Thaïs Baudon

Carsten Fuhs

Laure Gonnord

Parallel Complexity of Term Rewriting Systems *

Keywords: 2012 ACM Subject Classification Theory of computation → Program verification, Rewrite systems; Software and its engineering → Automated static analysis, Formal software verification Complexity analysis, Parallelism, Rewriting 1

In this workshop paper, we revisit the notion of parallel-innermost term rewriting. We provide a definition of parallel complexity and propose techniques to derive upper bounds on this complexity via the Dependency Tuple framework by Noschinski et al.

Introduction

In this paper, we consider the problem of evaluating the potentiality of parallelisation in pattern-matching based recursive functions like the one depicted in Figure 1. In this particular example, the recursive calls to left.size() and right.size() can be done in parallel. Building on previous work on parallel-innermost rewriting [START_REF] Vuillemin | Correct and optimal implementations of recursion in a simple programming language[END_REF][START_REF] Fernández | Orderings for innermost termination[END_REF], and first ideas about parallel complexity [START_REF] Alias | Estimation of Parallel Complexity with Rewriting Techniques[END_REF], we propose a new notion of Parallel Dependency Tuples that capture such a behaviour, and a method to compute parallel complexity bounds.

Parallel-innermost Term Rewriting

The following definitions are mostly standard [START_REF] Baader | Term rewriting and all that[END_REF].

▶ Definition 1 (Term rewrite system, innermost rewriting). T (Σ, V) denotes the set of terms over a finite signature Σ and the set of variables V. For a term t, the set Pos(t) of its positions is defined inductively as a set of strings of positive integers: (a) if t ∈ V, then Pos(t) = {ε}, and (b

) if t = f (t 1 , . . . , t n), then Pos(t) = {ε} ∪ 1≤i≤n {iπ | π ∈ Pos(t i)}.
The position ε is called the root position of term t. The (strict) prefix order < on positions is the strict partial order given by: π < τ iff there exists π ′ ̸ = ε such that ππ ′ = τ . For π ∈ Pos(t), t| π is the subterm of t at position π, and we write t[s] π for the term that results from t by replacing the subterm t| π at position π by the term s.

For a term t, V(t) is the set of variables in t. If t has the form

f (t 1 , . . . , t n), root(t) = f is the root of t. A term rewrite system (TRS) R is a set of rules {ℓ 1 → r 1 , . . . , ℓ n → r n } with ℓ i , r i ∈ T (Σ, V), ℓ i ̸ ∈ V, and V(r i) ⊆ V(ℓ i) for all 1 ≤ i ≤ n. The rewrite relation of R is s → R t iff
there are a rule ℓ → r ∈ R, a position π ∈ Pos(s), and a substitution σ such that s = s[ℓσ] π and t = s[rσ] π . Here, σ is called the matcher and the term ℓσ is called the redex of the rewrite step. If ℓσ has no proper subterm that is also a possible redex, ℓσ is an innermost redex, and the rewrite step is an innermost rewrite step denoted by

s i → R t. Σ R d = {f | f (ℓ 1 , . . . , ℓ n) → r ∈ R} and Σ R c = Σ \ Σ R
d are the defined and constructor symbols of R. We may omit the superscript and just write Σ d and Σ c if R is not of importance or clear from the context. Finally, let Pos

d (t) = {π | π ∈ Pos(t), root(t| π) ∈ Σ d }.
The notion of parallel-innermost rewriting dates back at least to [START_REF] Vuillemin | Correct and optimal implementations of recursion in a simple programming language[END_REF]. Informally, in a parallel-innermost rewrite step, all innermost redexes are rewritten simultaneously. This corresponds to executing all function calls in parallel on a machine with unbounded parallelism.

▶ Definition 2 (Parallel-innermost rewriting [START_REF] Fernández | Orderings for innermost termination[END_REF]). A term s rewrites innermost in parallel to t with a TRS R, written

s i -→ ∥ R t, iff s i -→ + R t,
≤ k ≤ n either s k i -→ ∥ R t k or s k = t k is a normal form.
▶ Example 3 (size). Consider the TRS R with the following rules modelling the code of Figure 1. Note that in the second and in the third step, two innermost steps each are happening in parallel. A corresponding regular innermost rewrite sequence without parallel evaluation of redexes would have needed two more steps.

3

Finding Upper Bounds for Parallel Complexity

Notion of Parallel Complexity

We extend the notion of innermost runtime complexity to parallel-innermost rewriting.

▶ Definition 4 ((Parallel) Innermost Runtime Complexity). The size |t| of a term t is |x| = 1 if x ∈ V and |f (t 1 , . . . , t n)| = 1 + n i=1 |t i |, otherwise. The derivation height of a term t w.r.t. a relation → is the length of the longest sequence of →-steps from t: dh(t, →) = sup{e | ∃ t ′ ∈ T (Σ, V). t → e t ′ } where → e is the e th iterate of →. If t starts an infinite →-sequence, we write dh(t, →) = ω. A term f (t 1 , . . . , t k) is basic (for a TRS R) iff f ∈ Σ R d and t 1 , . . . , t k ∈ T (Σ R c , V). T R basic is the set of basic terms for a TRS R. For n ∈ N, we define the innermost runtime complexity function irc R (n) = sup{dh(t, i → R) | t ∈ T basic , |t| ≤ n} and we introduce the parallel innermost runtime complexity function irc ∥ R (n) = sup{dh(t, i -→ ∥ R) | t ∈ T basic , |t| ≤ n}.
In the following, given a TRS R, our goal shall be to infer (asymptotic) upper bounds for irc ∥ R fully automatically. As usual for runtime complexity, we are considering only basic terms as start terms, corresponding to a defined function called on data objects as arguments. An upper bound for (sequential) irc R is also an upper bound for irc ∥ R . We will introduce techniques to find upper bounds for irc ∥ R that are strictly tighter than these trivial bounds.

Complexity: the sequential case

We build on the Dependency Tuple framework [START_REF] Noschinski | Analyzing innermost runtime complexity of term rewriting by dependency pairs[END_REF], originally introduced to determine upper bounds for (sequential) innermost runtime complexity. A central idea is to group all function calls by a rewrite rule together rather than to regard them separately (as for termination [START_REF] Arts | Termination of term rewriting using dependency pairs[END_REF]).

▶ Definition 5 (Sharp Terms T ♯). For every f ∈ Σ d , we introduce a fresh symbol f ♯ of the same arity. For a term t

= f (t 1 , . . . , t n) with f ∈ Σ d , we define t ♯ = f ♯ (t 1 , . . . , t n) and let T ♯ = {t ♯ | t ∈ T (Σ, V), root(t) ∈ Σ d }.
To compute an upper bound for sequential complexity, we "count" how often each rewrite rule is used. The idea is that the cost of the function call to the lhs of a rule is 1 + the sum of the costs of all the function calls in the rhs, counted separately. To group k function calls together, we use "compound symbols" Com k , which intuitively represent the sum of the runtimes of their arguments. Then, we can use polynomial interpretations Pol with

Pol(Com k (x 1 , . . . , x k)) = x 1 + • • • + x k for all k to compute a complexity bound [5, Thm. 27].
▶ Definition 6 (Dependency Tuple, DT [START_REF] Noschinski | Analyzing innermost runtime complexity of term rewriting by dependency pairs[END_REF]). A dependency tuple (DT) is a rule of the form

s ♯ → Com n (t ♯ 1 , . . . , t ♯ n) where s ♯ , t ♯ 1 , . . . , t ♯ n ∈ T ♯ . Let ℓ → r be a rule with Pos d (r) = {π 1 , . . . , π n } and π 1 ◁ . . . ◁ π n for a total order ◁ on positions. Then DT (ℓ → r) = ℓ ♯ → Com n (r| ♯ π1 , . . . , r| ♯ πn). For a TRS R, let DT (R) = {DT (ℓ → r) | ℓ → r ∈ R}.
▶ Example 7. For our running example, we get the following DTs:

plus ♯ (Zero, y) → Com 0 plus ♯ (S(x), y) → Com 1 (plus ♯ (x, y)) size ♯ (Nil) → Com 0 size ♯ (Tree(v, l, r)) → Com 3 (size ♯ (l), size ♯ (r), plus ♯ (size(l), size(r)))
The following polynomial interpretation, which orients all DTs with ≻ and all rules from R with ≿,

proves irc R (n) ∈ O(n 2): Pol(plus ♯ (x 1 , x 2)) = Pol(size(x 1)) = x 1 , Pol(size ♯ (x 1)) = 2x 1 + x 2 1 , Pol(plus(x 1 , x 2)) = x 1 + x 2 , Pol(Tree(x 1 , x 2 , x 3)) = 1 + x 2 + x 3 , Pol(S(x 1)) = 1 + x 1 , Pol(Zero) = Pol(Nil) = 1.
Pol is indeed strictly decreasing along rules (proving termination) and for any term t, Pol(t) ∈ O(|t|).

Computing Upper Bounds for Parallel Rewriting

To find upper bounds for runtime complexity of parallel-innermost rewriting, we can reuse the notion of DTs from Def. 6 for sequential innermost rewriting along with existing techniques [START_REF] Noschinski | Analyzing innermost runtime complexity of term rewriting by dependency pairs[END_REF] and implementations. We illustrate this in the following example.

▶ Example 8. In the recursive size-rule, the two calls to size(l) and size(r) happen in parallel (this will be captured by the notion of structural independency). Thus, the cost for these two calls is not the sum, but the maximum of the calls. Regardless of which of these two calls has the higher cost, we still need to add the cost for the call to plus, which starts evaluating only after both calls to size have finished. With σ as the used matcher for the rule, we have: dh(size(Tree(v, l, r))σ, i -→ ∥ R) = 1 + max(dh(size(l)σ, i -→ ∥ R), dh(size(r)σ, i -→ ∥ R)) + dh(plus(size(l), size(r))σ, i -→ ∥ R) Equivalently, we can "factor in" the cost of calling plus into the maximum function:

dh(size(Tree(v, l, r))σ, i -→ ∥ R) = max(1 + dh(size(l)σ, i -→ ∥ R) + dh(plus(size(l), size(r))σ, i -→ ∥ R), 1 + dh(size(r)σ, i -→ ∥ R) + dh(plus(size(l), size(r))σ, i -→ ∥ R))
Intuitively, this would correspond to evaluating plus(size(l), size(r)) twice, in two parallel threads of execution, which costs the same amount of time as evaluating plus(size(l), size(r)) once. We can represent this maximum of the execution times of two threads by introducing two DTs for our recursive size-rule:

size ♯ (Tree(v, l, r)) → Com 2 (size ♯ (l), plus ♯ (size(l), size(r))) size ♯ (Tree(v, l, r)) → Com 2 (size ♯ (r), plus ♯ (size(l), size(r)))
To express the cost of a concrete rewrite sequence, we would non-deterministically choose the DT that corresponds to the "slower thread".

Alternatively, one could introduce a new symbol ComPar k that would be interpreted as the maximum of its arguments:

size ♯ (Tree(v, l, r)) → Com 2 (ComPar 2 (size ♯ (l), size ♯ (r)), plus ♯ (size(l), size(r)))
However, we would then have to extend the notion of Dependency Tuples and also adapt all existing techniques in the Dependency Tuple Framework to work with ComPar k . (Here, unfortunately plus ♯ must wait for size ♯ to finish, so it cannot be evaluated in parallel, and we still need Com 2 to count it in addition to the size ♯ calls.)

In other words, the cost of the function call to the lhs of a rule is 1 + the sum of the costs of all the function calls in the rhs that are in structural dependency with each other. The actual cost of the function call to the lhs in a concrete rewrite sequence is the maximum of all the possible costs of such chains (in the prefix order < on positions) of structural dependency. Thus, structurally independent function calls are considered in separate DTs, whose non-determinism models the parallelism of these function calls.

The notion of structural dependency of functions calls is captured by Def. 9. Basically, it comes from the fact that a term cannot be evaluated before all its subterms have been reduced to normal forms (innermost rewriting/call by value).

▶ Definition 9 (Structural dependency). Let t be a term and τ 1 , τ 2 be the positions of two redexes in t. Let t 1 = t| τ1 and t 2 = t| τ2 . Then t 1 structurally depends on t 2 iff. τ 1 < τ 2 in the prefix order < (i.e., t 2 is a subterm of t 1).

In particular, for any rule ℓ → r ∈ R, any substitution σ and any two positions

τ 1 , τ 2 ∈ Pos d (r), r| τ1 structurally depends on r| τ2 iff. τ 1 < τ 2 .
We thus revisit the notion of DTs, which now embed structural dependencies.

▶ Definition 10 (Parallel Dependency Tuples DT ∥ , PDTs). For a rewrite rule ℓ → r, we define the set of its Parallel Dependency Tuples (PDTs)

DT ∥ (ℓ → r): if Pos d (r) = ∅, then DT ∥ (ℓ → r) = {ℓ ♯ → Com 0 }; otherwise, DT ∥ (ℓ → r) = {ℓ ♯ → Com k (r| ♯ π1 , . . . , r| ♯ π k) | k > 0, π 1 > • • • > π k is a maximal structural dependency chain in Pos d (r)}, where π 1 > • • • > π k is a maximal structural dependency chain in Pos d (r) iff. ∀π ∈ Pos d (r), π ≯ π 1 ∧ π k ≯ π. For a TRS R, let DT ∥ (R) = ℓ→r∈R DT ∥ (ℓ → r).
▶ Example 11. For our recursive size-rule lhs → rhs, we have Pos d (rhs) = {1, 11, 12}. The two maximal >-chains are 11 > 1 and 12 > 1. With rhs| 1 = plus(size(l), size(r)), rhs| 11 = size(l), and rhs| 12 = size(r), we get the PDTs from Ex. 8.

To connect PDTs with our parallel-innermost rewrite relation i -→ ∥ R , we need the notion of chain tree, which is an extension of dependency chains [START_REF] Arts | Termination of term rewriting using dependency pairs[END_REF], and its complexity.

▶ Definition 12 (Chain Tree, Cplx [START_REF] Noschinski | Analyzing innermost runtime complexity of term rewriting by dependency pairs[END_REF]). Let D be a set of DTs and R be a TRS. Let T be a (possibly infinite) tree whose nodes are labelled with a DT from D and a substitution. Let the root node be labelled with (s ♯ → Com n (. . .) | σ). Then T is a (D, R)-chain tree for s ♯ σ iff. the following conditions hold for any node of T , where

(u ♯ → Com m (v ♯ 1 , . . . , v ♯ m) | µ)
is the label of the node: Let S ⊆ D and s ♯ ∈ T ♯ . For a chain tree T , |T | S ∈ N∪{ω} is the number of nodes in T labelled with a DT from S. We define Cplx ⟨D,S,R⟩ (s ♯) = sup{|T | S | T is a (D, R)-chain tree for s ♯ }. For terms s ♯ without a (D, R)-chain tree, we define Cplx ⟨D,S,R⟩ (s ♯) = 0.

u ♯ µ
We can now make our main correctness claim:

▶ Proposition 13 (Cplx bounds Derivation Height for i -→ ∥ R). Let R be a TRS, let t = f (t 1 , . . . , t n) ∈ T (Σ, V) such that all t i are in normal form. Then we have dh(t, i -→ ∥ R) ≤ Cplx ⟨DT ∥ (R),DT ∥ (R),R⟩ (t ♯). If i -→ ∥ R is confluent, then dh(t, i -→ ∥ R) = Cplx ⟨DT ∥ (R),DT ∥ (R),R⟩ (t ♯).
Thus, in particular we can use polynomial interpretations in the DT framework for our PDTs to get upper bounds for irc ∥ R .

▶ Example 14 (Ex. 8 continued). For our TRS R computing the size function on trees, we get the set DT ∥ (R) with the following PDTs:

plus ♯ (Zero, y) → Com 0 size ♯ (Nil) → Com 0 plus ♯ (S(x), y) → Com 1 (plus ♯ (x, y)) size ♯ (Tree(v, l, r)) → Com 2 (size ♯ (l), plus ♯ (size(l), size(r))) size ♯ (Tree(v, l, r)) → Com 2 (size ♯ (r), plus ♯ (size(l), size(r)))
The interpretation Pol from Ex. 7 implies irc

∥ R (n) ∈ O(n 2
). This bound is tight: consider size(t) for a comb-shaped tree t where the first argument of Tree is always Zero and the third is always Nil. The function plus, which needs time linear in its first argument, is called linearly often on data linear in the size of the start term. Due to the structural dependencies, these calls do not happen in parallel (so call k + 1 to plus must wait for call k).

▶ Example 15. Note that irc ∥ (n) can be asymptotically lower than irc(n), for instance in:

Conclusion

We have come up with a notion of parallel runtime complexity and a concrete algorithm to compute upper bounds on this complexity on TRSs. Future work includes practical design of parallel rewriting engines that infer rewriting schedules from parallel dependency tuples, as well as the formalisation of complexity w.r.t. term height (considering terms as trees), which seems to be more practical for our parallelisation needs.

Figure 1

 1 Figure 1 Tree size computation in Rust

 plus(Zero, y) → y size(Nil) → Zero plus(S(x), y) → S(plus(x, y)) size(Tree(v, l, r)) → S(plus(size(l), size(r))) Here Σ R d = {plus, size} and Σ R c = {Zero, S, Nil, Tree}. We have the following parallel innermost rewrite sequence, where innermost redexes are underlined: size(Tree(Zero, Nil, Tree(Zero, Nil, Nil))) i -→ ∥ R S(plus(size(Nil), size(Tree(Zero, Nil, Nil)))) i -→ ∥ R S(plus(Zero, S(plus(size(Nil), size(Nil))))) i -→ ∥ R S(plus(Zero, S(plus(Zero, Zero)))) i -→ ∥ R S(plus(Zero, S(Zero))) i -→ ∥ R S(S(Zero))

 doubles(Zero) → Nil d(Zero) → Zero doubles(S(x)) → Cons(d(S(x)), doubles(x)) d(S(x)) → S(S(d(x)))The upper bound irc R (n) ∈ O(n 2) is tight: from a term doubles(S(S(. . . S(Zero) . . .))), we get linearly many calls of the linear-time function d on arguments of size linear in the start term. However, the Parallel Dependency Tuples in this example are:doubles ♯ (Zero) → Com 0 d ♯ (Zero) → Com 0 doubles ♯ (S(x)) → Com 1 (d ♯ (S(x))) d ♯ (S(x)) → Com 1 (d ♯ (x)) doubles ♯ (S(x)) → Com 1 (doubles ♯ (x))Then the following polynomial interpretation, which orients all DTs with ≻ and all rules from R with ≿, proves irc ∥ R ∈ O(n): Pol(doubles ♯ (x 1)) = Pol(d(x 1)) = 2x 1 , Pol(d ♯ (x 1)) = x 1 , Pol(doubles(x 1)) = Pol(Cons(x 1 , x 2)) = Pol(Zero) = Pol(Nil) = 1, Pol(S(x 1)) = 1 + x 1 .

 and either (a) s i → R t with s an innermost redex, or (b) s = f (s 1 , . . . , s n), t = f (t 1 , . . . , t n), and for all 1

 is in normal form w.r.t. R; if this node has the children (p ♯ 1 → Com m1 (. . .) | δ 1), . . . , (p ♯ k → Com m k (. . .) | δ k), then there are pairwise different i 1 , . . . , i k ∈ {1, . . . , m} with v ♯

	ij µ i -→ *	R p ♯ j δ j for all
	j ∈ {1, . . . , k}.	

* This work was partially funded by the French National Agency of Research in the CODAS Project (ANR-17-CE23-0004-01).