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Abstract

An orthotropic adhesion model is proposed based on the bi-potential method to solve adhesive contact

problems with orthotropic interface properties between hyperelastic bodies. The model proposes a

straightforward description of interface adhesion with orthotropic adhesion stiffness, whose components

are conveniently expressed according to the local coordinate system. Based on this description, a set of

extended unilateral and tangential contact laws has been formulated. Furthermore, we use an element-

wise scalar parameter β to characterize the strength of interface adhesive bonds, and the effects of

damage. Therefore, complete cycles of bonding and de-bonding of adhesive links with the account for

orthotropic interface effects can be modelled. The proposed model has been tested on cases involving

both tangential and unilateral contact kinematics. The test cases allowed emergence of orthotropic

interface effects between elastomer bodies involving hyperelasticity. Meanwhile, the model can be

implemented with minimum effort, and provides inspiration for the modelling of adhesive interface

effects in areas of applications such as biomechanics.
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1 Introduction

Interface adhesion anisotropy is widely present in nature. This phenomenon can be found for example

in pads of lizards and insects, which have been investigated both experimentally and theoretically [1–3]

by researchers in the area of biomechanics, leading to numerous applications, such as bio-mimetic

adhesive materials [4, 5]. Some of them incorporate anisotropic interface properties of adhesion [6–8].

In the area of anisotropic friction modelling, recent contributions have led to numerous orthotropic

interface models. We cite in particular the development of orthotropic slip functions [9–11], orthotropic

dry interface model [12] and elasto-plastic interface model [13]. Konyukhov et al. proposed a series

of contributions which implement anisotropic interface adhesion based on covariant description of the

interface kinematics [14–16].

In the field of numerical modelling, many efforts have been exerted to develop adhesive contact al-

gorithms [17–19], however, literature on modelling schemes accounting for interface adhesion anisotropy

is still in initial state [20, 21]. Achieving such models requires first, an appropriate description of the
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contact laws in both normal and tangential directions with a proper account for adhesion anisotropy,

and secondly, a robust and stable resolution algorithm, that can deal with the computational difficulties

inherent to the problem non-linearities. Furthermore, reversibility of the interface adhesion should also

be considered to meet requirements of real applications. In this regard, both bonding and de-bonding

processes including the interplay between adhesion forces and the state of damage of the adhesive bonds

must be taken care of. It has been demonstrated that numerous factors during the bonding process

may affect the final state of adhesion anisotropy [22]. Therefore, properly modelling the bonding and

de-bonding processes becomes one of our main focuses.

In this work, we simulate complex interface behaviours with reversible adhesion orthotropy based on

our extension of the Raous-Cangémi-Cocu (RCC) model, which is a cohesive interface model incorpo-

rating adhesion within unilateral and tangential contact scenarios [23–25]. It makes use of an adhesion

intensity parameter β, which was presented for the first time in the work of Frémond [26]. With its value

varying between 0 and 1, β indicates the level of damage of the interface adhesion bonds (0 refers to

complete separation, while 1 refers to complete bonding). Then the adhesive interface behaviour, evolv-

ing with β, derives from a free surface energy and a pseudopotential of the surface dissipation, which

describes the reversible de-bonding and bonding process as function of the geometrical configuration of

the contact interface [27]. Derivatives of the free surface energy yields a straightforward description of

the interface adhesion orthotropy, whose stiffness components are conveniently expressed according to

the local coordinate system. A set of extended unilateral and tangential contact rules incorporating the

interface adhesion orthotropy is then formulated.

Another difficulty lies in the inherently severe non-linearities due to contact dynamics. In fact, the

non-smooth and multivalued nature of the orthotropic adhesive interface law gives rise to significant

challenges in numerical resolution. It is thus necessary to adopt robust, and stable algorithms to

ensure iteration convergence, solution accuracy and balanced efficiency. Methods based on penalty

[28], Lagrange multiplier [29] approaches and augmented Lagrangian method [30, 31] are all general

candidates for numerical treatment of contact constraints. Here, we propose a bi-potential theory

based on the augmented Lagrangian method for solving contact problems which was developed to

deal with implicit standard materials (ISM) [32, 33]. In comparison to the classical methods, the bi-

potential framework combines two variational inequalities of the unilateral contact and friction law

into a single displacement based variational principle with a single inequality. First introduced in

the 1990s, it has recently been extended to problems involving hyperelastic or elastic-plastic contact

and impact [34–37], and interface wear [38,39]. The bi-potential contact algorithm implemented in this

work, according to the basic relations of contact geometry, belongs to the category of “node-to-segment”

(NTS) approaches. These approaches represent a relatively balanced solution combining implementation

simplicity and resolution accuracy. Comparative contact algorithms include sequential multi-pass NTS

approaches which also offer satisfactory accuracy, and more recently, the virtual-slave-node-to-segment

(VTS) approach developed by Zavarise et al. [40–43], which opens a new way to the accurate assessment

of contact interface forces requiring only single-pass scheme.

In this work, an orthotropic extension of the RCC surface energy model is proposed. The extended

tangential adhesive law can be graphically interpreted by a cone with elliptical cross section. Then,

we incorporate adhesion into the classical unilateral law and Coulomb friction rule to form a complete

contact law. The problem of orthotropic adhesive contact is then solved using bi-potential method.

The article is organized as follows: in Section 2, after a brief description of the contact kinematics,

we present the complete framework of the orthotropic adhesion model of contact, which includes an

extended formulation of the unilateral and tangential rules of contact involving interface adhesion

orthotropy. Then, we present its implementation within the bi-potential framework, and provide the

formulation of the hyperelastic material used to model soft bodies. In Section 3, the complete finite
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element formulation, including the resolution algorithm, is provided. To validate the framework, we

present numerical examples in Section 4. In the end, a few concluding remarks are drawn in Section 5.

2 Problem setting

2.1 Contact kinematics

We provide in this section geometric descriptions of the contact kinematics and the relative notations.

Let’s consider two deformable bodies Bα, α = 1, 2 coming into contact. Deformation of the two bodies is

represented by ϕα, as shown in Figure 1, which maps the initial configuration to positions of the current

configuration. We assume that contact occurs at the boundaries ϕ(Γαc ) in the current configuration

where Γαc ⊂ ∂Bα are possible contact surfaces of bodies Bα.
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Figure 1: Finite deformation contact

Contact conditions need to be developed according to the current configuration. We note contact

point P2 on B2 and its projection point P1 on B1 in the current configuration, as shown in Figure 2.
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Figure 2: The closest-point projection procedure and coordinate system.

By assuming that the contact boundary describes, at least in the vicinity of the contact point, a

convex region, we can relate P2 to P1 by prescribing a minimum distance problem [44]:

d(ξ1, ξ2) =
∥∥x2 − x1(ξ)

∥∥ , (1)

where x2 and x1 are position vectors of the two points in global Cartesian coordinates xyz. ξ = (ξ1, ξ2)

denotes parametrization of the boundary ϕ(Γ1
c) via the convective coordinates [45–48]. d(ξ1, ξ2) can be
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used to define the gap between the two bodies. To make Eq.(1) valid, x1 needs to satisfy the following

condition:
∂

∂ξα
d(ξ1, ξ2) =

x2 − x1(ξ1, ξ2)

‖x2 − x1(ξ1, ξ2)‖
· x1

,α(ξ1, ξ2) = 0, with α = 1, 2, (2)

where x1
,α(ξ1, ξ2) is the tangent vector aα. Be applying cross product between tangent vectors, we can

write the normal vector n as follows:

n =
a1 × a2

||a1 × a2||
, (3)

once the first term of Eq.(2) is aligned to the same direction as n, we consider that P1 is the projection

point of P2 on B1. Therefore, the normal relative displacement or gap gn is:

gn = (x2 − x1) · n. (4)

In the of tangential movement, the path following which P2 slides on the contact surface of B1 is a

priori unknown. We know however the relative velocity vector on P2. Therefore, the path of P2 can be

obtained by integrating velocity over time. The increment of tangential relative displacement, as shown

in Figure 3, is:

dgt = aαdξ
α, (5)

with dξα = ξ̇α, tangential relative displacement can be calculated as:

gt =

(∫ t

t0

ξ̇α dt

)
aα, (6)

where t0 refers to initial time, and t the current time. Based on Eq.(6) and in order to obtain gt, we

n

ξ1

ξ2

a1

a2

dgT

φ(    )Γc
1

Figure 3: Increment of tangential path.

need to first calculate ξ̇α by using the following relation

∂

∂t
[x2 − x1(ξ1, ξ2)] · aα = [v2 − v1 − aβ ξ̇

β ] · aα + [x2 − x1(ξ1, ξ2)] · ȧα = 0, with α, β = 1, 2, (7)

where vα = ẋα. We have ȧα = vα,α + xα,αβ ξ̇
β , Eq.(7) can be developed as an expression containing ξ̇β :

(aαβ − gnbαβ)ξ̇β = [v2 − v1] · aα + gnn · vα,α, (8)

with 
gnn = x2 − x1

aαβ = aα · aβ
bαβ = xα,αβ · n

, (9)
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where aαβ and bαβ represent respectively the metric tensor and curvature tensor. Substituting ξ̇β from

Eq.(8) into Eq.(6), we can solve the tangential slip gt.

Then the contact force vector r is defined as a covariant vector, which is expressed via the con-

travariant basis surface vectors aα and n:

r = rt + rn = rαt aα + rnn, α = 1, 2, (10)

where rt and rn are respectively tangential and normal component of the contact force vector.

Let’s denote the local and global contact force vectors with respectively r and R. The relation

between contact force vectors expressed in local and global coordinate systems writes:

R = HT r, (11)

where H is the transition matrix. Here, due to the presence of adhesion on the contact interface, contact

reaction r is composed of the cumulative effects due to both dry contact and the interface adhesion,

hence

r = r̄ + r̃, (12)

in which we use r̄ to denote dry contact reactions, and r̃ contact forces due to interface adhesion. Note

that the above relation can be projected to the local coordinate system according to the normal and

tangential directions: {
rn = r̄n + r̃n

rt = r̄t + r̃t
. (13)

Generalization of the RCC model is described in Cartesian coordinates.

2.2 RCC contact model with adhesion orthotropy

We develop an improved RCC contact model to describe the effect of orthotropic adhesion between

contact surfaces. Introduced by Raous et al. [25], the original RCC model accounts for unilateral

contact, friction and adhesion, based on an energy description of the contact interface, involving a free

surface energy Ψ and a pseudo-potential of the surface dissipation Φ. Here, energy expressions Ψ and

Φ are formulated based on displacements that we project to the local system (a1,a2,n), leading to

tangential and normal components gt1, gt2 and gn:

Ψ(gt1, gt2, gn, β) =
Cn
2
g2
nβ

2 +
Ct1
2
g2
t1β

2 +
Ct2
2
g2
t2β

2 − wβ +
⋃
<+

(gn) +
⋃
Q

(β) , (14)

Φ(ġt, gn, β̇) = µ|rn − Cngnβ2|||ġt||+
b

2
|β̇|2 . (15)

In the above expressions, β is a scalar parameter that measures the intensity of adhesion [26], with

β ∈ [0, 1]. Specifically, β = 0 indicates the absence of adhesion, β = 1 refers to perfect adhesion. Hence,

any β ∈ (0, 1) implies partial adhesion between contact surfaces. Other parameters in Eqs.(14,15)

include: Ct1, Ct2 and Cn: parameters characterizing the initial adhesive stiffness when adhesion is

complete, w: decohesion energy threshold,
⋃

: indicator function that assures unilateral contact (gn >

0), and meaningful values of the degree of adhesion. The subscript Q indicates Q = {η | 0 6 η 6 1}, µ:

friction coefficient, b: surface viscosity.

Deriving the surface free energy Eq.(14), we obtain the expression of the normal force of adhesion:
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radn = Cngnβ
2 , (16)

and the tangential forces of adhesion: {
radt1 = Ct1gt1β

2

radt2 = Ct2gt2β
2 .

(17)

Both adhesion forces are dependent on the degree of adhesion β. Then deriving energy functions Eq.(14)

and Eq.(15) with respect to β and β̇ yields the incremental expression of β which gives its evolution in

time: 
bβ̇ ≥ 0 with β = 0

bβ̇ = w − (Cng
2
n + Ct1g

2
t1 + Ct2g

2
t2)β with 0 < β < 1

bβ̇ ≤ w − (Cng
2
n + Ct1g

2
t1 + Ct2g

2
t2) with β = 1 .

(18)

In Eq.(18), we can see that two components may influence β: the decohesion energy w, and the

elastic energy of the interface
∑
i=n,t1,t2 Cig

2
i . When interface elastic energy prevails, β̇ becomes nega-

tive, which leads to decreasing β. Otherwise, β̇ is positive, then β increases. We can view Eq.(14) as a

variant of the penalty function method. Both methods are based on spring models with zero rest length,

except that the two springs are stretched in opposite directions. Therefore, this adhesive model can be

seen as being based on a system of spring whose elasticity incorporates damage and self-recoverability.

In this regard, the value of β measures the degree of damage of the spring, whose stiffness is adjustable

based on β. Therefore, decrease of β corresponds to the process of spring damage, leading to its rupture.

On the contrary, the inverse process results in the recovery of spring stiffness.

2.3 Adhesive contact law and friction rule

2.3.1 Modified Signorini law with adhesion

We recall the unilateral contact law, also called Signorini law, which for classical dry contact is charac-

terized by conditions of non-penetration and non adhesion. By using r̄αn to denote local normal contact

force on the point α due to dry contact, and the contact distance gn, we express the classical Signorini

law as: {
gαn = 0, r̄αn > 0

gαn > 0, r̄αn = 0
⇒ gαn r̄

α
n = 0 . (19)

The first relation eliminates geometric penetration between contact surfaces. The second inequality

indicates the absence of adhesion forces between dry contact surfaces once they are separated. For

adhesive contact, since contact forces result from both the effects of dry contact and adhesion, the

classical conditions of unilateral contact should be modified by considering Eq.(12), hence{
gαn = 0, rαn − r̃αn > 0

gαn > 0, rαn = r̃αn
⇒ gαn(rαn − r̃αn) = 0 . (20)

Here, adhesive forces r̃αn are zeros with surfaces in contact. They will appear when contact surfaces

start to separate (the second relation), and r̃αn will tend to maintain the contact surfaces together. By

considering Eq.(16), a modified Signorini condition with account for adhesion writes{
gαn = 0, rαn − Cngαnβ2 > 0

gαn > 0, rαn = Cng
α
nβ

2
⇒ gαn(rαn − Cngαnβ2) = 0 . (21)
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The obtained unilateral contact law that incorporates the effect of interface adhesion (Eq.(21)) can

be graphically represented by Figure 4.

gn

r n

glim

D
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β = 1 0 < β < 1 β = 0
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Li
ne
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 el
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tic

Figure 4: Modified Signorini law with adhesion: graphic representation of normal
adhesion forces and the level of damage evolving with contact distance

By assuming perfect adhesion (β = 1) at gn = 0, the state of interface adhesion that evolves with

gn can be distinguished by three major phases:

(i) Fully bonded adhesion: Adhesion bonds remain intact (β = 1), although minor interface

detachment gn > 0 is tolerable. Elastic energy due to gn does not exceed the decohesion threshold

w. Hence, linear relationship dominates the adhesion force vs. displacement curve (light green

area in Figure 4).

(ii) Adhesion with damage: β decreases as the decohesion energy w is surpassed. Damage starts

to accumulate on the adhesion bonds. Adhesion force r̃αn = Cng
α
nβ

2 continues to rise with gn for

a while since 0� β < 1 during the emergence of damage, before it decreases under the effect of

the quadratic term β2, with further reduced β (light cyan area in Figure 4).

(iii) Separation: β drops to zero, indicating completely broken adhesion bonds.

2.3.2 Modified Coulomb slip rule with adhesion

Classically, tangential problems are studied using the Coulomb model which is characterized by a set

of rate-independent slip rules. The original Coulomb model describes tangential force that evolves with

normal forces: {
‖r̄αt ‖ 6 µr̄αn ∀ ‖gαt ‖ = 0 (sticking)

r̄αt = −µr̄αn
gαt
‖gαt ‖

∀ ‖gαt ‖ 6= 0 (sliding) .
(22)

Here, with the consideration of adhesion, both tangential and normal forces are supplemented by con-

tributions due to interface adhesion as shown in Eq.(12), the above rules become{
‖rαt ‖ 6 µrαn ∀ ‖gαt ‖ = 0 (sticking)

rαt = −µ(rαn − r̃αn)
gαt
‖gαt ‖

+ r̃αt ∀ ‖gαt ‖ 6= 0 (sliding) ,
(23)
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in which r̃αt , the adhesive tangential force on the contact point α can be calculated by considering

Eq.(17), and the orthotropic adhesive stiffness parameters Ct1 and Ct2 defined in Eq.(14)

r̃αt = −Ct1gαt1β2 − Ct2gαt2β2 =

{
−Ct1gαt1β2

−Ct2gαt2β2

}
. (24)

With the consideration of interface adhesion, tangential forces are contributed by two mechanisms. The

first mechanism is comparable to static friction by the classical Coulomb model. It vanishes once slip

occurs. The second, arising from the effects of interface adhesion and defined by Eq.(24), gives rise to

adhesive tangential force r̃αt which emerges with surface slip.

The obtained rule of tangential contact with interface adhesion (Eqs.(23,24)) can be graphically

interpreted by Figure 5. By assuming perfect adhesion (β = 1) at gt = 0, the state of interface
β 

=
 1

0 
<

 β
 <

 1
β 

=
 0

Fully bonded adhesion

Debonding processs

Complete separation

gt

rt1
ad0

glim

gti

rt2
ad

rt1
ad

rt2
ad

rt
ad

Ct1gti

Ct2gti

-Ct2gti

-Ct1gti

Figure 5: Modified Coulomb rule with adhesion: evolution of tangential adhesive forces
and the level of damage vs. slip

adhesion that evolves with gt can be distinguished, similar to the normal scenario described in the

previous section, by three major phases: (i) fully bonded adhesion, (ii) adhesion with damage, and

(iii) separation. Here, since both the slip vector gαt and the tangential adhesion force vector r̃αt lie

in the local plane (a1,a2), their projection in the local system gives rise to expressions of tangential

displacement and forces according to axis a1 and a2. Furthermore, in orthotropic adhesion, distinct

adhesion stiffness parameters Ct1 and Ct2 can be defined in the two principal axes. Hence, the critical

tangential forces are:

r̃critt1 = −Ct1gt1β2 and r̃critt2 = −Ct2gt2β2 . (25)

The two critical forces are at the extreme points of the tangential forces ellipse, given by the equation:

(r̃αt1)
2

(Ct1β2gt)
2 +

(r̃αt2)
2

(Ct2β2gt)
2 = 1 . (26)

The ellipse intersects the x-axis at Ct1β
2gt and −Ct1β2gt. It intersects the y-axis at Ct2β

2gt and

−Ct2β2gt. To represent the adhesion orthotropy, any vector of adhesion force can be indicated on the

ellipse, pointing from its centre to one point on the periphery. Then for any given slip value gt, one

distinct ellipse can be drawn, which graphically gives a conic representation of the adhesion force by

swiping gt from 0 to +∞ as shown in Figure 5.
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2.3.3 Complete contact law with adhesion

By combining the modified Signorini law and Coulomb rule, we obtain the complete contact law with

the account for interface adhesion as follows:

Separation : gαn > 0, rα = r̃α

Sticking : gαn = 0 and ‖gαt ‖ = 0, rα = r̄α

Sliding : gαn = 0 and ‖gαt ‖ > 0, rαn = r̄αn
rαt = −µr̄αn

gαt
‖gαt ‖

− Ct1gαt1β2 − Ct2gαt2β2,

(27)

in which r̄αn refers to the normal contact force on point α when surfaces are in contact. In the Sticking

situation, since no relative motion occurs, adhesive forces are absent, contact force vector r̄α lies in the

classical Coulomb cone Kµ, defined by

Kµ = {r̄α ∈ R3 | rαn > 0, ‖rαt ‖ − µrαn 6 0}. (28)

However, with the appearance of relative motion, either following the normal direction (Separation

case), or the tangential direction (Sliding case), the contact force vector rα exceeds the boundary of

the classical Coulomb cone Kµ due to the adhesive forces r̃α. Contrary to the classical Coulomb model

for dry friction, the resultant contact force rα will not remain on the boundary of the Coulomb Cone

since the relation between ‖rαt ‖ and rαn is no longer linear, but subject to variations due to evolving

β, gαt and gαn . We cannot conclude an explicit expression relating r to g. A unified superpotential for

adhesive contact law does not exist. However, adhesive contact laws obeying Eq.(27) can be perfectly

handled by extending the augmented Lagrangian method to the bipotential framework [33].

2.4 Contact law within the bipotential method

The classical penalty function method is a common algorithm for solving constrained optimization prob-

lems. However, contact boundary conditions and friction laws represent significant numerical difficulty,

then it is tricky for the user to choose appropriate penalty factor. The method may become unstable

with numerical oscillations when the system approaches the state of contact. In contrary, the Aug-

mented Lagrangian Method is a convenient variant that overcomes the aforementioned disadvantages of

the penalty method. The Augmented Lagrangian Method was first introduced to deal with constrained

minimization problems. Since friction problems are not a minimization problem, the method has been

extended by Alart and Curnier [30], Simo and Laursen [31] to suit for problems of contact and friction.

Then based on augmented Lagrangian method, the bi-potential method has been developed to deal with

contact and friction problems using a reduced system and a predictor-corrector Uzawa algorithm. For

unilateral frictional contact, compared to classical methods that requires resolution of two minimum

problems or variational inequalities: the first for unilateral contact and the second for friction, the

bi-potential resolution unifies unilateral contact and friction, thus requires one single, unique inequal-

ity. From the perspective of contact geometry relations, the bi-potential algorithm can be attributed

to the category of “node-to-segment” (NTS) contact algorithms. Comparative algorithms include se-

quential multi-pass NTS approaches, and more recently, the improved virtual-slave-node-to-segment

(VTS) approach [40], which guarantees accurate assessment of contact interface pressure requiring only

a single-pass scheme. Comparison of the presented bi-potential method with other contact algorithms is

provided in Appendix section. Here, the bipotential fuction and inequality of contact law is as follows:

bc(−gα, rα) =
⋃
<−

(−gαn) +
⋃
Kµ

(rα) + µrαn || − gαt || (29)
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bc(−gα, r′α)− bc(−gα, rα) ≥ −gα · (r′α − rα), ∀ r′α ∈ Kµ , (30)

where
⋃

is indicator function. <− and Kµ represent respectively the negative real numbers and

Coulomb cone.

The indicator functions become null when the variables −gα and rα comply with the restraining

conditions.

We multiply both sides of the inequality (30) a parameter ρ, which is used to ensure numerical

convergence, and substitute (29) into (30):

ρµ(r′
α
n − rαn)|| − gαt ||+ [rα − (rα − ρgα)] · (r′α − rα) ≥ 0 . (31)

Taking into account the decomposition g = gt + gnn, the following inequality has to be satisfied:

(rα − r∗α) · (r′α − rα) ≥ 0, ∀ r′α ∈ Kµ , (32)

where the modified augmented contact force r∗α is defined by:

r∗α = rα − ρ(g + µ|| − gαt ||n) , (33)

rα is the projection of r∗α onto the closed convex Coulomb cone:

rα = Proj(r∗α,Kµ) . (34)

According to the three different contact states, the projection procedure becomes:

if µ||r∗αt || < −r∗αn then rα = 0 separating

elseif ||r∗αt || ≤ µr∗αn then rα = r∗α sticking

else rα = rα∗ − (
||rα∗
t ||−µr

α∗
n

1+µ2 )(
rα∗
t

||rα∗
t ||

+ µn) sliding .

(35)

2.5 Blatz-Ko hyperelastic model for soft materials

Blatz-Ko hyperelastic model [49] is widely used to describe behaviours of compressible foam type soft

materials. In practical situations, such materials undergo large deformations. To deal with the geo-

metrical transformation with large deformation, we use the deformation gradient tensor F for the soft

bodies in contact:

F = I +∇u, (36)

where I is the unity tensor and u the displacement vector. The right Cauchy-Green deformation tensor

C is defined as C = FTF, and the Green-Lagrange strain tensor E = 1
2 (C − I). In the case of

hyperelastic law, there exists a strain energy density function W which is a scale function of one of the

strain tensors, whose derivative with respect to a strain component determines the corresponding stress

component. This can be expressed by

S = 2
∂W

∂C
, (37)

where S is the second Piola-Kirchhoff stress tensor. In the particular case of isotropic hyperelasticity [50],

Eq.(37) can be written by

S = 2

[
I3
∂W

∂I3
C−1 +

(
∂W

∂I1
+ I1

∂W

∂I2

)
I− ∂W

∂I2
C

]
, (38)
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where Ii denotes the three invariants of the right Cauchy-Green deformation tensor C:

I1 = Cii; I2 = (I2
1 − CijCij)/2; I3 = det(C). (39)

The Blatz-Ko strain energy density function is given as follows:

W =
G

2

(
I2

I3
+ 2
√

I3 − 5

)
, (40)

where G is the shear modulus. By deriving the energy density (40) with respect to the three invariants,

we obtain
∂W

∂I1
= 0;

∂W

∂I2
=

G

2I3
;
∂W

∂I3
=
G

2

(
− I2

I2
3

+
1√
I3

)
. (41)

Reporting the result in the second Piola-Kirchhoff stress tensor (38) gives

S = G
(
JC−1 −C−2

)
, (42)

where J = det(F). The Cauchy stress tensor σ is calculated from the second Piola-Kirchhoff stress

tensor as follows:

σ =
1

J
FSFT . (43)

3 Numerical implementation

3.1 Finite element formulation of the nonlinear problem

Since contact between soft bodies involves treatment of nonlinear kinematic relations and hyperelastic

constitutive models (Section 2.5), we formulate the nonlinear finite element problem within the frame-

work of large deformations. In this work, we use Green-Lagrange strain tensor E which comprises both

linear and nonlinear terms, as function of nodal displacements u:

E =
(
BL +

1

2
BNL(u)

)
u, (44)

where BL is the matrix relating the linear strain term to nodal displacements, and BNL(u), relates

the nonlinear strain term to nodal displacements. From Eq.(44), the incremental form of the strain-

displacement relationship can be written as:

δE =
(
BL + BNL(u)

)
δu. (45)

Using the principle of virtual displacement, we can write the virtual work δU of the problem as:

δU = δuTMü + δuTAu̇ +

∫
V0

δETS dV − δuTFext − δuTR = 0, (46)

where the second Piola-Kirchhoff stress tensor S, in the case of Blatz-Ko material model is given in Sec-

tion 2.5 by Eq.(42). The vector of contact reaction force R is expressed in the global coordinate system.

It is obtained by considering Eqs.(11,12) and includes in particular contributions due to adhesion:

R = HT (r̄ + r̃), (47)

11



with r̄ and r̃ determined according to the contact and friction rules given in Section 2.3. Other notations

in Eq.(46) include V0, volume of the initial configuration; Fext, vector of external loads; M, mass matrix;

A, damping matrix; u̇, vector of velocity, and ü, vector of acceleration. Substituting δE from Eq.(45)

into Eq.(46) results in

δU = δuTMü + δuTAu̇ + δuT
∫
V0

(
BL + BNL(u)

)T
S dV − δuTFext − δuTR = 0. (48)

We can identify in Eq.(48) the vector of internal force:

Fint =

∫
V0

(
BL + BNL(u)

)T
SdV. (49)

Since δu is arbitrary, a set of nonlinear equations can be obtained as

Mü + Au̇ + Fint − Fext −R = 0. (50)

It is noted that the stiffness effect is taken into account by the internal force vector Fint. Eq.(50) can

be transformed into

M ü = F + R, where F = Fext − Fint −Au̇, (51)

with the initial conditions at t = 0

u̇ = u̇0 and u = u0. (52)

Taking the derivative of Fint with respect to the nodal displacements u gives the tangent stiffness

matrix as

K =
∂Fint
∂u

=

∫
V0

[(
BL + BNL(u)

)T ∂S

∂u
+
∂BT

NL(u)

∂u
S
]
dV. (53)

In addition, by considering Eqs.(45, 42), the tangent stiffness matrix can be written as the sum of the

elastic stiffness matrix Ke, the geometric stiffness (or initial stress stiffness) matrix Kσ and the initial

displacement stiffness matrix Ku:

K = Ke + Kσ + Ku, (54)

with

Ke =

∫
V0

BT
LDBL dV

Kσ =

∫
V0

∂BT
NL

∂u
S dV

Ku =

∫
V0

(
BT
LDBNL + BT

NLDBL + BT
NLDBNL

)
dV.

(55)

3.2 Numerical integration algorithm

Now we need to integrate Eq.(51) between consecutive time configuration t and t+ ∆t. The Newmark

method is the most common method which is based on a second order algorithm. However, higher

order approximation does not necessarily mean better accuracy and may even be redundant in impact

problems. When the contact conditions suddenly change (impact, release of contact), the velocity and

acceleration are not continuous, and excessive regularity constraints may lead to serious errors. For

this reason, Jean [51] has proposed a first order algorithm which is used in this work, Eq.(51) can be

transformed into:

M du̇ = F dt+ R dt . (56)

12



This algorithm is based on the following approximations:∫ t+∆t

t

M du̇ = M
(
u̇t+∆t − u̇t

)
(57)

∫ t+∆t

t

F dt = ∆t
(
(1− ξ) Ft + ξFt+∆t

)
(58)

∫ t+∆t

t

R dt = ∆tRt+∆t (59)

ut+∆t − ut = ∆t
[
(1− θ) u̇t + θ u̇t+∆t

]
, (60)

where 0 ≤ ξ ≤ 1; 0 ≤ θ ≤ 1. In the iterative solution procedure, all the values at time t+∆t are replaced

by the values of the current iteration i + 1; for example, Ft+∆t = Fi+1. A standard approximation of

Fi+1 gives

Fi+1 = Fiint +
∂F

∂u
(ui+1 − ui) +

∂F

∂u̇
(u̇i+1 − u̇i) = Fiint −Ki ∆u−Ai ∆u̇ . (61)

Finally, we obtain the recursive form of (56) in terms of displacements:

K̄i ∆u = F̄i + F̄iacc + Ri+1

ui+1 = ui + ∆u ,
(62)

where the so-called effective terms are given by

K̄
i

= ξKi +
ξ

θ∆t
Ai +

1

θ∆t2
Mi (63)

F̄
i
acc = − 1

θ∆t2
Mi(ui − ut −∆t u̇t) (64)

F̄
i

= (1− ξ)
(
Ftint + Ftext

)
+ ξ

(
Fiint + Ft+∆t

ext

)
. (65)

At the end of each time step, the velocity is updated by

u̇t+∆t =
(

1− 1

θ

)
u̇t +

1

θ∆t
(ut+∆t − ut) . (66)

By setting θ = 1
2 , this scheme is then called the implicit trapezoidal rule and it is equivalent to the

Tamma - Namburu method in which the acceleration need not be computed [52].

It is noted that Eq.(62) is strongly non-linear, because of large rotations and large displacements of

solid, for instance in multibody contact/impact problems. Besides, as mentioned above, the constitutive

law of contact with friction is usually represented by inequalities and the contact potential is even non

differentiable. Instead of solving this equation in consideration of all nonlinearities at the same time,

Feng [53] has proposed a solution strategy which consists in separating the nonlinearities in order to

overcome the complexity of calculation and to improve the numerical stability. As ∆u and R are both

unknown, Eq.(62) cannot be directly solved. First, the vector R is determined by the bi-potential

method and the adhesive model in a reduced system, which only concerns contact nodes. Then, the

vector ∆u can be computed in the whole structure, using adhesive contact reactions as external loading.

The iterative solution procedure involving contact modeling is written as Figure 6:
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-Determine mass matrix M and damping matrix C

-Read the data

-Time iteration

-Determine Fext

-Detect contact conditions in local frame
-Newton iteration

- Compute K and Fint

- Compute K and F
- Solve KΔu= F
- Compute r, r and β by bipotential and 
adhesive model in local frame,  R=HT(r+r)
- Solve KΔu= F+R
- Actualize u=u+Δu
- Check convergence criteria

if not convergence-Compute velocity
-Gather element nodal displacement
-Compute stress and strains

Figure 6: The iterative solution procedure

4 Numerical results

The algorithm presented above has been implemented within the in-house finite element code FER/Contact.

In this section, three numerical examples based on contact simulations are presented to show orthotropic

behaviours of the adhesive contact interface.

4.1 Orthotropic adhesion under compression

In this first example, we investigate the orthotropic interface adhesion of a hyperelastic soft body

submitted to compressive load against a rigid surface. As shown in Figure 7, a vertical displacement is

constantly prescribed on the upper surface of the soft body, pressing it against a fixed, rigid plate. The

test scenario allows observing consecutively two phenomena: first, the bonding process on the adhesive

interface that takes place when contact is set up, then, initiation of the de-bonding process on the

contact interface where sliding occurs due to compression induced section expansion of the soft body.

We investigate how the de-bonding area evolves with the compressive load, and how the evolution

is affected by the interface adhesion orthotropy. Characteristics of the system are described in the

following. The soft body is 6 mm high with a square section of 10× 10 mm. It is modelled by Blatz-Ko

hyperelastic material with a shear modulus of G = 2.1× 105 MPa. Adhesive interface parameters are:

w = 100 J.m−2, Ctx = 1×1011 N.m−3, Cty = 1×1010 N.m−3 and b = 0.1 N.s.m−1. Therefore, interface

adhesive behaviour is orthotropic, with adhesive stiffness along x direction significantly stronger than

that along y direction. We suppose that the system does not involve initial adhesion on the interface

(adhesion strength parameter β = 0 at time 0).

As soon as the two bodies are in contact, adhesive bonds on the contact interface begin to form.

Figure 8 depicts evolution of the adhesion strength parameter β, calculated on 6 nodes on the contact

interface, along the diagonal from the centre to the periphery. At time = 0.0015 s, β increases to 1.0,

indicating the achievement of complete bonding (Zone 1 in Figure 8) of the adhesive interface. In Zone

2, as we continue to apply compression on the soft body, its section increases due to incompressible

volume. The section expansion produces tangential interface effects involving shear stresses, which tend
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x
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z

Vertical compression

Figure 7: Orthotropic adhesion of a soft body under compression on a rigid surface

to weaken the interface adhesion. However, since the adhesives bonds are undamaged on this stage

(β = 1.0), the soft body and the rigid surface remain stuck together, and we do not observe effective

sliding on the contact interface. As the load increases, the effect of adhesion damages becomes noticeable

starting from t = 0.011 s, which corresponds to Zone 3 in Figure 8. On this stage, tangential effects

have been sufficiently accumulated, leading to initiation of damages to the adhesive bonds. As a result,

β significantly decreases, especially on remote nodes with respect to the centre, on which β falls back to

0, indicating rupture of the adhesive bonds. We also find contours of β plotted on the contact surface in

Figure 8, where the effect of adhesion orthotropy can be distinguished. Since the adhesion stiffness in

x axis Ctx is 10 times stronger than in y axis, significant resistance to interface sliding can be expected

in x axis. Therefore, rupture of the adhesive bonds first appears on the upper and lower peripheries of

the contact interface, and gradually propagates towards the centre area. Meanwhile, peripheral areas

near the left and right edges remain adhered due to stronger adhesion stiffness Ctx in x axis.

Similar effects of adhesion orthotropy can be observed in Figure 9, which shows the distribution of

the Euclidean norm of tangential adhesive forces on the contact surface and its evolution with time.

We note that within areas where de-bonding is initiated, particularly near the upper and lower edges,

the adhesion forces decrease quickly to zero. On the contrary, we observe important adhesion forces

in areas near the left and right edges since the adhesion orthotropy results in stronger resistance to

sliding motions along the x axis. In conformity with the contours of β given in Figure 8, distribution

of the adhesion forces in Figure 9 reflects identical effects of adhesion orthotropy, demonstrating better

resistance to tangential interface effects in x axis compared to y axis.
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Figure 8: Orthotropic adhesion under compression: (a) Evolution of β calculated on
6 nodes on the contact interface, along the diagonal from the centre to the periphery; (b)
Evolution of β on the contact interface and variation in the shape of the contact surface
in debonding process. In each square area, the colour progresses from dark red to blue,
which represents the damage of the adhesive strength β from perfect adhesion (β = 1) to
complete separation (β = 0).
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Figure 9: Orthotropic adhesion under compression: Distribution of the Euclidean norm

of tangential adhesive forces
∥∥∥R̃t

∥∥∥ on the contact surface and its evolution with time in the

debonding process. In each square area, the colour progresses from dark red to blue, which
represents the variation of the Euclidean norm of tangential adhesion from maximum to
zero.
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4.2 Orthotropic adhesion in shear sliding

We investigate in this example behaviours of orthotropic adhesion in a test scenario involving shear

sliding along varying orientations. Similar experimental setup which demonstrates microstructure based

orthotropic adhesion has been explored in [54]. Here, we model the interface adhesion orthotropy by

considering distinctive tangential adhesive stiffnesses Ctx and Cty, in x and y axis. The tested system

is composed of an elastomer cylinder that slides on a rigid surface under tangential load, which is

oriented along varying orientations on each test. As shown in Figure 10, the elastomer cylinder is 2 mm

high, and has a radius of 5 mm. The elastomer is modelled by Blatz-Ko material with shear modulus

G = 2.1 × 105 MPa. The adhesive interface parameters are: w = 100 J.m−2, Ctx = 5 × 109 N.m−3,

Cty = 1 × 1010 N.m−3 and b = 0.1 N.s.m−1. The simulation scenario involves 2 stages. On the first

stage, we prescribe a slight compression on the elastomer by descending its upper surface by 0.1 mm

after contact. The compression activates the bonding process which leads to complete bonding on the

adhesive interface. On the second stage, a lateral motion at the velocity of 0.1 m/s is applied on the

cylinder’s upper surface. Under the tangential effect on the contact interface, de-bonding is initiated

and progresses until the rupture of adhesive bonds, which allows the cylinder to slide on the support

surface. A group of 10 tests have been performed. On each test, we align the lateral motion to a new

direction whose angle with respect to x axis, θ, increases from 0◦ to 90◦ by increments of 10◦.

Figure 11 presents the evolution of adhesion parameters calculated on the centre node that belongs

to the contact surface of the elastomer cylinder, for the 10 calculations performed with θ ranging from

0◦ to 90◦. Positions of the centre node at the moment of adhesion rupture are reported in Figure 11(a).

Blue circles represent results based on orthotropic adhesion properties with Ctx = 0.5Cty. Red circles

are obtained considering the assumption of isotropic adhesion. For the isotropic cases, all the red circles

are arranged at the same distance from the initial position, which conforms to expectations since the

problem becomes perfectly symmetric with isotropic interface properties. For the cases with orthotropic

interface adhesion, directions presenting stronger adhesive stiffness lead to increased resistance to sliding.

Consequently, distance travelled by the centre node before de-bonding is the lowest in the case of 90◦

sliding (along y axis), and highest in the 0◦ case (along x axis). Intermediate cases can be considered

based on adhesion whose stiffness results from the combination of Ctx and Cty. Norms of the maximum

adhesion forces ||R̃max
t || at the onset of de-bonding initiation for the 10 test cases are reported in

Figure 11(b). Here, Monotonous trend can be observed for the adhesion forces as function of the

sliding orientation angle θ. This observation is within our expectations because as the sliding motion

approaches y axis, adhesion force increases since Cty is significantly higher compared to Ctx. We

underline 4 of the tested cases, corresponding to sliding angles θ = 0◦, 30◦, 60◦ and 90◦, and we report

for the underlined cases evolutions of the adhesion damage parameter β (Figure 11(c)) and adhesion

forces ||R̃t|| (Figure 11(d)) for a complete load cycle involving bonding and de-bonding. In Figure 11(c),

we note indistinguishable time history of β during the stage of adhesion bonding. However, initiation

of de-bonding does not take place simultaneously for all the cases. It arises first in the case of sliding

along x axis, in which direction the adhesion stiffness is the lowest. For the same reason, this scenario

also exhibits the lowest adhesion force at the onset of de-bonding process (blue curve in Figure 11(d)).

Comparatively, with the sliding direction approaching y axis, stronger adhesion stiffness is involved. We

observe accordingly retarded initiation of de-bonding, accompanied by increased adhesion forces (red,

yellow and purple curves in Figure 11(d)).
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Figure 10: Orthotropic adhesion in shear sliding: Problem setup and loading se-
quence(Step 1, compression and adhesion process; Step 2, sliding and de-bonding process),
where θ represents angle between sliding direction and x axis
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Figure 11: Orthotropic adhesion in shear sliding: (a) Final positions of center contact
point in isotropic/orthotropic cases with sliding angle θ = 0◦ to 90◦ respectively; (b)
Maximum tangential adhesion norms ||R̃max

t || of center contact point with sliding angle
θ = 0◦ to 90◦ respectively; (c) β evolutions of center contact point with 4 different θ
(0◦, 30◦, 60◦, 90◦); (d) Tangential adhesion force evolutions of center contact point with 4
different θ.
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4.3 Orthotropic adhesive twisting

In this example, we investigate the evolution of interface behaviours of a 3D twist tribosystem (Figure

12) by considering both isotropic and orthotropic adhesions. The system is composed of an elastomer

block that slides on a rigid surface under twisting load. The elastomer block is 3 mm high, and has a

10×10 mm square section. For the isotropic case, the tangential adhesive stiffness Ct = 1×1010 N.m−3,

and for the orthotropic case Ctx = 5×1010 N.m−3, Cty = 1×1010 N.m−3. The other adhesive interface

parameters are: w = 100 J.m−2, b = 0.1 N.s.m−1. The simulation scenario involves 2 stages. On

the first stage, we slightly compress the elastomer by lowering its upper surface by 0.1 mm. Then, on

the second stage, a twisting motion is applied to the upper surface at a rate of 20 rad/s, driving the

compressed elastomer block to twist clockwise. Blatz-Ko material is used to model the elastomer. To

prevent excessive shear deformation of the elastomer body during the twist, we apply a significant shear

modulus G = 2.1× 105 MPa.

We begin by investigating the effect of interface adhesion by comparing cases with and without the

interface adhesion orthotropy. Figures 13-14 compare respectively the evolution of adhesion damage

parameter β, and the tangential adhesion forces
∥∥∥R̃t

∥∥∥, between the isotropic and orthotropic cases during

the twisting process. For each group of comparison, 5 frames of result are extracted in chronological

order to represent the evolving twist process. This allows us to highlight for each time instant, differences

between the isotropic and orthotropic cases in terms of β and
∥∥∥R̃t

∥∥∥ distributions. In Figure 13, we use

dark red colour to indicate complete bonding of the interface adhesives. As we apply twist kinematics to

the elastomer body, tangential interface effects start to appear on the contact interface. They become

first noticeable on the outskirts of the contact area where interface sliding is most significant. Damage

to the adhesive bonds is thus initiated with decreasing β emerging at the corners of the contact interface,

where also the first de-bonded area is observed. Then with the increasing load, de-bonding propagates

from the outskirt area towards the centre, whereas the bonded region gradually shrinks until complete

disappearance. During the process, the bonded region appears within a round area in the isotropic case.

However, when adhesion orthotropy is involved, since stronger resistance to de-bonding is encountered

in the x axis where tangential adhesive stiffness is more significant, delayed de-bonding is observed

following the x axis, leading to an elliptical bonded region.

We also investigate the evolution of tangential forces on the same setup. In Figure 14, Euclidean

norms of tangential forces are depicted, allowing us to observe the evolving intensity of tangential forces

on the contact interface. Chronologically, at the beginning of load, tangential forces are most significant

on the outskirts of the contact area since linear velocity is higher. This is also where de-bonding is

initiated and propagates towards the centre. Consequently, the peak of tangential forces appears in

the form of an evolving circular band, whose radius decreases with the twist load, until gradually

disappears in the centre of rotation, leading to complete de-bonding of the interface adhesives. In

the case of orthotropic adhesion, the circular band appears in the form of an ellipse since stronger

tangential adhesive stiffness is involved in x axis, following which de-bonding requires more efforts.

This observation is in accordance with the evolution of β during the simulation.
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Figure 12: Comparison between isotropic and orthotropic adhesive twisting: Problem
setup and loading sequence (Step 1, compression and adhesion process; Step 2, twisting
and de-bonding process).
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Figure 13: Comparison between isotropic and orthotropic adhesive twisting: Evolution
of the adhesion intensity β in isotropic case and orthotropic case during the debonding
process and their shape variation of the contact surface. In each square area, the colour
progresses from dark red to blue, which represents the damage of the adhesive strength β
from perfect adhesion (β = 1) to complete separation (β = 0).
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Figure 14: Comparison between isotropic and orthotropic adhesive twisting: Evolution
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∥∥∥R̃t

∥∥∥ in two cases during the debonding process. In each

square area, the colour progresses from dark red to blue, which represents the variation of
the Euclidean norm of tangential adhesion from maximum to zero.
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5 Conclusions

In this work, we proposed an orthotropic adhesion model to deal with problems of adhesive contact

with orthotropic interface properties between hyperelastic bodies. This model has been implemented

within the bi-potential method, based on a set of extended unilateral and tangential contact laws.

The behaviour of orthotropic adhesion is described by adhesion stiffness, whose components can be

expressed according to the local coordinate system. In this model, the strength of interface adhesive

bonds and the effect of interfacial damage are characterized by a scalar parameter β, therefore an

entire bonding and debonding process of the adhesive links with the account for orthotropic interface

effects can be modelled. The proposed approach has been tested on cases involving both tangential

and unilateral contact kinematics, which allowed emergence of orthotropic interface effects between soft

bodies. Owing to the straightforward description of the contact rules, the presented approach can be

easily implemented. Therefore, immediate implementation of this orthotropic adhesion model within a

third-party software can be suggested for direct application on real problems.

Appendix

To solve the orthotropic adhesive interface law between hyperelastic bodies, a contact algorithm based

on bi-potential theory is used. This algorithm, according to its description of contact kinematics,

can be attributed to the category of “node-to-segment” approaches and, with regard to the resolution

technique that enforces the contact geometry, belongs to the class of augmented Lagrangian methods.

Let us refer to the present contact algorithm with “NTS-AL” (meaning “node-to-segment” contact

using augmented Lagrangian resolution), and compare it with other established contact algorithms

using alternative schemes of contact kinematics and resolution. In this regard, we consider the widely

adopted contact patch test introduced by Taylor and Papodopoulos [55] and compare our results with

those reported in [40]. The contact patch test investigates the capacity of a contact algorithm to

correctly evaluate the normal contact stresses on contact interface, regardless of its discretization.

As depicted in Fig.(15.a), the test case under consideration consists of two surfaces discretized with

non-conforming meshes put into normal contact. A homogeneous pressure is prescribed on the upper

side of elements that define the slave surface. We investigate both the geometrical configuration of the

contact surfaces (see Fig.(15.b-f)), and the normal pressure distribution on the contact interface (see

Fig.(16)).

As has been extensively studied by Zavarise et al. in [40] and recalled in Fig.(16), classical NTS

contact algorithms, especially those using one-pass approaches introduce significant errors to contact

stresses evaluation on non-conforming meshes. To obtain acceptable behaviours using classical NTS

description, it is necessary to implement two-pass sequential schemes in conjunction with Lagrangian

multiplier method, or, develop improved one-pass schemes, for example the VTS (“virtual-node-to-

segment”) method. VTS method extends the classical NTS approach by considering additional virtual

slave nodes on the slave surface, leading to augmented slave segments.

In Fig.(15.b-f) and Fig.(16), we confront the presented NTS-AL approach to existing methods,

which include one- or two-pass classical NTS approaches with or without contact area regularization

(“AR”), and the improved VTS method proposed by the work of Zavarise et al. We observed satisfactory

contact geometry in Fig.(15.f) and the same level of accuracy as VTS method in Fig.(16) which confirm

the capacity of augmented Lagrangian methods in enforcing geometrical relations of contact surfaces

and improving the computational accuracy.
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to the technique of area regularization; “ME” to moment equilibrium; “AL” to augmented
Lagrangian and “VTS” to the “ Virtual-slave-node-To-Segment” approach.

0 2 4 6 8 10 12
0.8

0.9

1

1.1

1.2

0 2 4 6 8 10 12
0.8

1.0

1.2

1.4

1.6

x coordinate

C
on

ta
ct

 p
re

ss
ur

e

one-pass NTS
one-pass NTS-AR
two-pass NTS-AR
one-pass VTS-ME
one-pass NTS-AL

Figure 16: Contact patch test: comparison of several contact algorithms regarding
the interface normal stresses. “NTS” refers to “node-to-segment” contact; “AR” to the
technique of area regularization; “ME” to moment equilibrium; “AL” to augmented La-
grangian and “VTS” to the “ Virtual-slave-node-To-Segment” approach. The comparison
highlights our result (“NTS-AL”) among existing established methods, based on results
reported in [40].
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