
φ ::= τ = τ | X(τ) | φ ∧ φ | ¬φ | ∃x . φ | ∃X . φ formulæ

As usual, we write φ1 ∨ φ2
def
= ¬(¬φ1 ∧ ¬φ2), φ1 → φ2

def
= ¬φ1 ∨ φ2, φ1 ↔ φ2

def
=

(φ1 → φ2) ∧ (φ2 → φ1), ∀x . φ
def
= ¬∃x . ¬φ and ∀X . φ

def
= ¬∃X . ¬φ. WSκS

formulæ are interpreted over an infinite tree, where first order variables x ∈ V1

range over individual nodes n ∈ [1, κ]∗, second order variables X ∈ V2 range over
finite sets of nodes, ε is a constant symbol interpreted as the root of the tree
and, for all i ∈ [1, κ], the notation .i is is interpreted as the function mapping
each w ∈ [1, κ]∗ into wi. Given a valuation ν : V1 ∪ V2 → [1, κ]∗ ∪ 2[1,κ]

∗
, such

that ν(x) ∈ [1, κ]∗, for each x ∈ V1 and ν(X) ⊆ [1, κ]∗ (ν(X) is finite), for
each X ∈ V2, the satisfaction relation |= is defined inductively, as usual [14]. A
valuation ν is a model of a formula φ iff ν |= φ. A formula is satisfiable if and
only if it has a model.

Petri nets A Petri net (PN) is a tuple N = 〈S, T,E〉, where S is a set of places,
T is a set of transitions, S ∩ T = ∅, and E ⊆ (S × T )∪ (T × S) is a set of edges.

Given x, y ∈ S∪T , we write E(x, y)
def
= 1 if (x, y) ∈ E and E(x, y)

def
= 0, otherwise.

Let •x
def
= {y ∈ S ∪ T | E(y, x) = 1}, x• def

= {y ∈ S ∪ T | E(x, y) = 1} and lift
these definitions to sets of nodes. A marking of N is a function m : S → N. A
transition t is enabled in m if and only if m(s) > 0 for each place s ∈ •t. We write

m
t−→ m′ whenever t is enabled in m and m′(s) = m(s)−E(s, t) +E(t, s), for all

s ∈ S and t ∈ T . A sequence of transitions σ = t1, . . . , tn is a firing sequence,
written m

σ−→ m′ if and only if either (i) n = 0 and m = m′, or (ii) n ≥ 1 and

there exist markings m1, . . . ,mn−1 such that m
t1−→ m1 . . .mn−1

tn−→ m′.

A marked Petri net is a pair N = (N,m0), where m0 is the initial marking
of N. A marking m is reachable in N if there exists a firing sequence σ such that
m0

σ−→ m. We denote by R(N ) the set of reachable markings of N . A marked
PN N is boolean if m(s) ≤ 1, for each s ∈ S and m ∈ R(N ). All marked
PNs considered in the following will be boolean and we shall silently blur the
distinction between a marking m : S → {0, 1} and the set {s ∈ S | m(s) = 1}.

Given a set of markings E , a marked PN N is safe w.r.t. E if and only if
R(N )∩E = ∅. A set of markingsM is an inductive invariant of N = (N,m0) if



and only if m0 ∈ M and for each m
t−→ m′ such that m ∈ M, we have m′ ∈ M.

It is known that R(N ) is the least inductive invariant of N , thus N is safe w.r.t
E if it has an inductive invariant M disjoint from E .

Components In this paper we are concerned with systems consisting of an un-
bounded number of components that are replicas of a fairly small set of patterns,
called component types. Let P = {a, b, . . .} and S = {s, t, . . .} be countably in-
finite sets of ports and states, respectively. An injective function P (resp. S)
mapping tree nodes to ports (resp. states) is called a port type (resp. state type).
A component type is a tuple B = 〈P,S, I, ∆〉, where P ⊆ [1, κ]∗ → P and
S ⊆ [1, κ]∗ → S are finite sets of port and state types, I ∈ S is the initial state

type, and ∆ is a finite set of transition rules S
P−→ T , where S, T ∈ S and P ∈ P.

In addition, we require that (i) the elements of P (resp. S) have pairwise disjoint

ranges and (ii) for any two transition rules S1
P1−→ S′1, S2

P2−→ S′2, if P1 = P2 then

S1 = S2 and S′1 = S′2. For a transition rule S
P−→ S′ ∈ ∆, let •P

def
= S and P •

def
= S′

denote the pre- and post-state type of the unique transition rule whose label is
the port type P .

The replicas of a component type are indexed (distinguished) by tree nodes2.
Given a component type B = 〈P,S, I, ∆〉 and a tree node w ∈ [1, κ]∗, we define

the component B(w)
def
= 〈{P (w) | P ∈ P}, {S(w) | S ∈ S}, I(w), {S(w)

P (w)−−−→
S′(w) | S P−→ S′ ∈ ∆}〉. Note that the sets of ports {P (w) | P ∈ P} (resp. states
{S(w) | S ∈ S}) of different replicas of the same component type are disjoint,
because the port (state) types are required to have disjoint ranges. We slightly

abuse notation by writing
•
(P (w))

def
=
•
(P )(w) and (P (w))

• def
= (P )

•
(w) (we omit

brackets when they are clear from the context). We consider below a set B of
component types, with pairwise disjoint sets of port and state types.

Architectures The coordination in a system is defined by architectures. An
interaction π ∈ 2P is a finite set of ports. An architecture γ ⊆ 2P is a finite set
of interactions. Given component types Bi = 〈Pi,Si, Ii, ∆i〉 ∈ B and tree nodes
wi ∈ [1, κ]∗, the behavior of the system consisting of the components Bi(wi),
i = 1, . . . , n, coordinated by the architecture γ is defined by the marked PN

γ(B1(w1), . . . ,Bn(wn))
def
= (〈S, γ,E〉,m0), where S

def
=
⋃n
i=1{S(wi) | S ∈ Si} is

the set of places, for each interaction π ∈ γ, the edges to (from) π are given by
•π

def
= {•p | p ∈ π} (π•

def
= {p• | p ∈ π}) and the initial marking is m0

def
= {Ii(wi) |

i ∈ [1, n]}.

Example 2. Fig. 2 shows the marked PN that defines the behavior of the system
from Fig. 1a. The tree node 1 . . . 1 (i times) is represented by its value i in the
unary encoding. The interaction {in(n), out(1)} is duplicated, for readability.
The initially marked places are surrounded by dashed circles. �

2 We identify components by tree nodes in preparation of the ground for the verifica-
tion technique from §4. However, these definitions can be given in general, for any
countably infinite set of identifiers.
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Fig. 2. The Behavior of a Token-Ring System

3 A Term Algebra of Behaviors

In this section we introduce a term algebra for describing the systems resulting
from the application of an architecture to an unbounded number of component
type instances (see Example 1 for the specification of a token-ring system in this
language). Let A be a countably infinite set of predicate symbols, and let #(A)
denote the arity of the predicate symbol A ∈ A.
Syntax The following syntax generates behavioral terms inductively:

P ∈ [1, κ]∗ 7→ P, x ∈ V1, B ∈ B, A ∈ A
I ::= P (x) | I1 · I2 interactions
Γ ::= I | Γ1 + Γ2 architectures
b ::= B(x) | 〈Γ 〉(b1, . . . , bn) | νx . b1 | A(x1, . . . , x#(A)) behavioral terms

A variable x occurring in a behavioral term b is free if it does not occur in
the scope of some subterm of the form νx . b1 and bound otherwise. The set
of free variables occurring in a term b is denoted by fv(b). In the following,
we assume that all bound variables occurring in a term are pairwise distinct
and distinct from the free variables. This assumption loses no generality because
terms obtained by α-conversion (renaming of bound variables) are usually viewed
as the same term. A term b is closed if fv(b) = ∅ and predicateless if no predicates
from A occur in b. We denote by b[y1/x1, . . . , yn/xn] the term obtained by
substituting the variable xi ∈ fv(b) with yi, for each i ∈ [1, n]. We write size(b)
for the number of occurrences of symbols in b.

A term B(x) is called an instance atom and a term A(x1, . . . , xn) is called
a predicate atom. We denote by #pred(b) the number of occurrences of predi-
cate atoms and by predi(b) the predicate atom that occurs i-th in b, for i ∈
[1,#pred(b)], in some linear order of the nodes in the syntax tree of b. The pred-
icate symbols are interpreted as the least sets of predicateless terms inductively
defined by a rewriting system:

Definition 1. A rewriting system is a finite set R of rules of one of the forms:

A(x)← B(x)
A(x1, . . . , x#(A))← νy1 . . . νyn . 〈Γ 〉(A1(z11 , . . . , z

1
#(A1)

), . . . ,Am(zm1 , . . . , z
m
#(Am)))

where m ≥ 1 and
{
{zi1, . . . , zi#(Ai)

}
}m
i=1

is a partition of {x1, . . . , x#(A), y1, . . . , yn}

For instance, in Example 1, rule (4) is an instantiation rule, whereas (1), (2) and
(3) are inductive rules. We write A(x1, . . . , x#(A))←R b for A(x1, . . . , x#(A))←



b ∈ R. The size of R is size(R)
def
=
∑

A(x1,...,x#(A))←Rb size(b). Given behavioral

terms b1 and b2, we denote by b1
r⇐ b2 the rewriting step that obtains b2 by

replacing a predicate atom A(y1, . . . , y#(A)) in b1 with b[y1/x1, . . . , y#(A)/x#(A)],
where r = (A(x1, . . . , x#A)← b) is a rule of R and all bound variables in b are
renamed to avoid clashes with the variables from b1. We write [b]R for the set
of predicateless terms obtained from b by exhaustively applying the rewriting
rules from R to it.
Semantics Let us consider a given closed behavioral term b and a rewriting
system R. First, we define the semantics of a (closed) predicateless behavioral
term t ∈ [b]R, as the behavior (i.e. marked PN) resulting from joining the
components defined by the instance atoms from t, via the architecture consisting
of all the interactions that occur in t. This definition is done in two steps:
(a) we write t in prenex form as νx1 . . . νxn . u, where u contains no more terms

of the form νx . b, by moving all the ν binders upfront. Because all bound
variables in t, including those introduced by rewriting, are assumed to be
pairwise distinct, this step incurs no name clashes.

(b) we apply the following flattening relation exhaustively:

〈Γ1〉(〈Γ2〉(b1, . . . bi), bi+1, . . . bn) 〈Γ1 + Γ2〉(b1, . . . , bn) (5)

Example 3. Consider the below rewriting sequence, using rules from Example 1:

Ring()⇐ νy1νy2 . 〈out(y2) · in(y1)〉(Chain(y1, y2))
⇐ νy1νy2 . 〈out(y2) · in(y1)〉(νy11 . 〈out(y1) · in(y11)〉(Comp(y1),Chain(y11 , y2)))
⇐ νy1νy2 . 〈out(y2) · in(y1)〉(νy11 . 〈out(y1) · in(y11)〉(Comp(y1),

〈out(y11) · in(y2)〉(Comp(y11),Comp(y2))))
⇐ ...⇐ νy1νy2 . 〈out(y2) · in(y1)〉(νy11 . 〈out(y1) · in(y11)〉(C(y1),

〈out(y11) · in(y2)〉(C(y11),C(y2)))) = t

By applying flattening to the last term, we obtain:

t = νy1νy2 . 〈out(y2)·in(y1)+out(y1)·in(y11)+out(y11)·in(y2)〉(C(y1),C(y11),C(y2)) �

Note that every chain t1  t2  . . . is finite, because the height of terms

strictly decreases with flattening. The result of flattening is of the form t 
def
=

〈Γ 〉(B1(x1), . . . ,Bn(xn)), where Γ =
∑m
k=1 Pk1(xk1) · . . . · Pkrk(xkrk) is an ar-

chitecture description, such that each Pk` ∈ [1, κ]∗ 7→ P is a port type, xk` ∈
{x1, . . . , xn}, for all k ∈ [1,m] and ` ∈ [1, rk]. Given an injective valuation
ν : V1 → [1, κ]∗ that maps variables into distinct nodes of a tree of branching

degree κ, we define the architecture Γ (ν)
def
= {{Pk1(ν(xk1)), . . . , Pkrk(ν(xkrk))} |

k ∈ [1,m]} and the behavior:

Bt
ν

def
= Γ (ν)(B1(ν(x1)), . . . ,Bn(ν(xn))) (6)

The semantics of the behavioral term b in the rewriting systemR is the following
set of marked PNs:

[[b]]R
def
= {Bt

ν | t ∈ [b]R , ν ∈ V1 → [1, κ]
∗

injective} (7)

As a remark, the flattening step is required because applying an architecture
to a set of components is a global operation; if an interaction Pk1(xk1) · . . . ·
Pkrk(xkrk) occurs as a monomial in the architecture description Γ of a subterm



u = 〈Γ 〉(t1, . . . , t`) of t and some variable xki occurs in an instance atom B(xki)
in t but not in u, the interaction would be ignored if we applied Γ (ν) directly to
Bt1
ν , . . . , ,B

t`
ν , for some injective valuation ν.

4 The Parametric Safety Problem

Having defined a rewriting-based term algebra for the specification of distributed
systems, we move on to the problem of verifying that every behavior generated by
a given rewriting system R, starting from a given behavioral term b is safe with
respect to a given set of error markings. This problem is challenging, because
we ask for a proof of safety that holds for the behavior(s) of every predicateless
rewriting of the behavioral term, i.e. for each t ∈ [b]R. Since, even for token-ring
systems with finite-state components, the parametric safety problem is undecid-
able [9], we resort to a sound but necessarily incomplete solution, that consists
in computing inductive invariants.
Structural invariants In contrast with the classical approach to invariant syn-
thesis, based on a fixpoint iteration in an abstract domain [8], we consider a
particular class of invariants, that can be obtained directly from the syntactic
structure of the marked PN representation of behaviors. For this reason, we
call these invariants structural. In the following, we define two kinds of such
invariants, namely trap and mutex invariants:

Definition 2. Given a marked PN N = (〈S, T,E〉,m0), a set θ ⊆ S is a:
1. trap if |θ ∩m0| ≥ 1 and, for any t ∈ T , if |θ ∩ •t| ≥ 1 then |θ ∩ t•| ≥ 1.
2. mutex if |θ ∩m0| = 1 and, for any t ∈ T , we have |θ ∩ •t| = |θ ∩ t•| ≤ 1.
The structural invariants of N are the trap and mutex invariants, repectively:

A. Θ(N )
def
= {m marking of N | |m ∩ θ| ≥ 1, for each trap θ of N}

B. Ω(N )
def
= {m marking of N | |m ∩ θ| = 1, for each mutex θ of N}.

Note that, since N is boolean, each marking can be represented as a set of
places. Moreover, it is easy to check that Θ(N ) and Ω(N ) contain the initial
marking m0 and are closed under the transition relation of the net. Thus both
sets are inductive invariants of N , that can be used to prove a safety property,
by checking the emptiness of the intersection of the above sets with a set E of
error markings.

Our method encodes the families of sets {Θ(N ) | N ∈ [[b]]R} and {Ω(N ) |
N ∈ [[b]]R} by formulæ of WSκS, for a suitable integer constant κ ≥ 1. To
prove a parametric safety property given by a WSκS encoding of the E set, a
sufficient (but not necessary) condition is that the WSκS formula defining the
family of sets {Θ(N ) ∩Ω(N ) ∩ E | N ∈ [[b]]R} is unsatisfiable. Since automata-
theoretic decision procedures exist for WSκS [19], we rely on existing provers
[11] to perform this check.
Rewriting trees The crux of the method is to represent each predicateless
behavioral term t ∈ [b]R by a tree labeled with the rewriting rules from some
rewriting sequence b ⇐∗R t. As will be shown below, each such rewriting tree



x1 ← 1, x2 ← 2

Ring()← νy1νy2 . 〈out(y2) · in(y1)〉(Chain(y1, y2)) (1) y1 ← 11, y2 ← 122

Chain(x1, x2)← νy11 . 〈out(x1) · in(y11)〉(Comp(x1),Chain(y11 , x2)) (3) x1 ← 1, y11 ← 21, x2 ← 22

x← ε

Comp(x)← C(x) (4)x← ε

Comp(x)← C(x) (4)

Comp(x)← C(x) (4) x← ε

Chain(x1, x2)← 〈out(x1) · in(x2)〉(Comp(x1),Comp(x2)) (2)

Fig. 3. A Rewriting Tree for the Token-Ring System

(Def. 3) defines an injective valuation ν : V1 → [1, κ]∗ of the bound variables
from t (Def. 4) that, in turn, induces a behavior Bt

ν ∈ [[b]]R (7). Since each
term t ∈ [b]R can be represented by a rewriting tree (Prop. 1), it follows that
each behavior N ∈ [[b]]R corresponds to a rewriting tree (up to a permutation of
component identifiers). Our encoding uses rewriting trees T as backbone param-
eters for the definition of the trap (Θ(N (T ))) and mutex (Ω(N (T ))) invariant,
respectively, where N (T ) = Bt

ν is the behavior induced by T . In fact, any in-
jective valuation of the variables is sufficient for safety checking, provided that
the safety properties considered are defined by sets of error markings that are
closed under permutations of component identifiers.

To simplify technicalities, we assume the existence of a rule Ab(x1, . . . , xn)←
b in R, where fv(b) = {x1, . . . , xn} and Ab is a predicate symbol of arity n not
occurring elsewhere in R. We also assume that the constant κ is greater than
the number of predicate atoms that occur in any rule of R.

Definition 3. Given a rewriting system R and a behavioral term b, a rewriting
tree for b is a tree T : [1, κ]∗ → R, such that:
1. T (ε) = (Ab(x1, . . . , xn)← b)

and, for all nodes w ∈ nodes(T ), such that T (w) =
(
Aw(x1, . . . , x#(Aw))← bw

)
,

the following hold:
2. for all i ∈ [1,#pred(bw)], if predi(bw) = Awi(y1, . . . , y#(Awi)) then wi ∈

nodes(T ) and T (wi) =
(
Awi(x1, . . . , x#(Awi))← bwi

)
, for some rule of the

form Awi(x1, . . . , x#(Awi))← bwi from R.
3. for all i ≥ #pred(bw), we have wi 6∈ nodes(T ).

We denote by TR
(
b
)

the set of rewriting trees for b in R.

A rewriting tree T induces a characteristic term C[T ], obtained by the appli-
cation of the rewriting rules labeling the tree nodes in some order of traversal,
and a characteristic valuation ν[T ], that maps each variable in the term to the
node where it is instantiated.

Definition 4. Given a rewriting tree T ∈ TR
(
b
)
, the characteristic term C[T ]

and characteristic valuation ν[T ] are defined inductively on the structure of T :

– if nodes(T ) = {ε}, then C[T ]
def
= B(x) and ν[T ](x)

def
= ε, for T (ε) = (A(x)← B(x)),

– else, let 1, . . . ,m be the children of the root of T and let:

C[T ]
def
= νy1 . . . νyn . 〈Γ 〉(C[T↓1][z

1
1/x1, . . . , z

1
#(A1)

/x#(A1)], . . . ,

C[T↓m][z
m
1 /x1, . . . , z

m
#(A1)

/x#(Am)])



where ν[T ](z
i
j)

def
= i · ν[T↓i](xj), for all i ∈ [1,m] and j ∈ [1,#(Ai)], such that

T (ε) =
(
A(x1, . . . , x#(A))← νy1 . . . νyn . 〈Γ 〉(A1(z11 , . . . , z

1
#(A1)

), . . . ,

Am(zm1 , . . . , z
m
#(Am)))

)
A consequence of the specific form of rewriting rules (Def. 1) is that each (free or
bound) variable y from C[T ] is mapped by ν[T ] to a unique node w ∈ nodes(C[T ]),
such that C[T ](w) contains an instance atom B(x), where x is substituted with
y along the path from the node u that introduces y (take u = ε if y ∈ fv(C[T ]))
to w. For example, Fig. 3 shows the rewriting tree for the rewriting sequence
from Example 3; we annotate on the side of the tree the bottom-up definition of
the characteristic valuation associating the bound variables y1 and y2 with the
nodes of the rewriting tree where they are instantiated.

Below we show that the set [b]R of predicateless terms obtained by complete
rewriting is the same as the set of characteristic terms that correspond to some
rewriting tree:

Proposition 1. Given a behavioral term b, we have [b]R = {C[T ] | T ∈ TR
(
b
)
}.

Its proof is an easy consequence of the confluence of the rewriting system, i.e.
the order in which the rules are applied to a term does not change the resulting
predicateless term.

4.1 Encoding Invariants and Error Configurations

We begin by building a WSκS formula that describes an infinite κ-ary tree whose
finite prefix encodes a rewriting tree T ∈ TR

(
b
)
. Let us assume that R =

{r1, . . . , rN}, such that r1 = (Ab(x1, . . . , xn)← b). We use a designated tuple of
second order variables U = 〈U1, . . . , UN 〉, where each variable Ui is interpreted
as the set of tree nodes labeled with the rule ri in T . With this convention, the
RTree(U) formula (Fig. 4) defines a rewriting tree:
– line (8) states that the sets U are pairwise disjoint and that U1 is a singleton

containing the root of the tree (condition 1 of Def. 3).
– line (9) states that the union of the sets U is prefix-closed, i.e. the parent x

of each node x.` from some Ui belongs to some Uj , for i, j ∈ [1, N ].
– lines (10) and (11) encode the conditions 2 and 3 of Def. 3, respectively.

Clearly, for each model ν of RTree(U), there is a unique rewriting tree, denoted

T U
ν ∈ TR

(
b
)
, such that nodes(T U

ν ) =
⋃N
i=1 ν(Ui) and T U

ν (w) = ri iff w ∈ ν(Ui),
for all i ∈ [1, N ] and w ∈ nodes(T U

ν ).
As said, a rewriting tree T ∈ TR

(
b
)

defines a behavior (i.e. a marked PN)

denoted byN (T )
def
= Bt

ν (6), where t = C[T ] is the characteristic term and ν = ν[T ]

is the characteristic valuation of T (Def. 4). An invariant of N (T ) is a set of
markings, i.e. a set of sets of marked places from different components.

Let
{
Bi

def
= 〈Pi,Si, Ii, ∆i〉

}K
i=1

be the set of component types that occur in

the rules of R and let Z = 〈Z1, . . . , ZK〉 be a tuple of second-order variables,
where Zi is interpreted as the set of identifiers of the components of type Bi.



RTree(U)
def
= ∀x .

∧
1≤i<j≤N

(
¬Ui(x) ∨ ¬Uj(x)

)
∧ U1(x)↔ x = ε ∧ (8)

∀x .
∧

i:ri∈R

κ∧
`=1

Ui(x.`)→
∨

rj∈R

Uj(x) ∧ (9)

∀x .
∧

i:ri=(A′(x1,...,x#(A′))←b′)

#pred(b
′)∧

j=1

Ui(x)→
∨

j:predj(b
′)=A′′(ξ1,...,ξ#(A′′))

`:r`=(A′′(x1,...,x#(A′′))←b′′)

U`(x.j) ∧ (10)

∀x .
∧

i:ri=(A′(x1,...,x#(A′))←b′)

κ∧
j=#pred(b

′)+1

Ui(x)→
N∧
`=1

¬U`(x.j) (11)

Fig. 4. The Definition of Rewriting Trees

We encode the markings of N (T ) by a WSκS formula using a tuple of second-

order variables X = 〈XS | S ∈
⋃K
i=1 Si〉, where each XS is interpreted as the

set of identifiers of the components currently in state S(w) and define the set

σX
ν

def
= {S(w) | S ∈

⋃K
i=1 Si, w ∈ ν(XS)}. The following formula constrains the

set represented by X to be a marking of N (T U
ν ):

mark(X,Z)
def
= ∀x.

∧
S 6=S′∈

⋃K
j=1 Sj

(
¬XS(x) ∨ ¬XS′(x)

)
∧
∨
S∈

⋃K
j=1 Sj

XS(x)↔
∨K
j=1 Zj(x)

inst(Z,U)
def
= ∀x.

∧K
i=1 Zi(x)↔

∨
j:rj=(A′(y)←Bi(y))

Uj(x)

Intuitively, mark(X,Z) states that no component can be in two different states
(first conjunct) and each component is an instance of some component type
(second conjunct). The formula inst(Z,U) above relates the instance indices to
the nodes of the rewriting tree where the corresponding instance atoms occur,
assuming that the sets U are constrained by RTree(U). Then, for each model ν
of mark(X,Z) ∧ inst(Z,U) ∧ RTree(U), the set σX

ν is a marking of N (T U
ν ).

We proceed with the encoding of invariants and error states, by assuming the
existence of a flow formula, that defines the pre- and post-sets of the transitions
from a behavior N (T U

ν ), formally described next (§4.2). In the following, the
primed copy of the tuple X is denoted as X′.

Definition 5. Φ(X,X′,U) is a flow formula for b and R if, for each model ν
of RTree(U), we have ν |= Φ(X,X′,U) if and only if •t = σX

ν and t• = σX′
ν , for

some transition t of N (T U
ν ).

Given a flow formula Φ, the parametric trap invariant TrapInvΦ(X,U) is defined
by the formula below:

trapΦ(X,U)
def
= ∀Y1,Y2. Φ(Y1,Y2,U) ∧ inter(X,Y1)→ inter(X,Y2)

TrapInvΦ(X,U)
def
= ∃Z . mark(X,Z) ∧ ∀Y1,Y2. init(Y1,Z) ∧ inter(Y1,Y2) ∧

trapΦ(Y2,U)→ inter(X,Y2)



where the tuples Yi def
= 〈Y iS | S ∈

⋃K
j=1 Sj〉, for i = 1, 2, are distinct copies of

X. The auxiliary formula init(X,Z)
def
= mark(X,Z) ∧

∧K
j=1 ∀x . Zj(x) ↔ XIj (x)

states that X represents the initial marking of the behavior, whereas inter(X,Y)
def
=

∃x.
∨K
j=1

∨
S∈Sj XS(x) ∧ YS(x) means that the sets of places encoded by X and Y,

respectively, have a non-empty intersection. Intuitively, the formula trapΦ(X,U) de-
fines the traps (point 1 of Def. 2), whereas TrapInvΦ(X,U) defines the set of markings
that intersect with the initial marking and with each trap of the behavior, i.e. the trap
invariant (point A of Def. 2.

Mutexes and mutex invariants (points 2 and B of Def. 2) are defined by the formulæ:

mutexΦ(X,U)
def
= ∀Y1,Y2. Φ(Y1,Y2,U)→

∧ ¬inter(X,Y1) ↔ ¬inter(X,Y2)
single(X,Y1) ↔ single(X,Y2)

MutexInvΦ(X,U)
def
= ∃Z . mark(X,Z) ∧ ∀Y1,Y2. init(Y1,Z) ∧ single(Y1,Y2)∧

mutexΦ(Y2,U)→ single(X,Y2)

where single(X,Y)
def
= ∃1x .

∨K
j=1

∨
S∈Sj XS(x)∧ YS(x) states that the intersection of

the sets of places defined by X and Y is a singleton3. The following lemma states the
correctness of the encoding:

Lemma 1. Given a flow formula Φ(X,X′,U) and a model ν of RTree(U)∧inst(Z,U),
we have:
1. Θ(N (T U

ν )) = {σX
µ | µ |= TrapInvΦ(X,U), µ(U · Z) = ν(U · Z)},

2. Ω(N (T U
ν )) = {σX

µ | µ |= MutexInvΦ(X,U), µ(U · Z) = ν(U · Z)}.

In our examples (§5) we consider two kinds of error sets, defined as:

DeadLockΦ(X,U)
def
= ∀Y1,Y2. Φ(Y1,Y2,U)→ ∃x.

∨K
j=1

∨
S∈Sj Y

1
S (x) ∧ ¬XS(x)

CriticalSectionΞ(X,U)
def
= ∃x∃y .

∨
S,S′∈ Ξ XS(x) ∧XS′(y) ∧ ¬x = y

Intuitively, DeadLockΦ(X,U) defined the deadlock markings, in which no transition
of the behavior is enabled and CriticalSectionΞ(X,U) states that no two components
are at the same time in a state from a given set Ξ ⊆

⋃K
i=1 Si of state types. It is

worth mentioning that these sets of error markings are closed under permutations of
component indices4, which makes them suitable for safety checking using our encoding
of trap and mutex invariants (with variables mapped to the nodes of the rewriting tree
where they occur instantiated, as in Fig. 3).

4.2 The Flow of a Behavioral Term

The previous definition of structural invariants relied on the existence of a flow formula
Φ(X,X′,U), stating that σX

ν and σX′
ν are the pre- and post-sets of some transition from

the behavior (i.e. marked PN)N (T U
ν ), whenever ν is a model of RTree(U)∧Φ(X,X′,U)

(Def. 5). In this section, we describe the flow formula. In the following, we assume
w.l.o.g. that the inductive rules in R are of the form:

A(x1, . . . , x#(A))← νy1 . . . νym .
〈 m∑
k=1

Pk1(xk1) · . . . · Pkrk (xkrk )
〉

(t1, . . . , tn)

3 ∃1x . φ(x) is a shorthand for ∃x . φ(x) ∧ ∀x∀y . φ(x) ∧ φ(y)→ x = y.
4 This is the case for every WSκS formula consisting of equality and membership

atoms, without successor functions.



Φ(X,X′,U)
def
=

N∨
`=1

∨
π∈Inter(r`)

Ψ`,π(X,X′,U) (12)

Ψ`,{P1(x1),...,Pn(xn)}(X,X
′,U)

def
= ∃y0 . . .∃yn . U`(y0) ∧ (13)

n∧
i=1

( ∨
r′=(A′(yi)←B(yi))

Pathxi,yir`,r
′ (y0, yi,U)

)
∧ (14)

∀x.
∧

S∈
⋃K
j=1 Sj

[(
XS(x)↔

∨
•Pk=S

x = yk
)
∧
(
X ′S(x)↔

∨
Pk
•=S

x = yk
)]

(15)

Fig. 5. Definition of the Flow Formula for the Rewriting System R = {r1, . . . , rN}.

if necessary, by applying the flattening relation (5) to each rule of R. We denote by

Inter(r)
def
=
{
{Pki(xki) | i ∈ [1, rk]} | k ∈ [1,m]

}
the set of sets of port atoms Pki(xki),

corresponding to the interactions (i.e. the monomials from the architecture) from r.
The flow formula Φ(X,X′,U) is given in Fig. 5. Essentially, the formula (12) is split

into a disjunction of formulæ Ψ`,{P1(x1),...,Pn(xn)} (13), one for each rule r` ∈ R and each
set of port atoms {P1(x1), . . . , Pn(xn)}, denoting an interaction (monomial) from r`. To
understand the formulæ (13), recall that each of the variables x1, . . . , xn is mapped to
the (unique) node of the rewriting tree containing an instance atom Bi(xi). In order to
find this node, we must track the variable xi from the node labeled by the rule r, to the
node where this instance atom occurs. This is done by the Pathxi,yir`,r

′ (y0, yi,U) formulæ

(14), that holds whenever T U
ν is a rewriting tree, uniquely encoded by the interpretation

ν of the U variables, and y0, yi are mapped to the source and the destination of a path
from a node w ∈ nodes(T U

ν ), with label T U
ν (w) = r` to a node w′ ∈ nodes(T U

ν ), with
label T U

ν (w′) = r′, such that xi and yi are variables that occur in the bodies of r and r′,
respectively, mapped to the same variable in the characteristic term of T U

ν (Def. 4). We
describe these paths by an automaton and define Pathxi,yir`,r

′ (y0, yi,U), by translating
this automaton into a WSκS formula.

But first, let us define paths in a tree formally. Given a κ-ary tree T , a path is a
finite sequence of nodes ρ = n1, . . . , n` ∈ nodes(T ), such that, for all i ∈ [1, `− 1], ni+1

is either the parent (ni = ni+1αi) or a child (ni+1 = niαi) of ni, for some αi ∈ [1, κ].
The path is determined by the source node and the sequence (α1, d1) . . . (α`−1, d`−1)
of directions (αi, di) ∈ [1, κ]×{↑, ↓}, with the following meaning: di =↑ if ni+1αi = ni
and di =↓ if ni+1 = niαi. Given two distinct nodes w1, w2 ∈ nodes(T ), there is a
unique minimal path from w1 to w2, labeled by a sequence denoted as ρ(w1, w2). This
path climbs from w1 to the greatest common prefix w of w1 and w2, before descending
from w to w2.

A path automaton is a tuple A = (Q, I, F, δ), where Q is a set of states, I, F ⊆ Q
are the sets of initial and final states, respectively, and δ ⊆ Q × [1, κ] × {↑, ↓} × Q
is a set of transitions q

(α,d)−−−→ q′, with α ∈ [1, κ] being a direction and d ∈ {↑, ↓}
indicating whether the automaton moves up or down in the tree. A run of A over
ω = (α1, d1) . . . (αn−1, dn−1) is a sequence of states q1, . . . , qn ∈ Q such that q1 ∈ I

and qi
(αi,di)−−−−→ qi+1 ∈ δ, for all i ∈ [1, n− 1]. The run is accepting if and only if qn ∈ F .

The language L(A) of A is the set of sequences over which A has an accepting run.



A path automaton A = (Q, I, F, δ) corresponds (Lemma 2) to the formula in Figure
6, that can be effectively built from the description of A. Here Q = {q1, . . . , qL} is the

∆A(x, y,Y)
def
=

∧
1≤i 6=j≤L

∀z.
(
¬Yi(z) ∨ ¬Yj(z)

)
∧
∨
qi∈I

Yi(x) ∧
∨
qj∈F

Yj(y) ∧ (16)

L∧
i=1

∀z . z 6= y ∧ Yi(z)→∨
j:qi

(α,↓)−−−→qj

Yj(z.α) ∨
∨

j:qi
(α,↑)−−−→qj

∃z′ . z′.α = z ∧ Yj(z′) ∧ (17)

L∧
j=1

∀z . z 6= x ∧ Yj(z)→∨
i:qi

(α,↓)−−−→qj

∃z′ . z′.α = z ∧ Yi(z′) ∨
∨

i:qi
(α,↑)−−−→qj

Yi(z.α) (18)

Fig. 6. Definition of the Path Automaton formula ∆A(x, y,Y)

set of states of A and Y = 〈Y1, . . . , YL〉 are second order variables interpreted as the
sets of tree nodes labeled by the automaton with q1, . . . , qL, respectively. Intuitively,
the first three conjuncts of the above formula (16) encode the facts that Y are disjoint
(no tree node is labeled by more than one state during the run) and that the run
starts in an initial state with node x and ends in a final state with node y. The fourth
conjunct (17) states that, for every non-final node on the path, if the automaton visits
that node by state qi, then either the node has a (α, ↓)-child or a (α, ↑)-parent visited

by state qj , where qi
(α,↓)−−−→ qj and qi

(α,↑)−−−→ qj are transitions of the automaton. The
fifth conjunct (18) is the reversed flow condition on the path, needed to ensure that the
sets Y do not contain useless nodes, being thus symmetric to the fourth. The following
result stems from the classical automata-logic connection5 [14, §2.10]:

Lemma 2. Given a tree T with nodes(T ) ⊆ [1, κ]∗ and a sequence ω ∈ ([1, κ]×{↑, ↓})∗
from w1 ∈ nodes(T ) to w2 ∈ nodes(T ), for each valuation ν such that ν(x) = w1 and
ν(y) = w2, we have ω ∈ L(A) ⇐⇒ ν |= ∃Y . ∆A(x, y,Y) .

Our purpose is to define path automata that recognize the paths between the node
where a bound variable is introduced and the node where the variable is instantiated, in
a given rewriting tree. This automaton is directly inferred from the syntax of the rules
in R. For each pair of rules r1, r2 ∈ R and variables z1, z2 ∈ V1 that occur in the bodies

of r1 and r2, respectively, we define the path automaton Az1,z2r1,r2

def
= (Q, Iz1r1 , F

z2
r2 , δ):

– We associate a state qdr,z to each rule r =
(
A(x1, . . . , x#A)← b

)
, each variable z

occurring (free or bound) in b and each direction d ∈ {↑, ↓}. The intuition is that
the automaton visits the state qdr,z while going up or down, as indicated by the
direction d, currently tracking variable z in rule r.

5 A similar conversion of tree walking automata to MSO has been described in [12].



(b)(a)

(2, ↓)

q
↓
2,x1

q
↓
1,y2

(2, ↓)

(1, ↓)
q
↓
1,y1

q
↓
4,x

(1, ↓)
q
↓
3,x1

(2, ↓)

q
↓
3,x2

q
↓
2,x2

q
↓
4,x

(2, ↓)
(1, ↓) (1, ↓)

Fig. 7. Path Automata Recognizing the Instantiation Paths from Example 1

– The sets of initial and final states are Iz1r1
def
= {qdr1,z1 | d =↑, ↓} and F z2r2

def
= {q↓r2,z2}.

In other words, the automaton starts to track z1 in r1, moving either up or down
and it ends tracking z2 in r2, while moving down.

– The transitions are q↓r1,yj
(α,↓)−−−→ q↓r2,xj , q

↑
r2,xj

(α,↑)−−−→ q↑r1,yj and q↑r2,xj
(α,↑)−−−→ q↓r1,yj , for

any two distinct rules ri = (Aj(x1, . . . , x#(A))← bi), i = 1, 2, all α ∈ [1,#pred(b1)],
such that predα(b1) = A2(y1, . . . , y#(A2)) and all j ∈ [1,#(A2)]. Intuitively, if r1
labels the parent of the node labeled by r2 in the rewriting tree, the automaton
can move either: (i) down from tracking yj in r1 to tracking xj in r2, (ii) up from
tracking xj in r2 to tracking yj in r1, or (iii) change direction from moving up
tracking xj in r2 to moving down tracking yj in r1. In particular, the last case
might be needed to accept a path that only goes up in the tree.

Note that a run of a path automaton Az1,z2r1,r2 may have at most one change of direction,

by a rule of the form q↑r2,xj
(α,↑)−−−→ q↓r1,yj .

Example 4. The paths that track the instantiations of the variables y1 and y2 in a
rewriting tree for the term Ring() are depicted in dashed lines in Fig. 3. The path
automata that recognize these paths are given in Fig. 7a (y1) and Fig. 7b (y2). The
initial states are q↓1,y1 and q↓1,y2 , respectively, and the final state is q↓4,x in both cases,
where the labels (1-4) of the rewriting rules are the ones from Example 1. �

The lemma below shows that these automata recognize exactly the labels of the
minimal paths between two nodes:

Lemma 3. Let T ∈ TR
(
b
)

be a rewriting tree and wi ∈ nodes(T ) be nodes labeled
with the rules T (wi) =

(
Ai(xi,1, . . . , xi,#(Ai))← bi

)
= ri, for i = 1, 2. Then, for all

ki ∈ [1,#(Ai)], i = 1, 2, the following are equivalent:
1. x1,k1 and x2,k2 are substituted by the same variable during the construction of C[T ]

(Def. 4),
2. ρ(w1, w2) ∈ L(A

x1,k1, x2,k2
r1,r2 ).

The path automata A
x1,k1, x2,k2
r1,r2 are used to define the Pathz1,z2r1,r2 formulæ:

Pathz1,z2r1,r2 (x, y,U)
def
= ∃Y . ∆A

z1,z2
r1,r2

(x, y,Y) ∧ Υ (Y,U)

Υ (Y,U)
def
=
∧
d=↑,↓

∧
i:ri=(A′(x1,...,x#(A′))←b′)

∧
z∈fv(b′) ∀x . Y

d
r,z(x)→ Ui(x)

The formula Υ (Y,U) above states that all nodes labeled with a state qdr,z during the run
must be also labeled with r in the rewriting tree given as input to the path automaton.
The lemma below proves that Φ(X,X′,U) (12) is indeed a flow formula (Def. 5):



Lemma 4. For each model ν of RTree(U), we have ν |= Φ(X,X′,U) if and only
if σX

ν = •t and σX′
ν = t• for some transition t of N (T U

ν ).

Together with Lemma 1, this ensures that the trap and mutex invariant of the
parametric system described by b and R are defined by the TrapInvΦ(X,U) and
MutexInvΦ(X,U) formulæ, respectively. Hence a sufficient condition that proves a
safety property of the parametric system described by b and R is the unsatisfiability
of a WSκS formula, obtained from the syntax of b and R:

Theorem 1. Let b be closed behavioral term, R be a rewriting system and E(X,U) be a
WSκS formula. The behavior N (T U

ν ) is safe w.r.t. the set {σX
µ | µ |= E(X,U), µ(U) =

ν(U)}, for any valuation ν, if the formula RTree(U)∧TrapInvΦ(X,U)∧MutexInvΦ(X,U)∧
E(X,U) is unsatisfiable.

In particular, we have experimented with error sets defined by the DeadLockΦ(X,U)
and CriticalSectionΞ(X,U) formulæ, for some critical section given by Ξ ∈

⋃K
i=1 Si.

5 Experimental Evaluation

We implemented the structural invariant synthesis in a prototype tool6. Table 1 shows
the results of checking deadlock freedom in all test cases and absence of critical section
violations, for those test cases where a critical section was defined (otherwise marked
n/a). The 2nd column gives the number of states in the system, in the form n1×. . .×nK ,
where ni is the number of states in the i-th component type and K is the number of
component types. The number of rewriting rules and interactions in the specification
are given in the 3rd and 4th columns, respectively. The 5th and 7th columns report
the results of the satisfiability check (Xmeans that the formula is unsatisfiable and ×
means that a counterexample has been found, in which case safety could not be proved
using our method) for deadlock freedom and absence of critical section violations, using
the Mona v1.4-18 tool [11]. The 6th and 8th columns show the total running times (in
seconds) on an iMac 3,4 GHz with 32 GB of RAM, respectively (∞ means that Mona
has run out of memory). The 9th column gives the branching degree κ ∈ {1, 2} of trees
in the WSκS logic. Note that star and token ring systems require κ = 1, whereas the
tree-structured systems require κ = 2.

The test cases we consider are grouped according to the architectural pattern. To-
ken rings (Fig. 1a) consist of instances of the same component type, such that the out
port of a component is connected to the in port of the next component in the ring.
Dining philosophers are special cases of token rings, consisting of alternating philoso-
pher and fork instances. Stars consists of a single controller (master) sending requests
and receiving replies from one or more slaves connected to it. Concerning trees, the
tree-dfs example models a binary tree architecture traversed by a token in depth-first
order, while tree-back-root and tree-linked-leaves(-generic) go beyond trees, modeling
hierarchical systems with parent-children communication on top of which the nodes
communicate with the root and the leaves are linked in a token-ring, respectively.
These examples could not have been described using first order logic, as in [4]. The
verification problems considered could be solved in less than 1 second, with the excep-
tion of the critical section violations for the tree-linked-leaves(-generic) examples, that
require mutex, in addition to trap invariants. In particular, in the examples marked
with -generic, the initial state of the components is arbitrary. Consequently, all these
examples violate the critical section initially.

6 https://github.com/raduiosif/rtab

https://github.com/raduiosif/rtab


Table 1. Experimental Results

Example #states #rules #interaction deadlock time critical time κ
types freedom (secs) section (secs)

token-ring 2× 2 3 3 X 0.66 X 0.63 1
token-ring-generic 2× 2 5 4 X 0.75 × 0.72 1
sync-philo 2× 2 3 6 X 0.69 X 0.67 1
alt-philo-sym 3× 2 3 9 × 0.75 X 0.77 1
alt-philo-asym 3× 2 3 9 X 0.84 X 0.78 1
alt-philo-generic 3× 2 4 12 X 0.91 X 0.87 1
star 2× 2 3 4 X 0.58 n/a - 1
star-ring 2× 3× 3 3 9 X 0.75 X 0.76 1
star-ring-generic 2× 3× 3 5 12 X 0.84 × 0.88 1
tree-dfs 2× 6× 2 4 6 X 0.70 n/a - 2
tree-back-root 2× 2 3 5 X 0.60 n/a - 2
tree-linked-leaves 2× 2× 4× 3 4 10 X 1.05 X 1.21 2
tree-linked-leaves-generic 2× 2× 4× 3 7 16 X 1.31 × 1.73 2

6 Related Work

Traditionally, verification of unbounded networks of parallel processes considers known
architectural patterns, typically cliques or rings [10,6]. Because the price for decidabil-
ity is drastic restrictions on the shape of architectures [3], more recent works propose
practical semi-algorithms, e.g. regular model checking [13,1] or automata learning [7].
Here the architectural pattern is implicitly determined by the class of language recog-
nizers: word automata encode pipelines or rings, whereas tree automata describe trees.
A first attempt at specifying architectures by logic is the interaction logic of Konnov et
al. [15], which is a combination of Presburger arithmetic with monadic uninterpreted
function symbols, that can describe cliques, stars and rings. More structured architec-
tures (pipelines and trees) can be described using a second-order extension [17]. As
such, these interaction logics are undecidable and have no support for automated ver-
ification. Recently, interaction logics that support the verification of safety properties
by structural invariant synthesis have been developed. These logics use fragments of
first order logic with interpreted function symbols that implicitly determine the shape
of the architecture [5,4].

7 Conclusions and Future Work

We present a formal language for the specification of distributed systems parameterized
by the number of replicated components and by the shape of the coordinating architec-
ture. The language uses inductive definitions to describe systems of unbounded size. We
propose a verification method for safety properties based on the synthesis of structural
invariants able to prove deadlock freedom for a number of non-trivial models.
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