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Abstract

In this article, we investigate the asymptotic formation of consensus for several classes of time-
dependent cooperative graphon dynamics. After motivating the use of this type of macroscopic
models to describe multi-agent systems, we adapt the classical notion of scrambling coefficient to
this setting, leverage it to establish sufficient conditions ensuring the exponential convergence to
consensus with respect to the L∞-norm topology. We then shift our attention to consensus forma-
tion expressed in terms of the L2-norm, and prove three different consensus result for symmetric,
balanced and strongly connected topologies, which involve a suitable generalisation of the notion
of algebraic connectivity to this infinite-dimensional framework. We then show that, just as in the
finite-dimensional setting, the notion of algebraic connectivity that we propose encodes informa-
tion about the connectivity properties of the underlying interaction topology. We finally use the
corresponding results to shed some light on the relation between L2- and L∞-consensus formation,
and illustrate our contributions by a series of numerical simulations.
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1 Introduction
Since its appearance at the end of the nineteen nineties, the analysis of self-organisation and pat-
tern formation in large groups of interacting individuals has become a prominent topic in applied
mathematics. This subject was initially brought forth by the pioneering articles [36, 75] on statistical
physics oriented models for biological systems, and subsequently cemented by a wealth of contribu-
tions in the fields of automation theory and engineering, see e.g. [6, 12, 13, 45, 52, 57, 59, 74] and
references therein. In the midst of this broad academical trend, a research current led by the works
of Hegselman and Krause [41, 46] on bounded confidence models, and the groundbreaking papers of
Cucker and Smale [27, 28] on emergent behaviours, started to focus more specifically on the problem
of consensus formation. In the meantime, many of the ideas that came into existence around these
questions found their way to a large score of application areas, such as herds and flocks analysis [5, 7],
aggregation models in biology [25], decentralised control of fleets of autonomous vehicles [6, 17] or
pedestrian dynamics [26, 66]. Besides consensus problems, which by far attracted the most attention
in the literature, other families of relevant and perhaps more intricate stable patterns – such as mills
[11, 23] or rings [9] – are being investigated by communities centered around multi-agent dynamics.

Motivated by the apparent ubiquity of clustering behaviours in applied sciences, a growing litera-
ture has been devoted to the precise mathematical understanding of the mechanisms subtending this
type of pattern formation in the class of multi-agent systems. These latter colloquially refer to systems
of N ≥ 1 agents represented by points in a given configuration space – in our context the euclidean
space Rd –, which evolve according to a coupled dynamics of the form

ẋi(t) = 1
N

N∑
j=1

ψij(t, xi(t) − xj(t)). (1.1)

Here, the vector (x1(t), . . . , xN (t)) ∈ (Rd)N represents the collection of all the states of the agents at
some time t ≥ 0, while the maps ψij : R+ ×Rd → Rd defined for each pair of indices i, j ∈ {1, . . . , N},
encode nonrepulsive pairwise interactions between agents, which may depend on time, on their relative
distance and orientation, as well as on their respective labels. In this context, one is usually interested
in understanding under which circumstances solutions of (1.1) converge to consensus, namely, when
there does exist an element x∞ ∈ Rd such that

lim
t→+∞

|xi(t) − x∞| = 0,

for each agent label i ∈ {1, . . . , N}. This question has been the object of a tremendously large amount
of work – see e.g. [13, 19, 20, 29, 44, 45, 52, 59, 60, 64, 72, 73] and references therein –, whose number
can be explained by the necessity to tackle a wide variety of specific interaction rules described by the
maps (ψij)1≤i,j≤N . Some of the farthest-reaching results on this topic can be attributed to Moreau
[59] as well as to Olfati-Saber and Murray [64], while the main approaches and proof strategies to
study asymptotic clustering are outlined in the reference survey [61] by Motsch and Tadmor.

Even though the literature devoted to consensus formation is very broad, quantitative convergence
results – typically obtained by means of Lyapunov arguments that do not rely on LaSalle’s invariance
principle –, are almost exclusively based on diameter or energy decay estimates. In both cases, the
convergence towards consensus is dictated by a scalar quantity, which carries information about the
connectivity properties of the system. In the first scenario, diameter contraction estimates usually
depend on the so-called scrambling coefficient of the topology. The latter is positive whenever each
pair of agents in the system is either directly interacting, or following a common third party agent,
and thus encodes information about “local” communications in the system. It first appeared in the
theory of stochastic matrices as a way of quantifying ergodicity properties of Markov chains, and is
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discussed in the reference monograph of Seneta [71]. In the second case, energy dissipation estimates
are often expressed in terms of algebraic connectivity. This quantity – which is widespread in algebraic
graph theory – corresponds to the second smallest eigenvalue of the so-called graph-Laplacian matrix
associated with the interaction topology. It is known to provide information about the number of
connected components in the interaction graph, and allows to quantity the minimum communication
strength between agents over all connected components. As such, the algebraic connectivity carries a
fairly “global” information about the structure of the topology, and a detailed account on its many
properties in the context of undirected graph can be found in the reference article of Mohar [58].

In addition to identifying conditions ensuring the formation of consensus for systems of the form
(1.1), it is also very natural to try to understand the behaviour of such patterns in large interacting
systems, i.e. when the number N ≥ 1 of agents goes to infinity. This problem is all the more
relevant since in the common application areas of cooperative systems, the number of agents can
range between tens of thousands and millions, making frontal resolution potentially arduous from a
numerical standpoint. In the situation where the interaction maps (ψij)1≤i,j≤N do not depend on the
agent labels i, j ∈ {1, . . . , N} and are all equal to a common function ψ : R+ ×Rd → Rd, it was shown
in [22, 38, 39] that meaningful kinetic approximations formulated in terms of mean-field limits could
be proposed for (1.1), see also [67]. These latter are formulated as transport equations of the form

∂tµ(t) + divx
(
Ψ(t, µ(t))µ(t)

)
= 0, (1.2)

where the nonlocal interaction velocities driving the system are given by

Ψ(t, µ, x) :=
∫
Rd
ψ(t, y − x)dµ(y).

In this context, a rigorous embedding can be established between the microscopic system (1.1) and
its macroscopic approximation (1.2), by considering the empirical measures defined by

µN (t) := 1
N

N∑
i=1

δxi(t)

which are supported on the discrete positions (x1(t), . . . , xN (t)) ∈ (Rd)N of the agents at time t ≥ 0.
These infinite-dimensional models are usually studied by means of a variety of tools coming from
optimal transport theory – see for instance the survey [24] –, and we point the reader to [15, 65] for
standard Cauchy-Lipschitz well-posedness results for nonlocal dynamics of the form (1.2).

However when the interaction kernels (ψij)1≤i,j≤N depend explicitly on the agent labels, the stan-
dard mean-field approach is not applicable any more. Indeed, the latter can only account for systems
whose dynamics are invariant under permutations, which greatly limits the scope of admissible interac-
tion models. Motivated by this observation, several recent contributions have been aiming at studying
macroscopic approximations of (1.1) which allow for more general and possibly asymmetric interaction
functions. The corresponding approaches are based on the theory of graph limits introduced by Lovász
and Segedy in [50] – see also the corresponding monograph [49] –, and popularised by Medvedev in
[55, 56]. In this context, the discrete set of labels {1, . . . , N} allowing to discriminate between agents
becomes a continuous unit interval I := [0, 1], and the state of the system at time t ≥ 0 is represented
by a Lebesgue measurable function x(t) ∈ L2(I,Rd) which maps to each generalised index i ∈ I a
position x(t, i) ∈ Rd. In this context, the graphon dynamics corresponding to (1.1) writes as

∂tx(t, i) =
∫

I
ψ(t, i, j, x(t, i) − x(t, j))dj, (1.3)

where ψ : R+ ×I×I×Rd → Rd is a general function encoding interactions between agents, depending
on time, on their relative position and on their respective labels. At present, graphon models of the
form (1.3) are starting to emerge in the literatures related to multi-agent systems [4, 16], control
theory [10, 37], mean-field games [18, 21], and data sciences [70, 76]. We also point the reader to the
papers [16, 47], which to the best of our knowledge are currently the only ones investigating consensus
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formation problems for graphon dynamics. We also mention the much older work [12], in which the
authors intuited a consensus model with a continuum of agent labels without relying on, or referring
to, the terminology of dense graphs.

In this article, our goal is to investigate several families of sufficient conditions ensuring the for-
mation of consensus for solutions of generalised Cucker-Smale graphon models of the form

∂tx(t, i) =
∫

I
a(t, i, j)ϕ(|x(t, i) − x(t, j)|)(x(t, j) − x(t, i))dj. (1.4)

Here, the map ϕ : R+ → R+ is a smooth and bounded nonlinear interaction kernel accounting for
the distance-based magnitude of communications between agents, while the time-dependent kernel
a : R+ × I × I → [0, 1] encodes the interaction topology of the system. We stress that the latter is
not symmetric a priori, so that the fine structure of the interaction topology will be the main factor
determining what kind of convergence result one may hope to recover. Taking inspiration from the
classical dichotomy between L∞- and L2-dissipation estimates in the consensus literature, we start in
Section 3 by studying sufficient conditions ensuring the contraction of the diameter of the system

D(t) := ess sup
i,j∈I

|x(t, i) − x(t, j)|,

defined for all times t ≥ 0 along solutions of (1.4). To this end, we introduce in Section 3.1 the
following macroscopic generalisation for graphon models of the classical scrambling coefficient

η(A(t)) := ess inf
i,j∈I

∫
I

min
{
a(t, i, k), a(t, j, k)

}
dk.

Here, A(t) ∈ L(L2(I,Rd)) denotes the kernel-type adjacency operator generated by a(t) ∈ L∞(I ×
I, [0, 1]), and can be seen as the counterpart of the notion of adjacency matrix for standard graphs. By
following an original methodology relying on the theorems of Danskin and Scorza-Dragoni, combined
with a key geometric lemma on the maximisers of relaxed diameters, we show in Theorem 3.3 that

D(t) ≤ D(0) exp
(

− γR

∫ t

0
η(A(s))ds

)
, (1.5)

for all times t ≥ 0, where γR > 0 is a constant related to the minimum value taken by the nonlinear
kernel ϕ(·) when the L∞-norm of the initial datum of (1.4) is bounded by some constant R > 0. In
addition to its novelty in the context of graphon models, this contraction estimate also generalises
those already available for discrete multi-agent systems, as it does not require that the adjacency
matrix be stochastic, see e.g. [60, 61]. Building on (1.5), we proceed by showing in Theorem 3.6
that solutions of (1.4) exponentially converge to consensus in the L∞-norm topology as soon as the
scrambling coefficients η(A(·)) are persistent, in the sense that

1
τ

∫ t+τ

t
η(A(s))ds ≥ µ, (1.6)

for all times t ≥ 0 and some fixed parameters (τ, µ) ∈ R∗
+ × (0, 1]. This type of integral condition is

fairly standard in stability theory for time-varying systems, as evidenced by the monographs [53, 63].
In Section 4, we shift our focus to energy dissipation estimates involving the standard deviations

X(t) :=
(1

2

∫
I

∫
I

|x(t, i) − x(t, j)|2djdi
)1/2

,

defined for all times t ≥ 0, and which allow for a convenient investigation of L2-consensus formation.
To this end, we start in Section 4.1 by reformulating the dynamics (1.4) as the differential equation

ẋ(t) = −L(t, x(t))x(t), (1.7)

posed in the Hilbert space L2(I,Rd). Therein, we introduced the so-called graph-Laplacian operators
L(t, x) ∈ L(L2(I,Rd)) associated with the nonlinear interaction topology of the system. Taking
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inspiration from the work of Wu [79, 80, 81] on the adaptation of the notion of algebraic connectivity
to directed graphs, we propose several generalisations of this object to the setting of graphon dynamics.
For symmetric and balanced interaction topologies – see Definition 4.4 below –, we define the algebraic
connectivity of an interaction topology whose graph-Laplacian operator is L ∈ L(L2(I,Rd)) as

λ2(L) := inf
x∈C ⊥

⟨Lx, x⟩L2(I,Rd)
∥x∥2

L2(I,Rd)
, (1.8)

where C ⊂ L2(I,Rd) is the so-called consensus manifold. In the subtler and more technical case in
which the interaction topology is a disjoint union of strongly connected components – understood in
the sense of Definition 4.5 below –, it is again possible to define the algebraic connectivity λ2(L) in a
fashion that is similar to (1.8) by renormalising L ∈ L(L2(I,Rd)) using a suitable function belonging
to the kernel of its adjoint. Let it be noted that the existence of this canonical weight for graphon
models is a consequence of the recent work [16].

We then proceed by deriving three general convergence results towards consensus depending on
the nature of the interaction topology, and presented in ascending order of generality and difficulty.
We thus start in Section 4.2.1 by the simplest scenario in which the adjacency operators A(t) ∈
L(L2(I,Rd)), whose kernels are a(t) ∈ L∞(I × I, [0, 1]), define symmetric interaction topologies for
almost every time t ≥ 0. By adapting a methodology developed in [14] by the first author, we are
then able to prove in Theorem 4.8 that solutions of (1.7) exponentially converge to consensus in the
L2-norm topology, whenever the interaction topology satisfies the persistence condition

λ2

(1
τ

∫ t+τ

t
La(s)ds

)
≥ µ (1.9)

for all times t ≥ 0, in which La(t) stands for the linear graph-Laplacian

La(t) : x 7→
∫

I
a(t, i, j)(x(i) − x(j))dj,

generated by the adjacency operator A(t) at some time t ≥ 0. It is worth recalling that, for finite-
dimensional multi-agent systems, persistence conditions of the form (1.9) bearing on the smallest
eigenvalue of the averaged matrix are in fact necessary and sufficient for the exponential convergence
towards consensus, as shown in [51]. We subsequently move on in Section 4.2.2 to the more general
situation in which the interaction graph is directed, but balanced, in the sense that the in- and out-
degrees coincide at each node. Contrary to the symmetric case, we need to restrict our attention to
linear dynamics in this context. In Theorem 4.11, we show that solutions of (1.7) for which ϕ ≡ 1
and A(t) defines a balanced topology for almost all t ≥ 0 exponentially converge to consensus in the
L2-norm topology, whenever

1
τ

∫ t+τ

t
λ2(L(s))ds ≥ µ (1.10)

for all times t ≥ 0. At this point, a crucial observation has to be made regarding the persistence condi-
tions (1.9) and (1.10). Indeed, the latter – which heuristically imposes that the algebraic connectivity
of the system be positive sufficiently often – is much more restrictive than the former, which merely
requires that the average graph on every time window of length τ > 0 be strongly connected. This
requirement can be met even in the extreme case where λ2(La(t)) = 0 for almost every times t ≥ 0,
which corresponds to the scenario in which the interaction graph is disconnected at all times. This
intuition is made rigorous in Proposition 4.12, where we show that λ2(·) is in fact a concave mapping
over the space of linear operators. Finally in Section 4.2.3, we treat the more general situation in
which the adjacency operators A(t) define topologies which are disjoint unions of strongly connected
components – see Definition 4.5 below – for almost every time t ≥ 0. These are much more delicate
to handle than balanced topologies, as the system admits dissipative Lyapunov functions which are
different for each possible interaction topology. For this reason, even though the corresponding expo-
nential convergence result is supported by a suitable generalisation of the persistence condition (1.10),
we need to impose additional assumptions on the structure of the interactions to be able to compare
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the different energy functionals. The corresponding result, which builds on the methodology intro-
duced for balanced graphons combined with stability techniques for switching systems, is presented
in Theorem 4.13.

We conclude the paper in Section 5 by establishing several auxiliary results which shed light on
the interplay between consensus formation and graphon connectivity. In Section 5.1, we generalise
to symmetric graphon models one of the instrumental results about algebraic connectivity, namely
that the underlying interaction topology is strongly connected if and only if λ2(L) > 0. We then
prove in Section 5.2 a somewhat surprising result, stating that L2- and L∞-consensus formation are
in fact equivalent whenever the in-degree function associated with the graphon model is persistent in
a suitable sense. We end the article by displaying numerical illustrations of our consensus results in
Section 5.3, along with a discussion on some of the limit cases of the theory that we develop here.

The structure of the article is the following. In Section 2, we present standard notions of measure,
graphs and spectral theory, and provide a short primer on discrete multi-agent systems and graphon
models. In particular, we prove in this occasion that the convex hull of a graphon dynamics is non-
increasing, which is a new and interesting result in its own right. In Section 3, we define scrambling
coefficients for graphons, and study diameter contraction estimates and L∞-consensus formation. In
Section 4, we adopt another point of view and study the formation of L2-consensus for symmetric,
balanced, and strongly connected interaction topologies. These latter are all based on adequate gen-
eralisations of the notion of algebraic connectivity for graph-Laplacian operators. We finally conclude
the paper by proving auxiliary results and presenting numerical illustrations in Section 5.

2 Preliminaries
In this section, we recollect a series of notions pertaining to functional analysis and multi-agent
dynamics at large, all of which will be extensively used throughout the article.

2.1 Measure theory and integration

We start here by introducing some notations and results of measure theory, for which we refer the
reader to the very complete monographs [1, 33].

In what follows, given an integer n ≥ 1, we denote by L n the standard n-dimensional Lebesgue
measure defined over Rn. Letting p ∈ [1,+∞], taking a Borel set Ω ⊂ Rn and denoting by (X, ∥·∥X)
a separable Banach space, we shall use the notation Lp(Ω, X) for the space of X-valued integrable
maps with respect to L n, defined in the sense of Bochner (see e.g. [31, Chapter II]). We will also
write C0(Ω,S ) and Liploc(Ω,S ) to refer to continuous and locally Lipschitz mappings with values
in a complete separable metric space (S , dS ) respectively. Throughout this article, we will use the
notations “inf”, “sup” and “rg” to refer to the essential infimum, supremum and range of a measurable
function, all of which are understood with respect to the standard Lebesgue measure.

We state below simplified versions of the Scorza-Dragoni and Danskin theorems (see [8] and [30]
respectively), which will be used in the sequel. While these latter are both known results in modern
analysis, they are somewhat nonstandard, and we include their statements for the sake of completeness.

Theorem 2.1 (Scorza-Dragoni). Let Ω ⊂ Rn be a Borel set and f : R+ × Ω → S be such that
x ∈ Ω 7→ f(t, x) ∈ S is L n-measurable for each t ≥ 0, and t ∈ R+ 7→ f(t, x) ∈ S is continuous
for L n-almost every x ∈ Ω. Then for every ε > 0, there exists a compact set Ωε ⊂ Ω satisfying
L n(Ω \ Ωε) < ε and such that the restricted map f : R+ × Ωε → S is continuous.

Theorem 2.2 (Danskin). Let Ω ⊂ Rn be a compact set and f : R+ × Ω → R be a continuous
function such that t ∈ R+ 7→ f(t, x) ∈ R is differentiable for all x ∈ Ω. Then, the application
g : t ∈ R+ 7→ maxx∈Ω f(t, x) ∈ R is differentiable L 1-almost everywhere, with

d
dtg(t) = max

x∈Ω(t)
∂tf(t, x)

for L 1-almost every t ≥ 0, where we introduced the notation Ω(t) := argmax
x∈Ω

f(t, x).
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In the remainder of this article, we will often use both theorems in conjunction with the following
convergence result for restricted essential supremums. Therein, we denote by P(Ω) the power set
generated by some arbitrary Ω ⊂ Rn.

Lemma 2.3 (Quantitative interior estimates for essential supremums). Let Ω ⊂ Rn be a compact set
and f ∈ L∞(Ω,Rd). Then for every δ > 0, there exists ε > 0 such that

∥f∥L∞(Ω,Rd) −δ ≤ ∥f∥L∞(Ωε,Rd) ≤ ∥f∥L∞(Ω,Rd), (2.1)

whenever Ωε ⊂ Ω is a measurable set satisfying L n(Ω \ Ωε) < ε. In particular, it holds that

∥f∥L∞(Ωε,Rd) −→
ε→0+

∥f∥L∞(Ω,Rd),

for each family of sets (Ωε)ε>0 ⊂ P(Ω) satisfying these properties.

Proof. The second inequality in (2.1) is trivially satisfied for every set Ωε ⊂ Ω. Concerning the first
inequality, observe that by definition of the L∞-norm, there exists for every δ > 0 a set Ωδ ⊂ Ω of
positive measure such that

|f(x)| ≥ ∥f∥L∞(Ω,Rd) − δ

for L n-almost every x ∈ Ωδ. Hence, by choosing ε > 0 satisfying ε < L n(Ωδ) and considering any
closed set Ωε ⊂ Ω with L n(Ω \ Ωε) < ε, it necessarily holds that L n(Ωδ ∩ Ωε) > 0. Indeed assuming
the converse by contradiction, one would have

L n(Ωδ ∪ Ωε) = L n(Ωδ) + L n(Ωε) > L n(Ω),

which is absurd since both sets are contained in Ω. Thus by construction, one has that

|f(x)| ≥ ∥f∥L∞(Ω,Rn) − δ,

for L n-almost every x ∈ Ωδ ∩ Ωε, which concludes the proof of our claim.

2.2 Graph and spectral theory

In this second preliminary section, we recollect more specifically elementary notions pertaining to
graph theory, together with elements of spectral analysis for bounded linear operators defined over
Hilbert spaces. We point to the reference monographs [78] and [69] respectively for a detailed and
accessible treatment of these topics.

Introductory notions of graph theory. Given an integerN ≥ 1, we say that AN := (aij)1≤i,j≤N ∈
RN×N is the adjacency matrix of a directed graph – or digraph – with vertex labels {1, . . . , N} pro-
vided that aij ∈ [0, 1] and aii = 1 for each i, j ∈ {1, . . . , N}. In the context of cooperative dynamics,
the set of labels will represent the agents of the system, while each coefficient aij ∈ [0, 1] stands for
the magnitude of communication flowing from agent j to agent i. In particular, aij > 0 if and only
if agent j influences the dynamics of agent i. We recall below standard notions of connectivity for
general digraphs, which are illustrated in Figure 2.1

Definition 2.4 (Strong and simple digraph connectivity). Let AN ∈ [0, 1]N×N be an adjacency matrix.
Then, the underlying digraph is strongly connected if for every pair of indices i, j ∈ {1, . . . , N}, there
exist an integer m ≥ 1 and a finite sequence (lk)1≤k≤m ⊂ {1, . . . , N} such that i = l1, j = lm and
alklk+1 > 0 for each k ∈ {1, . . . ,m− 1}.

In addition, a digraph is said to be simply connected if its symmetric part – which is defined as
the undirected graph supported by the adjacency matrix 1

2(AN + A⊤
N ) –, is strongly connected. In

particular, an undirected graph is connected if and only if it is strongly connected.
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Figure 2.1: Illustration of the notions of strong and simple connectivity on graphs with N = 5 vertices. The
digraph on the left is strongly connected, while that in the center is simply connected. The digraph on the right
is the disjoint union of two strongly connected components formed respectively by {1, 2, 3} and {4, 5}.

Elements of spectral theory for bounded operators. Let (H, ⟨·, ·⟩H) be an arbitrary finite- or
infinite-dimensional Hilbert space, and L(H) denote the space of all bounded linear operators from
H into itself. We will say that an element T ∈ L(H) is symmetric if T = T ∗, where T ∗ ∈ L(H) is
the adjoint of T with respect to ⟨·, ·⟩H. We also use the notation T sym := 1

2(T +T ∗) for its symmetric
part. Notice that a symmetric operator which is bounded – namely whose domain is the whole space –
is automatically self-adjoint in the usual sense. Writing Id for the identity operator over H, we recall
below several concepts pertaining to the spectrum of an element of L(H).

Definition 2.5 (The spectrum of bounded linear operators and its decomposition). Given an element
T ∈ L(H), its spectrum σ(T ) is defined as the set of all the real numbers λ ∈ R such that

(T − λ Id) ∈ L(H) is not bijective.

In addition, the spectrum of a bounded linear operator T admits the following decomposition

σ(T ) = σdisc(T ) ∪ σess(T ),

where the union is disjoint. Therein, σdisc(T ) denotes the discrete spectrum of T , defined by

σdisc(T ) :=
{
λ ∈ σ(T ) s.t. there exists an open set Nλ ⊂ R satisfying Nλ ∩ σ(T ) = {λ}

and the space of all f ∈ H such that Tf = λf is finite-dimensional
}
,

while σess(T ) := σ(T ) \ σdisc(T ) is the essential spectrum of T .

We will use the notation I := [0, 1] for the unit interval representing the continuum of indices, and
denote by L 1

⌞I the restriction of the standard 1-dimensional Lebesgue measure thereon. We shall say
that A ∈ L(L2(I,Rd)) is an adjacency operator if there exists a map a ∈ L∞(I × I, [0, 1]) such that

(A x)(i) :=
∫

I
a(i, j)x(j)dj for L 1

⌞I -almost every i ∈ I, (2.2)

for each x ∈ L2(I,Rd). Analogously given a map d ∈ L∞(I, [0, 1]), we define the corresponding
multiplication operator Md ∈ L(L2(I,Rd)) by

(Md x)(i) := d(i)x(i) for L 1
⌞I -almost every i ∈ I, (2.3)

for each x ∈ L2(I,Rd). We end this preliminary section by recalling the following standard structure
result on the spectra of adjacency and multiplication operators, for which we point to [69, Theorem
VI.15] and [40, Proposition 3.2] respectively.

Proposition 2.6 (Spectra of adjacency and multiplication operators). Let A,Md ∈ L(L2(I,Rd)) be
an adjacency and a multiplication operator defined as in (2.2) and (2.3) respectively. Then, one has

σ(A) = σdisc(A) = {λn}+∞
n=1 and σ(Md) = σess(Md) = rg(d),

where (λn) ⊂ [0, 1] is an at most countable family of real numbers which can only accumulate at zero.
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2.3 Multi-agent systems and graphon models

In this section, we recall some of the properties of the multi-agent systems under consideration through-
out this article, both at the discrete and macroscopic level. We point the reader to [24, 62] for a detailed
account on mean-field limits for particle systems, and to [49, 55] for a thorough analysis of graph limits.

Finite-dimensional cooperative systems. We start by considering a system of N ≥ 1 agents,
represented by a collection x(·) := (x1(·), . . . , xN (·)) ∈ C0(R+, (Rd)N ) of curves in Rd. Given a set
(x0

1, . . . , x
0
N ) ∈ (Rd)N of initial data, their evolution in time is prescribed by the family of ODEs

ẋi(t) = 1
N

N∑
j=1

aij(t)ϕ(|xi(t) − xj(t)|)(xj(t) − xi(t)),

xi(0) = x0
i ,

(2.4)

written for every i ∈ {1, . . . , N}. Here, the positive nonlinear interaction kernel ϕ(·) accounts for the
magnitude of the pairwise interactions between agents – depending on their relative distance –, while
the maps (aij(·))1≤i,j≤N encode the time-varying interaction topology of the system.

In the sequel, we make the following assumptions on the data of (2.4).
Hypotheses (MA). Assume that the following holds.

(i) The weight functions aij : R+ → [0, 1] are L 1-measurable for all i, j ∈ {1, . . . , N}. Moreover,
one has that aii(t) = 1 for L 1-almost every t ≥ 0 and each i ∈ {1, . . . , N}.

(ii) The nonlinear kernel ϕ : R+ → R∗
+ is locally Lipschitz continuous, positive and bounded.

Let it be noted that the weight functions aij(·) could more generally be allowed to take any positive
value as long as they are bounded, but that the corresponding range can always be normalised to [0, 1]
e.g. by suitably rescaling the nonlinear kernel ϕ(·). Under this series of assumptions – which are very
standard in the literature devoted to consensus problems, see e.g. [20, 61] –, we have the following
well-posedness result for (2.4).
Proposition 2.7 (Well-posedness of the discrete dynamics). Let x0 := (x0

1, . . . , x
0
N ) and suppose that

hypotheses (MA) hold. Then, there exists a unique curve x ∈ Liploc(R+, (Rd)N ) solution of (2.4).
Proof. It can be easily checked that under hypotheses (MA), the mapping

(t,x) ∈ R+ × (Rd)N 7→
( 1
N

N∑
j=1

aij(t)ϕ(|xi − xj |)(xj − xi)
)

1≤i≤N

∈ (Rd)N ,

is L 1-measurable with respect to t ≥ 0 as well as locally Lipschitz continuous and sublinear with
respect to x ∈ (Rd)N . Whence, by classical well-posedness results for ordinary differential equations
(see e.g. [35, Chapter 1]), there exists a unique solution x(·) ∈ Liploc(R+, (Rd)N ) to (2.4).

Macroscopic approximations of multi-agent systems. In the classical mean-field setting, macro-
scopic versions of the discrete dynamics (2.4) are expressed by curves of empirical measures. However,
as explained in the Introduction, this approach is only operational when the agents are indistinguish-
able, or equivalently provided that the dynamics (2.4) satisfies some invariance properties with respect
to the agent labels i ∈ {1, . . . , N}. To circumvent this intrinsic limitation, one can instead consider
graph limit approximations, which are built as follows. Consider the piecewise constant mappings

xN (t, i) :=
N∑

k=1
1[k−1

N ,
k
N

)(i)xk(t) (2.5)

and

aN (t, i, j) :=
N∑

k=1

N∑
l=1

1[k−1
N ,

k
N

)(i)1[ l−1
N ,

l
N

)(j) akl(t), (2.6)

defined for L 1-almost every t ≥ 0 and every i, j ∈ I. Then, one can show that the curve xN (·) ∈
C0(R+, L

2(I,Rd)) satisfies the following.
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Proposition 2.8 (Dynamics of the discrete graphon model). Let N ≥ 1 and x(·) ∈ Liploc(R+, (Rd)N )
be a solution of (2.4). Then, the curve xN (·) ∈ Liploc(R+, L

2(I,Rd)) defined in (2.5) is a solution of
the Cauchy problem∂tx

N (t, i) =
∫

I
aN (t, i, j)ϕ(|xN (t, i) − xN (t, j)|)(xN (t, j) − xN (t, i))dj,

xN (0, i) = x0(i),
(2.7)

formulated for L 1
⌞I-almost every i ∈ I, where aN ∈ L∞(R+ × I × I, [0, 1]) is defined as in (2.6).

Proof. Observe first that, for L 1
⌞I -almost every i ∈ I, the map t ∈ R+ 7→ xN (t, i) ∈ Rd is differentiable

L 1-almost everywhere. Then, by combining (2.4) together with (2.5), one has that

∂tx
N (t, i) =

N∑
k=1

1[k−1
N ,

k
N

)(i) ẋk(t)

=
N∑

k=1
1[k−1

N ,
k
N

)(i)( 1
N

N∑
l=1

akl(t)ϕ(|xk(t) − xl(t)|)(xl(t) − xk(t))
)

=
N∑

l=1

∫ l/N

(l−1)/N

(
N∑

k=1
1[k−1

N ,
k
N

)(i) akl(t)ϕ(|xk(t) − xl(t)|)(xl(t) − xk(t))
)

dj

=
∫

I
aN (t, i, j)ϕ(|xN (t, i) − xN (t, j)|)(xN (t, j) − xN (t, i))dj,

for L 1-almost every t ≥ 0 and L 1
⌞I -almost every i ∈ I, which concludes the proof of our claim.

Remark 2.9 (Subordination of finite multi-agent systems to graphon models). It is worth noting
that any finite-dimensional multi-agent system of the form (2.4) can be recast as a graphon dynamics
via (2.5) and (2.6). This implies in particular that all the results that are discussed hereinbelow for
general graphon models – including the well-posedness results and sufficient conditions for various
types of consensus formation – have suitable counterparts in the discrete setting.

Well-posedness and elementary properties of graphon models. While the dynamics in (2.7)
describes the evolution of a piecewise constant macroscopic approximation of (2.4), it can more gen-
erally be seen as an infinite-dimensional integro-differential equation. Therefore in the sequel, given
an initial datum x0 ∈ L2(I,Rd), we shall study the well-posedness of graphon dynamics of the form∂tx(t, i) =

∫
I
a(t, i, j)ϕ(|x(t, i)| − x(t, j)|)(x(t, j) − x(t, i))dj,

x(0) = x0.
(2.8)

In this context, the time-varying interaction topology is encoded by a measurable mapping a ∈
L∞(R+ × I × I, [0, 1]), while the distance-based communications between agents remain described
by a nonlinear interaction kernel ϕ(·) ∈ Liploc(R+,R∗

+).
Throughout this manuscript, we will make the following assumptions on the data of the graphon

dynamics (2.8).

Hypotheses (GD). Assume that the following holds.

(i) The weight function a : R+ × I × I → [0, 1] is L 1 × L 1
⌞I × L 1

⌞I-measurable.

(ii) The nonlinear kernel ϕ : R+ → R∗
+ is locally Lipschitz continuous, positive and bounded.

We refer the reader to [4] for a detailed and pedagogical introduction to graphon models in the
context of multi-agent systems.
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Proposition 2.10 (Well-posedness and estimates for graphon dynamics). Let x0 ∈ L2(I,Rd) and
assume that hypotheses (GD) hold. Then, there exists a unique solution x(·) ∈ Liploc(R+, L

2(I,Rd))
to the Cauchy problem (2.8). If in addition it holds that x0 ∈ L∞(I,Rd), one then has

∥x(t)∥L∞(I,Rd) ≤ ∥x0∥L∞(I,Rd), (2.9)

for all times t ≥ 0.

Proof. The existence and uniqueness of a solution x(·) ∈ Liploc(R+, L
2(I,Rd)) to (2.8) can be recovered

by repeating the method of [4, Section 3.1], up to some minor modifications. Assume now that
x0 ∈ L∞(I,Rd), and observe that by integrating (2.8) with respect to t ≥ 0, one has

|x(t, i)| ≤ |x0(i)| +
∫ t

0

∫
I
a(s, i, j)ϕ(|x(s, i) − x(s, j)|)|x(s, j) − x(s, i)|djds

≤ ∥x0∥L∞(I,Rd) + cϕ

∫ t

0

(
|x(s, i)| +

∫
I

|x(s, j)|dj
)

ds,
(2.10)

for all times t ≥ 0 and L 1
⌞I -almost every i ∈ I, where cϕ := supr∈R+ ϕ(r) < +∞. By integrating

(2.10) with respect to i ∈ I and applying Fubini’s theorem along with Grönwall’s lemma, we obtain∫
I

|x(t, i)|di ≤ ∥x0∥L∞(I,Rd) exp
(
2cϕ t

)
, (2.11)

for all times t ≥ 0. Then, plugging (2.11) into (2.10) while resorting again to Grönwall’s lemma yields

|x(t, i)| ≤ ∥x0∥L∞(I,Rd)

(
1 + exp

(
2cϕ t

))exp
(
cϕ t
)

2 , (2.12)

for L 1
⌞I -almost every i ∈ I, which implies that x(t) ∈ L∞(I,Rd) for all times t ≥ 0.

Our goal now is to prove the sharper stability estimate displayed (2.9). To this end, fix a real
number ε > 0, and observe that by Scorza-Dragoni’s theorem (see Theorem 2.1 above), there exists a
compact subset of indices Iε ⊂ I satisfying L 1

⌞I(I \ Iε) < ε such that the mapping x : R+ × Iε → Rd

is continuous. We then define for all times t ≥ 0 the family of restricted supremum norms

Lε(t) := max
i∈Iε

|x(t, i)|.

The mapping Lε(·) is locally Lipschitz as the pointwise maximum of a family of equi-locally Lipschitz
functions, and is therefore differentiable L 1-almost everywhere by Rademacher’s theorem (see e.g.
[33, Theorem 3.2]). Moreover by Danskin’s theorem (see Theorem 2.2 above), one has that

1
2

d
dtLε(t)2 = max

i∈Jε(t)
⟨∂tx(t, i), x(t, i)⟩, (2.13)

where Jε(t) := argmaxi∈Iε
|x(t, i)| for L 1-almost every t ≥ 0. Taking an arbitrary i ∈ Jε(t), one

observes that

⟨∂tx(t, i), x(t, i)⟩ =
∫

I
a(t, i, j)ϕ(|x(t, i) − x(t, j)|)

〈
x(t, i), x(t, j) − x(t, i)⟩dj

≤
∫

Iε

a(t, i, j)ϕ(|x(t, i) − x(t, j)|)Lε(t)
(
|x(t, j)| − Lε(t)

)
dj

+
∫

I\Iε

a(t, i, j)ϕ(|x(t, i) − x(t, j)|)Lε(t)
(
|x(t, j)| − Lε(t)

)
dj

≤ cϕε ∥x(t)∥2
L∞(I,Rd),

(2.14)

where we used the facts that |x(t, j)| ≤ Lε(t) for each j ∈ Iε and L 1
⌞I(I \ Iε) < ε by construction. By

merging (2.13) together with (2.14) and applying Grönwall’s lemma, we further obtain the estimate

1
2Lε(t)2 ≤ 1

2Lε(0)2 + cϕε

∫ t

0
∥x(s)∥2

L∞(I,Rd) ds, (2.15)
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which holds for all times t ≥ 0. Observing that by Lemma 2.3, we have the pointwise convergence

Lε(t) −→
ε→0+

∥x(t)∥L∞(Ω,Rn),

we can pass to the limit as ε → 0+ in (2.15) and conclude that

∥x(t)∥L∞(I,Rd) ≤ ∥x0∥L∞(I,Rd),

for all times t ≥ 0, which ends the proof of our claim.

Another feature of finite-dimensional multi-agent systems that still holds for graphon models is
that the closed convex hull of the essential range of the initial datum x0 ∈ L∞(I,Rd), defined by

C(x0) = co (rg(x0)) :=
⋂{

K ⊂ Rd s.t. K ⊂ Rd is convex and rg(x0) ⊂ K

}
,

is invariant under the dynamics (2.8), as shown in the following proposition.

Proposition 2.11 (Invariance of the convex hull). Let x0 ∈ L∞(I,Rd) and x(·) ∈ Liploc(R+, L
2(I,Rd))

be the corresponding solution of the graphon dynamics (2.8). Then, the closed convex hulls satisfy the
inclusion C(x(t)) ⊂ C(x0) for all times t ≥ 0.

Proof. Similarly to what was done in the proof of Proposition 2.10, we start by fixing ε > 0 and let
Iε ⊂ I be a compact subset given by Scorza-Dragoni’s theorem (see Theorem 2.1 above). We also
consider the restricted closed convex hulls, defined by

Cε(x(t)) :=
⋂{

K ⊂ Rd s.t. K ⊂ Rd is convex and x(t, Iε) ⊂ K

}
for all times t ≥ 0, which are compact sets because x(t, Iε) is compact. Furthermore, recall that as
a consequence of the separation theorem (see e.g. [3, Theorem 2.4.2]), the closed convex hull of the
compact sets x(t, Iε) ⊂ Rd and rg(x(t)) can be characterised respectively by the identities

Cε(x(t)) =
{
z ∈ Rd s.t. ⟨p, z⟩ ≤ max

i∈Iε

⟨p, x(t, i)⟩ for each p ∈ Rd
}
, (2.16)

and
C(x(t)) =

{
z ∈ Rd s.t. ⟨p, z⟩ ≤ sup

i∈I
⟨p, x(t, i)⟩ for each p ∈ Rd

}
, (2.17)

where we used the fact that the essential supremum of a real-valued measurable map coincides with
the maximum value of its essential range.

Given an element p ∈ Rd, set Jε,p(t) := argmaxi∈Iε
⟨p, x(t, i)⟩ and observe that by Danskin’s

theorem (see Theorem 2.2 above), it holds that

d
dt max

i∈Iε

⟨p, x(t, i)⟩ = max
i∈Jε,p(t)

⟨p, ∂tx(t, i)⟩,

for L 1-almost every t ≥ 0. For an arbitrary i ∈ Jε,p(t), one further has

⟨p, ∂tx(t, i)⟩ =
∫

I
a(t, i, j)ϕ(|x(t, i) − x(t, j)|)

〈
p, x(t, j) − x(t, i)

〉
dj

=
∫

Iε

a(t, i, j)ϕ(|x(t, i) − x(t, j)|)
〈
p, x(t, j) − x(t, i)

〉
dj + εCp(t),

(2.18)

where Cp(·) ∈ L∞
loc(R+,R). Notice now that the under hypotheses (GD), the identity∫

Iε

a(t, i, j)ϕ(|x(t, i) − x(t, j)|)dj = 0, (2.19)
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can only hold true provided that a(t, i, j) = 0 for L 1
⌞I -almost every j ∈ Iε. In that case, (2.18) can be

simply rewritten as
⟨p, ∂tx(t, i)⟩ = εCp(t), (2.20)

for L 1-almost every t ≥ 0. On the contrary, upon assuming that (2.19) does not hold, one then has

⟨p, ∂tx(t, i)⟩ =
(∫

Iε

a(t, i, j)ϕ(|x(t, i) − x(t, j)|)dj
)〈
p, X̄ε(t, i) − x(t, i)

〉
+ εCp(t), (2.21)

where the weighted barycenter point, defined by

X̄ε(t, i) =
∫

Iε

(
a(t, i, j)ϕ(|x(t, i) − x(t, j)|)x(t, j)∫

Iε
a(t, i, k)ϕ(|x(t, i) − x(t, k)|)dk

)
dj, (2.22)

is an element of Cε(x(t)) by the standard convexification property of the integral (see e.g. [2, Chapter 5,
Theorem 3]). Whence, using the characterisation (2.16) of the convex hull together with the definition
of the set of indices Jε,p(t) in the identity (2.21) finally yields

⟨p, ∂tx(t, i)⟩ ≤ εCp(t), (2.23)

for all times t ≥ 0 and any i ∈ Jε,p(t). Thus by combining (2.20) and (2.23) and performing an
integration with respect to the time variable, we recover the pointwise inequality

max
i∈Iε

⟨p, x(t, i)⟩ ≤ max
i∈Iε

⟨p, x0(i)⟩ + ε

∫ t

0
Cp(s)ds,

for all times t ≥ 0. By letting ε → 0+ and applying the convergence result of Lemma 2.3, it thus holds

sup
i∈I

⟨p, x(t, i)⟩ ≤ sup
i∈I

⟨p, x0(i)⟩,

and in particular, by choosing an element y ∈ C(x(t)), one has that

⟨p, y⟩ ≤ sup
i∈I

⟨p, x(t, i)⟩ ≤ sup
i∈I

⟨p, x0(i)⟩,

for every p ∈ Rd as a consequence of (2.17). We have thus shown that C(x(t)) ⊂ C(x0) for all times
t ≥ 0, which concludes the proof of our claim.

Remark 2.12 (Performing differential estimates combining Scorza-Dragoni and Danskin theorems).
In the setting of discrete multi-agent models, the essential suprema over I = [0, 1] reduce to simple
maxima of a finite collection of equi-locally Lipschitz mappings. Hence, these latter are always reached
along piecewise constant curves of indices t ∈ R+ 7→ i(t) ∈ {1, . . . , N}, which greatly simplifies the
analysis of differential estimates involving various geometric quantities of the system. In the graph
limit framework, however, these suprema are a priori not attained, and while it may be possible to
build piecewise constant curves of indices t ∈ R+ 7→ i(t) ∈ I whose images lie arbitrarily close to the
desired quantity, the underlying construction would rely on careful adaptations of measurable selection
theorems (see e.g. [3, Theorem 8.3.1]) to the preimages of ε-tubes built around curves of suprema.

In this context, the application of Scorza-Dragoni’s theorem allows to consider well-defined maxima
of continuous functions defined over compact sets instead of essential suprema. The time-derivatives of
these latter can then be estimated in a fashion similar to that of classical finite-dimensional approaches,
up to using Danskin’s theorem for the differentiation part, and there only remains to properly account
for the error terms stemming from the inner approximation while passing to the limit as ε → 0+.

3 Consensus formation via diameter estimates
In this section, we study sufficient conditions for the exponential decay of the diameter of a graphon
model. We start in Section 3.1 by a preliminary discussion on scrambling coefficients, and study the
formation of L∞-consensus in Section 3.2.

13



3.1 Generalised scrambling coefficient for graphon models

As already discussed in the Introduction, the quantity that usually dictates the asymptotic behaviour
of the diameter of a multi-agent system is the so-called scrambling coefficient. We point the reference
monograph [71] for a detailed overview of its properties.

Scrambling coefficients in finite and infinite dimension. Given an adjacency matrix AN :=
(aij)1≤i,j≤N ∈ [0, 1]N×N encoding the interactions of a discrete system of N ≥ 1 agents, the scrambling
coefficient is defined by

η(AN ) := min
1≤i,j≤N

1
N

N∑
k=1

min{aik, ajk}. (3.1)

Since the self-interactions of the agents are set to be aii = 1 for each i ∈ {1, . . . , N}, the latter can be
equivalently rewritten as

η(AN ) = min
1≤i,j≤N

1
N

( N∑
k=1,k ̸=i,j

min{aik, ajk} + aij + aji

)
. (3.2)

What this formula expresses is that the scrambling coefficient of an interaction topology is positive
if and only if, for every pair of agents i, j ∈ {1, . . . , N}, either i and j are communicating with one
another, or there exists a third party agent k ∈ {1, . . . , N} \ {i, j} which is followed by both i and j.
We provide in Figure 3.1 three simple examples of interaction topologies with positive scrambling.

1

2

3

5

4


1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1



1

2

3

5

4


1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1



1

2

3

5

4


1 1 0 0 1
0 1 0 0 1
1 1 1 0 0
1 0 0 1 1
0 1 0 0 1


Figure 3.1: Three examples of interaction topologies with positive scrambling for graphs with N = 5 vertices.
The interaction graphs are represented on top, and the corresponding adjacency matrices right below.

Given an adjacency operator A ∈ L(L2(I,Rd)) with kernel a ∈ L∞(I × I, [0, 1]), we introduce the
following infinite-dimensional generalisation of the scrambling coefficient

η(A) := inf
i,j∈I

∫
I

min{a(i, k), a(j, k)}dk. (3.3)

As we shall see in Theorem 3.3 below, this macroscopic quantity does indeed quantify the decay of the
diameter of a graphon dynamics of the form (2.8). It is also worth noting that if AN ∈ L(L2(I,Rd))
is the adjacency operator associated with a piecewise constant kernel aN ∈ L∞(I × I, [0, 1]) of the
form (2.6) for some N ≥ 1, then η(AN ) = η(AN ) as in (3.1), where AN ∈ RN×N is the adjacency
matrix of the underlying digraph. This shows that the definition proposed in (3.3) is indeed a proper
generalisation of the usual notion of scrambling coefficient.

The role of stochasticity in the literature. In most of the existing works studying the asymptotic
properties of the diameter in multi-agent dynamics (see e.g. [54, 60, 61] and references therein),
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the proof of the decay estimates explicitly rely on the assumption that the adjacency matrices are
stochastic, namely that they satisfy

1
N

N∑
j=1

aij = 1,

for each i ∈ {1, . . . , N}. Indeed, observing that a multi-agent dynamics of the form

ẋi(t) = 1
N

N∑
j=1

aij(xj(t) − xi(t)),

is independent of the values of the diagonal coefficients (a11, . . . , aNN ), one can equivalently consider
that any of its solutions is driven by the stochastic interaction weights (ãij)1≤i,j≤N , defined by

ãii := N −
N∑

k=1,k ̸=i

aik and ãij := aij , (3.4)

for every i, j ∈ {1, . . . , N}. In the following proposition, we show that the scrambling coefficient of an
interaction topology does not change when the communication weights are redefined using (3.4). While
this result is not difficult to establish, it is crucial in order to ensure that the latter transformation
does not modify important qualitative properties of the dynamics.

Proposition 3.1 (Invariance of scrambling coefficients under stochastic reparametrisation). Let AN :=
(aij)1≤i,j≤N ∈ [0, 1]N×N be the adjacency matrix of an interaction graph, and ÃN := (ãij)1≤i,j≤N be
its stochastic reparametrisation obtained via the transformation (3.4). Then, η(ÃN ) = η(AN ).

Proof. Observe first that since (aij)1≤i,j≤N ∈ [0, 1]N×N , it necessarily holds

aij ≤ 1 ≤ N −
N∑

k=1,k ̸=i

aik and aji ≤ 1 ≤ N −
N∑

k=1,k ̸=j

ajk,

for every i, j ∈ {1, . . . , N}. Thus by definition (3.4) of the coefficients of the modified adjacency matrix
ÃN , one has that

η(ÃN ) = min
1≤i,j≤N

1
N

(
N∑

k=1,k ̸=i,j

min{aik, ajk} + min
{
aij , N −

N∑
k=1,k ̸=i

aik

}

+ min
{
N −

N∑
k=1,k ̸=j

ajk, aji

})

= min
1≤i,j≤N

1
N

( N∑
k=1,k ̸=i,j

min{aik, ajk} + aij + aji

)
= η(AN ),

where we used the alternative expression (3.2) of the scrambling coefficient.

Remark 3.2 (Obstructions to stochastic reparametrisation for graphons). While the approach de-
scribed above is very useful in order to simplify computations when considering finite-dimensional
multi-agent systems, it is not readily applicable to graphon dynamics. Indeed, one can easily check
that the transformation of the adjacency matrix displayed in (3.4) does not admit a well-defined point-
wise limit as N → +∞. On the other hand, it can be shown that the corresponding piecewise constant
interaction maps defined as in (2.6) would converge in the sense of distributions towards the sum of a
kernel a ∈ L∞(I × I, [0, 1]) and a Dirac measure supported on the diagonal. Therefore, the resulting
right-hand side falls outside the scope of classical graphon dynamics, in which the adjacency operator
is simply given by the integral of an L 1

⌞I-measurable kernel.
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3.2 Exponential consensus formation for topologies with persistent scramblings

In Theorem 3.3 below, we derive a general contraction estimate on the diameter of graphon dynamics,
expressed in terms of the generalised scrambling coefficient. In what follows for L 1-almost every
t ≥ 0, we denote by A(t) ∈ L(L2(I,Rd)) the adjacency operator with kernel a(t) ∈ L∞(I × I, [0, 1]).

Theorem 3.3 (A general contraction estimate for the diameter). Fix a radius R > 0 and an initial
datum x0 ∈ L∞(I,Rd) satisfying ∥x0 ∥L∞(I,Rd)≤ R. Moreover, assume that hypotheses (GD) hold,
and consider a solution x(·) ∈ Liploc(R+, L

2(I,Rd)) of (2.7).
Then for all times t ≥ 0, it holds that

D(t) ≤ D(0) exp
(

− γR

∫ t

0
η(A(s))ds

)
,

with γR := minr∈[0,2R] ϕ(r), and where the scrambling coefficient η(A(s)) generated by the communi-
cation weights is defined as in (3.3) for L 1-almost every s ≥ 0.

Before proving Theorem 3.3, we establish a useful geometric lemma which allows for the estimation
of the time-derivative of the diameter without requiring the stochasticity of the adjacency operator.

Lemma 3.4 (A scalar product inequality). Let J ⊂ I be a closed set, x ∈ C0(J,Rd) and i, j ∈ J be a
pair of indices such that maxk,l∈J |x(k) − x(l)| = |x(i) − x(j)|. Then, one has that

⟨x(j), x(i) − x(j)⟩ = min
k∈J

⟨x(k), x(i) − x(j)⟩

≤ max
k∈J

⟨x(k), x(i) − x(j)⟩ = ⟨x(i), x(i) − x(j)⟩.
(3.5)

Proof. It is a classical result in geometric analysis that the diameter of any subset of Rd coincides
with the diameter of its convex hull. Thus, defining xλ(k) := (1 − λ)x(i) + λx(k) for some k ∈ J and
every λ ∈ [0, 1], it necessarily holds

|xλ(k) − x(j)|2 ≤ |x(i) − x(j)|2, (3.6)

by construction of the indices i, j ∈ J . An easy computation then shows that

|xλ(k) − x(j)|2 − |x(i) − x(j)|2 =
〈
(xλ(k) − x(j)) − (x(i) − x(j)) , (xλ(k) − x(j)) + (x(i) − x(j))

〉
= λ2|x(i) − x(k)|2 + 2λ

〈
x(k) − x(i), x(i) − x(j)

〉
,

so that (3.6) can be equivalently reformulated as

λ2|x(i) − x(k)|2 + 2λ
〈
x(k) − x(i), x(i) − x(j)

〉
≤ 0, (3.7)

for every λ ∈ [0, 1]. Dividing by λ ∈ (0, 1] and letting λ → 0+ in (3.7), we therefore obtain

⟨x(k), x(i) − x(j)⟩ ≤ ⟨x(i), x(i) − x(j)⟩,

for every k ∈ J , which is equivalent to stating that ⟨x(i), x(i) − x(j)⟩ = maxk∈J⟨x(k), x(i) − x(j)⟩.
The other inequality in (3.5) can be proven by repeating the same arguments.

Proof of Theorem 3.3. Let x ∈ Liploc(R+, L
2(I,Rd)) be a solution of (2.7), and fix a parameter ε > 0.

Then by Scorza-Dragoni’s theorem (see Theorem 2.1 above), there exists a compact set Iε ⊂ I with
L 1
⌞I(I \ Iε) < ε such that the restriction x : R+ × Iε → Rd is a continuous map. We then consider the

restricted diameters, defined by

Dε(t) := max
i,j∈Iε

|x(t, i) − x(t, j)|

for all times t ≥ 0, and introduce the nonempty subset of pairs of indices Πε(t) ⊂ Iε × Iε for which
this maximum is reached.
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Observe first that Dε(·) is defined as the pointwise maximum of a family of equi-locally Lipschitz
mappings, and is therefore a locally Lipschitz function. Hence by Rademacher’s theorem (see e.g.
[33, Theorem 3.2]), it is differentiable L 1-almost everywhere, and it holds by Danskin’s theorem (see
Theorem 2.2 above) that

1
2

d
dtDε(t)2 = max

(i,j)∈Πε(t)

〈
∂tx(t, i) − ∂tx(t, j), x(t, i) − x(t, j)

〉
. (3.8)

We now fix a pair of indices (i, j) ∈ Πε(t), and aim at evaluating the right-hand side of (3.8). Recalling
that x(·) solves (2.7), one has that〈

∂tx(t, i) − ∂tx(t, j), x(t, i) − x(t, j)
〉

=
∫

I
a(t, i, k)ϕ(|x(t, i) − x(t, k)|)

〈
x(t, k) − x(t, i), x(t, i) − x(t, j)

〉
dk

−
∫

I
a(t, j, k)ϕ(|x(t, j) − x(t, k)|)

〈
x(t, k) − x(t, j), x(t, i) − x(t, j)

〉
dk

=
∫

Iε

a(t, i, k)ϕ(|x(t, i) − x(t, k)|)
〈
x(t, k) − x(t, i), x(t, i) − x(t, j)

〉
dk

−
∫

Iε

a(t, j, k)ϕ(|x(t, j) − x(t, k)|)
〈
x(t, k) − x(t, j), x(t, i) − x(t, j)

〉
dk + εC(t),

(3.9)

where C(·) ∈ L∞
loc(R+,R). Upon defining the quantity

ηij(t, k) := min
{
a(t, i, k)ϕ(|x(t, i) − x(t, k)|) , a(t, j, k)ϕ(|x(t, j) − x(t, k)|)

}
,

for L 1-almost every t ≥ 0 and L 1
⌞I -almost every k ∈ I, one can rewrite (3.9) as〈

∂tx(t, i) − ∂tx(t, j), x(t, i) − x(t, j)
〉

=
∫

Iε

a(t, i, k)ϕ(|x(t, i) − x(t, k)|)
〈
x(t, k), x(t, i) − x(t, j)

〉
dk

−
∫

Iε

a(t, j, k)ϕ(|x(t, j) − x(t, k)|)
〈
x(t, k), x(t, i) − x(t, j)

〉
dk

−
(∫

Iε

a(t, i, k)ϕ(|x(t, i) − x(t, k)|)dk
)〈
x(t, i), x(t, i) − x(t, j)

〉
+
(∫

Iε

a(t, j, k)ϕ(|x(t, j) − x(t, k)|)dk
)〈
x(t, j), x(t, i) − x(t, j)

〉
+ εC(t)

=
∫

Iε

(
a(t, i, k)ϕ(|x(t, i) − x(t, k)|) − ηij(t, k)

)〈
x(t, k), x(t, i) − x(t, j)

〉
dk

+
∫

Iε

(
ηij(t, k) − a(t, j, k)ϕ(|x(t, j) − x(t, k)|)

)〈
x(t, k), x(t, i) − x(t, j)

〉
dk

−
(∫

Iε

a(t, i, k)ϕ(|x(t, i) − x(t, k)|)dk
)

⟨x(t, i), x(t, i) − x(t, j)⟩

+
(∫

Iε

a(t, j, k)ϕ(|x(t, j) − x(t, k)|)dk
)

⟨x(t, j), x(t, i) − x(t, j)⟩ + εC(t),

(3.10)

for L 1-almost every t ≥ 0. Observe now that by construction of the parameters ηij(t, k), the first two
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terms in the right-hand side of (3.10) can be estimated as follows∫
Iε

(
a(t, i, k)ϕ(|x(t, i) − x(t, k)|) − ηij(t, k)

)〈
x(t, k), x(t, i) − x(t, j)

〉
dk

+
∫

I

(
ηij(t, k) − a(t, j, k)ϕ(|x(t, j) − x(t, k)|)

)〈
x(t, k), x(t, i) − x(t, j)

〉
dk

≤
(∫

Iε

(
a(t, i, k)ϕ(|x(t, i) − x(t, k)|) − ηij(t, k)

)
dk
)

max
k∈Iε

〈
x(t, k), x(t, i) − x(t, j)

〉
−
(∫

Iε

(
a(t, j, k)ϕ(|x(t, j) − x(t, k)|) − ηij(t, k)

)
dk
)

min
k∈Iε

〈
x(t, k), x(t, i) − x(t, j)

〉
≤
(

−
∫

Iε

ηij(t, k)dk
)

max
k,l∈Iε

〈
x(t, k) − x(t, l), x(t, i) − x(t, j)

〉
+
(∫

Iε

a(t, i, k)ϕ(|x(t, i) − x(t, k)|)dk
)

max
k∈Iε

〈
x(t, k), x(t, i) − x(t, j)

〉
−
(∫

Iε

a(t, j, k)ϕ(|x(t, j) − x(t, k)|)dk
)

min
k∈Iε

〈
x(t, k), x(t, i) − x(t, j)

〉
≤
(

− inf
i,j∈I

∫
I
ηij(t, k)dk + cϕε

)
Dε(t)2

+
(∫

Iε

a(t, i, k)ϕ(|x(t, i) − x(t, k)|)dk
)

max
k∈Iε

〈
x(t, k), x(t, i) − x(t, j)

〉
−
(∫

Iε

a(t, j, k)ϕ(|x(t, j) − x(t, k)|)dk
)

min
k∈Iε

〈
x(t, k), x(t, i) − x(t, j)

〉
,

(3.11)
for L 1-almost every t ≥ 0, where we recall that cϕ = supr∈R+ ϕ(r) < +∞ is finite as a consequence
of (GD)-(i). Remark now that by Lemma 3.4, it further holds

⟨x(t, j), x(t, i) − x(t, j)⟩ = min
k∈Iε

〈
x(t, k), x(t, i) − x(t, j)

〉
≤ max

k∈Iε

〈
x(t, k), x(t, i) − x(t, j)

〉
= ⟨x(t, i), x(t, i) − x(t, j)⟩,

(3.12)

for L 1-almost every t ≥ 0 and L 1
⌞I -almost every k ∈ Iε, where we used the fact that (i, j) ∈ Πε(t).

Hence, by plugging (3.10), (3.11) and (3.12) into (3.8) while observing that

ηij(t, k) ≥ γR min
{
a(t, i, k), a(t, j, k)

}
,

and also that the former series of estimates hold true for every pair of indices (i, j) ∈ Πε(t), we recover
the differential inequality

1
2

d
dtDε(t)2 ≤

(
− γR η(A(t)) + cϕε

)
Dε(t)2 + εC(t),

for L 1-almost every t ≥ 0. By applying the differential version of Grönwall’s lemma, we then deduce

Dε(t)2 ≤ Dε(0)2 exp
(

− 2γR

∫ t

0
η(A(s))ds+ 2cϕε t

)
+ 2ε

∫ t

0
C(s) exp

(
− 2γR

∫ t

s
η(A(σ))dσ − 2cϕε (t− s)

)
ds,

(3.13)

for all times t ≥ 0. Recall now that by Lemma 2.3, we have the pointwise convergence

Dε(t) −→
ε→0+

D(t),

and thus by passing to the limit as ε → 0+ in (3.13), we recover the desired exponential decay estimate

D(t) ≤ D(0) exp
(

− γR

∫ t

0
η(A(s))ds

)
,

for all times t ≥ 0, which concludes the proof of Theorem 3.3.
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Remark 3.5 (Comparing our approach with previous diameter estimates in the literature). As men-
tioned above, the existing proofs of diameter contractions for finite-dimensional multi-agent systems
involving scrambling coefficient (see e.g. [60, 61]) presuppose that the adjacency matrices AN (t) of
the system are stochastic for all times t ≥ 0. In practice, this simplifying assumption allows to write
meaningful differential estimates on the quantity t ∈ R+ 7→ |xi(t)−xj(t)| ∈ R+ for every pair of indices
i, j ∈ {1, . . . , N}. Hereinabove on the contrary, we only estimate the derivative of this quantity for
pairs of indices which realise the (relaxed) diameter, and use the geometric information of Lemma 3.4
to take care of the terms that were usually simplified using the stochasticity assumption. In this sense,
our proof strategy provides an alternative and perhaps more general diameter estimate for multi-agent
systems, as it is more natural and valid for both finite- and infinite-dimensional models.

Based on this general diameter estimate, it is possible to establish the formation of L∞-consensus
in the case where the scrambling coefficients are persistent in a suitable sense.

Theorem 3.6 (Exponential L∞-consensus formation under persistent scrambling). Assume that the
hypotheses of Theorem 3.3 are satisfied, and suppose that there exists a pair of coefficients (τ, µ) ∈
R∗

+ × (0, 1] such that the persistence condition

1
τ

∫ t+τ

t
η(A(s))ds ≥ µ, (3.14)

holds for all times t ≥ 0.
Then, there exists an element x∞ ∈ C(x0) and constants α, γ > 0 depending only on (ϕ(·), R, τ, µ)

such that
∥x(t) − x∞∥L∞(I,Rd)≤ αD(0) exp

(
− γµt

)
, (3.15)

for all times t ≥ 0. In particular, the solutions of (2.7) exponentially converge to consensus in the
L∞(I,Rd)-norm topology.

Proof. Start by fixing an element i ∈ I, and observe that for every 0 ≤ t1 ≤ t2 < +∞, one has that

|x(t2, i) − x(t1, i)| ≤
∫ t2

t1

∫
I
a(s, i, j)ϕ(|x(s, i) − x(s, j)|)|x(s, j) − x(s, i)|djds

≤ cϕ

∫ t2

t1
D(s)ds

≤ cϕ

∫ +∞

t1
D(0) exp

(
− γR

∫ s

0
η(A(σ))dσ

)
ds,

(3.16)

where we recall that cϕ = supr∈R+ ϕ(r) < +∞. Then, as a consequence of the persistence condition
(3.14), it further holds that∫ s

0
η(A(σ))dσ ≥

∫ ⌊s/τ⌋τ

0
η(A(σ))dσ

≥
⌊s/τ⌋−1∑

k=0

∫ (k+1)τ

kτ
η(A(σ))dσ ≥ µ(s− τ),

(3.17)

for all times s ∈ [t1, t2], where ⌊•⌋ denotes the lower integer part of a real number. Thus, by plugging
(3.17) into (3.16), we obtain

|x(t2, i) − x(t1, i)| ≤ cϕ

∫ +∞

t1
D(0) exp

(
− γRµ(s− τ)

)
ds −→

t1,t2→+∞
0, (3.18)

which yields the existence of a map x∞ ∈ L∞(I,Rd) such that x(t, i) → x∞(i) as t → +∞ for L 1
⌞I -

almost every i ∈ I. Upon noticing that the convergence in (3.18) is uniform with respect to i ∈ I, we
further have

∥x(t) − x∞∥L∞(I,Rd) −→
t→+∞

0. (3.19)

19



We now choose any pair of indices i, j ∈ I, and remark that for all times t ≥ 0, it holds

|x∞(i) − x∞(j)| ≤ |x∞(i) − x(t, i)| + |x(t, j) − x∞(j)| + D(t).

By combining the diameter contraction of Theorem 3.3 together with the convergence results of (3.18)
and (3.19), we obtain that x∞(i) = x∞(j) for L 1

⌞I -almost every i, j ∈ I. Therefore, the map x∞ is in
fact constant, and by Proposition 2.11 it also belongs to the initial convex hull C(x0) of the system.

Observing that x∞ ∈ C(x0), and using the fact that the diameter of a set coincides with that of
its convex hull together with the series of estimates (3.17), we finally get

|x(t, i) − x∞| ≤ D(t) ≤ D(0) exp
(

− γRµ(t− τ)
)
,

for all times t ≥ 0 and L 1
⌞I -almost every i ∈ I. Taking the essential supremum over I in the

previous expression then yields the exponential contraction estimate (3.15) with α := exp(γR µτ) and
γ := γR.

Remark 3.7 (On the nature of the asymptotic consensus point). Observe that, in general, the emerg-
ing consensus x∞ ∈ C(x0) – whose existence follows from Theorem 3.6 – does not necessarily coincide
with the initial barycenter x̄0 :=

∫
I x

0(i)di of the system. This is due to the fact that the latter may
not be an intrinsic constant of motion for asymmetric topologies (see also Section 4.2.3 below).

4 Consensus formation via energy estimates
In this section, we investigate another family of sufficient conditions ensuring the asymptotic forma-
tion of L2-consensus for time-dependent graphon models. We first start in Section 4.1 by a general
discussion on the notion of algebraic connectivity, along with a generalisation of this classical object to
graphon models. We then study in Section 4.2 the exponential convergence to consensus for topologies
that are symmetric, balanced, and made of a disjoint union of strongly connected components.

4.1 Generalised algebraic connectivity for graphon models

In this section, we start by a discussion on the notion of algebraic connectivity for finite-dimensional
collective dynamics, and then propose a natural generalisation for graphon models.

Graph-Laplacians in the finite-dimensional setting. It is widely known (see e.g. [59, 64] along
with the monographs [6, 57]) that in order to study the formation of consensus with respect to the
ℓ2-norm for discrete systems of the form (2.4), it is often insightful to introduce the graph-Laplacian
operator LN : R+ × (Rd)N → L((Rd)N ) associated with the interaction topology, defined by

(
LN (t,x)y

)
i

:= 1
N

N∑
j=1

aij(t)ϕ(|xi − xj |)(yi − yj) for each i ∈ {1, . . . , N}, (4.1)

for L 1-almost every t ∈ R+ and all x,y ∈ (Rd)N . This permits to rewrite (2.4) as the semilinear
evolution equation

ẋ(t) = −LN (t,x(t))x(t), x(0) = x0, (4.2)
posed in the configuration space (Rd)N , and to study the convergence to consensus in terms of the
eigenvalues of the matrices LN (t,x(t)) using techniques of stability theory (see e.g. [63]). A first
key observation about graph-Laplacians is that their kernel is never trivial, as it can be checked that
LN (t,x)y = 0 whenever y ∈ (Rd)N belongs to the so-called consensus manifold, that is defined by

CN :=
{

x ∈ (Rd)N s.t. x1 = · · · = xN

}
. (4.3)

This implies in particular that 0 is always a nontrivial eigenvalue of LN (t,x) with multiplicity at least
d ≥ 1. Because the consensus manifold is also the set of equilibrium points of the dynamics (2.4), the
convergence of a solution x(·) ∈ Liploc(R+, (Rd)N ) towards consensus can be quantified in terms of
the (d+ 1)-th smallest eigenvalue of the matrix LN (t,x(t)), counted with multiplicity.
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Various notions of algebraic connectivity for discrete systems. The notion of algebraic
connectivity was originally introduced in the seminal work [34] for symmetric adjacency matrices
AN := (aij)1≤i,j≤N ∈ [0, 1]N×N – namely when aij = aji for every pair of indices i, j ∈ {1, . . . , N}
–, and defined as the (d + 1)-th smallest eigenvalue of the corresponding graph-Laplacian operator
LN ∈ L((Rd)N ), counted with multiplicity. By the Courant-Fischer min-max theorem (see e.g. [43,
Theorem 4.2.12]), the latter could be alternatively defined as

λ2(LN ) := min
x∈C ⊥

N

⟨LN x,x⟩
|x|2

≥ 0, (4.4)

where the orthogonal complement of the consensus manifold can be characterised explicitly by

C ⊥
N =

{
x ∈ (Rd)N s.t. x̄ = 0

}
. (4.5)

Here, x̄ := 1
N

∑N
i=1 xi ∈ Rd stands for the mean value of an element x ∈ (Rd)N . It has since been

a classical result in algebraic graph theory that λ2(LN ) > 0 if and only if the underlying undirected
graph is connected in the sense of Definition 2.4 above, and that the multiplicity of the zero eigenvalue
of LN is equal to the product between the number of connected components in the topology and the
dimension d of the state space (see e.g. the reference paper [58]).

When the interaction topology of the system is asymmetric, it is still possible to adapt the notion
of algebraic connectivity in a meaningful way. In [79], it was shown that the definition given in (4.4)
still makes sense in the class of balanced topologies, which are characterised by the fact that

1
N

N∑
j=1

aij = 1
N

N∑
j=1

aji

for each i ∈ {1, . . . , N}. Indeed, it directly follows in this context that L⊤
N x = 0 for each x ∈ CN ,

and that the algebraic connectivity of the interaction topology is positive if and only if the interaction
graph is strongly connected (see e.g. [79, Lemma 17]). We point the reader to Figure 4.1 for some
examples of balanced topologies.

1

2

3

5

4


1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1



1

2

3

5

4


1 1 0 0 1
0 1 1 0 0
1 0 1 0 0
1 0 0 1 0
0 0 0 1 1



1

2

3

5

4


1 1 0 0 0
0 1 1 0 0
1 0 1 0 0
0 0 0 1 1
0 0 0 1 1


Figure 4.1: Three examples of balanced topologies for graphs with N = 5 vertices. The graphs on the left
and in the center are strongly connected, while that on the right is a disjoint union of two strongly connected
components. The corresponding adjacency matrices are represented right below each graph.

In the subsequent work [81], it was finally shown that the notion of algebraic connectivity could
be further generalised to interaction topologies that can be written as disjoint unions of strongly
connected components, in the sense of Definition 2.4 above. In this context, the definition of algebraic
connectivity relies on the following structural result of Perron-Frobenius theory.

Theorem 4.1 (Algebraic characterisation of strong connectivity). Let AN := (aij)1≤i,j≤N ∈ [0, 1]N×N

be an adjacency matrix and LN ∈ L((Rd)N ) be the corresponding graph-Laplacian operator. Then, the
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underlying interaction graph is a disjoint union of strongly connected components if and only if there
exists an element v := (vi)1≤i≤N ∈ (R∗

+)N such that

L⊤
N v = 0 and 1

N

N∑
i=1

vi = 1, (4.6)

where v := (v1, . . . , v1, . . . , vN , . . . , vN ) ∈ (Rd)N .

Proof. The proof of this result for d = 1 can be found e.g. in [81, Lemma 1]. Then for an arbitrary
state-space dimensions d ≥ 1, it is sufficient to define v ∈ (Rd)N as indicated above.

Remark 4.2 (1-dimensional versus d-dimensional linear systems). When the right-hand side of a
multi-agent system is linear, there is no coupling between the dynamics of the components (xk

i )1≤k≤d

of the agents for i ∈ {1, . . . , N}. This explains why the canonical eigenvector v ∈ (Rd)N for the
d-dimensional system is simply obtained in this context by concatenating d copies of that generated by
the action of LN on a 1-dimensional space.

Assuming that the interaction topology described by the adjacency matrix AN is a disjoint union
of strongly connected components, we consider the following weighted version of the graph-Laplacian

Lv
N := diag(v)LN ,

where diag(v) ∈ L((Rd)N ) is the diagonal matrix whose entries are the components of v ∈ (Rd)N .
Then, the algebraic connectivity of the underlying topology is defined by

λ2(Lv
N ) = min

x∈C ⊥
N

⟨Lv
N x,x⟩
|x|2

≥ 0, (4.7)

and it can be shown that this definition carries with it all the interesting properties of λ2(·) (see
[80, 81]). In particular, it is shown in [81, Section 4] that in this context, λ2(Lv

N ) > 0 if and only if the
interaction graph is strongly connected. It is also worth noting that in the particular case of balanced
topologies, the canonical vector given by Theorem 4.1 is simply v := (1, . . . , 1) ∈ (Rd)N , so that the
definitions of (4.4) and (4.7) coincide.

Remark 4.3 (Comparison between the algebraic connectivity and the scrambling coefficient). Given
a symmetric adjacency matrix AN ∈ [0, 1]N×N , it is a known fact that λ2(LN ) ≥ η(AN ), namely that
the scrambling coefficient provides a lower-bound on the algebraic connectivity of the corresponding
interaction topology (see e.g. [61, Section 2.2, Example 1]). This, however, is no longer true when the
adjacency matrix is asymmetric. Indeed, the balanced interaction topologies displayed at the left and
center positions in Figure 4.1 are such that η(AN ) = 0, as in both situations the vertices {2, 5} are
neither connected directly to one another nor to a common third party vertex, yet it can be checked
fairly easily that λ2(LN ) > 0 for both of these graphs. Conversely, the interaction topology exposed at
the left of Figure 3.1 is such that η(AN ) > 0, but it does not admit a well-defined algebraic connectivity.

Infinite-dimensional graph-Laplacians. Similarly to what was done above for finite-dimensional
cooperative systems, the graphon dynamics (2.8) can be reformulated as an ordinary differential
equation in the configuration space L2(I,Rd). To this end, we introduce the graph-Laplacian operator
L : R+ × L2(I,Rd) → L(L2(I,Rd)), defined by

(
L(t, x)y

)
(i) :=

∫
I
a(t, i, j)ϕ(|x(i) − x(j)|)(y(i) − y(j))dj for L 1

⌞I -almost every i ∈ I, (4.8)

for L 1-almost every t ≥ 0 and every x, y ∈ L2(I,Rd). In keeping with the notions introduced in
Section 2.2, observe that L(t, x) can be recast as the difference between the multiplication operator
Md(t, x) ∈ L(L2(I,Rd)) by the so-called in-degree function d(t, x) ∈ L∞(I, [0, 1]), defined by

(Md(t, x)y)(i) :=
(∫

I
a(t, i, j)ϕ(|x(i) − x(j)|)dj

)
y(i) for L 1

⌞I -almost every i ∈ I,
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to which one subtracts a kernel-type adjacency operator A(t, x) ∈ L(L2(I,Rd)) that writes

(
A(t, x)y

)
(i) :=

∫
I
a(t, i, j)ϕ(|x(i) − x(j)|)x(j)dj for L 1

⌞I -almost every i ∈ I,

where both expressions are understood for L 1-almost every t ≥ 0 and each x, y ∈ L2(I,Rd). This
allows us to rewrite the graphon counterpart of the dynamics (4.2) as the semilinear Cauchy problem

ẋ(t) = −L(t, x(t))x(t), x(0) = x0, (4.9)

formulated in the Hilbert space L2(I,Rd). In the sequel, we will sometimes consider the partial
graph-Laplacian operators La(·) generated solely by the kernel a ∈ L∞(R+ × I × I, [0, 1]), defined by

(La(t)y)(i) :=
∫

I
a(t, i, j)(y(i) − y(j))dj for L 1

⌞I -almost every i ∈ I (4.10)

for L 1-almost every t ≥ 0 and each y ∈ L2(I,Rd).

Generalised algebraic connectivity for graphon models. Just as finite-dimensional graph-
Laplacians always admit a nontrivial kernel, their infinite-dimensional counterparts introduced in
(4.8) also vanish on the consensus manifold, which in the context of graphon dynamics is defined by

C :=
{
x ∈ L2(I,Rd) s.t. x is constant over I

}
. (4.11)

In other words, the kernel of a graph-Laplacian operator is a nontrivial subspace of dimension at least
d ≥ 1. Similarly to the finite-dimensional situation, the configuration space L2(I,Rd) admits a canon-
ical decomposition as the orthogonal sum C ⊕ C ⊥. In this context, one also has the characterisation

C ⊥ =
{
x ∈ L2(I,Rd) s.t. x̄ = 0

}
, (4.12)

where x̄ :=
∫

I x(i)di ∈ Rd denotes the barycenter of an element x ∈ L2(I,Rd). We start our discus-
sion on algebraic connectivities for graphon models by stating in the following definition a natural
generalisation of the notion of balanced topology.

Definition 4.4 (Balanced interaction topologies). The interaction topology described by an adjacency
operator A ∈ L(L2(I,Rd)) is said to be balanced provided that∫

I
a(i, j)di =

∫
I
a(j, i)di,

for L 1
⌞I-almost every i ∈ I, or equivalently if the corresponding graph-Laplacian L ∈ L(L2(I,Rd))

satisfies L∗x = 0 for each x ∈ C .

Given a general adjacency operator A ∈ L(L2(I,Rd)) with kernel a ∈ L∞(I × I, [0, 1]), we define
the corresponding in-degree function as

d(i) :=
∫

I
a(i, j)dj, (4.13)

for L 1
⌞I -almost every i ∈ I, and denote by Md ∈ L(L2(I,Rd)) the multiplication operator by d ∈

L∞(I, [0, 1]). Then, the graph-Laplacian of the topology simply writes as

L := Md − A ∈ L(L2(I,Rd)). (4.14)

In this context, we define the algebraic connectivity of a balanced topology by

λ2(L) := inf
x∈C ⊥

⟨Lx, x⟩L2(I,Rd)
∥x∥2

L2(I,Rd)
≥ 0, (4.15)
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and we shall see that it plays for (−L) a role that is similar to that of the usual spectral bound for
semigroup generators (see e.g. [32, Chapter IV, Definition 2.1]). Just as for scrambling coefficients,
the notion of algebraic connectivity that we propose is stable under discretisation. Indeed, if LN ∈
L(L2(I,Rd)) is the graph-Laplacian operator associated with a piecewise constant kernel aN ∈ L∞(I×
I, [0, 1]) of the form (2.6), then it will hold that λ2(LN ) = λ2(LN ), where LN ∈ L((Rd)N ) denotes
the usual graph-Laplacian matrix of the underlying digraph.

Similarly to the situation described for discrete multi-agent systems, it is possible to define a
suitable notion of strong connectivity for graphons, which involves the Lebesgue points (see e.g. [33,
Definition 1.24]) of the interaction kernel. We recall below the definition of this concept, which is
borrowed from the recent article [16].

Definition 4.5 (Strongly connected interaction topologies). The interaction topology described by an
adjacency operator A ∈ L(L2(I,Rd)) is said to be strongly connected if the following conditions hold.

(a) For L 1
⌞I-almost every i ∈ I and for each Lebesgue point j ∈ I \{i} of a(i, ·) ∈ L∞(I, [0, 1]), there

exists an integer m ≥ 1 and a finite sequence (lk)1≤k≤m ⊂ I satisfying i = l1, j = lm and such
that lk+1 ∈ supp(a(lk, ·)) is a Lebesgue point of a(lk, ·) for each k ∈ {1, . . . ,m− 1}.

(b) One has that δ := infi∈I
∫

I a(i, j)dj > 0.

Analogously, we say that an interaction topology is a disjoint union of strongly connected components
if there exists an at most countable family of sets {In}+∞

n=1 ⊂ P(I) such that I = ∪+∞
n≥1In, which satisfies

L 1
⌞I(In) > 0, L 1

⌞I(In ∩ Im) = 0 and supp(a(in, ·)) ⊂ In for L 1
⌞I-almost every in ∈ In,

for each m,n ≥ 1 with m ̸= n, and on which the restricted operators An ∈ L(L2(In,Rd)) define
strongly connected topologies whose in-degree function comply with the quantitative lower-bound

inf
in∈In

1
L 1
⌞I(In)

∫
In

a(in, j)dj ≥ δ, (4.16)

for a given uniform constant δ > 0.

Remark 4.6 (On the lower-bound (4.16) on the in-degree function). Observe first that the uniform
lower-bound (4.16) imposed on each of the strongly connected components In is automatically satisfied
when the family of sets {In}+∞

n=1 ⊂ P(I) is finite. When the latter is infinite countable, it transcribes
the fact that while the measure of the sets In must eventually vanish, the in-degree function remains
lower-bounded in average. A typical example of topology expressed as an infinite union of strongly
connected components satisfying this condition is given by the symmetric kernel defined by

a(i, j) :=
+∞∑
n=1

1In(i)1In(j),

for every i, j ∈ I, where the family of sets {In}+∞
n=1 is given by In :=

( 1
n+1 ,

1
n

]
for each n ≥ 1.

When an interaction topology is decomposable into a disjoint union of strongly connected compo-
nents, it is yet again possible to define a proper notion of algebraic connectivity, by resorting to the
following adaptation of one of the main results from [16]. The latter can be seen as a generalisation
of the “only if” part of Theorem 4.1 for adjacency operators.

Theorem 4.7 (Algebraic characterisation of strong connectivity for graphons). Let A ∈ L(L2(I,Rd))
be an adjacency operator and L ∈ L(L2(I,Rd)) be the corresponding graph-Laplacian operator defined
as in (4.14). Then, if the underlying interaction topology is a disjoint union of strongly connected
components in the sense of Definition 4.5, there exists an element v ∈ L∞(I,R∗

+) such that

L∗v = 0,
∫

I
v(i)di = 1 and ∥v∥L∞(I,R∗

+) ≤ 1
δ
,

where we write L∗v = 0 to implicitly mean that L∗(v, . . . , v) = 0 in L2(I,Rd). If in addition one
imposes that

∫
In
v(i)di = L 1

⌞I(In) for every n ≥ 1, then v ∈ L∞(I,R∗
+) is uniquely determined.
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Proof. In the case where d = 1, the results of [16, Theorem 1] yield the existence of a countable family
of uniquely determined functions (vn)n≥1 ⊂ L2(I,R∗

+) which satisfy

supp(vn) = In, L∗
nvn = 0 and

∫
In

vn(i)di = L 1
⌞I(In),

for each n ≥ 1. Here, L∗
n ∈ L(L2(In,R)) denotes the restriction of L∗ to L2(In,R), namely

(L∗
n x)(in) =

∫
In

(
a(in, j)x(in) − a(j, in)x(j)

)
dj for L 1

⌞I -almost every in ∈ In,

for each x ∈ L2(In,R). Then, one can show that the map defined by

v(i) :=
+∞∑
n=1

1In(i)vn(i), (4.17)

for L 1
⌞I -almost every i ∈ I satisfies the conclusions of Theorem 4.7. Observe then that by (4.16), the

fact that L∗
nvn = 0 directly yields

vn(in) =
∫

In
a(j, i)vn(j)dj∫
In
a(in, j)dj

≤
∫

In
vn(j)dj

δL 1
⌞I(In)

= 1
δ
,

for L 1
⌞I -almost every in ∈ In and each n ≥ 1. Because the sets (In)n≥1 form a disjoint partition of I,

it follows easily from the definition of v in (4.17) that

∥v∥L∞(I,R∗
+)= sup

n≥1
∥vn∥L∞(In,R∗

+) ≤ 1
δ
.

Finally when d ≥ 1 is arbitrary, the claims of Theorem 4.7 simply follow by defining the mapping
V : i ∈ I 7→ (v(i), . . . , v(i)) ∈ Rd with v ∈ L∞(I,R∗

+) being given as in (4.17).

Given an adjacency operator A ∈ L(L2(I,Rd)) defining a disjoint union of strongly connected
components in the sense of Definition 4.5, we introduce the rescaled Laplacian operator

Lv := Mv L,

where the function v ∈ L∞(I,R∗
+) appearing in the multiplication operator is the one given by Theorem

4.7. Then, we define the algebraic connectivity of the underlying interaction topology by

λ2(Lv) := inf
x∈C ⊥

⟨Lv x, x⟩L2(I,Rd)
∥x∥2

L2(I,Rd)
≥ 0, (4.18)

and we will see in Section 4.2 that this quantity does allow to quantify consensus formation for
strongly connected topologies. Therein, we will also prove that the rescaled Laplacian operator is
indeed a positive semi-definite operator over L2(I,Rd).

Open problem. Is the converse implication of Theorem 4.1 still valid in the context of graphon models
described by Theorem 4.7? Namely, is it true that an interaction topology is a countable disjoint union
of strongly connected components whenever there exists an element v ∈ L∞(I,R∗

+) such that L∗v = 0?

4.2 Exponential consensus formation for algebraically persistent topologies

In this section, we investigate the asymptotic formation of L2-consensus for graphon models whose
interaction topologies are persistent in a suitable sense, quantified by means of the algebraic connec-
tivity. We start by exposing in Section 4.2.1 a general convergence result for symmetric topologies
whose time-averages have lower-bounded algebraic connectivity. We then proceed in Section 4.2.2 by
studying consensus formation in balanced topologies, under the condition that the algebraic connec-
tivity itself is persistent. We finally adapt the underlying strategy to study piecewise-constant (in
time) disjoint unions of strongly connected components in Section 4.2.3.
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4.2.1 Symmetric nonlinear interaction topologies

In what follows, we shall prove the following result, which describes the exponential formation of
L2-consensus for symmetric graphon dynamics, under the condition that the time-averages of the
corresponding graph-Laplacian operators over time-windows of fixed length have a uniformly lower-
bounded algebraic connectivity.

Theorem 4.8 (Exponential L2-consensus formation for symmetric topologies). Fix an initial datum
x0 ∈ L∞(I,Rd) with ∥x0∥L∞(I,Rd)≤ R for some R > 0, assume that hypotheses (GD) hold, and that
a(t) ∈ L∞(I×I, [0, 1]) defines a symmetric interaction topology for L 1-almost every t ≥ 0. Moreover,
suppose that there exists a pair of coefficients (τ, µ) ∈ R∗

+ × (0, 1] such that the persistence condition

λ2

(1
τ

∫ t+τ

t
La(s)ds

)
≥ µ, (4.19)

holds for all times t ≥ 0, where La(s) ∈ L(L2(I,Rd)) is the linear part of the graph-Laplacian operator
as defined in (4.10) for L 1-almost every s ≥ 0.

Then, there exist constants α, γ > 0 depending only on (ϕ(·), R, τ, µ) such that

∥x(t) − x̄0∥L2(I,Rd)≤ α ∥x(0) − x̄0∥L2(I,Rd) exp
(

− γµt
)
, (4.20)

for all times t ≥ 0. In particular, the solutions of (4.9) exponentially converge to consensus in the
L2(I,Rd)-norm topology.

Taking inspiration from some of the seminal works [19, 20] on the mathematical formalisation of
consensus and flocking analysis for discrete symmetric multi-agent systems, we introduce the variance
bilinear form over L2(I,Rd), which is defined by

B(x, y) :=
∫

I
⟨x(i), y(i)⟩di− ⟨x̄, ȳ⟩, (4.21)

for any x, y ∈ L2(I,Rd), and we observe that the evaluation B(x, x) coincides exactly with the L2-
distance between x ∈ L2(I,Rd) and the consensus manifold C . Based on this observation, we consider
for every solution x(·) ∈ Liploc(R+, L

2(I,Rd)) of (4.9) the standard deviation map

X(t) :=
√
B(x(t), x(t)) = ∥x(t) − x̄(t)∥L2(I,Rd), (4.22)

that is defined for all times t ≥ 0. In the following proposition, we state some of the useful properties
of the variance bilinear form, notably in conjunction with graph-Laplacians.

Proposition 4.9 (Elementary properties of B). The map x ∈ L2(I,Rd) 7→ B(x, x) ∈ R+ defines a
seminorm over L2(I,Rd), which satisfies the Cauchy-Schwarz type inequality

B(x, y) ≤
√
B(x, x)

√
B(y, y), (4.23)

for each x, y ∈ L2(I,Rd). In addition, let L ∈ L(L2(I,Rd)) be the graph-Laplacian associated with
an adjacency operator A ∈ L(L2(I,Rd)) defining a balanced topology in the sense of Definition 4.4.
Then, one has that Lx ∈ C ⊥ as well as L∗x ∈ C ⊥, and the algebraic connectivity can be rewritten as

λ2(L) = inf
x/∈C

B(Lx, x)
B(x, x) ≥ 0. (4.24)

Proof. Proving that B(·, ·) induces a seminorm over L2(I,Rd) is a matter of elementary computations.
Concerning the Cauchy-Schwarz inequality, let it first be noted that

B(x, y) = B(x− x̄, y) = B(x, y − ȳ) = B(x− x̄, y − ȳ) = ⟨x− x̄, y − ȳ⟩L2(I,Rd),
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for any x, y ∈ L2(I,Rd). The inequality (4.23) then follows by an application of the standard Cauchy-
Schwarz inequality for the scalar product of L2(I,Rd). Let now L ∈ L(L2(I,Rd)) be the graph-
Laplacian operator associated with a balanced graphon, and notice that∫

I
(Lx)(i)di =

∫
I

∫
I
a(i, j)(x(i) − x(j))djdi

=
∫

I

(∫
I
(a(i, j) − a(j, i))dj

)
x(i)di = 0,

(4.25)

for every x ∈ L2(I,Rd), where we used Fubini’s theorem along with Definition 4.4. This together with
(4.12) implies that Lx ∈ C ⊥, and one can show that L∗x ∈ C ⊥ in the very same way. The alternative
characterisation (4.24) of the algebraic connectivity simply follows from the observation that

B(Lx, x) = ⟨Lx, x⟩L2(I,Rd),

for any x ∈ L2(I,Rd), as a consequence of (4.25). Finally, one can obtain the positive semi-definiteness
of L with respect to B(·, ·) by checking that

B(Lx, x) =
∫

I

∫
I
a(i, j)⟨x(i), x(i) − x(j)⟩djdi

= 1
2

∫
I

∫
I
a(i, j)

(
|x(i) − x(j)|2 + |x(i)|2 − |x(j)|2

)
djdi

= 1
2

∫
I

∫
I
a(i, j)|x(i) − x(j)|2djdi+ 1

2

∫
I

(∫
I
a(i, j)dj −

∫
I
a(j, i)dj

)
|x(i)|2di

= 1
2

∫
I

∫
I
a(i, j)|x(i) − x(j)|2djdi ≥ 0,

where we again used Fubini’s theorem and the fact that the interaction topology is balanced.

The proof of Theorem 4.8 will be conveyed by building a strictly dissipative Lyapunov function for
(4.9), following a methodology developed in [14] for finite-dimensional symmetric multi-agent systems.
Taking inspiration from the literature of strict Lyapunov design for persistent systems, we define given
a trajectory x(·) ∈ Liploc(R+, L

2(I,Rd)) of (4.9) the time-dependent linear operator

Ψτ (t) := (1 + cϕ)τ Id − 1
τ

∫ t+τ

t

∫ s

t
L(σ, x(σ))dσds ∈ L(L2(I,Rd)), (4.26)

for all times t ≥ 0, where we recall that cϕ = supr∈R+ ϕ(r) < +∞ under hypotheses (GD).

Lemma 4.10 (Properties of the operators Ψτ ). The operators Ψτ (t) ∈ L(L2(I,Rd)) are symmetric
for all times t ≥ 0, and satisfy the estimates

τB(y, y) ≤ B(Ψτ (t)y, y) ≤ (1 + cϕ)τB(y, y), (4.27)

for each y ∈ L2(I,Rd). Moreover, the map t ∈ R+ 7→ Ψτ (t) ∈ L(L2(I,Rd)) is Lipschitz continuous
and differentiable L 1-almost everywhere, with

d
dtΨτ (t) = L(t, x(t)) − 1

τ

∫ t+τ

t
L(s, x(s))ds, (4.28)

for L 1-almost every t ≥ 0.

Proof. The fact that the operators Ψτ (t) ∈ L(L2(I,Rd)) are symmetric for every t ≥ 0 is a simple
consequence of the linearity of the Bochner integral. Given y ∈ L2(I,Rd), one can show that

0 ≤ B
(
L(σ, x(σ))y, y

)
≤ cϕB(y, y), (4.29)
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where the first inequality follows from the positive semi-definiteness of L(σ, x(σ)) with respect to
B(·, ·), provided by Proposition 4.9 for L 1-almost every σ ∈ [t, t + τ ], while the second one can be
obtained by remarking that

B
(
L(σ, x(σ))y, y

)
= 1

2

∫
I

∫
I
a(σ, i, j)ϕ(|x(σ, i) − x(σ, j)|)|y(i) − y(j)|2djdi

≤ 1
2

∫
I

∫
I
cϕ|y(i) − y(j)|2djdi

= cϕ B(y, y),

by symmetry of the weight functions a(σ) ∈ L∞(I × I, [0, 1]). Upon integrating (4.29) with respect
to σ ∈ [t, s] and then with respect to s ∈ [t, t + τ ] while merging the resulting expression with the
definition (4.26) of Ψτ (t) ∈ L(L2(I,Rd)), we obtain the lower- and upper-bounds

τB(y, y) ≤ B(Ψτ (t)y, y) ≤ (1 + cϕ)τB(y, y),

for every y ∈ L2(I,Rd) and all times t ≥ 0.
We now shift our attention to the regularity properties of the map t ∈ R+ 7→ Ψτ (t) ∈ L(L2(I,Rd)).

Let t2 ≥ t1 ≥ 0 be such that |t2 − t1| ≤ τ , and fix an element y ∈ L2(I,Rd). Then, one has that

∥(Ψτ (t2) − Ψτ (t1))y∥L2(I,Rd)

≤ 1
τ

∫ t2

t1

∫ s

t1
∥L(σ, x(σ))y∥L2(I,Rd) dσds+ 1

τ

∫ t1+τ

t2

∫ t2

t1
∥L(σ, x(σ))y∥L2(I,Rd) dσds

+ 1
τ

∫ t2+τ

t1+τ

∫ s

t2
∥L(σ, x(σ))y∥L2(I,Rd) dσds

≤ (t2 − t1)
(

1
τ

∫ t2

t1
∥L(s, x(s))y∥L2(I,Rd) ds+ 1

τ

∫ t1+τ

t2
∥L(s, x(s))y∥L2(I,Rd) ds

+ 1
τ

∫ t2+τ

t2
∥L(s, x(s))y∥L2(I,Rd) ds

)
≤ 2cϕ|t2 − t1| ∥y∥L2(I,Rd),

where we used Fubini’s theorem and the fact that ∥L(σ, x(σ))∥L(L2(I,Rd))≤ cϕ. Therefore, we obtain

∥Ψτ (t2) − Ψτ (t1)∥L(L2(I,Rd)) ≤ 2cϕ|t2 − t1|,

for each time instants t2 ≥ t1 ≥ 0 satisfying |t2 − t1| ≤ τ . As the Lipschitz constant does not depend
on t1, t2 ≥ 0, we obtain that the map Ψτ : R+ → L(L2(I,Rd)) is Lipschitz continuous by covering
the real line with intervals of length τ . In particular, it is differentiable L 1-almost everywhere as a
consequence of the generalisation of Rademacher’s theorem for maps with values in Hilbert spaces
(see e.g. [42, Theorem 1.3]). Finally, the expression (4.28) of its time-derivative can be obtained by
standard computations.

Now that we have introduced these technical tools, we can move to the proof of Theorem 4.8.

Proof of Theorem 4.8. Let x ∈ Liploc(R+, L
2(I,Rd)) be a solution of (4.9), and assume without loss

of generality that x(t) /∈ C for all times t ≥ 0. Given an arbitrary parameter λ > 0 whose value will
be fixed later on, we consider the candidate Lyapunov functional defined by

Xτ (t) := λX(t) +
√
B
(
Ψτ (t)x(t), x(t)

)
for every t ≥ 0, and it can be checked directly as a consequence of (4.27) that

(λ+
√
τ)X(t) ≤ Xτ (t) ≤

(
λ+

√
(1 + cϕ)τ

)
X(t) (4.30)
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for all times t ≥ 0. Moreover, owing to the regularity of Ψτ (·), the mapping t ∈ R+ 7→ Xτ (t) ∈ R+ is
differentiable L 1-almost everywhere, with

d
dtXτ (t) = − λ

X(t)B
(
L(t, x(t))x(t), x(t)

)
+

B
( d

dtΨτ (t)x(t), x(t)
)

− 2B
(
Ψτ (t)x(t),L(t, x(t))x(t)

)
2
√
B
(
Ψτ (t)x(t), x(t)

)
= − λ

X(t)B
(
L(t, x(t))x(t), x(t)

)
− 1

2
√
B
(
Ψτ (t)x(t), x(t)

)B(( 1
τ

∫ t+τ
t L(s, x(s))ds

)
x(t), x(t)

)

+ 1
2
√
B
(
Ψτ (t)x(t), x(t)

)(B(L(t, x(t))x(t), x(t)
)

− 2B
(
Ψτ (t)x(t),L(t, x(t))x(t)

))
,

for L 1-almost every t ≥ 0, where we used the fact that Ψτ (t) is symmetric. In addition, as a
consequence of the persistence condition (4.19), one has that

B
((

1
τ

∫ t+τ
t L(s, x(s))ds

)
x(t), x(t)

)
= 1

2

∫
I

∫
I

(
1
τ

∫ t+τ
t a(s, i, j)ϕ(|x(s, i) − x(s, j)|)ds

)
|x(t, i) − x(t, j)|2djdi

≥ 1
2

∫
I

∫
I
γR

(
1
τ

∫ t+τ
t a(s, i, j)ds

)
|x(t, i) − x(t, j)|2djdi

= γR B
((

1
τ

∫ t+τ
t La(s)ds

)
x(t), x(t)

)
≥ γR µX(t)2,

where γR := minr∈[0,2R] ϕ(r). This latter expression along with the positive semi-definiteness of
L(t, x(t)) with respect to B(·, ·) and the bounds of (4.27) further yields

d
dtXτ (t) ≤ − γR µ

2
√

(1 + cϕ)τ
X(t) + 1

X(t)

( 1√
τ

−
√

(1 + cϕ)τ − λ

)
B(L(t, x(t))x(t), x(t))

+ 1√
B(Ψτ (t)x(t), x(t))

B
((

1
τ

∫ t+τ
t

∫ s
t L(σ, x(σ))dσds

)
x(t),L(t, x(t))x(t)

)
,

(4.31)

for L 1-almost every t ≥ 0. We now need to estimate the last term in the right-hand side of the
previous inequality. As consequence of the Cauchy-Schwarz inequality supported by B(·, ·) and Young’s
inequality, it holds for every ε > 0 that

B
((

1
τ

∫ t+τ
t

∫ s
t L(σ, x(σ))dσds

)
x(t),L(t, x(t))x(t)

)

≤
√
B
(

1
τ

∫ t+τ
t

∫ s
t L(σ, x(σ))dσds

)
x(t), 1

τ

∫ t+τ
t

∫ s
t L(σ, x(σ))dσds

)
x(t)

)√
B
(
L(t, x(t))x(t),L(t, x(t))x(t)

)
≤
∥∥ 1

τ

∫ t+τ
t

∫ s
t L(σ, x(σ))dσds

∥∥1/2
B X(t)

(√
B
(
L(t, x(t))x(t),L(t, x(t))x(t)

) )
≤ ε

2
∥∥ 1

τ

∫ t+τ
t

∫ s
t L(σ, x(σ))dσds

∥∥
BX(t)2 + 1

2εB
(
L(t, x(t))x(t),L(t, x(t))x(t)

)
,

(4.32)
where ∥·∥B denotes the operator semi-norm induced by B(·, ·) on L(L2(I,Rd)). By Jensen’s inequality,
one can further estimate the latter as∥∥ 1

τ

∫ t+τ
t

∫ s
t L(σ, x(σ))dσds

∥∥
B ≤ 1

τ

∫ t+τ
t

∫ s
t ∥L(σ, x(σ))∥Bdσds ≤ cϕτ, (4.33)

since ∥L(σ, x(σ))∥B ≤ cϕ for L 1-almost every σ ∈ [t, t+ τ ] owing to (4.29). By the square-root lemma
for positive semi-definite symmetric operators (see e.g. [69, Theorem VI.9]), it also holds that

B
(
L(t, x(t))x(t),L(t, x(t))x(t)

)
≤ √

cϕ B
(
(L(t, x(t))∗L(t, x(t)))1/2x(t), x(t)

)
= √

cϕ B(L(t, x(t))x(t), x(t)),
(4.34)
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by the symmetry of L(t, x(t)) for L 1-almost every t ≥ 0. Hence, by merging the estimates of (4.32),
(4.33) and (4.34) into the differential inequality (4.31), one recovers that

d
dtXτ (t) ≤

(
ε

2
√
τ

− γR µ

2
√

(1 + cϕ)τ

)
X(t)

+ 1
X(t)

( 1√
τ

+ 1
2
√
τε

−
√

(1 + cϕ)τ − λ

)
B(L(t, x(t))x(t), x(t)),

(4.35)

for L 1−almost every t ≥ 0.
Our goal now is to choose the free parameters λ, ε > 0 in such a way that (4.35) yields a strictly

dissipative estimate on the standard deviation X(·). To this end, we fix

ε := γR µ

2
√

(1 + cϕ)
and λ := 1√

τ
+ 1

2
√
τε

−
√

(1 + cϕ)τ, (4.36)

which together with the estimates of (4.30) allows us to rewrite (4.35) as

d
dtXτ (t) ≤ − µ

4
√

(1 + cϕ)τ
(
λ+

√
(1 + cϕ)τ

)Xτ (t). (4.37)

By an application of Grönwall’s lemma together with yet another estimation using the bounds of
(4.30), we can conclude that

X(t) ≤
(
λ+

√
(1 + cϕ)τ

)
X(0) exp

(
− µ

4
√

(1 + cϕ)τ
(
λ+

√
(1 + cϕ)τ

) t),
for all times t ≥ 0. Recalling the definition (4.22) of the standard deviation and defining the constants

α :=
(
λ+

√
(1 + cϕ)τ

)
and γ := 1

4
√

(1 + cϕ)τ
(
λ+

√
(1 + cϕ)τ

) ,
with λ > 0 being given as in (4.36), we obtain the exponential estimate claimed in (4.20), which
concludes the proof of Theorem 4.8.

4.2.2 Balanced linear interactions topologies

In this second section devoted to the investigation of L2-consensus formation, we prove the following
theorem, which shows that linear balanced graphon dynamics exponentially converge to consensus
when the underlying algebraic connectivity is persistent. Throughout this section, we assume that
there are no nonlinear interactions between agents – namely ϕ(·) ≡ 1 –, so that L(t, x) = L(t) for
L 1-almost every t ≥ 0 and any x ∈ L2(I,Rd).

Theorem 4.11 (Exponential L2-consensus formation for balanced topologies). Fix an initial datum
x0 ∈ L2(I,Rd), assume that hypothesis (GD)-(i) holds, and that the interaction kernel t ∈ R+ 7→
a(t) ∈ L∞(I × I, [0, 1]) defines balanced interaction topologies in the sense of Definition 4.4 for L 1-
almost every t ≥ 0. Moreover, suppose that there exists a pair of coefficients (τ, µ) ∈ R∗

+ × (0, 1] such
that the persistence condition

1
τ

∫ t+τ

t
λ2(L(s))ds ≥ µ, (4.38)

holds for all times t ≥ 0.
Then, there exists a constant α > 0 depending only on (τ, µ) such that

∥x(t) − x̄0∥L2(I,Rd)≤ α ∥x(0) − x̄0∥L2(I,Rd) exp
(
− µt

)
, (4.39)

for all times t ≥ 0. In particular, the solutions of (4.9) exponentially converge to consensus in the
L2(I,Rd)-norm topology.
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Proof. Similarly to what was done in Section 4.2.1 for symmetric graphon models, we will derive
dissipative decay estimates on the standard deviation map X(·) defined along solutions of (4.9) as in
(4.22). For balanced dynamics, it can be easily checked that

d
dt x̄(t) = −

∫
I
(L(t)x(t))(i)di = 0,

as a consequence of Proposition 4.9, which implies that x̄(t) = x̄0 for all times t ≥ 0. Thus, the
time-derivative of the standard deviation can be written as

d
dtX(t) = − 1

X(t)B(L(t)x(t), x(t)) ≤ −λ2(L(t))X(t), (4.40)

for L 1-almost every t ≥ 0, where we assumed without loss of generality that x(t) /∈ C . By applying
Grönwall’s lemma and adapting the computations of (3.17) in the proof of Theorem 3.6, we obtain

X(t) ≤ X(0) exp(−µ(t− τ)),

for all times t ≥ 0. Observing finally that X(t) =∥x(t) − x̄0 ∥L2(I,Rd) in our context, we recover the
exponential convergence to consensus (4.39) with α := exp(µτ).

It is important to notice that the persistence conditions imposed in Theorem 4.8 and Theorem
4.11 are very different in nature. While the latter, written in (4.38), expresses the fact that λ2(L(·))
is positive sufficiently often on each time window of length τ > 0, the former merely requires that the
algebraic connectivity of the average topology is lower-bounded. In particular, it is perfectly possible
to build time-dependent signals satisfying (4.19) for which λ2(L(·)) ≡ 0 (see e.g. [14, Section 4] for
a finite-dimensional example, as well as Section 5 below). This practical and heuristic comparison
between (4.19) and (4.38) can be made rigorous by means of the following general result.

Proposition 4.12 (Concavity of the algebraic connectivity). The algebraic connectivity defined as in
(4.15) and seen as a mapping λ2 : L(L2(I,Rd)) → R is concave. In particular, given a time-dependent
operator T ∈ L2

loc(R+,L(L2(I,Rd))) and a coefficient τ ∈ R∗
+, it holds that

1
τ

∫ t+τ

t
λ2(T (s))ds ≤ λ2

(1
τ

∫ t+τ

t
T (s)ds

)
, (4.41)

for all times t ≥ 0.

Proof. Let ζ ∈ [0, 1] be a fixed parameter, T1, T2 ∈ L(L2(I,Rd)) be two bounded operators and ε > 0
be given. By the definition (4.15) of the algebraic connectivity, there exists xε ∈ C ⊥ such that〈(

(1 − ζ)T1 + ζT2
)
xε, xε

〉
L2(I,Rd))

∥xε∥2
L2(I,Rd)

≤ λ2
(
(1 − ζ)T1 + ζT2

)
+ ε. (4.42)

Because xε ∈ C ⊥, it also holds

λ2(T1) ≤

〈
T1xε, xε

〉
L2(I,Rd))

∥xε∥2
L2(I,Rd)

and λ2(T2) ≤

〈
T2xε, xε

〉
L2(I,Rd))

∥xε∥2
L2(I,Rd)

, (4.43)

and by combining the estimates of (4.42) and (4.43), we recover the inequality

(1 − ζ)λ2(T1) + ζλ2(T2) ≤ λ2
(
(1 − ζ)T1 + ζT2

)
+ ε,

which holds for every ζ ∈ [0, 1] and each T1, T2 ∈ L(L2(I,Rd)). Since ε > 0 is arbitrary, we conclude
that λ2 : L(L2(I,Rd)) → R is concave. Given a curve T ∈ L2(R+,L(I,Rd)) of operators, the identity
(4.41) simply follows from an application of the measure-theoretic version of Jensen’s inequality (see
e.g. [1, Lemma 1.15]).

Open problem (Exponential consensus for algebraically persistent balanced topologies). Do the
conclusions of Theorem 4.11 still hold if one replaces the pointwise persistence condition (4.38) on the
algebraic connectivity by the more general one (4.19) appearing in Theorem 4.8 ?
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4.2.3 Disjoint unions of strongly connected linear topologies

In this third and last section dealing with the formation of L2-consensus, we prove that a result
similar to Theorem 4.11 holds for piecewise constant switching topologies describing disjoint unions
of strongly connected components. As in Section 4.2.2 above, we make the assumption that ϕ(·) ≡ 1,
so that L(t, x) = L(t) for L 1-almost every t ≥ 0 and any x ∈ L2(I,Rd).

In what follows, we assume that there exists an increasing sequence (tk)k≥0 ⊂ R+, satisfying

t0 = 0 and tk+1 − tk ≥ τd, (4.44)

for a given dwell-time τd > 0, and such that t ∈ [tk, tk+1) 7→ a(t) ∈ L∞(I × I, [0, 1]) is constant for
each k ≥ 0. We point to the reference monograph [48, Section 3.2] for a precise discussion of the role
of dwell-times in the stability of switched systems.

Theorem 4.13 (Exponential L2-consensus formation for strongly connected topologies). Fix an initial
datum x0 ∈ L2(I,Rd), assume that hypothesis (GD)-(i) holds and that the signal t ∈ R+ 7→ a(t) ∈
L∞(I× I, [0, 1]) is piecewise constant and satisfies the dwell-time condition (4.44). Moreover, suppose
that a(t) defines a disjoint union of strongly connected components in the sense of Definition 4.4
for L 1-almost every t ≥ 0. Denoting by v(t) ∈ L∞(I,R∗

+) the canonical vector associated with
a(t) ∈ L∞(I × I, [0, 1]) via Theorem 4.7, we further assume that there exists a triplet of coefficients
(τ, µ, ν) ∈ R∗

+ × (0, 1] satisfying the inequality

2
µν2 log

(1
ν

)
< τd, (4.45)

and which are such that
1
τ

∫ t+τ

t
λ2(Lv(s))ds ≥ µ, (4.46)

and
ν ≤ v(t, i) ≤ 1

ν
for L 1

⌞I-almost every i ∈ I, (4.47)

for all times t ≥ 0. Here Lv(s) := Mv(s)L(s) ∈ L(L2(I,Rd)) and the algebraic connectivity λ2(Lv(s))
is defined as in (4.18) for L 1-almost every s ∈ [t, t+ τ ].

Then, there exists an element x∞ ∈ C(x0) and a constant α > 0 depending only on (τ, µ, ν) such
that

∥x(t) − x∞∥L2(I,Rd) ≤ α ∥x(0) − x̄0∥L2(I,Rd) exp
(

−
(
µν2 − 2

τd
log

( 1
ν

))
t
)
, (4.48)

for all times t ≥ 0. In particular, the solutions of (4.9) exponentially converge to consensus in the
L2(I,Rd)-norm topology.

A discussion shedding light on the lower-bound imposed on v(t) in (4.47) is proposed in Remark
5.4, based on the results of Section 5.1.

Proof of Theorem 4.13. Let it first be noted that Lv(t)x ∈ C ⊥ for L 1-almost every t ≥ 0 and each
x ∈ L2(I,Rd), since∫

I
(Lv(t)x)(i)di =

∫
I

∫
I
v(t, i)a(t, i, j)(x(i) − x(i))djdi

=
∫

I

(∫
I

(
a(t, i, j)v(t, i) − a(t, j, i)v(t, j)

)
dj
)
x(i)di = 0,

(4.49)

by Fubini’s theorem along with the fact that L(t)∗v(t) = 0. Therefore, the weighted barycenters

x̄v : t ∈ R+ 7→
∫

I
v(t, i)x(t, i)di ∈ Rd,

associated with v(·) are constant on each time interval of the form [tk, tk+1) with k ≥ 0. Following the
proof strategy developed for Theorem 4.11, we introduce weighted variance bilinear forms

Bv(t)(x, y) := ⟨Mv(t) x, y⟩L2(I,Rd) − ⟨x̄v(t), ȳv(t)⟩,
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defined for each x, y ∈ L2(I,Rd) and L 1-almost every t ≥ 0. In this context, one can check that

Bv(t)
(
x(t) − x̄v(t), x(t) − x̄v(t)

)
= Bv(t)(x(t), x(t)),

where both equalities rely on the fact that
∫

I v(t, i)di = 1 for all times t ≥ 0 by construction. Similarly,
one can again use (4.49) to verify that

⟨Lv(t)x, x⟩L2(I,Rd) = Bv(t)(L(t)x, x),

for each x ∈ L2(I,Rd) and L 1-almost every t ≥ 0, so that the algebraic connectivity defined in (4.18)
can be rewritten as

λ2(Lv(t)) = inf
x/∈C

Bv(t)(L(t)x, x)
B(x, x) ≥ 0.

The inequality on the right comes from the fact that L(t) is positive semi-definite with respect to
Bv(t)(·, ·), which can be shown by a small modification of the argument in the proof of Proposition
4.9. Finally, we introduce the piecewise constant weighted standard deviations, which are defined by

Xv(t) :=
√
Bv(t)(x(t), x(t)),

for all times t ≥ 0. Using again the fact that
∫

I v(t, i)di = 1 for all times t ≥ 0, one can show via
routine computations that the weighted standard deviation can be alternatively expressed as

Xv(t) =
(∫

I

∫
I
v(t, i)v(t, j)|x(t, i) − x(t, j)|2djdi

)1/2
.

Together with the bounds (4.47) imposed on v(t) ∈ L∞(I,R∗
+), this allows us to recover the estimates

νX(t) ≤ Xv(t) ≤ 1
ν
X(t), (4.50)

for all times t ≥ 0, where X(·) stands for the usual standard deviation defined as in (4.22).
Observe now that for each k ≥ 0, the map Xv(·) is differentiable over [tk, tk+1), with

d
dtXv(t) = − 1

Xv(t)Bv(t)(L(t)x(t), x(t)) ≤ − 1
Xv(t)λ2(Lv(t))X(t)2 ≤ −ν2λ2(Lv(t))Xv(t). (4.51)

Then, by a simple application of Grönwall’s lemma, it follows that

Xv(t) ≤ Xv(tk) exp
(

− ν2λ2(Lv(tk))(t− tk)
)
, (4.52)

for all times t ∈ [tk, tk+1) and each k ≥ 0. It is worth noting that Xv(·) is in fact a discontinuous
Lyapunov function, so that (4.52) cannot be used directly to prove the convergence of the system to
consensus. By combining (4.52) and (4.50), we obtain the dissipation inequality

X(t) ≤ 1
ν
X(tk) exp

(
− ν2λ2(Lv(tk))(t− tk)

)
,

which holds for all times t ∈ [tk, tk+1) and each k ≥ 0. Thus, by performing a simple induction
argument and repeating the computations in (3.17) involving the persistence condition (4.46), we can
in turn recover that

X(t) ≤ X(0) 1
ν2(k+1) exp

(
− ν

∫ t

0
λ2(Lv(s))ds

)
≤ exp(µν2τ)

ν2 X(0)
exp

(
− µν2t

)
ν2t/τd

, (4.53)

for all t ∈ [tk, tk+1), where we used the fact that tk ≥ kτd for each k ≥ 0 as a consequence of the
dwell-time assumption (4.44). Finally, owing to the constraint (4.45) imposed on the dwell-time and
connectivity coefficients, it holds in particular that

X(t) ≤ exp(µν2τ)
ν2 X(0) exp

(
−
(
µν2 − 2

τd
log( 1

ν

))
t
)

−→
t→+∞

0, (4.54)
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so that the standard deviation X(·) exponentially converges to zero as t → +∞.
Our goal now is to show that x(·) converges to consensus. To this end, consider two arbitrary

instants t2 ≥ t1 ≥ 0, and observe that the classical barycenters of the curve x(·) are such that

|x̄(t2) − x̄(t1)| ≤
∫

I
|x(t2, i) − x(t1, i)|di

≤
∫ t2

t1

(∫
I

∫
I
a(s, i, j)|x(s, j) − x(s, i)|djdi

)
ds ≤

∫ +∞

t1
X(s)ds −→

t1→+∞
0,

(4.55)

where we used Fubini’s theorem and Cauchy-Schwarz’s inequality along with the decay estimate of
(4.54). This implies that the curve x̄(·) ∈ C0(R+,Rd) converges exponentially to some limit point
x∞ ∈ Rd as t → +∞. By combining (4.54) and (4.55), we can conclude that

∥x(t) − x∞∥L2(I,Rd)≤ X(t) + ∥x̄(t) − x∞∥L2(I,Rd)≤ αX(0) exp
(

−
(
µν2 − 2

τd
log( 1

ν

))
t
)
,

for a given constant α > 0 that only depends on the coefficients (τ, µ, ν), so that solutions of (4.9)
exponentially converge to consensus in the L2(I,Rd)-norm topology.

Open problem (Asymptotic consensus formation without dwell-times). Would a weaker form of
Theorem 4.13 still hold for general time-varying signals that do not satisfy a dwell-time condition?

5 Further discussions around connectivity and consensus formation
In what follows, we elaborate on the properties of the algebraic connectivity defined in Section 4.1, as
well as on its interplay with consensus formation. In Section 5.1, we prove that interaction topologies
which are either symmetric or written as disjoint unions of strongly connected components are strongly
connected if and only if their algebraic connectivity is positive. Then, in Section 5.2, we prove that
the formation of L2- and L∞-consensus are equivalent when the in-degree function is persistent in a
suitable sense, and close the manuscript by a series of numerical illustrations presented in Section 5.3

5.1 Link between algebraic and graphon connectivity

In Section 4.2, we have shown that the notion of algebraic connectivity proposed in Section 4.1 allows
for a systematic investigation of consensus formations for various kinds of time-dependent graphon
models. As recalled above, the classical notion of algebraic connectivity encodes important structural
properties of the underlying graph, including information about its connectivity. Our aim in this
section is to discuss the counterpart of these results for graphon models.

We start by a technical lemma concerning the existence of a largest strongly connected component
containing a point in a graphon. In the sequel, for the sake of conciseness, we shall say that two points
i, j ∈ I are m-connected if i can be linked to j and reciprocally j can be linked to i in the sense of
Definition 4.5-(a) by directed chains of Lebesgue points of length at most m ≥ 1 .

Lemma 5.1 (Existence of largest strongly connected components). Let A ∈ L(L2(I,Rd)) and i ∈ I be
a Lebesgue point of the interaction kernel a ∈ L∞(I× I, [0, 1]). Then, there exists a strongly connected
set S(i) ⊂ I in the sense of Definition 4.5-(a) that contains i, and which is maximal in the sense that

L 1
⌞I(J \ S(i)) = 0,

for any other strongly connected set J ⊂ I containing S(i).

Proof. Given N ≥ 1, let SN (i) ∈ P(I) be defined as

SN (i) :=
{
j ∈ I s.t i and j are m-connected for some m ≤ N

}
,

and consider the union over N ≥ 1 of these sets

S(i) :=
⋃

N≥1
SN (i).
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By construction, it is clear that S(i) is a strongly connected subset of I in the sense of Definition
4.5-(a). Let J ⊂ I be a strongly connected set containing S(i) and suppose that L 1

⌞I(J \ S(i)) > 0,
which can be equivalently rewritten as

L 1
⌞I

(
J \

( ⋃
N≥1

SN (i)
))

= L 1
⌞I

( ⋂
N≥1

(
J \ SN (i)

))
= lim

N→+∞
L 1
⌞I(J \ SN (i)) > 0, (5.1)

since the sequence of sets (SN (i))N≥1 ⊂ P(I) is increasing. Then for every N ≥ 1 large enough, the
identity (5.1) implies that there exists a subset JN ⊂ J satisfying L 1

⌞I(JN ) ≥ L 1
⌞I(J \ S(i)) > 0,

whose elements cannot be connected to i by a path of length at most N ≥ 1. This contradicts our
primary assumption that J is strongly connected, and shows that S(i) is maximal.

This technical result being established, we can provide a first correspondence between the positivity
of the algebraic connectivity and graphon connectivity for symmetric interaction topologies.

Theorem 5.2 (On the connectivity of undirected graphons). Let A ∈ L(L2(I,Rd)) be a symmetric
adjacency operator and L ∈ L(L2(I,Rd)) be the corresponding graph-Laplacian. Then, the interaction
topology described by A is strongly connected in the sense of Definition 4.5 if and only if λ2(L) > 0.

Proof. Converse implication. We start by assuming that A ∈ L(L2(I,Rd)) is an adjacency op-
erator for which λ2(L) > 0, and we will prove that condition (b) of Definition 4.5 holds, namely
infi∈I

∫
I a(i, j)dj > 0. We recall that the in-degree function d ∈ L∞(I, [0, 1]) associated with A writes

d(i) :=
∫

I
a(i, j)dj,

for L 1
⌞I -almost every i ∈ I, and that σess(Md) = rg(d) as a consequence of Proposition 2.6. Moreover,

let it be noted that
σess(L) = σess(Md − A) = σess(Md),

because A ∈ L(L2(I,Rd)) is a compact operator (see e.g. [69, Section VI.5]), and the essential
spectrum is invariant under compact perturbations (see e.g. [68, Example XIII.4.3]). Then, by the
min-max theorem for self-adjoint operators (see e.g. [68, Theorem XIII.1]), we obtain the lower-bound

0 < λ2(L) ≤ inf
{
λ ∈ R s.t. λ ∈ σess(L)

}
,

on the essential spectrum of the graph-Laplacian operator L. In particular, it necessarily holds that
infi∈I d(i) = infi∈I

∫
I a(i, j)dj > 0 whenever λ2(L) > 0.

We turn our attention to condition (a) of Definition 4.5. Assume by contradiction that it is
violated, namely that the disconnection set

D :=
{

(i, j) ∈ I × I s.t. i and j are not m-connected for each m ≥ 1
}
, (5.2)

has positive L 2
⌞I×I -measure. We claim that in this case, there exists a subset S ⊂ I such that

L 1
⌞I(S) > 0, L 1

⌞I(I \ S) > 0 and a(i, j) = 0 for L 2
⌞I×I -almost every (i, j) ∈ S × I \ S .

To prove this assertion, we consider for each i ∈ I the (possibly empty) sliced disconnection set

D(i) :=
{
j ∈ I s.t. (i, j) ∈ D

}
,

and observe that by Fubini’s theorem, there exists a subset J ⊂ I of positive L 1
⌞I -measure such that

L 1
⌞I(D(i)) > 0 for each i ∈ J . Given an element i ∈ J , let S(i) ⊂ I be the largest strongly connected

component containing i, which exists by Lemma 5.1, and notice that

L 1
⌞I(S(i)) > 0,
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since infi∈I
∫

I a(i, j)dj > 0 and a ∈ L∞(I × I, [0, 1]) is symmetric. In addition, one also has that
L 1
⌞I(S(i) ∩ D(i)) = 0 by definition (5.2) of the disconnection set, which then implies

L 1
⌞I(I \ S(i)) > 0.

Finally by the maximality of S(i), it necessarily holds that

a(k, l) = 0 for L 2
⌞I×I -almost every (k, l) ∈ S(i) × I \ S(i),

as we could otherwise build a strictly larger strongly connected set containing S(i). Armed with this
construction, we consider the nontrivial element x ∈ C ⊥ ⊂ L2(I,Rd) defined by

x := 1
L 1
⌞I(S(i))

1S(i) − 1
L 1
⌞I(I \ S(i))

1I\S(i), (5.3)

and observe that

⟨Lx, x⟩L2(I,Rd) =
∫

I

∫
I
a(k, l)⟨x(k), x(k) − x(l)⟩dldk

=
∫
S(i)

∫
I
a(k, l)⟨x(k), x(k) − x(l)⟩dldk +

∫
I\S(i)

∫
I
a(k, l)⟨x(k), x(k) − x(l)⟩dldk

=
∫
S(i)

∫
S(i)

a(k, l)⟨x(k), x(k) − x(l)⟩dldk +
∫

I\S(i)

∫
I\S(i)

a(k, l)⟨x(k), x(k) − x(l)⟩dldk

= 0,

which contradicts the fact that λ2(L) > 0. Thus, we can conclude that the interaction topology defined
by a symmetric adjacency operator A ∈ L(L2(I,Rd)) is strongly connected as soon as λ2(L) > 0.

Direct implication. We now assume that the interaction topology defined by the symmetric adja-
cency operator A ∈ L(L2(I,Rd)) is strongly connected in the sense of Definition 4.5. By Definition
2.5 and Proposition 2.6, the fact that δ := infi∈I

∫
I a(i, j)dj > 0 implies that σess(L) ⊂ [δ, 1]. Recalling

that the elements of C belong to the kernel of L, it follows from the min-max theorem that either
λ2(L) > 0, or there exists a nontrivial element x ∈ C ⊥ for which ⟨Lx, x⟩L2(I,Rd) = 0. By repeating the
general argument of [16, Section 3.1], it can however be shown that the latter case is impossible.

We end this section by showing how the proof strategy devised for the proof of Theorem 4.7
generalises to topologies representable as a disjoint union of strongly connected components.

Theorem 5.3 (On the connectivity of directed graphons). Let A ∈ L(L2(I,Rd)) be an adjacency
operator defining a disjoint union of strongly components in the sense of Definition 4.5, and v ∈
L∞(I,R∗

+) be the canonical eigenvector given by Theorem 4.7. Then, the interaction topology described
by A is strongly connected if and only if λ2(Lv) > 0, and in this case it holds that infi∈I v(i) ≥ λ2(Lv).

Proof. As already explained in the proof of Theorem 5.2 above, the direct implication of our claim can
be deduced from the arguments of [16, Section 3.1] for general strongly connected graphons. Hence,
we will focus on the converse one and assume that λ2(Lv) > 0. Observe first that the definition (4.18)
of the algebraic connectivity can be rewritten as

λ2(Lv) = inf
x∈C ⊥

⟨Lv x, x⟩L2(I,Rd)
∥x∥2

L2(I,Rd)
= inf

x∈C ⊥

⟨Lsym
v x, x

〉
L2(I,Rd)

∥x∥2
L2(I,Rd)

,

where we denoted by Lsym
v = 1

2(Lv + L∗
v) ∈ L(L2(I,Rd)) the symmetric part of the operator Lv. The

latter is a self-adjoint operator by construction, whose expression can be given explicitly as

Lsym
v = MvMd − 1

2

(
Mv A + A∗Mv

)
,
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where we recall that Md ∈ L(L2(I,Rd)) is the multiplication operator by the in-degree function
defined as in (4.13). Moreover, it can be checked straightforwardly that the operator Mv A + A∗Mv

is compact, and by reproducing the argument detailed in the proof of Theorem 5.2 above, one has

σess(Lsym
v ) = σess(MvMd) = rg(vd).

Upon noticing that L∗
v x = 0 for each x ∈ C , we obtain by an application of the min-max theorem

0 < λ2(Lv) ≤ inf
i∈I

v(i)
∫

I
a(i, j)dj. (5.4)

Recalling that ∥v∥L∞(I,R∗
+)≤ 1/δ where δ ∈ (0, 1] is such that (4.16) of Definition 4.5 holds, one has

inf
i∈I

∫
I
a(i, j)dj ≥ δλ2(Lv) > 0,

which yields Definition 4.5-(b). Using the fact that a ∈ L∞(I×I, [0, 1]), we can also deduce from (5.4)
that

inf
i∈I

v(i) ≥ λ2(Lv) > 0.

There now remains to show that the conditions of Definition 4.5-(a) holds. To this end, we again
assume by contradiction that the disconnection set D ⊂ I × I defined as in (5.2) has positive L 2

⌞I×I -
measure, and choose an element i ∈ I for which L 1

⌞I(D(i)) > 0 where D(i) = {j ∈ I s.t. (i, j) ∈ D}.
Observe that by construction, i ∈ IN for some N ≥ 1. Thus by Lemma 5.1, the largest strongly
connected component S(i) ⊂ I containing i is necessarily given by S(i) = IN , and

L 1
⌞I(S(i)) = L 1

⌞I(IN ) > 0.

Moreover, the fact that L (S(i) ∩ D(i)) = 0 yields

L 1
⌞I(I \ S(i)) > 0,

and our standing assumption that the interaction topology is a disjoint union of strongly connected
components further means

a(k, l) = 0 for L 2
⌞I×I -almost every (k, l) ∈ S(i) × I \ S(i).

Then, by defining the non-trivial vector x ∈ C ⊥ as in (5.3), we can conclude that the condition
λ2(Lv) = 0 is violated, which ends the proof of our claim.

Remark 5.4 (On the lower-bound (4.47) imposed on the canonical eigenvectors in Theorem 4.13).
By applying Theorem 5.3 on every strongly connected set In while using (5.4), it can be checked that

0 < 1
L 1
⌞I(In)λ2(Lvn) ≤ inf

in∈In

vn(in),

where Lvn := Mvn Ln ∈ L(L2(In,Rd)) denotes the restriction of the weighted graph-Laplacian to In

for each n ≥ 1. Thus, the lower-bound (4.47) holds whenever there exists a constant ν > 0 such that

λ2(Lvn) ≥ νL 1
⌞I(In),

for each n ≥ 1. This condition – that is in fact reminiscent of (4.16) – heuristically means that the total
amount of interactions occurring within each of the countably many strongly connected components
must be comparable to their size.
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5.2 Equivalence between L2- and L∞-consensus for strongly connected graphons

In this section, we prove an interesting and quite unexpected feature of consensus formation in graphon
models, namely that convergence towards consensus in the L2-norm topology implies convergence in
the L∞-norm topology as soon as an average version of the lower-bound on the in-degree function
imposed in Definition 4.5-(b) holds.

Theorem 5.5 (Equivalence between L2- and L∞-consensus formation). Let x0 ∈ L∞(I,Rd) be such
that ∥ x0 ∥L∞(I,Rd)≤ R for some R > 0, assume that hypotheses (GD) hold, and denote by x(·) ∈
Liploc(R+, L

2(I,Rd)) the corresponding solution of (2.8). Moreover, suppose that there exists a pair
of coefficients (τ, µ) ∈ R∗

+ × (0, 1] such that the persistence condition

1
τ

∫ t+τ

t

∫
I
a(s, i, j)djds ≥ µ, (5.5)

holds for all times t ≥ 0 and L 1
⌞I-almost every i ∈ I. Then, one has that

∥x(t) − x∞∥L∞(I,Rd) −→
t→+∞

0 if and only if ∥x(t) − x∞∥L2(I,Rd) −→
t→+∞

0, (5.6)

for any given element x∞ ∈ C(x0).

Proof. The direct implication in (5.6) is trivial since the L2-norm is bounded from above by the L∞-
norm on the compact set I := [0, 1]. Hence, we only need to prove the converse implication. To this
end, we define for every ε > 0 and L 1-almost every t ≥ 0 the sets

Iε(t) :=
{
i ∈ I s.t. |x(t, i) − x∞| ≤ ε

}
,

and observe that by Chebyshev’s inequality (see e.g. [1, Remark 1.18]), one has that

L 1
⌞I(I \ Iε(t)) = L 1

⌞I

({
i ∈ I s.t. |x(t, i) − x∞| > ε

})
≤ 1

ε2

∫
I

|x(t, i) − x∞|2di,

for every ε > 0. Hence by the L2-convergence posited in the right-hand side of (5.6), there exists a
time horizon Tε ≥ 0 such that L 1

⌞I(I \ Iε(t)) ≤ ε2 for L 1-almost every t ≥ Tε. Recalling that x(·) is
a solution of the graphon dynamics (2.8), it also holds

1
2

d
dt |x(t, i) − x∞|2 =

∫
I
a(t, i, j)ϕ(|x(t, i) − x(t, j)|)

〈
x(t, i) − x∞, x(t, j) − x(t, i)

〉
dj

= −
(∫

I
a(t, i, j)ϕ(|x(t, i) − x(t, j)|)dj

)
|x(t, i) − x∞|2

+
∫

I
a(t, i, j)ϕ(|x(t, i) − x(t, j)|)

〈
x(t, i) − x∞, x(t, j) − x∞〉dj

≤ −γR

(∫
I
a(t, i, j)dj

)
|x(t, i) − x∞|2

+ cϕ

(∫
Iε(t)

|x(t, j) − x∞|dj +
∫

I\Iε(t)
|x(t, j) − x∞|dj

)
|x(t, i) − x∞|

≤ −γR

(∫
I
a(t, i, j)dj

)
|x(t, i) − x∞|2 + cϕεR(1 + εR),

for L 1-almost every t ≥ Tε and L 1
⌞I -almost every i ∈ I, where we recall that cϕ = supr∈R+ ϕ(r) < +∞

and γR = minr∈[0,R] ϕ(2r). Then by Grönwall’s lemma, one further has

|x(t, i) − x∞|2 ≤ |x(Tε, i) − x∞|2 exp
(

− 2γR

∫ t

Tε

∫
I
a(s, i, j)djds

)

+ cϕεR(1 + εR)
∫ t

Tε

exp
(

− 2γR

∫ t

s

∫
I
a(σ, i, j)djdσ

)
ds,
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and by using the persistence condition (5.5) while repeating the computations of (3.17), we obtain

|x(t, i) − x∞|2 ≤ R2 exp
(

− 2γRµ(t− Tε − τ)
)

+ cϕεR(1 + εR) exp(γRµτ)
(

1 − exp
(

− 2γRµ(t− Tε)
)

γRµ

)

≤ R2 exp
(

− 2γRµ(t− Tε − τ)
)

+ exp(γRµτ)
γRµ cϕεR(1 + εR),

(5.7)

for all times t ≥ Tε and L 1
⌞I -almost every i ∈ I. Thus given a parameter δ > 0, we can choose ε > 0

and then t ≥ Tε in such a way that

exp(γRµτ)
γRµ cϕεR(1 + εR) ≤ δ2

2 and R2 exp
(

− 2γRµ(t− Tε − τ)
)

≤ δ2

2 ,

which means that we can find a time horizon Tδ ≥ Tε for which

|x(t, i) − x∞| ≤ δ for L 1
⌞I -almost every i ∈ I,

whenever t ≥ Tδ. This is equivalent to stating that ∥x(t) − x∞∥L∞(I,Rd) goes to 0 as t → +∞, which
concludes the proof of our claim.

Remark 5.6 (On the persistence assumption (5.5)). It can be checked that the lower-bound (5.5)
on the average value of the in-degree function holds true e.g. when the algebraic connectivity is itself
persistent – as in Theorem 4.11 or Theorem 4.13 –, or more generally if the interaction topology is
algebraically persistent as in Theorem 4.8. This is a again a consequence of the min-max theorem, as
we recall that by (5.4), it holds that

λ2(Lv) ≤ inf
{
λ ∈ R s.t. λ ∈ σess(Lsym

v )
}

= inf
i∈I

∫
I
v(i)a(i, j)dj

≤ ∥v∥L∞(I,Rd) inf
i∈I

∫
I
a(i, j)dj,

for L 1-almost every t ≥ 0. Here, v ∈ L∞(I,R∗
+) is the canonical eigenvector given either by Theorem

4.7 if the topology is a disjoint union of strongly connected components, or by v ≡ 1 if the topology is
either balanced or symmetric.

5.3 Numerical illustrations

In this last section, we provide illustrations of our results on a series of relevant examples. We start by
showing positive exponential consensus results, first for a topology with persistent scrambling, then
for a balanced topology with positive connectivity, and finally for a symmetric nonlinear topology that
is algebraically persistent. We conclude by an example of balanced topology with null connectivity
for which a non-exponential consensus only with respect to the L2-norm seems to arise numerically.

Exponential consensus under persistent scrambling. In the following paragraphs, we start
by exemplifying the consensus result established in Theorem 3.6 of Section 3. To this end, we fix
a real parameters T > 0 and an integer n ≥ 1, and for any time t ≥ 0 we introduce the notation
t := t− ⌊t/T ⌋ ∈ [0, T ). We then define the interaction function a ∈ L∞(R+ × I × I, [0, 1]) by

a(t, i, j) :=

1 − 2n
∣∣∣∣j − 2n t + T

2nT

∣∣∣∣ if j ∈
[

t
T ,

t+1
T

]
and t ∈

[
0, n−1

n T
)
,

0 otherwise,
(5.8)

for all times t ≥ 0 and every i, j ∈ I.
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a

Figure 5.1: Representation of the interaction function (t, i, j) ∈ R+ × I × I 7→ a(t, i, j) ∈ [0, 1] defined in (5.8)
with T = n = 10 at times t = 0 (left), t = 4 (center) and t = 8 (right).

A first observation is that the value of a(t, i, j) defined in (5.8) is independent of i ∈ I, so that all
the agents follow the same subset of elements at all times t ≥ 0. As illustrated in Figure 5.1, this is a
natural generalisation to the graphon setting of leader-follower dynamics (compare with the leftmost
example in Figure 3.1), in which the leaders are modelled as a time-varying subset of agents with
positive measure. Moreover, notice that the signal t ∈ R+ 7→ a(t) ∈ L∞(I × I, [0, 1]) is T -periodic,
and that the graphon is completely disconnected whenever t ∈

(
n−1

n T, T
)
. In this context, we can

explicitly compute the scrambling coefficients, since

η(A(t)) = inf
i,j∈I

∫
I

min
{
a(t, i, k), a(t, j, k)

}
dk = inf

i∈I

∫
I
a(t, i, k)dk = T

2n,

whenever t ≥ 0 is such that t ∈
[
0, n−1

n T
)
. On the other hand, it is clear that η(A(t)) = 0 if

t ∈
[

n−1
n T, T

)
. Thus for every parameter τ > T/n, one can check that for all times t ≥ 0, it holds

1
τ

∫ t+τ

t
η(A(s))ds ≥ 1

τ

∫ T +(τ−T/n)

(n−1)T/n
η(A(s))ds ≥ T (nτ − T )

2τn2 ,

so that the persistence condition (3.14) of Theorem 3.6 is satisfied. Therefore, we expect that the
system will converge exponentially to consensus with respect to the L∞-norm, a fact that is illustrated
by the numerical simulations displayed in Figure 5.2 below. Therein, we fix the parameters T = n = 10
and start from the initial configuration x0 : i ∈ I 7→ sin2(4i) ∈ [0, 1].

Figure 5.2: Snapshots of the solution i ∈ I 7→ x(t, i) ∈ [0, 1] generated by the communication weights (5.8)
at different instants (left) along with the time-evolution of the L2- and L∞-distance to the consensus point in
natural scale (center) and log scale (right).

Exponential consensus for a balanced topology with positive connectivity This time, we
consider a stationary balanced interaction topology which is defined as follows. Let ξ ∈ C0([0, 1]) be
the function given by

ξ(s) := (1 − 4s)1[
0,

1
4
](s) for each s ∈ [0, 1],
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and, by a slight abuse of notation, denote again by ξ ∈ C0(R, [0, 1]) its 1-periodisation over the real
line. Then, we consider the constant-in-time interaction kernel a ∈ L∞(I × I, [0, 1]) defined by

a(i, j) := ξ(i− j), (5.9)

for every i, j ∈ I, which is illustrated in Figure 5.3. This particular choice of interaction function
encodes the notion of directed cycle at the level of graphon models (draw a comparison with the
leftmost topology in Figure 4.1), where the neighbours are represented by small clusters of agents
with positive measure.

Figure 5.3: Representation of the interaction function (i, j) ∈ I × I 7→ a(i, j) ∈ [0, 1] defined in (5.9).

It can be readily verified that the interaction kernel a ∈ L∞(I×I, [0, 1]) defined as in (5.9) generates
a balanced topology, since∫

I
a(i, j)dj =

∫
I
ξ(i− j)dj =

∫ i

0
ξ(i− j)dj +

∫ 1

i
ξ(i− j + 1)dj

=
∫ i

0
ξ(s)ds+

∫ 1

i
ξ(s′)ds′ =

∫ 1

0
ξ(s)ds =

∫
I
a(j, i)dj,

(5.10)

where we used the fact that ξ(·) is 1-periodic and applied the the changes of coordinates s = i− j and
s′ = 1 + i− j in the first and second integral respectively. We now prove that the topology is strongly
connected in the sense of Definition 4.5. It can be verified straightforwardly by using (5.10) that

inf
i∈I

∫
I
a(i, j)dj =

∫ 1

0
ξ(s)ds =

∫ 1/4

0
(1 − 4s)ds = 1

8 ,

so that the condition of Definition 4.5-(b) holds. Moreover, for every pair i, j ∈ I with i < j, define
the finite sequence of indices (lk)1≤k≤8 by

l1 = i and lk+1 = min
{
lk + 1

8 , j
}

for k ∈ {1, . . . , 7},

and observe that j = lKj for some Kj ∈ {1, . . . , 7} with a(lk, lk+1) ≥ 1
2 for each k ∈ {1, . . . ,Kj − 1}.

Therefore, the conditions of Definition 4.5-(a) are satisfied, and the interaction topology is strongly
connected. Hence by Theorem 5.3, it holds that λ2(L) > 0 and the system should converge exponen-
tially towards consensus in the L2-norm. In addition, because the sufficient condition of Theorem 5.5
is satisfied, the convergence should also occur in the L∞-norm topology. The simulations made with
the initial datum x0 : i ∈ I 7→ sin2(4i) ∈ [0, 1] and displayed in Figure 5.4 confirm these assertions.
In addition, let it be noted that the convergence with respect to the L∞-norm also seems to be expo-
nential, which could suggest that a stronger variant of Theorem 5.5 stating the equivalence between
exponential convergences towards consensus may in fact be true.
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Figure 5.4: Snapshots of the solution i ∈ I 7→ x(t, i) ∈ [0, 1] generated by the communication weights (5.9)
at different instants (left) along with the time-evolution of the L2- and L∞-distance to the consensus point in
natural scale (center) and log scale (right).

Exponential consensus for an algebraically persistent symmetric nonlinear topology.
Next, we turn our attention to a nonlinear symmetric and time-dependent interaction kernel which
defines disconnected topologies at all times t ≥ 0, but which is algebraically persistent in the sense
defined in Theorem 4.8. Given a real parameter T > 0 and an integer n ≥ 1, we introduce the notation
t := t− ⌊t/T ⌋ ∈ [0, T ). We then define the interaction function a ∈ L∞(R+ × I × I, [0, 1]) by

a(t, i, j) :=


1 if i, j ∈

[ t
T ,

t
T + 1

n

]
and t ∈

[
0,
(

n−1
n

)
T
)
,

1 if i, j ∈
[ t

T , 1
]

∪
[
0, t

T + 1
n − 1

]
and t ∈

[(
n−1

n

)
T, T

)
,

0 otherwise,
(5.11)

for all times t ≥ 0 and every i, j ∈ I. The latter is symmetric for all times t ≥ 0 by construction, and
is illustrated in Figure 5.5. We also consider the nonlinear Cucker-Smale type kernel given by

ϕ(r) := 1
(1 + r)2 ,

for each r ≥ 0, and consider the solution x(·) of (4.9) with initial condition x0 : i ∈ I 7→ sin2(4i) ∈ [0, 1].

Figure 5.5: Representation of the interaction function (t, i, j) ∈ R+ × I× I 7→ a(t, i, j) ∈ [0, 1] defined in (5.11)
with T = 40 and n = 4 at times t = 0 (left), t = 20 (center) and t = 35 (right).

It is quite clear from its definition in (5.11) that in our example, the interaction topology is
disconnected at each instant. However, the average of the interaction function over any time window
of length T defines the counterpart for graphon models of an undirected cycle, which is illustrated in
Figure 5.6 (to be compared with the central picture in Figure 3.1). Indeed, for all i, j ∈ I satisfying

j ∈
[

max
{
0, i− 1

n

}
,min

{
1, i+ 1

n

}]
,

it can be verified that
1
T

∫ t+T

t

∫
I
a(s, i, j)djds = 1

T

∫ T

0

∫
I
a(s, i, j)djds ≥ 1

n2 ,
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Figure 5.6: Representation of the average over a time-window of length T = 10 of the interaction function
(t, i, j) ∈ I × I 7→ a(t, i, j) ∈ [0, 1] defined in (5.11).

for all times t ≥ 0, where we used the fact that signal t ∈ R+ 7→ a(t) ∈ L∞(I × I, [0, 1]) is T -periodic.
Therefore by Theorem 5.2, the algebraic connectivity of the averaged interaction topology is positive,
and the hypotheses of Theorem 4.8 are satisfied. Thus, as confirmed by the results displayed in Figure
5.7, we expect that the system exponentially converges to consensus in the L2-norm topology. In
addition, it can be readily verified that the in-degree function satisfies the persistence condition of
Theorem 5.5, so that convergence towards consensus also holds with respect to the L∞-norm.

Figure 5.7: Snapshots of the solution i ∈ I 7→ x(t, i) ∈ [0, 1] generated by the communication weights (5.11)
at different instants (left) along with the time-evolution of the L2- and L∞-distance to the consensus point in
natural scale (center) and log scale (right).

Non-exponential consensus for a symmetric topology with null connectivity. In this last
paragraph, we provide an interesting limit example of the theory developed in this article, which
highlights several of our results. To this end, we consider the stationary interaction kernel defined by

a(i, j) :=
{

1 if either i ∈
[
0, 1

2
]

and i
2 ≤ j ≤ 2i or i, j ∈

[1
2 , 1],

0 otherwise,
(5.12)

for every i, j ∈ I, and which is illustrated in Figure 5.8.
It is clear from its definition that a ∈ L∞(I × I, [0, 1]) defines a symmetric topology, but one can

readily check that infi∈I
∫

I a(i, j)dj = 0, which implies that the interaction graphon is not strongly
connected in the sense of Definition 4.5. By Theorem 5.2, this implies in particular that the corre-
sponding algebraic connectivity satisfies λ2(L) = 0, which means that even though the convergence
to consensus in the L2-norm may occur, it may not be exponential. Furthermore, the sufficient con-
dition of Theorem 5.5 ensuring that L2- and L∞-consensus formation are equivalent is also violated,
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Figure 5.8: Representation of the interaction function (i, j) ∈ I × I 7→ a(i, j) ∈ [0, 1] defined in (5.12).

which suggests that solutions of the graphon dynamics may not converge to consensus in the L∞-norm
topology. This intuition is supported by the fact that, in this precise example, the agent with label
i = 0 is not connected to any other agent in the system, and should not move.

Figure 5.9: Snapshots of the solution i ∈ I 7→ x(t, i) ∈ [0, 1] generated by the communication weights (5.12)
at different instants (left) along with the time-evolution of the L2- and L∞-distance to the consensus point in
natural scale (center) and log scale (right).

The plots displayed in Figure 5.9 are coherent with what was expected, in the sense that the L∞-
norm remains bounded from below by a constant, while a non-exponential L2-consensus formation
seems to arise. To understand why the latter appears – at least numerically – even though λ2(L) = 0,
recall that the semi-discretisation of the graphon dynamics is given for any chosen integer N ≥ 1 by

ẋi(t) = 1
N

N∑
j=1

aij(xj(t) − xi(t)), xi(0) = x0
i , (5.13)

for all times t ≥ 0 and every i ∈ {1, . . . , N}, where

aij := N2
∫ (2i+1)/2N

(2i−1)/2N

∫ (2j+1)/2N

(2j−1)/2N
a(k, l)dldk and x0

i :=
∫ (2i+1)/2N

(2i−1)/2N
x0(k)dk, (5.14)

for every i, j ∈ {1, . . . , N}. The key point here is to remark that the adjacency matrices AN :=
(aij)1≤i,j≤N ∈ [0, 1]N – that are represented for different values of N in Figure 5.10 – define strongly
connected interaction topologies with λ2(LN ) > 0 and mini∈{1,...,N}

1
N

∑N
j=1 aij > 0. Therefore, at the

discrete level, we always observe the formation of ℓ2- and ℓ∞-consensus as illustrated in Figure 5.11.
The fact that the exponential convergence to consensus of the sequence of approximating micro-

scopic problems is not a stable property as N → +∞ can be further underpined by the following
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Figure 5.10: Representation of the interaction matrices AN := (aij)1≤i,j≤N whose coefficients are defined by
(5.14) for N = 10 (left), N = 20 (center) and N = 40 (right).

Figure 5.11: Snapshots of the solution i ∈ I 7→ x(t, i) ∈ [0, 1] generated by the communication weights (5.12)
at different instants for N = 10 (left), N = 20 (center) and N = 40 (right).

observation. As amply discussed in a more general context in [77], only the discrete part of the spec-
trum of a graph-Laplacian operator can be faithfully described by the limits of eigenvalues of discrete
approximating graph-Laplacian matrices. In our example, the essential spectrum of the operator is
σess(L) = rg(d) = [0, 1], and the sequence (λ2(LN ))N≥1 of algebraic connectivities of the discrete
models goes to 0 as N → +∞. This induces a depreciation of the convergence rates as N gets larger,
which is illustrated for both norms in Figure 5.12.

Figure 5.12: Evolution of the long-time convergence rates to consensus of solutions the discrete systems (5.13)
with respect to the L2-norm (left) and the L∞-norm (right) as N increases.
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