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Space-filling designs with a Dirichlet distribution for mixture experiments

Introduction

Mixture experiments consist in varying the proportions of some components involved in a physicochemical phenomenon, and observe the resulting change on the response. The proportions of the mixture components vary between 0 and 1 and they must sum to 1 for each run in the experiment. The experimental region is reduced to a (d-1)-dimensional simplex,

= , … , | + ⋯ + = 1, ≥ 0 ,
where is the proportion of the kth component, = 1, … , ..

The purpose of design for mixture experiments is to define a set of points in the simplex to catch as much information about the response as possible. Since [START_REF] Scheffé | Experiments with Mixtures[END_REF] many authors have investigated designs for mixture experiments. The pioneers [START_REF] Scheffé | Experiments with Mixtures[END_REF][START_REF] Kiefer | Optimum designs for regression model, II[END_REF][START_REF] Cornell | Experiments with Mixtures, designs, models, and the analysis of mixture data[END_REF], defined optimal designs for linear and quadratic mixture models. An alternative approach of modelfree designs is proposed by [START_REF] Wang | Number theoretic methods in applied statistics (II)[END_REF] and [START_REF] Fang | Number-theoretic Methods in Statistics[END_REF]. The goal is to uniformly cover the experimental region. The main idea is to generate a uniform design on the (d-1) dimensional unit cube as explained in [START_REF] Hickernell | A generalized discrepancy and quadrature error bound[END_REF] or in [START_REF] Fang | Design Modeling for Computer Experiments[END_REF]. Then they apply a mapping function to put the points in the simplex . Following this principle, many articles suggested improvements specially to take into account complex constraints on the components, Fang and Yang (2000), [START_REF] Prescott | Nearly uniform designs for mixture experiments[END_REF], Borkowski and Piepe (2009), [START_REF] Ning | Discrepancy for uniform design of experiments with mixtures[END_REF], [START_REF] Liu | Construction of uniform designs for mixture experiments with complex constraints[END_REF].

The former design in the unit cube is uniform in the sense that the points minimize a discrepancy criterion. The discrepancy measures the distance between uniform distribution and the empirical distribution of the design points. It is not guarantee to conserve the uniformity after the mapping function. Some authors defined criteria to assess the uniformity of design for mixture experiments. [START_REF] Fang | Number-theoretic Methods in Statistics[END_REF] proposed to use the mean square distance (MSD), Borkowski and Piepe (2009) suggested the root mean squared distance, the maximum distance and the average distance, [START_REF] Chuang | Uniform design over general input domains with applications to target region estimation in computer experiments[END_REF] defined the central composite discrepancy. All these criteria require to compute the distance between the design points and the points of a much larger uniform set of points. The computational cost limits their usefulness in practice. To avoid this problem, [START_REF] Ning | Discrepancy for uniform design of experiments with mixtures[END_REF] generalized the star discrepancy and proposed a new discrepancy, DM2_Discrepancy, to measure the uniformity of designs for mixtures. They also gave a computational formula of the DM2_discrepancy only based on the design points, which is useful in practice, specially to use it in an optimization algorithm to build a uniform design for mixture experiments.

In the same way, we defined in this paper a new criterion to measure the distribution of the design points in the simplex . The purpose is to obtain uniform designs, and more generally designs with a Dirichlet distribution. Depending on its parameters, the Dirichlet distribution allows to obtain symmetric and asymmetric distributions, designs with points uniformly spread in the simplex or more concentrated in the center. We used the Kullback-leibler (KL) divergence to measure the difference between the design point distribution and the Dirichlet distribution. The resulting criterion is an estimator of the KL divergence computed with the design points. The KL divergence has already been used to define space-filling criteria but for a hypercube experimental domain (Jourdan andFranco 2009, 2010). The target distribution was the uniform distribution on the unit hypercube and the criterion was reduced to the estimation of the Shannon entropy. In this paper, we adapt the criterion to the Dirichlet distribution.

In section 2, we define the criterion from the Kullback-leibler divergence and the Dirichlet distribution. In section 3, we propose two methods to estimate the criterion. In section 4, we give some numerical examples.

Design points with a Dirichlet distribution

Suppose that the design points , … , , are independent observations of the random vector = , … , with absolutely continuous density function concentrated on the simplex . The aim is to select the design points in such a way as to have the corresponding empirical distribution "close" to the Dirichlet distribution. The aim is to generate points in the simplex with a distribution as close as possible of a Dirichlet distribution. On Figures 2 and3 (starting design), we can see that a simple random generation of the Dirichlet distribution is not efficient to obtain a good point distribution. Especially in the case of the flat Dirichlet distribution (Fig. 2a and3d), the points do not uniformly cover the simplex: some points are very close to each other while some areas are empty.

We defined a criterion to measure the "distance" between the point distribution and the Dirichlet distribution. The criterion is then used in an optimization algorithm to build a set of points with the expected distribution.

There are different ways to measure the difference between two distributions. In this paper, we use the Kullback-Leibler divergence to evaluate the deviation between two probability density functions and , , , = -./ 0 1
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where is the density function of the Dirichlet distribution and is the density function of the design points. This integral can be written as the expected value of a random vector with Dirichlet distribution, , , = 6 7./ 0 18.

If we consider that the design points 9 = , … , are i.i.d. realizations of a Dirichlet distribution, the Monte Carlo method gives an unbiased and consistent estimator, , : , = 1 ; log ? -log ? .
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By replacing g with the Dirichlet density function, we obtain,

, : , = 1 ; Blog ? -log C" ' # $ % D + logE! FG 1 A '%
with ' ≠ 0, the kth component of the ith design point, i=1,…,n and k=1,…,d.

If the Dirichlet distribution is symmetric, then

, : , = 1 ; log ? A '% - & -1 ; ; log ' % A '% + logE! F 2
This expression is not a computational formula since the density function is unknown. There are two common ways to estimate integral , , : the plug-in estimate which consists in replacing the density function by its kernel estimate, and the nearest-neighbor estimate.

The two estimations are no more unbiased. However, having a bias is not a problem in our application, if the bias is fixed for a given and . The goal is not to obtain an accurate estimate of the integral but a criterion to compare two set of points in the optimization algorithm. We say that a design 9 is better than a design 9 J if , : , ≤ , : J , with and J the density functions associated to 9 and 9 J respectively.

The optimization algorithm is an adaptation of the exchange algorithm described in 

Estimation of the criterion

In this section we propose two methods to estimate the unknown density function f in (1) and (2). In each case we explain our choices (kernel, bandwidth, k in the k-nearest neighbor distance) and we give a computational formula for the criterion.

Plug-in estimate

The unknown density function f is estimated with the design points 9 = , … , by a kernel method [START_REF] Scott | Multivariate Density Estimation: Theory, practice and visualization[END_REF])

: = 1 |L| /J ; NEO /J -? F A '% ,
where N is a multivariate kernel and O is the bandwidth matrix (symmetric and positive definite matrix).

Choice of the bandwidth

The choice of the bandwidth matrix has a great influence on the accuracy of the estimation. [START_REF] Joe | Estimation of entropy and other functional of multivariate density[END_REF] shows that in the case where is estimated by a kernel method, the bias in the estimation of , , depends on the sample size , the dimension , and the bandwidth matrix O. When constructing an optimal design, the size and the dimension are fixed. The bandwidth still needs to be fixed so that the bias does not vary during the optimization algorithm.

Usually the bandwidth matrix is chosen to be proportional to the covariance matrix of the data. This solution implies that O varies during the optimization algorithm. An idea to fix it, is to replace the covariance matrix of the data by the target covariance matrix, i.e the covariance matrix of the Dirichlet distribution. Unfortunately, this matrix is singular. Then, even if the variables are correlated, we simplify the bandwidth matrix into a diagonal matrix with the Scott's rule (1992), O = PQ Eℎ J , … , ℎ J F with ℎ = / ST U V . As previously, the estimation of the standard deviation of the th component, U V changes at each iteration of the optimization algorithm. In order to fix the bias, we replace it with the standard deviation of the target distribution,

U V = 1 & * W & & * -& & * + 1 , = 1, … , .

Choice of the kernel

It is known that the shape of the kernel has a minor influence on the estimation (Silverman 1986). We have chosen to use a multidimensional Gaussian kernel,

N X = 2Y /J Z J ‖X‖² .
A kernel of finite support (Epanechnikov, uniform) might have seemed more appropriate for the Dirichlet distribution. But, in our application, the kernel function has input values X in the interval ]0, /ℎ J ^. This interval becomes very large when the size and the dimension increase, and the probability for X to be inside the kernel support then becomes very low. The estimation of is then almost constant during the optimization process, and the criterion therefore does not allow to compare the designs.

Finally, To determine the value, we built 30 optimal designs with the Cnn criterion with & = 1 and different values ok . Table 1 gives the squared correlation between the DM2 criterion and the value used to build the 30 designs. The square correlation is very small. It seems that the choice of has no impact on the resulting design. Hereafter, we fix it to = 1. In the uniform distribution case & = 1 (Fig. 2b&c, Fig. 3b&c), the design points explore in a uniform fashion the experimental domain. The designs obtained with Cnn are not so far from a regular grid (Fig. 2c and3c). In the general case (Fig. 3), the point distributions of the resulting designs are better than those of the initial designs in the sense that there are no more points close to each other and no more empty area. In all cases, the Ckern criterion tends to put the points on the boundaries while the points obtained with Cnn are more concentrated in the middle. If we constraint the algorithm to put points near the boundaries, it degrades the Cnn criterion. Inversely, more points in the middle degrades the Ckern criterion. Indeed, we see that the minimum value is reached for & = 1 for the designs built with criterion Cnn. On the other hand, for the designs built with criterion Ckern, the minimum value is reached for & = 3. This confirms the previous conclusions, namely that criterion Ckern tends to push the points towards the edges of the simplex and that criterion Cnn with & = 1 corresponds well to a uniformity criterion. In order to compare the three criteria (Ckern, Cnn with & = 1 and DM2) in the case of the uniform distribution, we build 30 designs with = 3 and = 30 by optimizing criterion DM2 with the optimization process with the same starting designs and the same number of iterations. Figure 5 gives the boxplots of the three criteria calculated on the three type of designs. Of course, each type of design optimizes its own criteria. We notice that Cnn and DM2 designs have a behavior quite close. This reinforces the previous conclusion and allows us to conclude that criterion Cnn is more appropriate than criterion Ckern to construct uniform designs. The interest of this criterion compared to the DM2 criterion, is that it also allows to obtain designs with distributions other than the uniform distribution. In particular, it is possible to construct designs with points concentrated in the middle of the simplex or asymmetric and which have a better distribution than a simple random sampling following the corresponding Dirichlet distribution (Fig. 3e,f,h,I,k and l). 
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Design comparison

Concentrated design

An alternative to build uniform design for mixture experiments is the contraction of a simplex-lattice [START_REF] Scheffé | Experiments with Mixtures[END_REF]. The points of a simplex-lattice seem to be uniformly distributed on but most of them lies on the boundaries (Fig. 2d). The mixture is then reduced to d-1 or d-2 ingredients and one or two ingredients are not in the mixture. [START_REF] Fang | Number-theoretic Methods in Statistics[END_REF] proposed to keep the simplex-lattice pattern while moving the points towards the centroid of the simplex. An example of a lattice-simplex and the contracted design is given in Table 2. The smaller the contraction constant a, the more the points are concentrated in the center (Fig. 2e and2f). [START_REF] Ning | Discrepancy for uniform design of experiments with mixtures[END_REF] used DM2 criterion to find the best value of a. In the same way, we optimize the Ckern and Cnn criteria to determine a (Fig. 6).

The Ckern criterion is optimal for a high value of a (a=13.8). This confirms that criterion Ckern tends to push the points on the edges of the simplex. The Cnn and DM2 criteria have the same behavior and give nearly the same value (a=5.8 with Cnn and a=5.26 with DM2).

Simplex-lattice design

Contracted design

x1 x2 x3 x1 x2 x3 1 0 0 1-1/a 1/(2a) 1/(2a) 0 1 0 1/(2a) 1-1/a 1/(2a) 0 0 1 1/(2a) 1/(2a) 1-1/a 2/3 1/3 0 2/3-1/(2a) 1/3 1/(2a) 1/3 2/3 0 1/3 2/3-1/(2a) 1/(2a) 2/3 0 1/3 2/3-1/(2a) 1/(2a) 1/3 1/3 0 2/3 1/3 1/(2a) 2/3-1/(2a) 0 2/3 1/3 1/(2a) 2/3-1/(2a) 1/3 0 1/3 2/3 1/(2a) 1/3 2/3-1/(2a) 1/3 1/3 1/3 1/3 1/3 1/3
Tab.2. {3,3}-simplex lattice design and its contracted design. 

Marginal distributions

The marginal distributions of the Dirichlet distribution are Beta distributions, !Z•Q ' , ' -* . In the special case of the uniform distribution ( = 1), the distributions are !Z•Q 1, -1 . The asymmetric shape of the density function implies that the small values (proportions) of the components are overrepresented while the larger values are under-represented. The same behavior is observed with the contracted design (Fig. 7). There is no reason to make more experiments with small values. We would also like to have a uniform distribution for each of the components. But the two objectives, uniform distribution on the simplex and uniform distribution for each component, are conflicting. 

Conclusion

In this paper we proposed a new class of designs for mixture experiments. The Dirichlet distribution allows to build design points with symmetric or asymmetric distribution, uniform or contracted distribution. The Kullback-Leibler divergence is used to measure the difference between the Dirichlet and design points distributions. We used the plugin estimate with a Gaussian kernel and the nearest neighbor estimate of the Kullbeck-Leibler divergence to define two criteria to assess the design point distribution. The two criteria are simplified to be used in an optimization process to build designs for mixture experiments with a target Dirichlet distribution.

The numerical tests and the comparison with the existing criteria DM2 show that Cnn criterion performs better than Ckern criterion to build uniform designs. With the same α value, the Ckern criterion tends to push the points on the boundaries while the Cnn criterion concentrates the points in the middle of the simplex. The advantage of the criteria proposed in this article compare to the existing criteria, is that they allow the construction of designs with distributions other than uniform, symmetric or asymmetric.

However, our method presents a shortcoming. The optimization algorithm converges very slowly and requires many iterations until terminating condition is met (the same inconvenient is observed for criterion DM2). An early stopping of the optimization process may produce poor quality designs. One idea to speed up convergence is to choose the new point in a large NT-net instead of choosing it randomly in the simplex (step 2 in the exchange algorithm).

Another drawback of uniform design for mixture experiments (not only Ckern and Cnn designs) is the asymmetric distribution of each component. Having a uniform distribution on the simplex S d-1 and a symmetric distribution on each axis seem to be two conflicting objectives. A multi-objective optimization algorithm (instead of the exchange algorithm) would allow to manage this problem. The first objective function would be one of the two criteria defined in this paper. The second objective function could be defined in order to measure the difference between the distribution of each component and a symmetric distribution with support [0,1] (e.g. symmetric triangular or truncated normal distribution). As we did in this paper, the Kullback-Leibler divergence and its estimates could be used to define this second objective function.

  Dirichlet distribution is a family of continuous multivariate probability distributions parameterized by a vector of positive reals. The support of the Dirichlet distribution is the (d-1case is the symmetric Dirichlet distribution, where all of the elements making up the parameter vector have the same value &, called the concentration parameter. When & = 1, the symmetric Dirichlet distribution is equivalent to a uniform distribution over the (d-1)-simplex . It is called the flat Dirichlet distribution.

Fig. 1 .

 1 Fig.1. Average the Cnn criteria values computed on 30 Cnn designs with = 5 and = 50 and the flat Dirichlet distribution.

  Squared correlation between the DM2 criterion and the k values used to build the 30 designs with the Cnn criterion with = 1.

Figures 2

 2 Figures2 and 3give some examples of designs obtained with Ckern and Cnn criteria from the same starting design and the same number of iterations in the optimization process. The criteria work well since the design points are more evenly spread in the simplex than the original ones.

  design α=(2,4,8) (k) Ckern design α=(2,4,8).(l) Cnn design α=(2,4,8).

Fig. 3 .

 3 Fig.3. Designs with for = 3 and = 30 built with Ckern or Cnn criterion and different α values. The starting design points are i.i.d random generation for the Dirichlet distribution (left column). The middle and right columns are the resulting designs of the optimization algorithm with the same initialization given in the left column.

Figure 4

 4 Figure 4 represents the average of the DM2 criterion values for the sampling of 30 designs with = 3, = 30 and & = 0.5, 1, 3 and 5. The DM2 criterion measures the uniformity of the designs. It should therefore reach its minimum value for = 1.

Fig. 4 .

 4 Fig.4. Average of the DM2 criterion values for the sampling of 30 designs with = 3 and = 30 with = 0.5, 1, 3 and 5.

Fig. 5 .

 5 Fig.5. Boxplot of the three criteria calculated on the three type of designs with α=1.

Fig. 6 .

 6 Fig.6. Ckern, Cnn, DM2 criteria against the contraction constant a. Best values of a are 13.8 with Ckern, 5.8 with Cnn, 5.26 with DM2.

Figure 7

 7 Figure 7 illustrates the component distributions with the designs of Figure 2. Figures 7a and 7b show the three distributions of X1, X2 and X3 for the Ckern and Cnn designs.Figure 7c displays only X1 distribution of the contracted design but for different values of the contraction constant a. We can see that the marginal distributions are more uniform with the design computed with the Ckern criterion since they are very asymmetric for Cnn and contacted designs.

Fig. 7 .

 7 Fig.7. Component distributions for designs with = 3 and = 10 given in Fig.1.

  [START_REF] Jin | An efficient algorithm for constructing optimal design of computer experiments[END_REF] 

	Exchange Algorithm
	1. Simulate n points from a Dirichlet distribution 1
	2. Randomly select a new point in the simplex S d-1
	3. For i in 1 to n
	Build a new design by replacing the i th point by the
	new point
	Compute the criterion value of the new design
	Replace the current design with the new one iff the
	exchange improves the criterion
	End for i
	4. Repeat steps 2 and 3 until terminating condition is met

Let y1,…,yd be i.i.d realizations of the Gamma distribution with yk ~ Γ(αk,1). The random vector x=y/S where S=y1+…+yd has a Dirichlet distribution with parameter α=(α1,…,αd).

Nearest-neighbor estimate

Wang et al. (2006) and [START_REF] Leonenko | A class of Rényi information estimators for multidimensional densities[END_REF] proposed to estimate the Kullback-Leibler divergence with the k-nearest neighbor density estimation.

Let o , p denote the Euclidian distance between two points and p of IR d . We note o , ≤ o J , ≤ ⋯ ≤ o q , , the order distances between ∈IR d and = p , … , p s a set of points of IR d such that . o , is the k-nearest-neighbor distance to points of . The previous authors demonstrated that the following estimate of , , with the design points 9 = , … , is asymptotically unbiased and consistent,

with the digamma function, u the volume of the unit ball in IR d and 9 ' = 9\ ? . By removing the terms independent of the design points, we obtain the following criterion for a symmetric Dirichlet distribution,

g AA 9 = -; 7./ tvo ? , 9 ' w x8 Remark: The complexity of the two criteria is { J .

Numerical tests

In this section we built designs with the two criteria Ckern and Cnn and the optimization algorithm given in section 2 for different values of , and . For each configuration, we built 30 designs to take into account the randomness of the algorithm.

When the target is the uniform distribution, we use the uniform DM2 criterion defined by [START_REF] Ning | Discrepancy for uniform design of experiments with mixtures[END_REF] in order to give some conclusions about Ckern and Cnn criteria.

Impact of the k value

In order to study the impact of the value on the resulting Cnn design, different values have been tested between 1 and 2 /3. Figure 1 represents the mean value of the Cnn criterion computed with 30 designs with = 5, = 50, & = 1 and different values of . We note that the criterion decreases with . It is therefore important to use the same value of to compare the designs in the optimization process.