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Abstract
In this workshop paper, we revisit the notion of parallel-innermost term rewriting. We provide a
definition of parallel complexity and propose techniques to derive upper bounds on this complexity
via the Dependency Tuple framework by Noschinski et al.
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1 Introduction

In this paper, we consider the problem of evaluating the potentiality of parallelisation in
pattern-matching based recursive functions like the one depicted in Figure 1.

fn size(&self) -> int {
match self {

&Tree::Node { v, ref left, ref right }
=> left.size() + right.size() + 1,
&Tree::Empty => 0 , } }

Figure 1 Tree size computation in Rust

In this particular example, the recursive calls to left.size() and right.size() can be
done in parallel. Building on previous work on parallel-innermost rewriting [6, 4], and first
ideas about parallel complexity [1], we propose a new notion of Parallel Dependency Tuples
that capture such a behaviour, and a method to compute parallel complexity bounds.

2 Parallel-innermost Term Rewriting

The following definitions are mostly standard [3].

▶ Definition 1 (Term rewrite system, innermost rewriting). T (Σ, V) denotes the set of terms
over a finite signature Σ and the set of variables V. For a term t, the set Pos(t) of its
positions is defined inductively as a set of strings of positive integers: (a) if t ∈ V, then
Pos(t) = {ε}, and (b) if t = f(t1, . . . , tn), then Pos(t) = {ε} ∪

⋃
1≤i≤n{iπ | π ∈ Pos(ti)}.

The position ε is called the root position of term t. The (strict) prefix order < on positions
is the strict partial order given by: π < τ iff there exists π′ ̸= ε such that ππ′ = τ . For
π ∈ Pos(t), t|π is the subterm of t at position π, and we write t[s]π for the term that results
from t by replacing the subterm t|π at position π by the term s.
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For a term t, V(t) is the set of variables in t. If t has the form f(t1, . . . , tn), root(t) = f

is the root of t. A term rewrite system (TRS) R is a set of rules {ℓ1 → r1, . . . , ℓn → rn}
with ℓi, ri ∈ T (Σ, V), ℓi ̸∈ V, and V(ri) ⊆ V(ℓi) for all 1 ≤ i ≤ n. The rewrite relation of R
is s →R t iff there are a rule ℓ → r ∈ R, a position π ∈ Pos(s), and a substitution σ such
that s = s[ℓσ]π and t = s[rσ]π. Here, σ is called the matcher and the term ℓσ is called the
redex of the rewrite step. If ℓσ has no proper subterm that is also a possible redex, ℓσ is an
innermost redex, and the rewrite step is an innermost rewrite step denoted by s i→R t.

ΣR
d = {f | f(ℓ1, . . . , ℓn) → r ∈ R} and ΣR

c = Σ \ ΣR
d are the defined and constructor

symbols of R. We may omit the superscript and just write Σd and Σc if R is not of importance
or clear from the context. Finally, let Posd(t) = {π | π ∈ Pos(t), root(t|π) ∈ Σd}.

The notion of parallel-innermost rewriting dates back at least to [6]. Informally, in a
parallel-innermost rewrite step, all innermost redexes are rewritten simultaneously. This cor-
responds to executing all function calls in parallel on a machine with unbounded parallelism.

▶ Definition 2 (Parallel-innermost rewriting [4]). A term s rewrites innermost in parallel to t

with a TRS R, written s i−→∥ R t, iff s i−→+
R t, and either (a) s i→R t with s an innermost

redex, or (b) s = f(s1, . . . , sn), t = f(t1, . . . , tn), and for all 1 ≤ k ≤ n either sk
i−→∥ R tk or

sk = tk is a normal form.

▶ Example 3 (size). Consider the TRS R with the following rules modelling the code
of Figure 1.

plus(Zero, y) → y size(Nil) → Zero
plus(S(x), y) → S(plus(x, y)) size(Tree(v, l, r)) → S(plus(size(l), size(r)))

Here ΣR
d = {plus, size} and ΣR

c = {Zero, S, Nil, Tree}. We have the following parallel
innermost rewrite sequence, where innermost redexes are underlined:

size(Tree(Zero, Nil, Tree(Zero, Nil, Nil)))
i−→∥ R S(plus(size(Nil), size(Tree(Zero, Nil, Nil))))
i−→∥ R S(plus(Zero, S(plus(size(Nil), size(Nil)))))
i−→∥ R S(plus(Zero, S(plus(Zero, Zero))))
i−→∥ R S(plus(Zero, S(Zero)))
i−→∥ R S(S(Zero))

Note that in the second and in the third step, two innermost steps each are happening in
parallel. A corresponding regular innermost rewrite sequence without parallel evaluation of
redexes would have needed two more steps.

3 Finding Upper Bounds for Parallel Complexity

3.1 Notion of Parallel Complexity
We extend the notion of innermost runtime complexity to parallel-innermost rewriting.

▶ Definition 4 ((Parallel) Innermost Runtime Complexity). The size |t| of a term t is |x| = 1 if
x ∈ V and |f(t1, . . . , tn)| = 1 +

∑n
i=1|ti|, otherwise. The derivation height of a term t w.r.t.

a relation → is the length of the longest sequence of →-steps from t: dh(t, →) = sup{e |
∃ t′ ∈ T (Σ, V). t →e t′} where →e is the eth iterate of →. If t starts an infinite →-sequence,
we write dh(t, →) = ω.

A term f(t1, . . . , tk) is basic (for a TRS R) iff f ∈ ΣR
d and t1, . . . , tk ∈ T (ΣR

c , V). T R
basic is

the set of basic terms for a TRS R. For n ∈ N, we define the innermost runtime complexity
function ircR(n) = sup{dh(t, i→R) | t ∈ Tbasic, |t| ≤ n} and we introduce the parallel
innermost runtime complexity function irc∥

R(n) = sup{dh(t, i−→∥ R) | t ∈ Tbasic, |t| ≤ n}.



In the following, given a TRS R, our goal shall be to infer (asymptotic) upper bounds
for irc∥

R fully automatically. As usual for runtime complexity, we are considering only basic
terms as start terms, corresponding to a defined function called on data objects as arguments.
An upper bound for (sequential) ircR is also an upper bound for irc∥

R. We will introduce
techniques to find upper bounds for irc∥

R that are strictly tighter than these trivial bounds.

3.2 Complexity: the sequential case
We build on the Dependency Tuple framework [5], originally introduced to determine upper
bounds for (sequential) innermost runtime complexity. A central idea is to group all function
calls by a rewrite rule together rather than to regard them separately (as for termination [2]).

▶ Definition 5 (Sharp Terms T ♯). For every f ∈ Σd, we introduce a fresh symbol f ♯ of the
same arity. For a term t = f(t1, . . . , tn) with f ∈ Σd, we define t♯ = f ♯(t1, . . . , tn) and let
T ♯ = {t♯ | t ∈ T (Σ, V), root(t) ∈ Σd}.

To compute an upper bound for sequential complexity, we “count” how often each rewrite
rule is used. The idea is that the cost of the function call to the lhs of a rule is 1 + the sum
of the costs of all the function calls in the rhs, counted separately. To group k function
calls together, we use “compound symbols” Comk, which intuitively represent the sum of
the runtimes of their arguments. Then, we can use polynomial interpretations Pol with
Pol(Comk(x1, . . . , xk)) = x1 + · · · + xk for all k to compute a complexity bound [5, Thm. 27].

▶ Definition 6 (Dependency Tuple, DT [5]). A dependency tuple (DT) is a rule of the
form s♯ → Comn(t♯

1, . . . , t♯
n) where s♯, t♯

1, . . . , t♯
n ∈ T ♯. Let ℓ → r be a rule with Posd(r) =

{π1, . . . , πn} and π1 ◁ . . . ◁ πn for a total order ◁ on positions. Then DT(ℓ → r) = ℓ♯ →
Comn(r|♯π1

, . . . , r|♯πn
). For a TRS R, let DT (R) = {DT (ℓ → r) | ℓ → r ∈ R}.

▶ Example 7. For our running example, we get the following DTs:

plus♯(Zero, y) → Com0
plus♯(S(x), y) → Com1(plus♯(x, y))

size♯(Nil) → Com0
size♯(Tree(v, l, r)) → Com3(size♯(l), size♯(r), plus♯(size(l), size(r)))

The following polynomial interpretation, which orients all DTs with ≻ and all rules from
R with ≿, proves ircR(n) ∈ O(n2): Pol(plus♯(x1, x2)) = Pol(size(x1)) = x1, Pol(size♯(x1)) =
2x1 + x2

1, Pol(plus(x1, x2)) = x1 + x2, Pol(Tree(x1, x2, x3)) = 1 + x2 + x3, Pol(S(x1)) =
1 + x1, Pol(Zero) = Pol(Nil) = 1. Pol is indeed strictly decreasing along rules (proving
termination) and for any term t, Pol(t) ∈ O(|t|).

3.3 Computing Upper Bounds for Parallel Rewriting
To find upper bounds for runtime complexity of parallel-innermost rewriting, we can reuse the
notion of DTs from Def. 6 for sequential innermost rewriting along with existing techniques [5]
and implementations. We illustrate this in the following example.

▶ Example 8. In the recursive size-rule, the two calls to size(l) and size(r) happen in parallel
(this will be captured by the notion of structural independency). Thus, the cost for these two
calls is not the sum, but the maximum of the calls. Regardless of which of these two calls



has the higher cost, we still need to add the cost for the call to plus, which starts evaluating
only after both calls to size have finished. With σ as the used matcher for the rule, we have:

dh(size(Tree(v, l, r))σ, i−→∥ R)
= 1 + max(dh(size(l)σ, i−→∥ R), dh(size(r)σ, i−→∥ R)) + dh(plus(size(l), size(r))σ, i−→∥ R)
Equivalently, we can “factor in” the cost of calling plus into the maximum function:

dh(size(Tree(v, l, r))σ, i−→∥ R)
= max(1 + dh(size(l)σ, i−→∥ R) + dh(plus(size(l), size(r))σ, i−→∥ R),

1 + dh(size(r)σ, i−→∥ R) + dh(plus(size(l), size(r))σ, i−→∥ R))
Intuitively, this would correspond to evaluating plus(size(l), size(r)) twice, in two parallel

threads of execution, which costs the same amount of time as evaluating plus(size(l), size(r))
once. We can represent this maximum of the execution times of two threads by introducing
two DTs for our recursive size-rule:

size♯(Tree(v, l, r)) → Com2(size♯(l), plus♯(size(l), size(r)))
size♯(Tree(v, l, r)) → Com2(size♯(r), plus♯(size(l), size(r)))

To express the cost of a concrete rewrite sequence, we would non-deterministically choose
the DT that corresponds to the “slower thread”.

Alternatively, one could introduce a new symbol ComPark that would be interpreted as
the maximum of its arguments:

size♯(Tree(v, l, r)) → Com2(ComPar2(size♯(l), size♯(r)), plus♯(size(l), size(r)))

However, we would then have to extend the notion of Dependency Tuples and also adapt all
existing techniques in the Dependency Tuple Framework to work with ComPark.
(Here, unfortunately plus♯ must wait for size♯ to finish, so it cannot be evaluated in parallel,
and we still need Com2 to count it in addition to the size♯ calls.)

In other words, the cost of the function call to the lhs of a rule is 1 + the sum of the
costs of all the function calls in the rhs that are in structural dependency with each other.
The actual cost of the function call to the lhs in a concrete rewrite sequence is the maximum
of all the possible costs of such chains (in the prefix order < on positions) of structural
dependency. Thus, structurally independent function calls are considered in separate DTs,
whose non-determinism models the parallelism of these function calls.

The notion of structural dependency of functions calls is captured by Def. 9. Basically,
it comes from the fact that a term cannot be evaluated before all its subterms have been
reduced to normal forms (innermost rewriting/call by value).

▶ Definition 9 (Structural dependency). Let t be a term and τ1, τ2 be the positions of two
redexes in t. Let t1 = t|τ1 and t2 = t|τ2 . Then t1 structurally depends on t2 iff. τ1 < τ2 in
the prefix order < (i.e., t2 is a subterm of t1).

In particular, for any rule ℓ → r ∈ R, any substitution σ and any two positions τ1, τ2 ∈
Posd(r), r|τ1 structurally depends on r|τ2 iff. τ1 < τ2.

We thus revisit the notion of DTs, which now embed structural dependencies.

▶ Definition 10 (Parallel Dependency Tuples DT∥, PDTs). For a rewrite rule ℓ → r, we
define the set of its Parallel Dependency Tuples (PDTs) DT∥(ℓ → r): if Posd(r) = ∅, then
DT∥(ℓ → r) = {ℓ♯ → Com0}; otherwise, DT∥(ℓ → r) = {ℓ♯ → Comk(r|♯π1

, . . . , r|♯πk
) | k >

0, π1 > · · · > πk is a maximal structural dependency chain in Posd(r)}, where π1 > · · · >

πk is a maximal structural dependency chain in Posd(r) iff. ∀π ∈ Posd(r), π ≯ π1 ∧ πk ≯ π.
For a TRS R, let DT∥(R) =

⋃
ℓ→r∈R DT∥(ℓ → r).



▶ Example 11. For our recursive size-rule lhs → rhs, we have Posd(rhs) = {1, 11, 12}.
The two maximal >-chains are 11 > 1 and 12 > 1. With rhs|1 = plus(size(l), size(r)),
rhs|11 = size(l), and rhs|12 = size(r), we get the PDTs from Ex. 8.

To connect PDTs with our parallel-innermost rewrite relation i−→∥ R, we need the notion
of chain tree, which is an extension of dependency chains [2], and its complexity.

▶ Definition 12 (Chain Tree, Cplx [5]). Let D be a set of DTs and R be a TRS. Let T be a
(possibly infinite) tree whose nodes are labelled with a DT from D and a substitution. Let the
root node be labelled with (s♯ → Comn(. . .) | σ). Then T is a (D, R)-chain tree for s♯σ iff.
the following conditions hold for any node of T , where (u♯ → Comm(v♯

1, . . . , v♯
m) | µ) is the

label of the node:

u♯µ is in normal form w.r.t. R;
if this node has the children (p♯

1 → Comm1(. . .) | δ1), . . . , (p♯
k → Commk

(. . .) | δk),
then there are pairwise different i1, . . . , ik ∈ {1, . . . , m} with v♯

ij
µ i−→∗

R p♯
jδj for all

j ∈ {1, . . . , k}.

Let S ⊆ D and s♯ ∈ T ♯. For a chain tree T , |T |S ∈ N∪{ω} is the number of nodes in T la-
belled with a DT from S. We define Cplx⟨D,S,R⟩(s♯) = sup{|T |S | T is a (D, R)-chain tree for
s♯}. For terms s♯ without a (D, R)-chain tree, we define Cplx⟨D,S,R⟩(s♯) = 0.

We can now make our main correctness claim:

▶ Proposition 13 (Cplx bounds Derivation Height for i−→∥ R). Let R be a TRS, let t =
f(t1, . . . , tn) ∈ T (Σ, V) such that all ti are in normal form. Then we have dh(t, i−→∥ R) ≤
Cplx⟨DT∥(R),DT∥(R),R⟩(t♯). If i−→∥ R is confluent, then dh(t, i−→∥ R) = Cplx⟨DT∥(R),DT∥(R),R⟩(t♯).

Thus, in particular we can use polynomial interpretations in the DT framework for our
PDTs to get upper bounds for irc∥

R.

▶ Example 14 (Ex. 8 continued). For our TRS R computing the size function on trees, we
get the set DT∥(R) with the following PDTs:

plus♯(Zero, y) → Com0 size♯(Nil) → Com0
plus♯(S(x), y) → Com1(plus♯(x, y)) size♯(Tree(v, l, r)) → Com2(size♯(l), plus♯(size(l), size(r)))

size♯(Tree(v, l, r)) → Com2(size♯(r), plus♯(size(l), size(r)))

The interpretation Pol from Ex. 7 implies irc∥
R(n) ∈ O(n2). This bound is tight: consider

size(t) for a comb-shaped tree t where the first argument of Tree is always Zero and the
third is always Nil. The function plus, which needs time linear in its first argument, is called
linearly often on data linear in the size of the start term. Due to the structural dependencies,
these calls do not happen in parallel (so call k + 1 to plus must wait for call k).

▶ Example 15. Note that irc∥(n) can be asymptotically lower than irc(n), for instance in:

doubles(Zero) → Nil d(Zero) → Zero
doubles(S(x)) → Cons(d(S(x)), doubles(x)) d(S(x)) → S(S(d(x)))

The upper bound ircR(n) ∈ O(n2) is tight: from a term doubles(S(S(. . . S(Zero) . . .))),
we get linearly many calls of the linear-time function d on arguments of size linear in the
start term. However, the Parallel Dependency Tuples in this example are:

doubles♯(Zero) → Com0 d♯(Zero) → Com0
doubles♯(S(x)) → Com1(d♯(S(x))) d♯(S(x)) → Com1(d♯(x))
doubles♯(S(x)) → Com1(doubles♯(x))



Then the following polynomial interpretation, which orients all DTs with ≻ and all rules
from R with ≿, proves irc∥

R ∈ O(n): Pol(doubles♯(x1)) = Pol(d(x1)) = 2x1, Pol(d♯(x1)) =
x1,

Pol(doubles(x1)) = Pol(Cons(x1, x2)) = Pol(Zero) = Pol(Nil) = 1, Pol(S(x1)) = 1 + x1.

4 Conclusion

We have come up with a notion of parallel runtime complexity and a concrete algorithm to
compute upper bounds on this complexity on TRSs. Future work includes practical design of
parallel rewriting engines that infer rewriting schedules from parallel dependency tuples, as
well as the formalisation of complexity w.r.t. term height (considering terms as trees), which
seems to be more practical for our parallelisation needs.
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