

Three-Dimensional Triptycene-Based Covalent Organic Frameworks with ceq or acs Topology

Hui Li, Fengqian Chen, Xinyu Guan, Jiali Li, Cuiyan Li, Bin Tang, Valentin Valtchev, Yushan Yan, Shilun Qiu, Qianrong Fang

▶ To cite this version:

Hui Li, Fengqian Chen, Xinyu Guan, Jiali Li, Cuiyan Li, et al.. Three-Dimensional Triptycene-Based Covalent Organic Frameworks with ceq or acs Topology. Journal of the American Chemical Society, in Press, 143 (7), pp.2654-2659. $10.1021/\mathrm{jacs.0c12499}$. hal-03418392

HAL Id: hal-03418392

https://hal.science/hal-03418392

Submitted on 7 Nov 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Three-Dimensional Triptycene-Based Covalent Organic Frameworks with ceq or acs Topology

Hui Li, ^{§,†} Fengqian Chen, ^{§,†} Xinyu Guan, [†] Jiali Li, Cuiyan Li, Bin Tang, ^{*,‡} Valentin Valtchev, ^{⊥,∥} Yushan Yan, [#] Shilun Qiu, [†] and Qianrong Fang ^{*,†}

Supporting Information Placeholder

ABSTRACT: The growth of three-dimensional covalent organic frameworks (3D COFs) with new topologies has still been considered a great challenge due to limited high-connectivity building units. Here we report the design and synthesis of novel 3D triptycene-based COFs, termed JUC-568 and JUC-569, in the light of the deliberate symmetry-guided design principle. By combining a triangular prism (6-connected) node with a planar triangle (3-connected) or another triangular prism node, the targeted COFs adopt unreported ceq or non-interpenetrated acs topology, respectively. Both materials also show permanent porosity and impressive performance in the adsorption of CO₂ (~ 98 cm³/g at 273 K and 1 bar) and CH₄ (~ 48 cm³/g at 273 K and 1 bar), and especially in H₂ storage (up to 274 cm³/g or 2.45 wt% at 77 K and 1 bar), which is highest among all porous organic materials reported to date. Thus, this research provides a promising strategy for diversifying 3D COFs based on complicated building blocks and promotes their potential applications in energy storage and environment-related fields.

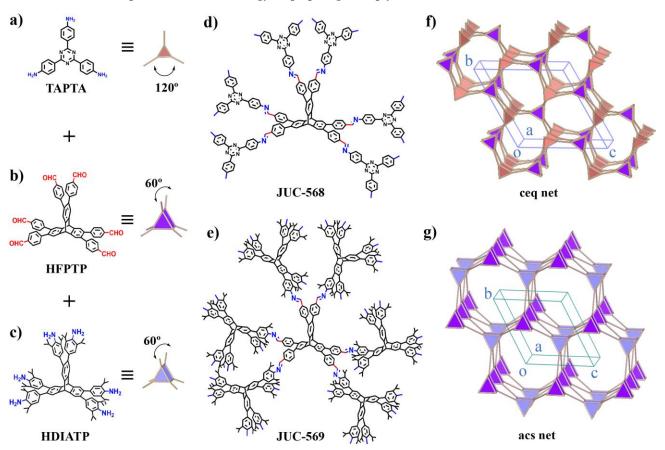
Covalent organic frameworks (COFs), an emerging family of crystalline porous polymers, are assembled from organic reactants by reversible covalent bonds. 1-5 Due to high surface areas, modular natures, and good thermal/chemical stabilities, COF materials have attracted considerable attention in gas storage/separation, ⁶⁻⁹ organic electronics, ¹⁰⁻¹⁴ heterogeneous catalysis, ¹⁵⁻²⁰ and some other fields. ²¹⁻²⁵ Over the past decade, most the reports were focused on conjugated two-dimensional (2D) sheets, in which the abundant building blocks allowed to establish well developed synthetic strategies.⁵ By contrast, three-dimensional (3D) COFs are still less studied due to the scant availability of appropriate molecular building units and relatively complex structure determination. 4 Up till now, only very limited topologies in 3D COFs have been reported, ²⁶⁻³⁴ such as **dia**, **ctn**, and **bor**. Moreover, almost all know 3D COFs were constructed by using tetrahedral (4-connected) building blocks, including the derivatives of tetraphenylmethane, tetraphenylsilane, and adamantane, which

has greatly confined the structural diversities and functionalization of 3D COFs.

Despite the above issues, 3D COFs are considered a remarkable platform for practical applications due to their unique features, 4 e.g., inter-connective porous structures, high specific surface areas, and easily accessible active sites. In principle, the employment of high-connectivity building units, such as triangular prism (6-connected) monomers, can set up new architectures in 3D COFs, proved by several cases that appeared recently. For example, we synthesized the first 3D large-pore COF, JUC-564, with stp topology constructed from a triptycene-based triangular prism monomer, which has the largest pore (43 Å) among 3D COFs and record-breaking low density (0.108 g cm⁻³) in porous crystalline materials to date.35 Subsequently, Cooper and coworkers also reported the first cage-based 3D COF, 3D-CageCOF-1, which is fabricated by an organic cage molecule as a triangular prism node and adopts a 2-fold interpenetrated acs topology.³⁶ It must be noted, however, that except for a few successful examples, 3D COFs based on high-connectivity monomers remain largely unexplored.

Herein we report the design and synthesis of new 3D COFs, termed JUC-568 and JUC-569 (JUC = Jilin University China), based on triptycene derivatives with a triangular prism node. By combining the triptycene-based monomer with a planar triangle (3-connected) node, JUC-568 shows a ceq topology. Besides, from the assembly of two similar triangular prism building units, JUC-569 adopts a non-interpenetrated acs topology. To the best of our knowledge, this study represents the first example of COFs with ceq or non-interpenetrated acs topology, which effectively promotes the structural varieties of 3D COFs. More importantly, owing to the high crystallinity and permanent porosity, these triptycene-based COFs demonstrate an impressive performance in the capture of CO_2 (~ 98 cm³/g at 273 K and 1 bar) and CH_4 (~ 48 cm³/g at 273 K and 1 bar), and particularly in H₂ adsorption (up to 274 cm³/g at 77 K and 1 bar), which is higher than those from all porous organic materials reported so far.

Our strategy for preparing 3D COFs with new topologies is based on the considered symmetry-guided design principle. A triptycene derivative, 2,3,6,7,14,15-hexa(4'-formylphenyl)


[†]State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China Deakin University, Institute for Frontier Materials, Geelong, Victoria 3216, Australia

¹Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao, Shandong 266101, P. R. China

Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 6 Marechal Juin, 14050 Caen, France

^{*}Department of Chemical and Biomolecular Engineering, Center for Catalytic Science and Technology, University of Delaware, Newark, DE 19716, USA

Scheme 1. Schematic representation of the strategy for preparing 3D triptycene-based COFs^a

^aMolecular structures of TAPTA (a) as a planar triangle (3-connected) node as well as HFPTP (b) and HDIATP (c) as triangular prism nodes (6-connected) building units. Two 3D triptycene-based COFs, denoted as JUC-568 (d) and JUC-569 (e), are constructed by the condensation reaction of HFPTP and TAPTA or HDIATP. An expanded [6 + 3] connected network (**ceq** topology) in JUC-568 (f), and an expanded [6 + 6] connected network (**acs** topology) in JUC-569 (g).

triptycene (HFPTP, Figure 1b), can perfectly act as a highly symmetrical triangular prism node. After analyzing the Reticular Chemistry Structure Resource (RCSR) database,³⁷ we found that only one possible topology (acs) is available for such a 6connected nod. At the same time, there are multiple feasible topologies for the combination of 6-connected and 3-connected build units, such as ceq, sab and dag. Therefore, the condensation of HFPTP and a planar triangle (3-connected) monomer, 2,4,6tris(4-aminophenyl)-1,3,5-triazine (TAPTA, Figure 1a), leads to an expanded [6 + 3] connected network (JUC-568, Figure 1d). Considering their link angles (60° for HFPTP and 120° for TAPTA), the targeted material is more likely to form the ceq topology (Figure 1f). Furthermore, to construct a pure 6connected framework, another triangular prism monomer, 2,3,6,7,14,15-hexa(3',5'-diisopropyl-4'-amino) triptycene (HDIATP, Figure 1c) was also designed. JUC-569 (Figure 1e) can be obtained from the combination of two triangular prism monomers, HFPTP and HDIATP, with the same 6-connected node and link angle of 120°, which tends to a non-interpenetrated acs topology (Figure 1g).

The synthesis of JUC-568 was carried out by the solvothermal reaction of HFPTP (22.0 mg, 0.025 mmol) and TAPTA (17.7 mg, 0.05 mmol) in a mixture of dioxane, mesitylene, and acetic acid, with heating at 120 °C for 3 days; while JUC-569 was obtained by suspending HFPTP (22.0 mg, 0.025 mmol) and HDIATP (32.3 mg, 0.025 mmol) in a mixture of o-dichlorobenzene, n-butanol

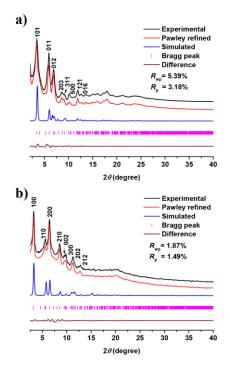
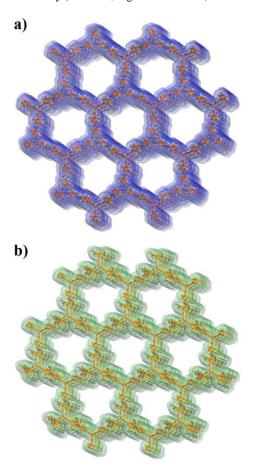



Figure 1. PXRD patterns of JUC-568 (a) and JUC-569 (b).

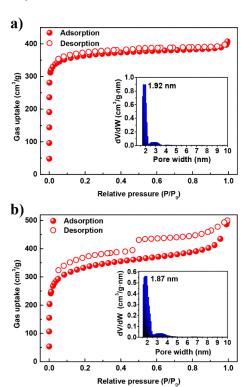

and acetic acid under 120 °C for 3 days. The as-synthesized COFs were insoluble in water or common organic solvents, such as acetone, N,N-dimethylformamide, ethanol, tetrahydrofuran. The morphologies of both COFs were characterized by scanning electron microscopy (SEM), which show isometric crystals with an average size of 0.2 µm (Figures S1 and S2). New COFs fourier transform infrared (FT-IR) spectra displayed peaks at 1598 cm⁻¹ for JUC-568 and 1625 cm⁻¹ for JUC-569, which are characteristic of C=N bond. At the same time, the depletion of peaks ascribed to C=O stretching vibration (1699 cm⁻¹ for HFPTP) and N-H stretching vibration (~3323 cm⁻¹ for TAPTA and ~3403 cm⁻¹ for HDIATP) confirmed that aldehyde and amine groups had been transformed (Figures S3 and S4). ^{13}C Solid-state cross-polarization magic-angle-spinning (CP/MAS) NMR spectroscopy indicated that the presence of carbons from imine groups by the peaks at 158 ppm for JUC-568 and 162 ppm for JUC-569 (Figures S5 and S6). Thermogravimetric analysis (TGA) showed that both COFs had high thermal stability (~ 450 °C, Figures S7 and S8).

Figure 2. Extended structures of JUC-568 (a) and JUC-569 (b) viewed along c-axis.

The crystalline structures of 3D triptycene-based COFs were verified by the powder X-ray diffraction (PXRD) in conjunction with structural simulations (Figure 1). After a geometrical energy minimization by the Materials Studio software package, ³⁸ the unit cell parameters were acquired with a=49.570 Å, b=50.541 Å, c=15.618 Å and $\alpha=\beta=90^\circ$, $\gamma=120^\circ$ for JUC-568 based on a **ceq** net, while the unit cell parameters of JUC-569 with a noninterpenetrated **acs** net were a=b=31.110 Å, c=18.468 Å and $\alpha=\beta=90^\circ$, $\gamma=120^\circ$. Moreover, the experimental PXRD patterns were accomplished by full profile pattern matching (Pawley)

refinement. Peaks at 3.43, 5.92, 6.82, 8.65, 9.08, 10.21,11.86 and 12.70° for JUC-568 belong to the (101), (011), (012), (203), (311), (500), (121) and (016) Bragg peaks of the space group Pm (No. 6), and peaks at 3.24, 5.61, 6.47, 8.55, 9.48, 9.87, 11.30 and 12.84° for JUC-569 correspond to the (100), (110), (200), (210), (002), (300), (202) and (212) Bragg peaks of the space group P-6 (No. 174). The calculated results can well match with those experimental ones with good agreement factors (Rp = 3.18% and ωRp = 5.39% for JUC-568; Rp = 1.49% and $\omega Rp = 1.87\%$ for JUC-569). In addition, we also tried alternative structures with different topologies, such as sab and dag net for JUC-568; however, there was a significant difference between the experimental and simulated PXRDs (Figures S9-11). In consideration of all these results, the obtained COFs were proposed to have the expected networks, ceq topology for JUC-568, and acs topology for JUC-569. Therefore, both COF materials show microporous cavities with ~1.98 nm for JUC-568 and \sim 1.94 nm for JUC-569 viewed along the caxis (Figure 2).

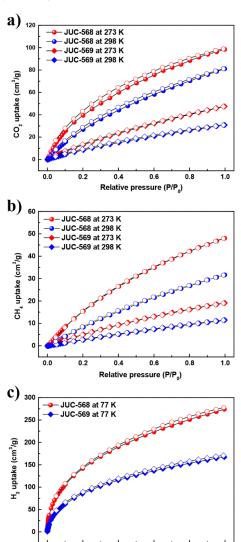


Figure 3. N_2 adsorption-desorption isotherms for JUC-568 (a) and JUC-569 (b) at 77 K. Inserts: corresponding calculated pore-size distribution.

 N_2 adsorption measurements determined the permanent porosity and specific surface areas of 3D triptycene-based COFs at 77 K. As can be seen in Figure 3, both COFs showed a sharp increase at low pressure (below $0.1\ P/P_0$), which reveals their microporous nature. The presence of textural mesopores in JUC-569 led to the isotherm inclination in the 0.8-1.0 P/P_0 range. Slight desorption hysteresis was observed, which is a consequence of the agglomeration of COF crystals. 39 The Brunauer–Emmett–Teller (BET) specific surface areas were 1433 m^2/g for JUC-568 and 1254 m^2/g for JUC-569, respectively (Figures S9-12). The non-local density functional theory (NLDFT) was used to calculate the pore-size distribution, and both COFs showed microporous cavities with \sim 1.92 nm for JUC-568 and \sim 1.87 nm for JUC-569 (inserts in Figure 3), which are in good agreement with the pore sizes pre-

dicted from their crystal structures (~ 1.98 nm for JUC-568 and ~ 1.94 nm for JUC-569).

Furthermore, the uptakes of H₂, CH₄ and CO₂ under one aerosphere were studied to expand the potential of 3D triptycene-based COFs in the greenhouse gas capture and energy storage. As shown in Figure 4, JUC-568 had higher adsorption capacity of CO₂ (98 cm³/g at 273 K and 81 cm³/g at 298 K), CH₄ (48 cm³/g at 273 K and 32 cm³/g at 298 K), and H₂ (274 cm³/g at 77 K) than JUC-569 (CO₂: 47 cm³/g at 273 K and 31 cm³/g at 298 K, CH₄: 19 cm³/g at 273 K and 11 cm³/g at 298 K, and H₂: 167 cm³/g at 77 K). Remarkably, the H₂ storage capacity (274 cm³/g or 2.45 wt%) of JUC-568 at 1 bar and 77 K is superior to those of porous organic materials (POMs) reported to date (Table S1), such as PPN-3 (1.58 wt%), ⁴⁰ PAF-1 (1.66 wt%), ⁴¹ SPT-CMP1 (1.72 wt%), ⁴² and DL-COF-1 (2.09 wt%), ⁴³ which can be attributed to the unique shape of triptycene as a rigid, fused-ring skeleton and three-fold symmetry building unit. ⁴⁴

Figure 4. The uptakes of CO_2 (a), CH_4 (b), and H_2 (c) for JUC-568 and JUC-569 measured at different temperatures.

0.4

0.6

Relative pressure (P/P.)

0.8

0.2

1.0

In summary, we have developed two 3D triptycene-based COFs, JUC-568 and JUC-569, with unreported **ceq** or non-interpenetrated **acs** topology, respectively. Noteworthy, JUC-568

possesses the permanent porosity and impressive performance in the uptakes of CO_2 (98 cm³/g at 273 K and 1 bar) and CH_4 (48 cm³/g at 273 K and 1 bar), and more importantly in H_2 storage (274 cm³/g or 2.45 wt% at 77 K and 1 bar), which is highest among porous organic materials reported so far. Thus, this work offers a prospective strategy for constructing 3D COFs from high-connectivity building blocks and facilitates their future applications in energy storage and environment protection.

Supporting Information

Methods and synthetic procedures, SEM, FTIR, solid state ¹³C NMR, TGA, BET plot, and unit cell parameters. This material is available free of charge via the internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*qrfang@jlu.edu.cn or bin.tang@deakin.edu.au

Author Contributions

[§]H.L. and F.C. contributed equally to this work.

Notes

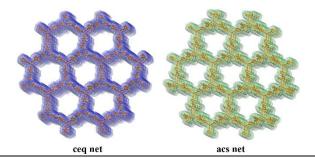
The authors declare no competing financial interests.

ACKNOWLEDGMENT

This work was supported by the National Natural Science Foundation of China (21571079, 21621001, 21390394, 21571076, and 21571078), "111" project (BP0719036 and B17020), and the program for JLU Science and Technology Innovative Research Team. V.V., Q.F., and S.Q. acknowledge the collaboration in the framework of China-French joint laboratory "Zeolites".

REFERENCES

- (1) Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, Crystalline, Covalent Organic Frameworks. *Science* **2005**, *310*, 1166.
- (2) Colson, J. W.; Woll, A. R.; Mukherjee, A. Levendorf, M. P.; Spitler, E. L.; Shields, V. B.; Spencer, M. G.; Park, J.; Dichtel, W. R. *Science* **2011**, *332*, 228.
- (3) Ding, S. Y.; Wang, W. Covalent Organic Frameworks (COFs): from Design to Applications. *Chem. Soc. Rev.* **2013**, *42*, 548.
- (4) Guan, X. Y.; Chen, F. Q.; Fang, Q. R.; Qiu, S. L. Design and Applications of Three Dimensional Covalent Organic Frameworks. *Chem. Soc. Rev.* **2020**, *49*, 1357.
- (5) Geng, K. Y.; He, T.; Liu, R. Y.; Dalapati, S.; Tan, K. T.; Li, Z. P.; Tao, S. S.; Gong, Y. F.; Jiang, Q. H.; Jiang, D. L. Covalent Organic Frameworks: Design, Synthesis, and Functions. *Chem. Rev.* **2020**, *120*, 8814.
- (6) Han, S. S.; Furukawa, H.; Yaghi, O. M.; Goddard, W. A., III Covalent Organic Frameworks as Exceptional Hydrogen Storage Materials. *J. Am. Chem. Soc.* **2008**, *130*, 11580.
- (7) Kuhn, P.; Antonietti, M.; Thomas, A. Porous, Covalent TriazineBased Frameworks Prepared by Ionothermal Synthesis. *Angew. Chem. Int. Ed.* **2008**, *47*, 3450.
- (8) Fang, Q. R.; Zhuang, Z. B.; Gu, S.; Kaspar, R. B.; Zheng, J.; Wang, J. H.; Qiu, S. L.; Yan, Y. S. Designed Synthesis of Large-Pore Crystalline Polyimide Covalent Organic Frameworks. *Nat. Commun.* **2014**, *5*, 4503.
- (9) Wang, S.; Wang, Q.; Shao, P.; Han, Y.; Gao, X.; Ma, L.; Yuan, S.; Ma, X.; Zhou, J.; Feng, X.; Wang, B. Exfoliation of Covalent Organic Frameworks into Few-layer Redox-Active Nanosheets as Cathode Materials for Lithium-Ion Batteries. *J. Am. Chem. Soc.* **2017**, *139*, 4258.


- (10) Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D. A Belt-Shaped, Blue Luminescent, and Semiconducting Covalent Organic Framework. *Angew. Chem. Int. Ed.* **2008**, *47*, 8826.
- (11) Bertrand, G. H. V.; Michaelis, V. K.; Ong, T. C.; Griffin, R. G.; Dinca, M. Thiophene-Based Covalent Organic Frameworks. *Proc. Natl. Acad. Sci. U. S. A.* **2013**, *110*, 4923.
- (12) Dogru, M.; Handloser, M.; Auras, F.; Kunz, T.; Medina, D.; Hartschuh, A.; Knochel, P.; Bein, T. A Photoconductive Thienothiophene-Based Covalent Organic Framework Showing Charge Transfer Towards Included Fullerene. *Angew. Chem. Int. Ed.* **2013**, *52*, 2920.
- (13) Du, Y.; Yang, H.; Whiteley, J. M.; Wan, S.; Jin, Y.; Lee, S. H.; Zhang, W. Ionic Covalent Organic Frameworks with Spiroborate Linkage. *Angew. Chem. Int. Ed.* **2016**, *55*, 1737.
- (14) Li, H.; Chang, J. H.; Li, S. S.; Guan, X. Y.; Li, D. H.; Li, C. Y.; Tang, L. X.; Xue, M.; Yan, Y. S.; Valtchev, V.; Qiu, S. L.; Fang, Q. R. Three-Dimensional Tetrathiafulvalene-Based Covalent Organic Frameworks for Tunable Electrical Conductivity. *J. Am. Chem. Soc.* **2019**, *141*, 13324.
- (15) Ding, S. Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W. G.; Su, C. Y.; Wang, W. Construction of Covalent Organic Framework for Catalysis: Pd/COF-LZU1 in Suzuki-Miyaura Coupling Reaction. *J. Am. Chem. Soc.* **2011**, *133*, 19816.
- (16) Vyas, V. S.; Haase, F.; Stegbauer, L.; Savasci, G.; Podjaski, F.; Ochsenfeld, C.; Lotsch, B. V. A Tunable Azine Covalent Organic Framework Platform for Visible Light-Induced Hydrogen Generation. *Nat. Commun.* **2015**, *6*, 8508.
- (17) Sun, Q.; Aguila, B.; Perman, J.; Nguyen, N.; Ma, S. Q. Flexibility Matters: Cooperative Active Sites in Covalent Organic Framework and Threaded Ionic Polymer. *J. Am. Chem. Soc.* **2016**, *138*, 15790.
- (18) Wang, X.; Han, X.; Zhang, J.; Wu, X.; Liu, Y.; Cui, Y. Homochiral 2D Porous Covalent Organic Frameworks for Heterogeneous Asymmetric Catalysis. *J. Am. Chem. Soc.* **2016**, *138*, 12332
- (19) Yan, S. C.; Guan, X. Y.; Li, H.; Li, D. H.; Xue, M.; Yan, Y. S.; Valtchev, V.; Qiu, S. L.; Fang, Q. R. Three-dimensional Salphen-based Covalent-Organic Frameworks as Catalytic Antioxidants. *J. Am. Chem. Soc.* **2019**, *141*, 2920.
- (20) Bi, S.; Thiruvengadam, P.; Wei, S.; Zhang, W. B.; Zhang, F.; Gao, L. S.; Xu, J. S.; Wu, D. Q.; Chen, J. S.; Zhang, F. Vinylene-Bridged Two-Dimensional Covalent Organic Frameworks via Knoevenagel Condensation of Tricyanomesitylene. *J. Am. Chem. Soc.* **2020**, *142*, 11893.
- (21) Chandra, S.; Kundu, T.; Kandambeth, S.; BabaRao, R.; Marathe, M. Y.; Kunjir, S. M.; Banerjee, R. Phosphoric Acid Loaded Azo (-N=N-) Based Covalent Organic Framework for Proton Conduction. *J. Am. Chem. Soc.* **2014**, *136*, 6570.
- (22) Zhou, T. Y.; Xu, S. Q.; Wen, Q.; Pang, Z. F.; Zhao, X. One-Step Construction of Two Different Kinds of Pores in a 2D Covalent Organic Framework. *J. Am. Chem. Soc.* **2014**, *136*, 15885.
- (23) Guan, X. Y.; Li, H.; Ma, Y. C.; Xue, M.; Fang, Q. R.; Yan, Y. S.; Valtchev, V.; Qiu, S. L. Chemically Stable Polyarylether-Based Covalent Organic Frameworks. *Nat. Chem.* **2019**, *11*, 587.
- (24) Guo, Z. B.; Zhang, Y. Y.; Dong, Y.; Li, J.; Li, S. W.; Shao, P. P.; Feng, X.; Wang, B. Fast Ion Transport Pathway Provided by Polyethylene Glycol Confined in Covalent Organic Frameworks. *J. Am. Chem. Soc.* **2019**, *141*, 1923.
- (25) Li, D. H.; Li, C. Y.; Zhang, L. J.; Li, H.; Zhu, L. K.; Yang, D. J.; Fang, Q. R.; Qiu, S. L.; Yao, X. D. Metal-Free Thiophene-Sulfur Covalent Organic Frameworks: Precise and Controllable Synthesis of Catalytic Active Sites for Oxygen Reduction. *J. Am. Chem. Soc.* **2020**, *142*, 8104.
- (26) El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortes, J. L.; Côté, A. P.; Taylor, R. E.; O'Keeffe, M.; Yaghi, O. M. Designed Syn-

- thesis of 3D Covalent Organic Frameworks. Science 2007, 316, 268
- (27) Fernando, J.; Uribe-Romo, J. R. H.; Furukawa, H.; Klo, C.; O'Keeffe M.; Yaghi, O. M. A Crystalline Imine-Linked 3-D Porous Covalent Organic Framework. *J. Am. Chem. Soc.* **2009**, *131*, 4570.
- (28) Ma, T.; Kapustin E. A.; Yin, S. X.; Liang, L.; Zhou, Z.; Niu, J.; Li, L. H.; Wang, Y.; Su, J.; Li, J.; Wang, X.; Wang, W. D.; Wang, W.; Sun, J.; Yaghi, O. M. Single-Crystal X-ray Diffraction Structures of Covalent Organic Frameworks. *Science* **2018**, *361*, 48
- (29) Lin, G.; Ding, H.; Yuan, D.; Wang, B.; Wang, C. A PyreneBased, Fluorescent Three-Dimensional Covalent Organic Framework. *J. Am. Chem. Soc.* **2016**, *138*, 3302.
- (30) Zhang, Y.; Duan, J.; Ma, D.; Li, P.; Li, S.; Li, H.; Zhou, J.; Ma, X.; Feng, X.; Wang, B. Three-Dimensional Anionic CyclodextrinBased Covalent Organic Frameworks. *Angew. Chem. Int. Ed.* **2017**, *56*, 16313.
- (31) Yahiaoui, O.; Fitch, A. N.; Hoffmann, F.; Froba, M.; Thomas, A.; Roeser, J. 3D Anionic Silicate Covalent Organic Framework with srs Topology. *J. Am. Chem. Soc.* **2018**, *140*, 5330.
- (32) Lan, Y.; Han, X.; Tong, M.; Huang, H.; Yang, Q.; Liu, D.; Zhao, X.; Zhong, C. Materials Genomics Methods for High-Throughput Construction of COFs and Targeted Synthesis. *Nat. Commun.* **2018**, *9*, 5274.
- (33) Kang, X.; Han, X.; Yuan, C.; Cheng, C.; Liu, Y.; Cui, Y. Reticular Synthesis of the Topology Covalent Organic Frameworks. *J. Am. Chem. Soc.* **2020**, *142*, 16346.
- (34) Gropp, C.; Ma, T. Q.; Hanikel, N.; Yaghi, O. M. Design of Higher Valency in Covalent Organic Frameworks. *Science* **2020**, *370*. 6406.
- (35) Li, H.; Ding, J. H.; Guan, X. Y.; Chen, F. Q.; Li, C. Y.; Zhu, L. K.; Xue, M.; Yuan, D. Q.; Valtchev, V.; Yan, Y. S.; Qiu, S. L.; Fang, Q. R. Three-Dimensional Large-Pore Covalent Organic Framework with stp Topology. *J. Am. Chem. Soc.* **2020**, *142*, 13334.
- (36) Zhu, Q.; Wang, X.; Clowes, R.; Cui, P.; Chen, L. J.; Little, M. A.; Cooper, A. I. 3D Cage COFs: A Dynamic Three-Dimensional Covalent Organic Framework with High-Connectivity Organic Cage Nodes. *J. Am. Chem. Soc.* **2020**, *142*, 16842.
 - (37) http://rcsr.net/nets.
 - (38) Materials Studio ver. 7.0; Accelrys Inc.: San Diego, CA.
- (39) Fang, Q.; Wang, J.; Gu, S.; Kaspar, R. B.; Zhuang, Z.; Zheng, J.; Guo, H.; Qiu, S.; Yan, Y. 3D Porous Crystalline Polyimide Covalent Organic Frameworks for Drug Delivery. *J. Am. Chem. Soc.* **2015**, *137*, 8352.
- (40) Lu, W.; Yuan, D.; Zhao, D.; Schilling, C. I.; Plietzsch, O.; Muller, T.; Brase, S.; Guenther, J.; Blümel, J.; Krishna, R.; Li, Z.; Zhou, H. C. Porous Polymer Networks: Synthesis, Porosity, and Applications in Gas Storage/Separation. *Chem. Mater.* **2010**, 22, 5964.
- (41) Ben, T.; Ren, H.; Ma, S.; Cao, D.; Lan, J.; Jing, X.; Wang, W.; Xu, J.; Deng, F.; Simmons, J. M.; Qiu, S. L.; Zhu, G. S. Targeted Synthesis of a Porous Aromatic Framework with High Stability and Exceptionally High Surface Area. *Angew. Chem. Int. Ed.* **2009**, *48*, 9457.
- (42) Jiang, J. X.; Laybourn, A.; Clowes, R.; Khimyak, Y. Z.; Bacsa, J.; Higgins, S. J.; Adams D. J.; Cooper, A. I. High Surface Area Contorted Conjugated Microporous Polymers Based on Spiro-Bipropylenedioxythiophene. *Macromolecules* **2010**, *43*, 7577.
- (43) Li, H.; Pan, Q. Y.; Ma, Y. C.; Guan, X. Y.; Xue, M.; Fang, Q. R.; Yan, Y. S.; Valtchev, V.; Qiu, S. L. Three-Dimensional Covalent Organic Frameworks with Dual Linkages for Bifunctional Cascade Catalysis. *J. Am. Chem. Soc.* **2016**, *138*, 14783.

(44) Ghanem, B. S.; Msayid, K. J.; Mckeown, N. B.; Harris, K. D.; Pan, Z. G.; Budd, P. M.; Butler, A.; Selbie, J.; Book, D.; Walton, A. A Triptycene-Based Polymer of Intrinsic Microposity

That Displays Enhanced Surface Area and Hydrogen Adsorption. *Chem. Commun.* **2007**, 67.

TOC Graphic:

