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Three-Dimensional Triptycene-Based Covalent Organic Frameworks with ceq or acs Topology

The growth of three-dimensional covalent organic frameworks (3D COFs) with new topologies has still been considered a great challenge due to limited high-connectivity building units. Here we report the design and synthesis of novel 3D triptycene-based COFs, termed JUC-568 and JUC-569, in the light of the deliberate symmetry-guided design principle. By combining a triangular prism (6-connected) node with a planar triangle (3-connected) or another triangular prism node, the targeted COFs adopt unreported ceq or non-interpenetrated acs topology, respectively. Both materials also show permanent porosity and impressive performance in the adsorption of CO 2 (~ 98 cm 3 /g at 273 K and 1 bar) and CH 4 (~ 48 cm 3 /g at 273 K and 1 bar), and especially in H 2 storage (up to 274 cm 3 /g or 2.45 wt% at 77 K and 1 bar), which is highest among all porous organic materials reported to date. Thus, this research provides a promising strategy for diversifying 3D COFs based on complicated building blocks and promotes their potential applications in energy storage and environment-related fields.

Covalent organic frameworks (COFs), an emerging family of crystalline porous polymers, are assembled from organic reactants by reversible covalent bonds. [1][2][START_REF] Ding | Covalent Organic Frameworks (COFs): from Design to Applications[END_REF][START_REF] Guan | Design and Applications of Three Dimensional Covalent Organic Frameworks[END_REF][START_REF] Geng | Covalent Organic Frameworks: Design, Synthesis, and Functions[END_REF] Due to high surface areas, modular natures, and good thermal/chemical stabilities, COF materials have attracted considerable attention in gas storage/separation, [START_REF] Han | III Covalent Organic Frameworks as Exceptional Hydrogen Storage Materials[END_REF][START_REF] Kuhn | Covalent TriazineBased Frameworks Prepared by Ionothermal Synthesis[END_REF][START_REF] Fang | Designed Synthesis of Large-Pore Crystalline Polyimide Covalent Organic Frameworks[END_REF][START_REF] Wang | Exfoliation of Covalent Organic Frameworks into Few-layer Redox-Active Nanosheets as Cathode Materials for Lithium-Ion Batteries[END_REF] organic electronics, [START_REF] Wan | A Belt-Shaped, Blue Luminescent, and Semiconducting Covalent Organic Framework[END_REF][START_REF] Bertrand | Thiophene-Based Covalent Organic Frameworks[END_REF][START_REF] Dogru | A Photoconductive Thienothiophene-Based Covalent Organic Framework Showing Charge Transfer Towards Included Fullerene[END_REF][START_REF] Du | Ionic Covalent Organic Frameworks with Spiroborate Linkage[END_REF][START_REF] Li | Three-Dimensional Tetrathiafulvalene-Based Covalent Organic Frameworks for Tunable Electrical Conductivity[END_REF] heterogeneous catalysis, [START_REF] Ding | Construction of Covalent Organic Framework for Catalysis: Pd/COF-LZU1 in Suzuki-Miyaura Coupling Reaction[END_REF][START_REF] Vyas | A Tunable Azine Covalent Organic Framework Platform for Visible Light-Induced Hydrogen Generation[END_REF][START_REF] Sun | Flexibility Matters: Cooperative Active Sites in Covalent Organic Framework and Threaded Ionic Polymer[END_REF][START_REF] Wang | Homochiral 2D Porous Covalent Organic Frameworks for Heterogeneous Asymmetric Catalysis[END_REF][START_REF] Yan | Three-dimensional Salphen-based ovalent-Organic Frameworks as atalytic Antioxidants[END_REF][START_REF] Bi | Vinylene-Bridged Two-Dimensional Covalent Organic Frameworks via Knoevenagel Condensation of Tricyanomesitylene[END_REF] and some other fields. [START_REF] Chandra | Phosphoric Acid Loaded Azo (-N=N-) Based ovalent Organic Framework for Proton Conduction[END_REF][START_REF] Zhou | One-Step Construction of Two Different Kinds of Pores in a 2D Covalent Organic Framework[END_REF][START_REF] Guan | Chemically Stable Polyarylether-Based Covalent Organic Frameworks[END_REF][START_REF] Guo | Fast Ion Transport Pathway Provided by Polyethylene Glycol Confined in Covalent Organic Frameworks[END_REF][START_REF] Li | Metal-Free Thiophene-Sulfur Covalent Organic Frameworks: Precise and Controllable Synthesis of Catalytic Active Sites for Oxygen Reduction[END_REF] Over the past decade, most the reports were focused on conjugated two-dimensional (2D) sheets, in which the abundant building blocks allowed to establish well developed synthetic strategies. [START_REF] Geng | Covalent Organic Frameworks: Design, Synthesis, and Functions[END_REF] By contrast, three-dimensional (3D) COFs are still less studied due to the scant availability of appropriate molecular building units and relatively complex structure determination. [START_REF] Guan | Design and Applications of Three Dimensional Covalent Organic Frameworks[END_REF] Up till now, only very limited topologies in 3D COFs have been reported, [START_REF] El-Kaderi | Designed Syn-thesis of 3D Covalent Organic Frameworks[END_REF][START_REF] Fernando | A rystalline Imine-Linked 3-D Porous Covalent Organic Framework[END_REF][START_REF] Ma | Single-Crystal X-ray Diffraction Structures of Covalent Organic Frameworks[END_REF][START_REF] Lin | Fluorescent Three-Dimensional Covalent Organic Framework[END_REF][START_REF] Zhang | Three-Dimensional Anionic Cyclo-dextrinBased Covalent Organic Frameworks[END_REF][START_REF] Yahiaoui | 3D Anionic Silicate Covalent Organic Framework with srs Topology[END_REF][START_REF] Lan | Materials Genomics Methods for High-Throughput Construction of COFs and Targeted Synthesis[END_REF][START_REF] Kang | Reticular Synthesis of tbo Topology Covalent Organic Frameworks[END_REF][START_REF] Gropp | Design of Higher Valency in Covalent Organic Frameworks[END_REF] such as dia, ctn, and bor. Moreover, almost all know 3D COFs were constructed by using tetrahedral (4-connected) building blocks, including the derivatives of tetraphenylmethane, tetraphenylsilane, and adamantane, which has greatly confined the structural diversities and functionalization of 3D COFs.

Despite the above issues, 3D COFs are considered a remarkable platform for practical applications due to their unique features, 4 e.g., inter-connective porous structures, high specific surface areas, and easily accessible active sites. In principle, the employment of high-connectivity building units, such as triangular prism (6-connected) monomers, can set up new architectures in 3D COFs, proved by several cases that appeared recently. For example, we synthesized the first 3D large-pore COF, JUC-564, with stp topology constructed from a triptycene-based triangular prism monomer, which has the largest pore (43 Å) among 3D COFs and record-breaking low density (0.108 g cm -3 ) in porous crystalline materials to date. [START_REF] Li | Three-Dimensional Large-Pore Covalent Organic Framework with stp Topology[END_REF] Subsequently, Cooper and coworkers also reported the first cage-based 3D COF, 3D-CageCOF-1, which is fabricated by an organic cage molecule as a triangular prism node and adopts a 2-fold interpenetrated acs topology. [START_REF] Zhu | 3D Cage COFs: A Dynamic Three-Dimensional Covalent Organic Framework with High-Connectivity Organic Cage Nodes[END_REF] It must be noted, however, that except for a few successful examples, 3D COFs based on high-connectivity monomers remain largely unexplored.

Herein we report the design and synthesis of new 3D COFs, termed JUC-568 and JUC-569 (JUC = Jilin University China), based on triptycene derivatives with a triangular prism node. By combining the triptycene-based monomer with a planar triangle (3-connected) node, JUC-568 shows a ceq topology. Besides, from the assembly of two similar triangular prism building units, JUC-569 adopts a non-interpenetrated acs topology. To the best of our knowledge, this study represents the first example of COFs with ceq or non-interpenetrated acs topology, which effectively promotes the structural varieties of 3D COFs. More importantly, owing to the high crystallinity and permanent porosity, these triptycene-based COFs demonstrate an impressive performance in the capture of CO 2 (~ 98 cm 3 /g at 273 K and 1 bar) and CH 4 (~ 48 cm 3 /g at 273 K and 1 bar), and particularly in H 2 adsorption (up to 274 cm 3 /g at 77 K and 1 bar), which is higher than those from all porous organic materials reported so far.

Our strategy for preparing 3D COFs with new topologies is based on the considered symmetry-guided design principle. A triptycene derivative, 2,3,6,7,14,15-hexa(4′-formylphenyl) triptycene (HFPTP, Figure 1b), can perfectly act as a highly symmetrical triangular prism node. After analyzing the Reticular Chemistry Structure Resource (RCSR) database, 37 we found that only one possible topology (acs) is available for such a 6connected nod. At the same time, there are multiple feasible topologies for the combination of 6-connected and 3-connected build units, such as ceq, sab and dag. Therefore, the condensation of HFPTP and a planar triangle (3-connected) monomer, 2,4,6tris(4-aminophenyl)-1,3,5-triazine (TAPTA, Figure 1a), leads to an expanded [6 + 3] connected network (JUC-568, Figure 1d).

Considering their link angles (60º for HFPTP and 120º for TAPTA), the targeted material is more likely to form the ceq topology (Figure 1f). Furthermore, to construct a pure 6connected framework, another triangular prism monomer, 2,3,6,7,14,15-hexa(3′,5′-diisopropyl-4′-amino) triptycene (HDIATP, Figure 1c) was also designed. JUC-569 (Figure 1e) can be obtained from the combination of two triangular prism monomers, HFPTP and HDIATP, with the same 6-connected node and link angle of 120º, which tends to a non-interpenetrated acs topology (Figure 1g).

The synthesis of JUC-568 was carried out by the solvothermal reaction of HFPTP (22.0 mg, 0.025 mmol) and TAPTA (17.7 mg, 0.05 mmol) in a mixture of dioxane, mesitylene, and acetic acid, with heating at 120 ºC for 3 days; while JUC-569 was obtained by suspending HFPTP (22.0 mg, 0.025 mmol) and HDIATP (32. and acetic acid under 120 ºC for 3 days. The as-synthesized COFs were insoluble in water or common organic solvents, such as hexane, acetone, N,N-dimethylformamide, ethanol, and tetrahydrofuran. The morphologies of both COFs were characterized by scanning electron microscopy (SEM), which show isometric crystals with an average size of 0.2 m (Figures S1 andS2). New COFs fourier transform infrared (FT-IR) spectra displayed peaks at 1598 cm -1 for JUC-568 and 1625 cm -1 for JUC-569, which are characteristic of C=N bond. At the same time, the depletion of peaks ascribed to C=O stretching vibration (1699 cm -1 for HFPTP) and N-H stretching vibration (~3323 cm -1 for TAPTA and ~3403 cm -1 for HDIATP) confirmed that aldehyde and amine groups had been transformed (Figures S3 andS4). Solid-state [START_REF] Du | Ionic Covalent Organic Frameworks with Spiroborate Linkage[END_REF] C cross-polarization magic-angle-spinning (CP/MAS) NMR spectroscopy indicated that the presence of carbons from imine groups by the peaks at 158 ppm for JUC-568 and 162 ppm for JUC-569 (Figures S5 andS6). Thermogravimetric analysis (TGA) showed that both COFs had high thermal stability (~ 450 ºC, Figures S7 andS8). 011), ( 012), ( 203), (311), ( 500), ( 121) and (016) Bragg peaks of the space group Pm (No. 6), and peaks at 3.24, 5.61, 6.47, 8.55, 9.48, 9.87, 11.30 and 12.84° for JUC-569 correspond to the (100), ( 110), ( 200), ( 210), (002), (300), ( 202) and (212) Bragg peaks of the space group P-6 (No. 174). The calculated results can well match with those experimental ones with good agreement factors (Rp = 3.18% and ωRp = 5.39% for JUC-568; Rp = 1.49% and ωRp = 1.87% for JUC-569). In addition, we also tried alternative structures with different topologies, such as sab and dag net for JUC-568; however, there was a significant difference between the experimental and simulated PXRDs (Figures S9-11). In consideration of all these results, the obtained COFs were proposed to have the expected networks, ceq topology for JUC-568, and acs topology for JUC-569. Therefore, both COF materials show microporous cavities with ∼1.98 nm for JUC-568 and ∼1.94 nm for JUC-569 viewed along the caxis (Figure 2). N 2 adsorption measurements determined the permanent porosity and specific surface areas of 3D triptycene-based COFs at 77 K. As can be seen in Figure 3, both COFs showed a sharp increase at low pressure (below 0.1 P/P 0 ), which reveals their microporous nature. The presence of textural mesopores in JUC-569 led to the isotherm inclination in the 0.8-1.0 P/P 0 range. Slight desorption hysteresis was observed, which is a consequence of the agglomeration of COF crystals. [START_REF] Fang | 3D Porous Crystalline Polyimide Covalent Organic Frameworks for Drug Delivery[END_REF] The Brunauer-Emmett-Teller (BET) specific surface areas were 1433 m 2 /g for JUC-568 and 1254 m 2 /g for JUC-569, respectively (Figures S9-12). The non-local density functional theory (NLDFT) was used to calculate the pore-size distribution, and both COFs showed microporous cavities with ~ 1.92 nm for JUC-568 and ~ 1.87 nm for JUC-569 (inserts in Figure 3), which are in good agreement with the pore sizes pre-dicted from their crystal structures (~ 1.98 nm for JUC-568 and ~ 1.94 nm for JUC-569).

Furthermore, the uptakes of H 2 , CH 4 and CO 2 under one aerosphere were studied to expand the potential of 3D triptycenebased COFs in the greenhouse gas capture and energy storage. As shown in Figure 4, JUC-568 had higher adsorption capacity of CO 2 (98 cm 3 /g at 273 K and 81 cm 3 /g at 298 K), CH 4 (48 cm 3 /g at 273 K and 32 cm 3 /g at 298 K), and H 2 (274 cm 3 /g at 77 K) than JUC-569 (CO 2 : 47 cm 3 /g at 273 K and 31 cm 3 /g at 298 K, CH 4 : 19 cm 3 /g at 273 K and 11 cm 3 /g at 298 K, and H 2 : 167 cm 3 /g at 77 K). Remarkably, the H 2 storage capacity (274 cm 3 /g or 2.45 wt%) of JUC-568 at 1 bar and 77 K is superior to those of porous organic materials (POMs) reported to date (Table S1), such as PPN-3 (1.58 wt%), [START_REF] Lu | Porous Polymer Networks: Synthesis, Porosity, and Applications in Gas Storage/Separation[END_REF] PAF-1 (1.66 wt%), [START_REF] Ben | Targeted Synthesis of a Porous Aromatic Framework with High Stability and Exceptionally High Surface Area[END_REF] SPT-CMP1 (1.72 wt%), [START_REF] Jiang | High Surface Area Contorted Conjugated Microporous Polymers Based on Spiro-Bipropylenedioxythiophene[END_REF] and DL-COF-1 (2.09 wt%), [START_REF] Li | Three-Dimensional Covalent Organic Frameworks with Dual Linkages for Bifunctional Cascade Catalysis[END_REF] which can be attributed to the unique shape of triptycene as a rigid, fused-ring skeleton and three-fold symmetry building unit. In summary, we have developed two 3D triptycene-based COFs, JUC-568 and JUC-569, with unreported ceq or noninterpenetrated acs topology, respectively. Noteworthy, JUC-568 possesses the permanent porosity and impressive performance in the uptakes of CO 2 (98 cm 3 /g at 273 K and 1 bar) and CH 4 (48 cm 3 /g at 273 K and 1 bar), and more importantly in H 2 storage (274 cm 3 /g or 2.45 wt% at 77 K and 1 bar), which is highest among porous organic materials reported so far. Thus, this work offers a prospective strategy for constructing 3D COFs from highconnectivity building blocks and facilitates their future applications in energy storage and environment protection.
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 1 Scheme 1. Schematic representation of the strategy for preparing 3D triptycene-based COFs a
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 2 Figure 2. Extended structures of JUC-568 (a) and JUC-569 (b) viewed along c-axis.
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 3 Figure 3. N 2 adsorption-desorption isotherms for JUC-568 (a) and JUC-569 (b) at 77 K. Inserts: corresponding calculated pore-size distribution.
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Figure 4 .

 4 Figure 4. The uptakes of CO 2 (a), CH 4 (b), and H 2 (c) for JUC-568 and JUC-569 measured at different temperatures.
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