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Abstract

We consider the semilinear wave equation

∂2
t u−∆u = f(u), (x, t) ∈ RN × [0, T ), (1)

with f(u) = |u|p−1u loga(2 + u2), where p > 1 and a ∈ R, with subconformal
power nonlinearity. We will show that the blow-up rate of any singular solution
of (1) is given by the ODE solution associated with (1), The result in one space
dimension, has been proved in [28]. Our goal here is to extend this result to higher
dimensions.

MSC 2010 Classification: 35L05, 35B44, 35L71, 35L67, 35B40
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1 Introduction

1.1 Motivation of the problem

This paper is devoted to the study of blow-up solutions for the following semilinear wave
equation:

∂2
t u = ∆u+ f(u), (x, t) ∈ RN × [0, T ),

u(x, 0) = u0(x) ∈ H1
loc,u(RN), ∂tu(x, 0) = u1(x) ∈ L2

loc,u(RN),
(1.1)

where u(t) : x ∈ RN → u(x, t) ∈ R with focusing nonlinearity f defined by:

f(u) = |u|p−1u loga(2 + u2), p > 1, a ∈ R. (1.2)
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The spaces L2
loc,u(RN) and H1

loc,u(RN) are defined by

L2
loc,u(RN) = {u : RN → R/ sup

d∈RN
(

∫
|x−d|≤1

|u(x)|2dx) < +∞},

and
H1
loc,u(RN) = {u ∈ L2

loc,u(RN), |∇u| ∈ L2
loc,u(RN)}.

We assume in addition that p > 1 and if N ≥ 2, we further assume that

p < pc ≡ 1 +
4

N − 1
. (1.3)

When a 6= 0, the nonlinearity in (1.2) is not homogeneous, which means that equation
(1.1) is not scale invariant. This is precisely our challenge in this paper, particularly in
higher dimensions, since we handled the one dimensional case in [28].

Semilinear wave equations with a nonlinearity showing a logarithmic factor have been
introduced in various nonlinear physical models, for instance in the context of nuclear
physics, wave mechanics, optics, geophysics etc ... see e.g. [5, 6].

The defocusing case has been studied in the mathematical literature and the first
results are due to Tao [49] where the author proved a global well-posedness and scattering
result for the three dimensional nonlinear wave equation ∂2

t u = ∆u−|u|4u log(2+u2), in
the radial case. See also the work of Shih [48], where the method is refined to treat ∂2

t u =
∆u− |u|4u logc(2 + u2), for any c ∈ (0, 4

3
). Later, Roy extends in [44] the results (global

well-posedness and scattering) to solutions of the log-log-supercritical equation ∂2
t u =

∆u − |u|4u logc
(

log(10 + u2)
)
, for c small, without any radial assumption. Hoping to

extend the validity of our argument to the conformal case (p = pc) in some forthcoming
work, we may see the case a > 0 of (1.2) as a further step in the understanding of
blow-up dynamics in the superconformal case related to equation (1.8) below.

Let us mention that the blow-up question for the semilinear heat equation ∂tu =
∆u + |u|p−1u loga(2 + u2) is studied by Duong-Nguyen-Zaag in [20]. More precisely,
they construct for this equation a solution which blows up in finite time T , only at one
blow-up point a, according to the following asymptotic dynamics:

u(x, t) ∼ φ(t)
(

1 +
(p− 1)|x− a|2

4p(T − t)| log(T − t)|

)− 1
p−1
, as t→ T, (1.4)

where φ(t) is is the unique positive solution of the ODE

φ′ = |φ|p−1φ loga(2 + φ2), lim
t→T

φ(t) = +∞. (1.5)

Given that we have the same expression in the pure power nonlinearity case (g(u) =

|u|p−1u) with φ(t) replaced by κ(T − t)−
1
p−1 (see [11]), we see that the effect of the

nonlinearity is all encapsulated in the ODE (1.5).

Equation (1.1) is well-posed in H1
loc,u × L2

loc,u. This follows from the finite speed
of propagation and the well-posedness in H1(RN)× L2(RN). The existence of blow-up
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solutions u(t) of (1.1) follows from ODE techniques or the energy-based blow-up criterion
by Levine [32] (see also [33, 47, 50]). More blow-up results can be found in Caffarelli
and Friedman [12, 13], Kichenassamy and Littman [29, 30]. Numerical simulations of
blow-up are given by Bizoń et al. (see [7, 8, 9, 10]).

If u is an arbitrary blow-up solution of (1.1), we define a 1-Lipschitz curve Γ =
{(x, T (x))} such that the domain of definition of u is written as

D = {(x, t) | t < T (x)}. (1.6)

The justification of this fact can be found in Alinhac [1], where such a set is referred to
as the maximal influence domain. Let us motivate that particular form, and refer the
interested reader to [1] for details.
Recall first that equation (1.1) is well-posed in H1 × L2(RN), i.e. globally in space (see
for example Shatah and Struwe [46]). Using the finite speed of propagation and a cut-off
technique, we then solve the solution locally in space, as Azaiez, Masmoudi and Zaag do
in [3] in a similar setting. More precisely, for any x0 ∈ RN , we derive a solution which
is defined in Kx0,t0 , the backward light cone defined by

Kx0,t0 = {(ξ, τ) ∈ RN × [0, t0) | |ξ − x0| < t0 − τ}.

Denoting by T (x0) the supremum of such a t0, we fall into one of these two situations:
- either for some x1 ∈ RN , T (x1) = +∞, and in that case, the solution if defined for all
x ∈ RN and t ≥ 0. In other words, T (x0) = +∞, for any x0 ∈ RN ;
- or, for all x1 ∈ RN , T (x1) < +∞, and this is the case we are interested in. In particular,
the domain of definition of u is the union of backward light cones of the type Kx0,t0 , and
such a union is clearly of the form (1.6) with x 7→ T (x) is 1−Lipschitz. See also Sasaki
[45] for a related definition of the domain of definition in some similar setting.

The time T̄ = infx∈RN T (x) and Γ are called the blow-up time and the blow-up graph
of u. A point x0 is non characteristic if there are

δ0 ∈ (0, 1) and t0 < T (x0) such that u is defined on Cx0,T (x0),δ0 ∩ {t ≥ t0} (1.7)

where Cx̄,t̄,δ̄ = {(x, t) | t < t̄− δ̄|x− x̄|}. If not, x0 is said to be characteristic.

In this paper, we study the blow-up rate of any singular solution of (1.1). Before
going on, it is necessary to mention that the blow-up rate in the case with pure power
nonlinearity

∂2
t u = ∆u+ |u|p−1u, (x, t) ∈ RN × [0, T ), (1.8)

was studied by Merle and Zaag in [34, 35, 36]. More precisely, they proved that if u is
a solution of (1.8) with blow-up graph Γ : {x 7→ T (x)} and x0 is a non-characteristic

point, then, for all t ∈ [3T (x0)
4

, T (x0)],

0 < ε0(p) ≤ (T (x0)− t)
2
p−1
‖u(t)‖L2(B(x0,T (x0)−t))

(T (x0)− t)N2
(1.9)
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+(T (x0)− t)
2
p−1

+1
(‖∂tu(t)‖L2(B(x0,T (x0)−t))

(T (x0)− t)N2
+
‖∂xu(t)‖L2(B(x0,T (x0)−t))

(T (x0)− t)N2

)
≤ K0,

where the constant K0 depends only on p and on an upper bound on T (x0), 1/T (x0),
δ0(x0), together with the norm of initial data in H1

loc,u(RN) × L2
loc,u(RN). Namely, the

blow-up rate of any singular solution of (1.8) is given by the solution of the associ-
ated ODE u′′ = |u|p−1u. Note that this result about the blow-up rate is valid in the
subconformal and conformal case (1 < p ≤ pc).

In a series of papers, Merle and Zaag [37, 38, 40, 41] (see also Côte and Zaag [14]) give
a full picture of blow-up for solutions of equation (1.8) in one space dimension. Among
other results, Merle and Zaag proved that characteristic points are isolated and that
the blow-up set {(x, T (x))} is C 1 near non-characteristic points and corner-shaped near
characteristic points. In higher dimensions, the method used in the one-dimensional
case no longer holds because there is no classification of selfsimilar solutions of equation
(1.8) in the energy space. However, in the radial case outside the origin, Merle and
Zaag reduce the blow up description to the one-dimensional case with perturbation and
obtain the same results as for N = 1 (see [39] and also the extension by Hamza and
Zaag in [27] to the Klein-Gordon equation and other damped lower-order perturbations
of equation (1.8)). Later, Merle and Zaag could address the higher dimensional case in
the subconformal case and prove the stability of the explicit selfsimilar solution with
respect to the blow-up point and initial data (see [42, 43]). Considering the behavior
of radial solutions at the origin, Donninger and Schörkhuber were able to prove the

stability of the ODE solution u(t) = κ0(p)(T − t)−
2
p−1 in the light cone with respect to

small perturbations in initial data, in a stronger topology (see [16, 17, 18, 19]). Their
approach is based in particular on a good understanding of the spectral properties
of the linearized operator in selfsimilar variables, operator which is not self-adjoint.
Later, thanks to suitable Strichartz estimates for the critical wave equation in similarity
variables, Donninger proved in [15] the stability of the solution of the ODE with respect
to small perturbations in initial data, in the energy space. Let us also mention that
Killip, Stoval and Vişan proved in [31] that in superconformal and Sobolev subcritical
range, an upper bound on the blow-up rate is available. This was further refined by
Hamza and Zaag in [26].

In [24, 25], using a highly non-trivial perturbative method, we could obtain the
blow-up rate for the Klein-Gordon equation and more generally, for equation

∂2
t u = ∆u+ |u|p−1u+ f(u) + g(∂tu), (x, t) ∈ RN × [0, T ), (1.10)

under the assumptions |f(u)| ≤ M(1 + |u|q) and |g(v)| ≤ M(1 + |v|), for some M > 0
and q < p ≤ N+3

N−1
. In fact, we proved a similar result to (1.9), valid in the subconformal

and conformal case. Let us also mention that in [21, 22, 23], the results obtained in
[24, 25] were extended by Hamza and Saidi to the strongly perturbed equation (1.10)
with |f(u)| ≤ M(1 + |u|p log−a(2 + u2)), for some a > 1, though keeping the same
condition in g. Very recently, Azaiez and Zaag derived in [4] the blow-up rate for
equations of the type

∂2
t u = a(x)(∂2

xu+
N − 1

x
∂xu) + b(x)|u|p−1u+ f(u) + g(x, t, ∂xu, ∂tu)
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where |f(u)| ≤M(1 + |u|q) with q < p, |g(x, t, v, z)| ≤M(1 + |v|
√
a(x) + |z|), for some

M > 0, and a(x) is typically |x|α with α enjoying a infinite number of values converging
to 2.

In the previous works [21, 22, 23, 24, 25], we consider a class of perturbed equations
where the nonlinear term is equivalent to the pure power |u|p−1u and we obtain the
estimate (1.9). This is due to the fact that the dynamics are governed by the ODE
equation: u′′ = |u|p−1u and not influenced by perturbative terms. Furthermore, our
proof remains (non trivially) perturbative with respect to the homogeneous PDE (1.8),
which is scale invariant.

This leaves unanswered an interesting question: Is the scale invariance property
crucial in deriving the blow-up rate?

In fact we had the impression that the answer was “yes”, since the scaling invariance
induces in similarity variables a PDE which is autonomous in the unperturbed case
(1.8), and asymptotically autonomous in the perturbed case (1.10).

In this paper we prove that the answer is “no” from the example of the PDE (1.1)
with the non homogeneous nonlinearity (1.2). In fact, our situation is different from
(1.8) and (1.10), in the sense that the term |u|p−1u loga(2+u2) is playing a fundamental
role in the dynamics of the blow-up solution of (1.1). More precisely, we obtain an
analogous result to (1.9) but with a logarithmic correction as shown in (1.27) below.
In fact, the blow-up rate is given by the solution of the following ordinary differential
equation:

v′′T (t) = |vT (t)|p−1vT (t) loga
(
v2
T (t) + 2

)
, v(T ) =∞, (1.11)

which satisfies

vT (t) ∼ κaψT (t), as t→ T, where κa =

(
21−2a(p+ 1)

(p− 1)2−a

) 1
p−1

, (1.12)

and
ψT (t) = (T − t)−

2
p−1 (− log(T − t))−

a
p−1 (1.13)

(see Lemma A.2 in [28]).

Finally, let us remark that, following the analysis of Hamza in Saidi in [22], our result
holds for this more general equation

∂2
t u = ∆u+ f̃(u) + g(x, t, u, ∂tu,∇u), (x, t) ∈ RN × [0, T ), (1.14)

where f̃ : R → R and g : R2N+3 → R are C 1 functions which satisfy the following
conditions:

|g(x, t, u, v, w)| ≤M0(1 + |u|
p+1
2 + |v|+ |w|), (1.15)

and∣∣∣ ∫ u

0

f̃(y)dy − uf̃ux)

p+ 1
+

2auf̃(u)

(p+ 1)2 log(2 + u2)

∣∣∣ ≤M0

(
1 + |u|p+1 logb−1(2 + u2)

)
, (1.16)
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for some M0 > 0, p > 1, a ∈ R and b < a. In fact, under these assumptions, we
can construct a suitable Lyapunov functional for the equation (1.14) under hypothesis
(1.15) and (1.16). Then, we can prove a similar result to (1.27) with the necessary
modifications. However, In order to keep our analysis clear, we restrict our analysis to
the problem related to equation (1.1).

1.2 Strategy of the proof

Going back to the equation under study in this paper (see (1.1) and (1.2)), we introduce
the following similarity variables, defined for all x0 ∈ RN , T0 such that 0 < T0 ≤ T (x0)
by:

y =
x− x0

T0 − t
, s = − log(T0 − t), u(x, t) = ψT0(t)wx0,T0(y, s). (1.17)

One may think that it would be more natural to replace ψT0(t) by vT0(t) in this definition,
since the latter is an exact solution of the ODE (1.11), unlike the former. That might be a
good idea, however, as vT0(t) has no explicit expression, the calculations will immediately
become too complicated. For that reason, we preferred to replace the non-explicit vT0(t)
by its explicit equivalent ψT0(t) in (1.13). The fact that the latter is only an approximate
solution and not an exact solution of (1.11) will have no effect on our analysis.

From (1.1), the function wx0,T0 (we write w for simplicity) satisfies the following
equation for all y ∈ B and s ≥ max(− log T0, 1), where B ≡ B(0, 1) stands for the unit
ball of RN and throughout the paper:

∂2
sw =

1

ρ
div (ρ∇w − ρ(y.∇w)y) +

2a

(p− 1)s
y.∇w − 2p+ 2

(p− 1)2
w + γ(s)w

−
(p+ 3

p− 1
− 2a

(p− 1)s

)
∂sw − 2y.∇∂sw + e−

2ps
p−1 s

a
p−1f(φ(s)w), (1.18)

with ρ(y) = (1− |y|2)α,

α =
2

p− 1
− N − 1

2
> 0, (1.19)

γ(s) =
a(p+ 5)

(p− 1)2s
− a(p+ a− 1)

(p− 1)2s2
, (1.20)

and
φ(s) = e

2s
p−1 s−

a
p−1 . (1.21)

In the new set of variables (y, s), the behavior of u as t→ T0 is equivalent to the behavior
of w as s→ +∞. Moreover, if T0 = T (x0), then we simply write wx0 instead of wx0,T (x0).

The equation (1.18) will be studied in the Hilbert space H

H =
{

(w1, w2), |
∫
B

((
w2

1 + |∇w1|2 − |y.∇w1|2
)

+ w2
2

)
dy < +∞

}
.

As in the pure power case (1.8) and the perturbed case (1.10), the construction of
a Lyapunov functional in similarity variables was the starting point of our strategy. In
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the present case (1.1), we adopt the same strategy. We were successful in implementing
that in [28], however, only in one space dimension. Indeed, our method in [28] breaks
down in higher dimensions. Let us briefly explain in the following the method used in
[28] and how it breaks down in higher dimensions, giving sense to the present work.

The first step in [28] consists in the introduction of a functional associated to equation
(1.18) which satisfies the following differential inequality:

d

ds
h(s) ≤ −α

∫
B

(∂sw)2 ρ(y)

1− |y|2
dy +

C

s
h(s),

where α is defined in (1.19) and w is the solution of (1.18). Thanks to the above-
mentioned functional, we easily derived a polynomial (in s) bound for the H1 × L2(B)
norm of the solution of (1.18) (in space-time averages). More precisely, we obtain the
estimates (2.1), (2.2) and (2.3) below. Let us recall that the nonlinear term f(u) given
by (1.2) is not a pure power. This is why the strategy used to remove the time averages
in the case of pure power in Merle and Zaag [34, 35, 36], and naturally implemented
in our previous papers [21, 22, 23, 24, 25] in the perturbative cases, breaks down in
higher dimensions. Indeed, this method is somehow based on some interpolation results
in Sobolev spaces, and some critical Gagliardo-Nirenberg estimates. However, in one
dimension, the strategy used to remove the time average works since it is based on the
embedding H1(R × [− log T,+∞)) ↪→ Lq(R × [− log T,+∞)), for any q > 1. Using
the polynomial (in s) bound for the H1

loc,u(R)−norm of the solution of (1.18) and the
embedding H1(R) ↪→ L∞(R), we derive a Lyapunov functional for equation (1.18) in
one space dimension, which is a crucial step to obtain the optimal estimate.

Since the embedding of H1 into Lq for any q > 1 is specific to dimension 1 + 1 and
doesn’t hold in dimension N + 1, the higher dimensional case requires new ideas, which
we explain in the following.

First, we recall in (2.1), (2.2) and (2.3) the rough polynomial (in s) bound (in space-
time averages) on the solution near any non characteristic point in similarity variables,
was proved and stated in any dimensions in the subconformal case (p < pc). Moreover,
we can somehow reduce to the pure power case, up to an ε perturbation, as we write in
the elementary estimates on the nonlinear term given below in (A.4), (A.7) and (A.8).
In fact, by exploiting these estimates, we prove an improved version of the estimates
(2.1) and (2.2), where we remove the time average. Then, using these new estimates,
the embedding of H1(RN) in L2∗(RN) if N ≥ 3 and in Lq(RN) for any q ≥ 2 if N = 2,
together with the structure of the nonlinear term, we end up with the construction of a
functional g(s) which satisfies the following differential inequality:

d

ds
g(s) ≤ −α

∫
B

(∂sw)2 ρ(y)

1− |y|2
dy +

C

s
3
2

g(s) +
C

s
7
4

, (1.22)

where α is defined in (1.19) and w is the solution of (1.18). Naturally, by (1.22), we
easily derive a Lyapunov functional for equation (1.18), valid in any dimensions in the
subconformal case, and this is our main contribution in this work. With this Lyapunov
functional at hand, the adaptation of the interpolation strategy from our previous papers
works straightforwardly.
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1.3 Statement of the results

To state our main result, we start by introducing the following functionals:

E(w(s), s) =

∫
B

(1

2
(∂sw)2 +

1

2
(|∇w|2 − (y.∇w)2) +

p+ 1

(p− 1)2
w2

− e−
2(p+1)s
p−1 s

2a
p−1F (φw)

)
ρ(y)dy, (1.23)

L0(w(s), s) = E(w(s), s)− 1

s
√
s

∫
B

∂swwρ(y)dy, (1.24)

where

F (u) =

∫ u

0

f(v)dv =

∫ u

0

|v|p−1v loga(v2 + 2)dv. (1.25)

Moreover, for all s ≥ max(1,− log T0), we define the functional

L(w(s), s) = exp
(p+ 3√

s

)
L0(w(s), s) + θs−

3
4 , (1.26)

where θ is a sufficiently large constant that will be determined later. We will show that
the functional L(w(s), s) is a decreasing functional of time for equation (1.18), provided
that s is large enough. Clearly, by (1.24) and (1.26), the functional L(w(s), s) is a small
perturbation of the “natural” energy E(w(s), s).

Here is the statement of our main theorem in this paper.

Theorem 1. Let N ≥ 2, 1 < p < 1 + 4
N−1

and a ∈ R. Let f defined by: f(u) =
|u|p−1u loga(2 + u2). Consider u a solution of (1.1) with blow-up graph Γ : {x 7→ T (x)},
and x0 a non characteristic point. Then there exists t1(x0) ∈ [0, T (x0)) such that, for
all T0 ∈ (t1(x0), T (x0)], for all s ≥ − log(T0 − t1(x0)), we have

L(w(s+ 1), s+ 1)− L(w(s), s) ≤ −α
∫ s+1

s

∫
B

(∂sw)2 ρ(y)

1− |y|2
dydτ,

where w = wx0,T0 is defined in (1.17).

Remark 1.1. Since the existence of a Lyapunov functional in similarity variables is far
from being trivial and represents the crucial step in this paper, we choose to state it
first in our paper, and to give it the status of a “first theorem”.

Remark 1.2. As we mentioned before, we can construct a suitable Lyapunov functional
in similarity variables for the more general equation (1.14) under hypotheses (1.15) and
(1.16), then show that Theorem 1 holds true for this functional.

Remark 1.3. Let us note that our method breaks down in the case of a characteristic
point, since in the construction of the Lyapunov functional in similarity variables, we
use a covering technique in our argument which is not available at a characteristic
point. At this moment, we do not know whether Theorem 1 continues to hold if x0 is a
characteristic point.
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As we said earlier, the existence of this Lyapunov functional L(w(s), s) together
with a blow-up criterion for equation (1.18) make a crucial step in the derivation of the
blow-up rate for equation (1.1). Indeed, with the functional L(w(s), s) and some more
work, we are able to adapt the analysis performed in [34, 35, 36] for equation (1.8) and
obtain the following result:

Theorem 2. (Blow-up rate for equation (1.1)). Let N ≥ 2, 1 < p < 1 + 4
N−1

and
a ∈ R. Consider u a solution of (1.1), where f(u) = |u|p−1u loga(2 + u2), with blow-up

graph Γ : {x 7→ T (x)} and x0 a non characteristic point. Then, there exists Ŝ2 large
enough such that

i) For all s ≥ ŝ2(x0) = max(Ŝ2,− log T (x0)
4

),

0 < ε0 ≤ ‖wx0(s)‖H1(B) + ‖∂swx0(s)‖L2(B) ≤ K,

where wx0 = wx0,T (x0) is defined in (1.17), for some ε0 = ε0(N, p, a) and
K = K(N, p, a, T (x0), t2(x0), ‖(u(t2(x0)), ∂tu(t2(x0)))‖

H1×L2(B(x0,
T (x0)−t2(x0)

δ0(x0)
))

), ψT (x0)(t)

is defined in (1.13) and δ0(x0) is given by (1.7).
.

ii) For all t ∈ [t2(x0), T (x0)), where t2(x0) = T (x0)− e−ŝ2(x0), we have

0 < ε0 ≤
1

ψT (x0)(t)

‖u(t)‖L2(B(x0,T (x0)−t))

(T (x0)− t)N2
(1.27)

+
T (x0)− t
ψT (x0)(t)

(‖∂tu(t)‖L2(B(x0,T (x0)−t))

(T (x0)− t)N2
+
‖∇u(t)‖L2(B(x0,T (x0)−t))

(T (x0)− t)N2

)
≤ K,

where ε0 and K are introduced in item i).

Remark 1.4. As we said before, we are able to obtain a similar result to (1.27) for the
more general equation (1.14) under hypotheses (1.15) and (1.16).

Remark 1.5. Both for the construction of the Lyapunov functional and the derivation of
the bounds in this theorem, our method breaks down in the conformal case, even when
a < 0, and we are not able to obtain the sharp estimate as in the case of a pure power
nonlinearity (1.8) treated in [36].

Remark 1.6. Since we crucially need a covering technique in the argument of the con-
struction of the Lyapunov functional, our method breaks down too in the case of a
characteristic point and we are not able to obtain the sharp estimate as in the unper-
turbed case (1.8).

Remark 1.7. As in [35] in the pure power nonlinearity case (1.8), the proof of The-
orem 2 relies on four ideas: the existence of a Lyapunov functional, interpolation in
Sobolev spaces, some critical Gagliardo-Nirenberg estimates and a covering technique
adapted to the geometric shape of the blow-up surface. As we said before, the first
point where we construct a Lyapunov functional in similarity variables is far from being
trivial and represent a crucial step. Consequently, we have chosen to present our main
contribution as Theorem (1) and we write a detailed proof. However, for the other
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three points, the adaption of the proof of [35] given in the pure power nonlinearity case
(1.8) is straightforward except for a key argument, where we bound the nonlinear term

e−
2(p+1)s
p−1 s

2a
p−1F (φ(s)w). Therefore, in order to avoid unnecessary repetition, we prove

this step and kindly refer to [34, 35, 36, 24, 25, 21, 22, 23] for the rest of the proof.

This paper is organized as follows: In Section 2, we obtain a polynomial (in s) bound
for the H1 × L2(B) norm of the solution (w, ∂sw). In Section 3, thanks to this result,
we prove that the functional L(w(s), s) defined in (1.26) is a Lyapunov functional for
equation (1.18). Thus, we get Theorem 1. Finally, applying this last theorem, we prove
Theorem 2.

Throughout this paper, C denotes a generic positive constant depending only on
p,N and a, which may vary from line to line. In addition, we will use K1, K2, K3... as
a positive constants depending only on p,N, a, δ0(x0) and initial data, which may also

vary from line to line. We write f(s) ∼ g(s) to indicate lim
s→∞

f(s)

g(s)
= 1.

2 A polynomial bound for the H1 × L2(B) norm of

solution of equation (1.18)

Let us first recall the rough polynomial space-time estimate of the solution u of (1.1)
near any non characteristic point obtained in [28] (see Theorem 1). More precisely, we
established the following results:

(Polynomial space-time estimate of solution of (1.18)). There exists q =
q(a, p,N) > 0 such that for any u a solution of (1.1) with blow-up graph Γ : {x 7→ T (x)}
and x0 a non characteristic point. Then, there exists t0(x0) ∈ [0, T (x0)) such that, for
all T0 ∈ (t0(x0), T (x0)], for all s ≥ − log(T0−t0(x0)) and x ∈ RN where |x−x0| ≤ T0−t

δ0(x0)
,

we have ∫ s+1

s

∫
B

(
|∇w|2 + (∂sw)2

)
dydτ ≤ K1s

q, (2.1)

1

sa

∫ s+1

s

∫
B

|w|p+1 loga(2 + φ2w2)dydτ ≤ K1s
q, (2.2)∫

B

w2dy ≤ K1s
q, (2.3)

where w = wx,T ∗(x) is defined in (1.17), with

T ∗(x) = T0 − δ0(x0)|x− x0| (2.4)

and δ0(x0) defined in (1.7). Note that K1 depends on p, a,N, δ0(x0), T (x0), t0(x0) and
‖(u(t0(x0)), ∂tu(t0(x0)))‖

H1×L2(B(x0,
T (x0)−t0(x0)

δ0(x0)
))

. Moreover, we have

−K1s
q ≤ Hm0(w(s), s) ≤ K1s

q, (2.5)
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where

Hm0(w(s), s) = E(w(s), s)− m0

s

∫
B

w∂swρ(y)dy, (2.6)

E(w(s), s) is given by (1.23) and m0 is a sufficiently large constant.

This section is devoted to deriving a polynomial bound for the H1(B) norm. More
precisely, this is the aim of this section.

Proposition 2.1. There exists q1 = q1(a, p,N) > 0 such that for any solution u of
(1.1) with blow-up graph Γ : {x 7→ T (x)} and x0 a non characteristic point, there exists
t0(x0) ∈ [0, T (x0)) such that for all T0 ∈ (t0(x0), T (x0)], s ≥ − log(T0 − t0(x0)) and
x ∈ RN with |x− x0| ≤ T0−t

δ0(x0)
, we have

‖w(s)‖H1(B) ≤ K2s
q1 , (2.7)

where w = wx,T ∗(x) is defined in (1.17), with T ∗(x) given in (2.4) and δ0(x0) defined in
(1.7). Note that K2 depends on p, a, δ0(x0), T (x0), t0(x0) and
‖(u(t0(x0)), ∂tu(t0(x0)))‖

H1×L2(B(x0,
T (x0)−t0(x0)

δ0(x0)
))

.

Remark 2.1. Let us insist on the fact that the strategy of the proof works only in the
subconformal case. Obviously, we can also prove that ‖∂sw(s)‖L2(B) ≤ K2s

q1 . However,
since this estimate is not useful in the proof, we have chosen not to include it in the
above proposition.

Remark 2.2. By using the Sobolev embedding and the above-mentioned proposition, we
can deduce that for all r ∈ [2, 2∗] where 2∗ = 2N

N−2
if N ≥ 3, and for all r ∈ [2,∞) if

N = 2:
‖w(s)‖Lr(B) ≤ K3s

q1 , for all s ≥ − log(T ∗(x)− t0(x0)), (2.8)

where K3 depends also on r.

Let us prove Proposition 2.1 in the following.

Proof of Proposition 2.1: We proceed in 2 steps:
- In Step 1, we use the covering technique and interpolation to derive a polynomial
estimate related to the L

p+3−ε
2 (B) norm of w(s), for any ε ∈ (0, p− 1).

- In Step 2, using Step 1, a Gagliardo-Nirenberg estimate and estimate (2.5) satisfied
by Hm0(w(s), s) defined in (2.6), we easily conclude the proof of estimate (2.7).

Step 1: Control of w in L
p+3−ε

2 (B)
We claim the following:

Lemma 2.2. For all ε ∈ (0, p− 1) and s ≥ − log(T ∗(x)− t0(x0)), we have∫
B

|w(y, s)|
p+3−ε

2 dy ≤ K4(ε)sq. (2.9)
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Proof: Let us recall from the expression of φ = φ(s) defined in (1.21) that we have for
all s ≥ max(− log T ∗(x), 1),

e−
2(p+1)s
p−1 s

2a
p−1φwf(φw) =

1

sa
|w|p+1 loga(2 + φ2w2). (2.10)

Combining (2.10), (A.4), (A.10) and (2.2), we deduce that for all s ≥ − log(T ∗(x) −
t0(x0)), ∫ s+1

s

∫
B

|w|p+1−εdydτ ≤ C(ε)K1s
q. (2.11)

Now, for all s ≥ − log(T ∗(x) − t0(x0)), using the mean value theorem, we derive the
existence of σ(s) ∈ [s, s+ 1] such that∫

B

|w(y, σ(s))|p+1−εdy =

∫ s+1

s

∫
B

|w(y, τ)|p+1−εdydτ. (2.12)

Let us introduce the following identity for all s ≥ − log(T ∗(x)− t0(x0)),∫
B

|w(y, s)|
p+3−ε

2 dy =

∫
B

|w(y, σ(s))|
p+3−ε

2 dy +

∫ s

σ(s)

d

dτ

∫
B

|w(y, τ)|
p+3−ε

2 dydτ. (2.13)

Combining (2.12), (2.13) and the fact that xy ≤ x2 + y2, for all x ≥ 0, y ≥ 0, we write
for all s ≥ − log(T ∗(x)− t0(x0)),∫

B

|w(y, s)|
p+3−ε

2 dy ≤
∫ s+1

s

∫
B

|w(y, τ)|
p+3−ε

2 dydτ + C

∫ s+1

s

∫
B

|w(y, τ)|p+1−εdydτ

+ C

∫ s+1

s

∫
B

(∂sw(y, τ))2dydτ. (2.14)

Thanks to (2.14), the classical inequality x
p+3−ε

2 ≤ 1+xp+1−ε, for all x ≥ 0, ε ∈ (0, p−1),
(2.1) and (2.11), we obtain (2.9). This concludes the Lemma 2.2.

Step 2: Control of ∇w in L2(B).
As in the pure power case, we first use the Gagliardo-Nirenberg inequality in order

to obtain the following:

Lemma 2.3. There exists ε0 = ε0(p,N) > 0 such that, for all ε ∈ (0, ε0], for all
s ≥ − log(T ∗(x)− t0(x0)), we have∫

B

|w(y, s)|p+1+εdy ≤ K5s
q
(∫

B

|∇w(y, s)|2dy
)β(ε)

+K5s
2q, (2.15)

where β = β(p,N, ε) ∈ (0, 1).

Proof: We distinguish two cases:
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• First case (N = 2):
Let ε > 0 and r = r(p, ε) > p+ 1 + ε. By interpolation, we write∫

B

|w(y, s)|p+1+εdy ≤
(∫

B

|w(y, s)|
p+3−ε

2 dy
)η(∫

B

|w(y, s)|rdy
)1−η

, (2.16)

where

η =
r − (p+ 1 + ε)

r − p+3−ε
2

.

By using (2.16) and the Sobolev embedding H1(B) ↪→ Lr(B) we get∫
B

|w(y, s)|p+1+εdy ≤
(∫

B

w
p+3−ε

2 (y, s)dy
)η(∫

B

|w(y, s)|2dy+

∫
B

|∇w(y, s)|2dy
)β
.

(2.17)
where

β(r, p, ε) =
r(p− 1 + 3ε)

4r − 2(p+ 3− ε)
.

The combination of lim
r→∞

β(r, p, ε) =
p− 1 + 3ε

4
and p−1

4
< 1 implies that there

exists ε0 = ε0(p) = 5−p
10

> 0 such that for ε ∈ (0, ε0] we can choose r large enough
such that β = β(r, p, ε) ∈ (0, 1). The result (2.15) follows immediately from (2.17),
(2.3) and (2.9).

• Second case (N ≥ 3):
Let ε ∈ (0, p− 1). Let us write the following Gagliardo-Nirenberg inequality:∫
B

|w(y, s)|p+1+εdy ≤
(∫

B

w
p+3−ε

2 (y, s)dy
)η(∫

B

|w(y, s)|2dy+

∫
B

|∇w(y, s)|2dy
)β
,

(2.18)
where

η =
1− p+1+ε

2∗

1− p+3−ε
2·2∗

, β = β(p,N, ε) =
p−1+3ε

4

1− p+3−ε
2·2∗

and
1

2∗
=
N − 2

2N
.

Observe that the function p ↪→ β(p,N, ε) is an increasing function on (1, pc), hence,

β(p,N, ε) < β(pc, N, ε), ∀p ∈ (1, pc). (2.19)

Thanks to (2.19), the fact β(pc, N, 0) = 1 and by continuity, we infer that there
exists ε0 = ε0(p,N) > 0 small enough such that for ε ∈ (0, ε0] we have β =
β(p,N, ε) ∈ (0, 1). The result (2.15) follows immediately from (2.18), (2.3) and
(2.9), which ends the proof of Lemma 2.3.

Now, we are ready to give the proof of Proposition 2.1.

Proof of Proposition 2.1: Let us first use the following covering lemma from [35]:

using Proposition 3.3 in that paper with η = 2(p+1)
p−1

−N (which is positive), q = 2 and

f = ∇u, together with the selfsimilar change of variables (1.17), we write

sup
{x | |x−x0|≤T0−tδ0

}

∫
B

|∇w|2 dy ≤ C(δ0) sup
{x | |x−x0|≤T0−tδ0

}

∫
B(0, 1

2
)

|∇w|2 dy, (2.20)
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where w = wx,T ∗(x) (y, s) is defined in (1.17), with T ∗(x) given in (2.4) and s =
− log(T ∗(x)− t).

From (2.5), the definition (2.6) of Hm0(w(s), s), we see that for all s ≥ − log(T ∗(x)−
t0(x0)),∫

B

|∇w(y, s)|2(1− |y|2)ρ(y)dy +

∫
B

(∂sw(y, s))2wdy − 2m0

s

∫
B

w∂swρ(y)dy

≤ 2

∫
B

e−
2(p+1)s
p−1 s

2a
p−1F (φw)ρ(y)dy + 2K1s

q. (2.21)

By the use of the basic inequality 2ab ≤ a2 + b2, we write

2m0

s

∫
B

w∂swρ(y)dy ≤
∫
B

(∂sw(y, s))2wdy +
(m0)2

s2

∫
B

w2ρ(y)dy. (2.22)

Plugging (2.22) and (2.3) into (2.21), we obtain∫
B

|∇w(y, s)|2(1− |y|2)ρ(y)dy ≤ 2

∫
B

e−
2(p+1)s
p−1 s

2a
p−1F (φw)ρ(y)dy +K6s

q. (2.23)

Thanks to (A.9) and (2.23), we conclude for all s ≥ − log(T ∗(x)− t0(x0)),∫
B

|∇w(y, s)|2(1− |y|2)ρ(y)dy ≤ K7

∫
B

|w(y, s)|p+ε+1ρ(y)dy +K7s
q. (2.24)

According to (2.24) together with Lemma 2.3, we have for all s ≥ − log(T ∗(x)− t0(x0)),∫
B(0, 1

2
)

|∇w(y, s)|2dy ≤ C

∫
B

|∇w(y, s)|2(1− |y|2)ρ(y)dy

≤ K8s
q
(∫
|∇w(y, s)|2dy

)β
+K8s

2q. (2.25)

Therefore,

sup
{x | |x−x0|≤T0−tδ0

}

∫
B(0, 1

2
)

|∇w(y, s)|2dy ≤ K8s
q

 sup
|x−x0|≤T0−tδ0

∫
B

|∇w(y, s)|2 dy

β

+K8s
2q.

(2.26)
where β ∈ (0, 1). From (2.20) and (2.26), we see that

sup
{x | |x−x0|≤T0−tδ0

}

∫
B

|∇w(y, s)|2dy ≤ K9s
q

 sup
|x−x0|≤T0−tδ0

∫
B

|∇w(y, s)|2 dy

β

+K9s
2q.

(2.27)
It suffices to combine (2.27) and the fact that β < 1, to obtain that

sup
{x | |x−x0|≤T0−tδ0

}

∫
B

|∇w(y, s)|2dy ≤ K10s
2q

1−β . (2.28)

Clearly, by using (2.28) and (2.3), we conclude (2.7), where q1 = 1
1−β q, which yields the

conclusion of Proposition 2.1.
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3 Proof of Theorem 1 and Theorem 2

In this section, we prove Theorem 1 and Theorem 2 here thanks to Proposition 2.1.
This section is divided into two parts:

• In subsection 3.1, we state a general version of Theorem 1, uniform for x near x0

and prove it.

• In subsection 3.2, we prove Theorem 2.

3.1 A Lyapunov functional

In this subsection, our aim is to construct a Lyapunov functional for equation (1.18).
Note that this functional is far from being trivial and makes our main contribution.
More precisely, thanks to the rough estimate obtained in the Proposition 2.1, we derive
here that the functional L(w(s), s) defined in (1.26) is a decreasing functional of time
for equation (1.18), provided that s is large enough. First, thanks to the additional
information obtained in Section 2, we can write this important lemma which plays a
key role in our analysis. More precisely, we claim the following:

Lemma 3.1. For all s ≥ − log(T ∗(x)− t0(x0)), we have∫
B

|w|p+1 loga(2 + φ2w2) log(2 + w2)ρ(y)dy ≤K11s
1
4

∫
B

|w|p+1 loga(2 + φ2w2)ρ(y)dy

+K11s
a+ 1

4 . (3.1)

Remark 3.1. Let us mention that, in the first term on the right-hand side, the choice
of the power 1

4
is not optimal. In fact, with the same proof, one can show the same

estimate with the power ν, for any ν > 0, instead of the power 1
4
. Let us remark that we

can construct a Lyapunov functional, when we have the estimate above for some power
ν such that ν ∈ (0, 1) instead of the power 1

4
.

Proof: Let ε ∈ (0, 1). By using the inequality log(2+z2) ≤ C(ε)+ |z|ε2 , for all z ∈ R,
we conclude that∫

B

|w|p+1 loga(2 + φ2w2) log(2 + w2)ρ(y)dy ≤C
∫
B

|w|p+1 loga(2 + φ2w2)ρ(y)dy

+

∫
B

|w|p+1+ε2 loga(2 + φ2w2)ρ(y)dy. (3.2)

Furthermore, we apply the interpolation in Lebesgue spaces to get∫
B

|w|p+1+ε2 loga(2 + φ2w2)ρ(y)dy ≤
(∫

B

|w|p+1 loga(2 + φ2w2)ρ(y)dy
)1−ε

(∫
B

|w|p+1+ε loga(2 + φ2w2)ρ(y)dy
)ε
. (3.3)
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By combining(A.4), (A.9) and the inequality |z|ε ≤ 1+ |z|p+1+2ε, for all z ∈ R, we obtain

1

sa

∫
B

|w|p+1+ε loga(2 + φ2w2)ρ(y)dy ≤ C + C

∫
B

|w|p+1+2εdy. (3.4)

Since p < pc = N+3
N−1

, we then choose ε1 ≤ ε0 small enough, such that for all ε ∈ (0, ε1]

we have p + 1 + 2ε < 2∗ where 2∗ = 2N
N−2

, if N ≥ 3 and 2∗ = ∞, if N = 2. Therefore,
estimate (2.8) implies that, for all s ≥ − log(T ∗(x)− t0(x0))∫

B

|w|p+1+2εdy ≤ (K3s
q1)p+1+2ε, ∀ε ∈ [0, ε1]. (3.5)

By combining (3.3), (3.4) and (3.5), we deduce that, for all s ≥ − log(T ∗(x) − t0(x0)),
for all ε ∈ (0, ε1].∫
B

|w|p+1+ε2 loga(2 + φ2w2)ρ(y)dy ≤ K12s
q1(p+1+2ε)εsεa

(∫
B

|w|p+1 loga(2 + φ2w2)ρ(y)dy
)1−ε

.

(3.6)

Thanks to the basic inequality |X|ν |Y |1−ν ≤ C|X| + C|Y |, for all X, Y ∈ R, for all
ν ∈ (0, 1), we conclude that, for all s ≥ − log(T ∗(x)− t0(x0)), for all ε ∈ (0, ε1].∫
B

|w|p+1+ε2 loga(2 + φ2w2)ρ(y)dy ≤ K13s
q1(p+1+2ε)ε

(
sa +

∫
B

|w|p+1 loga(2 + φ2w2)ρ(y)dy
)
.

(3.7)

We choose ε2 ∈ (0, ε1], such that q1(p + 1 + 2ε2)ε2 <
1
4
. Then, by (3.2) and (3.7), we

easily obtain (3.1). This concludes the proof of Lemma 3.1.

Thanks to estimate (3.1), we can improve the estimate related to the control of
the time derivative of the functional E(w(s), s). More precisely, we prove the following
lemma:

Lemma 3.2. There exists S1 > 0 such that for all s ≥ max(− log(T ∗(x)− t0(x0)), S1),
we have

d

ds
E(w(s), s) ≤− 3α

2

∫
B

(∂sw)2 ρ(y)

1− |y|2
dy +

K14

sa+ 7
4

∫
B

|w|p+1 loga(2 + φ2w2)ρ(y)dy

+
C

s2

∫
B

|∇w|2(1− |y|2)ρ(y)dy +
C

s2

∫
B

w2ρ(y)dy +
K14

s
7
4

. (3.8)

Proof: Multiplying (1.18) by ∂sw ρ(y) and integrating over B, we obtain

d

ds
E(w(s), s) =− 2α

∫
B

(∂sw)2 ρ(y)

1− |y|2
dy (3.9)

+
a

(p+ 1)sa+1

∫
B

|w|p+1 loga−1(2 + φ2w2)
(

log(2 + φ2w2)− 4s

p− 1

)
ρ(y)dy︸ ︷︷ ︸

χ1(s)
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+
2e−

2(p+1)s
p−1

p− 1
s

2a
p−1

∫
B

(
(p+ 1)F2(φw)− a

s
F1(φw)− a

s
F2(φw)

)
ρ(y)dy︸ ︷︷ ︸

χ2(s)

+ γ(s)

∫
B

w∂swρ(y)dy +
2a

(p− 1)s

∫
B

(∂sw)2ρ(y)dy︸ ︷︷ ︸
χ3(s)

+
2a

(p− 1)s

∫
B

y.∇w∂swρ(y)dy︸ ︷︷ ︸
χ4(s)

,

where F1 and F2 are defined by

F1(x) = − 2a

(p+ 1)2
|x|p+1 loga−1(2 + x2), (3.10)

and

F2(x) = F (x)− xf(x)

p+ 1
− F1(x). (3.11)

Note that, in (3.9) we grouped the main terms together. In fact, it is easy to control
the terms χ2(s), χ3(s) and χ4(s). However, the control of the term χ1(s) needs the
use of the additional information obtained in Lemma 3.1. More precisely, for all s ≥
− log(T ∗(x)− t0(x0)), we divide B into two parts

A1(s) = {y ∈ B | φ(s)w2(y, s) ≤ 1} and A2(s) = {y ∈ B | φ(s)w2(y, s) ≥ 1}. (3.12)

Accordingly, we write χ1(s) = χ1
1(s) + χ2

1(s), where

χ1
1(s) =

a

(p+ 1)sa+1

∫
A1(s)

|w|p+1 loga−1(2 + φ2w2)
(

log(2 + φ2w2)− 4s

p− 1

)
ρ(y),

χ2
1(s) =

a

(p+ 1)sa+1

∫
A2(s)

|w|p+1 loga−1(2 + φ2w2)
(

log(2 + φ2w2)− 4s

p− 1

)
ρ(y)dy.

On the one hand, by using the definition of the set A1(s) given in (3.12) and the
expression of φ(s) in (1.21), we get, for all s ≥ − log(T ∗(x)− t0(x0)),

|w|p+1 loga(2 + φ2w2) ≤ Cφ−
p+1
2 (s) log|a|(2 + φ(s)) ≤ Ce−

ps
p−1 . (3.13)

If we integrate (3.13) over A1(s), we obtain

χ1
1(s) ≤ Ce−s. (3.14)

On the other hand, by using the definition of the φ(s) given by (1.21), we write the
identity

log(2 + φ2w2)− 4s

p− 1
= log(2φ−2 + w2)− 2a log s

p− 1
. (3.15)
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Furthermore, the exists S0 > 0 such that for all s ≥ S0, we have φ(s) ≥ 1. Therefore,
by exploiting (3.15), we write for all s ≥ max(− log(T ∗(x)− t0(x0)), S0),

log(2 + φ2w2)− 4s

p− 1
≤ log(2 + w2) + C log s. (3.16)

Also, by using the definition of the set A2(s) defined in (3.12), we can write for all
s ≥ − log(T ∗(x)− t0(x0)), if y ∈ A2(s), we have

log(2 + φ2w2) ≥ log(φ(s)) ≥ 2s

p− 1
− a log s

p− 1
. (3.17)

Clearly, the exists S1 > S0 such that for all s ≥ S1, we have 2s
p−1
− a log s

p−1
≥ s

p−1
. Therefore,

by exploiting (3.16) and (3.17) we have for all s ≥ max(− log(T ∗(x)− t0(x0)), S1),

χ2
1(s) ≤ C

sa+2

∫
B

|w|p+1 loga(2 + φ2w2) log(2 + w2)ρ(y)dy

+
C log s

sa+2

∫
B

|w|p+1 loga(2 + φ2w2)ρ(y)dy. (3.18)

Adding (3.1) and (3.18) we have for all s ≥ max(− log(T ∗(x)− t0(x0)), S1),

χ2
1(s) ≤ K15

sa+ 7
4

∫
B

|w|p+1 loga(2 + φ2w2)ρ(y)dy +
K15

s
7
4

. (3.19)

Note that, by using the fact χ1(s) = χ1
1(s) + χ2

1(s), (3.14) and (3.19), we get

χ1(s) ≤ K16

sa+ 7
4

∫
B

|w|p+1 loga(2 + φ2w2)ρ(y)dy +
K16

s
7
4

. (3.20)

Note from (A.5) and (A.6) that

1

s
|F1(φw)|+ |F2(φw)| ≤ C + C

φw

s2
f(φw). (3.21)

By (3.9), (3.21) and (2.10), we have, for all s ≥ − log(T ∗(x)− t0(x0)),

χ2(s) ≤ C

sa+2

∫
B

|w|p+1 loga(2 + φ2w2)ρ(y)dy + Ce−2s. (3.22)

Finally, by using the following basic inequality

ab ≤ νa2 +
1

ν
b2, ∀ν > 0, (3.23)

and the expression of γ(s) defined in (1.20), we write, for all s ≥ − log T ∗(x)− t0(x0)

χ3(s) + χ4(s) ≤ α

2

∫
B

(∂sw)2 ρ(y)

1− |y|2
dy +

C

s2

∫
B

(
|∇w|2(1− |y|2) + w2

)
ρ(y)dy. (3.24)

The result (3.8) derives immediately from (3.9), (3.24), (3.20), (3.22), and the identity
(3.9), which ends the proof of Lemma 3.2

Let us now recall the following result from [28], where we write an estimate on the
functional J(w(s), s) defined by:

J(w(s), s) = −1

s

∫
B

w∂swρ(y)dy. (3.25)
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Lemma 3.3. For all s ≥ max(− log T ∗(x), 1), we have

d

ds
J(w(s), s) ≤ p+ 3

2s
E(w(s), s)− p+ 7

4s

∫
B

(∂sw)2ρ(y)dy (3.26)

− p− 1

4s

∫
B

(|∇w|2 − (y.∇w)2)ρ(y)dy − p+ 1

2(p− 1)s

∫
B

w2ρ(y)dy

− p− 1

2(p+ 1)sa+1

∫
B

|w|p+1 loga(2 + φ2w2)ρ(y)dy + Σ2(s),

where Σ2(s) satisfies

Σ2(s) ≤ C√
s

∫
B

(∂sw)2 ρ(y)

1− |y|2
dy +

C

s
√
s

∫
B

|∇w|2(1− |y|2)ρ(y)dy (3.27)

+
C

s
√
s

∫
B

w2ρ(y)dy +
C

sa+2

∫
B

|w|p+1 loga(2 + φ2w2)ρ(y)dy + Ce−2s.

Proof: See Lemma 2.2 in [28].

With Lemmas 3.2 and 3.3, we are in a position to state and prove Theorem 1’, which
is a uniform version of Theorem 1 for x near x0.

Theorem 1’ (Existence of a Lyapunov functional for equation (1.18))
Consider u a solution of (1.1) with blow-up graph Γ : {x 7→ T (x)} and x0 a non charac-

teristic point. Then there exists t1(x0) ∈ [0, T (x0)) such that, for all T0 ∈ (t1(x0), T (x0)],
for all s ≥ − log(T0 − t1(x0)) and x ∈ R, where |x− x0| ≤ T−t

δ0(x0)
, we have

L(w(s+ 1), s+ 1)− L(w(s), s) ≤ −α
∫ s+1

s

∫
B

(∂sw)2 ρ(y)

1− |y|2
dydτ, (3.28)

where w = wx,T ∗(x) and T ∗(x) is defined in (2.4).

Proof of Theorem 1’: By exploiting the definition of L0(w(s), s) in (1.24), we can
write easily

d

ds
L0(w(s), s) =

d

ds
E(w(s), s) +

1√
s

d

ds
J(w(s), s)− 1

2s
√
s
J(w(s), s). (3.29)

With Lemmas 3.2 and 3.3 and the following inequality

1

2s2
√
s

∫
B

w∂swρ(y)dy +
p+ 3

2s3

∫
B

w∂swρ(y)dy ≤ C

s2

∫
B

(∂sw)2ρ(y)dy +
C

s2

∫
B

w2ρ(y)dy,

allows to prove that for all s ≥ max(− log(T ∗(x)− t0(x0)), S1), we have

d

ds
L0(w(s), s) ≤− (

3α

2
− C

s
)

∫
B

(∂sw)2 ρ(y)

1− |y|2
dy +

p+ 3

2s
√
s
L0(w(s), s)

− 1

s
√
s

(
p+ 1

2(p− 1)
− C√

s
)

∫
B

w2ρ(y)dy
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− 1

s
√
s

(
p+ 7

4
− C√

s
)

∫
B

(∂sw)2ρ(y)dy

− 1

s
√
s

(
p− 1

4
− C√

s
)

∫
B

|∇w|2(1− |y|2)ρ(y)dy

− 1

sa+ 3
2

(
p− 1

2(p+ 1)
− K14

s
1
4

− C

s
)

∫
B

|w|p+1 loga(2 + φ2w2)ρ(y)dy

+ C
e−2s

√
s

+
K14

s
7
4

.

Again, choosing S2 > − log(T (x0) − t0(x0)) large enough, this implies that for all s ≥
max(− log(T ∗(x)− t0(x0)), S2), we have

d

ds
L0(w(s), s) ≤ −α

∫
B

(∂sw)2 ρ(y)

1− |y|2
dy +

p+ 3

2s
√
s
L0(w(s), s) +

K15

s
7
4

. (3.30)

Recalling that,

L(w(s), s) = exp
(p+ 3√

s

)
L0(w(s), s) +

θ

s
3
4

,

we get from straightforward computations

d

ds
L(w(s), s) = −p+ 3

2s
√
s

exp
(p+ 3√

s

)
L0(w(s), s) + exp

(p+ 3√
s

) d
ds
L0(w(s), s)− 3θ

4s
7
4

.

(3.31)
Therefore, estimates (3.30) and (3.31) lead to the following crucial estimate:

d

ds
L(w(s), s) ≤ −α exp

(p+ 3√
s

)∫
B

(∂sw)2 ρ(y)

1− |y|2
dy +

(
K15 exp

(p+ 3√
s

)
− 3θ

4

) 1

s
7
4

.

(3.32)

Since we have 1 ≤ exp
(
p+3√
s

)
≤ exp

(
p+3√
S2

)
, we then choose θ large enough, so that

K15 exp
(
p+3√
s

)
− 3θ

4
≤ 0, which yields, for all s ≥ max(− log(T ∗(x)− t0(x0)), S2),

d

ds
L(w(s), s) ≤ −α

∫
B

(∂sw)2 ρ(y)

1− |y|2
dy.

A simple integration between s and s+ 1 ensures the result (3.28), where

t1(x0) = max(T (x0)− e−S2 , t0(x0)). (3.33)

This concludes the proof of Theorem 1’.

We now claim the following lemma:

Lemma 3.4. There exists S3 ≥ S2 such that, if L(w(s3), s3) < 0 for some s3 ≥
max(S3,− log(T ∗(x)− t1(x0))), then w blows up in some finite time s4 > s3.

Proof: The argument is the same as in Lemma 3.4 in [28].
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3.2 Proof of Theorem 2

In this subsection, we prove Theorem 2. Note that the lower bound follows from the
finite speed of propagation and the wellposedness in H1 × L2. For a detailed argument
in the similar case of equation (1.8) in [35] (see Lemma 3.1, page 1136).
We consider u a solution of (1.1) with blow-up graph Γ : {x 7→ T (x)} and x0 is a
non-characteristic point. Let

t2(x0) = max(T (x0)− e−S3 , t1(x0)). (3.34)

Given some T0 ∈ (t2(x0), T (x0)], for all x ∈ R is such that |x − x0| ≤ T0−t2(x0)
δ0(x0)

, where

δ(x0) is defined in (1.7), we aim at bounding ‖(w, ∂sw)(s)‖H1×L2(B) for s large.

As in [25, 22], by combining Theorem 1’ and Lemma 3.4 we get the following bounds:

Corollary 3.5. (Bound on L0(w(s), s)). For all T0 ∈ (t2(x0), T (x0)], for all s ≥
− log(T0 − t2(x0)) and x ∈ RN where |x− x0| ≤ T0−t

δ0(x0)
, we have

− C ≤ L0(w(s), s) ≤ CL0(w(s̃2), s̃2) + C, (3.35)

where s̃2 = − log(T ∗(x)− t2(x0)).
Moreover, for all s ≥ − log(T ∗(x)− t2(x0)), we have∫ s+1

s

∫
B

(∂sw)2 ρ(y)

1− |y|2
dyds ≤ K16, (3.36)

where K16 = K16(a, p, T ∗(x), ‖(u(t2), ut(t2))‖
H1×L2(B(x0,

T0−t2(x0)
δ0(x0)

))
), C = C(a, p) and δ0(x0) ∈

(0, 1) is defined in (1.7).

Remark 3.2. Using the definition of (1.17) of wx,T ∗(x) = w, we write easily

L0(w(s̃2), s̃2) ≤ K17, (3.37)

where K17 = K17(T (x0)− t2(x0), ‖(u(t2(x0)), ∂tu(t2(x0)))‖
H1×L2(B(x0,

T (x0)−t2(x0)
δ0(x0)

))
).

Starting from these bounds, the proof of Theorem 2 is similar to the proof in [34]
(see Corollary 2.3, page 1151) and [35] (see Proposition 2.1, page 1134) except for
the treatment of the nonlinear terms and of the perturbation terms. In our opinion,
handling these terms is straightforward in all the steps of the proof, except for the first
step, where we bound the time averages of the nonlinear term and second step, where we
remove the time averages. However, the third step where we conclude the boundedness
of the H1

loc,u(RN) norm of solution of equation (1.18) from Proposition 3.6 is the same
as in Proposition 2.1 (up to some very minor changes). For that reason, we only give
the first two step and refer to the proof in [34] (see Corollary 2.3, page 1151) and [35]
(see Proposition 2.1, page 1134) and the similar part in section 2 in this paper for the
remaining steps in the proof of Theorem 2. This is the step we prove here.
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Proposition 3.6. For all s ≥ 1− log(T ∗(x)− t3(x0)), for some t3(x0) ∈ [t2(x0), T (x0)),

1

sa

∫ s+1

s

∫
B

|w|p+1 loga(2 + φ2w2)ρ(y)dydτ ≤ K18. (3.38)

Proof: For s ≥ 1 − log(T ∗(x) − t2(x0)), let us work with time integrals between s1

et s2 where s1 ∈ [s− 1, s] and s2 ∈ [s+ 1, s+ 2]. By integrating the expression (1.24) of
L0(w(s), s) in time between s1 and s2, where s2 > s1 > − log(T ∗(x)− t2(x0)), we obtain:∫ s2

s1

L0(w(s), s)ds =

∫ s2

s1

∫
B

(1

2
(∂sw)2 +

p+ 1

(p− 1)2
w2 − e−

2(p+1)s
p−1 s

2a
p−1F (φw)

)
ρ(y)dyds

+
1

2

∫ s2

s1

∫
B

(|∇w|2 − |y.∇w|2)ρ(y)dyds−
∫ s2

s1

1

s
√
s

∫
B

w∂swρ(y)dyds.

(3.39)

By multiplying the equation (1.18) by wρ(y) and integrating both in time and in space
over B × [s1, s2] we obtain the following identity, after some integration by parts:[ ∫

B

(
w∂sw + (

p+ 3

2(p− 1)
−N)w2

)
ρ(y)dy

]s2
s1

=

∫ s2

s1

∫
B

(∂sw)2ρ(y)dyds (3.40)

−
∫ s2

s1

∫
B

(
|∇w|2 − (y.∇w)2

)
ρ(y)dyds− 2p+ 2

(p− 1)2

∫ s2

s1

∫
B

w2ρ(y)dyds

+

∫ s2

s1

∫
B

e−
2ps
p−1 s

a
p−1wf(φw)ρ(y)dyds− 2α

∫ s2

s1

∫
B

w∂sw
|y|2ρ(y)

1− |y|2
dyds

+2

∫ s2

s1

∫
B

y.∇w∂swρ(y)dyds+
2a

p− 1

∫ s2

s1

∫
B

1

s
y.∇wwρ(y)dyds

+

∫ s2

s1

∫
B

γ(s)w2ρ(y)dyds+
2a

p− 1

∫ s2

s1

∫
B

1

s
∂swwρ(y)dyds.

Note that, by using the identity (3.11), we get

e−
2(p+1)s
p−1 s

2a
p−1

(φw
2
f(φw)− F (φw)

)
=
p− 1

2
e−

2(p+1)s
p−1 s

2a
p−1F (φw) (3.41)

− p+ 1

2
e−

2(p+1)s
p−1 s

2a
p−1

(
F1(φw) + F2(φw)

)
.

By combining the identities (3.39), (3.40) and exploiting (3.41), we obtain

p− 1

2

∫ s2

s1

∫
B

e−
2(p+1)s
p−1 s

2a
p−1F (φw)ρ(y)dyds

=
1

2

[ ∫
B

(
w∂sw + (

p+ 3

2(p− 1)
−N)w2

)
ρ(y)dy

]s2
s1
−
∫ s2

s1

∫
B

(∂sw)2ρ(y)dyds

+

∫ s2

s1

L0(w(s), s)ds+ α

∫ s2

s1

∫
B

w∂sw
|y|2ρ(y)

1− |y|2
dyds

−
∫ s2

s1

∫
B

y.∇w∂swρ(y)dyds− a

p− 1

∫ s2

s1

∫
B

1

s
y.∇wwρ(y)dyds︸ ︷︷ ︸

A1
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−1

2

∫ s2

s1

∫
B

γ(s)w2ρ(y)dyds︸ ︷︷ ︸
A2

− a

p− 1

∫ s2

s1

∫
B

1

s
∂swwρ(y)dyds︸ ︷︷ ︸

A3

(3.42)

+

∫ s2

s1

1

s
√
s

∫
B

w∂swρ(y)dyds︸ ︷︷ ︸
A4

+
p+ 1

2

∫ s2

s1

∫
B

e−
2(p+1)s
p−1 s

2a
p−1F1(φw)ρ(y)dyds︸ ︷︷ ︸

A5

+
p+ 1

2

∫ s2

s1

∫
B

e−
2(p+1)s
p−1 s

2a
p−1F2(φw)ρ(y)dyds︸ ︷︷ ︸

A6

.

We claim that Proposition 3.6 follows from the following Lemma where we control the
space-time integral of the nonlinear term of w and all the terms on the right-hand side
of the relation (3.42) in terms of the left-hand side:

Lemma 3.7. For all s ≥ 1− log(T ∗(x)− t3(x0)), for some t3(x0) ∈ [t2(x0), T (x0)), for
all ν0 > 0, for all ε ∈ (0, 1),∫

B

|w|p+1−ερ(y)dy ≤ K19 + C

∫
B

e−
2(p+1)s
p−1 s

2a
p−1F (φw)ρ(y)dy, (3.43)∫

B

e−
2(p+1)s
p−1 s

2a
p−1F (φw)ρ(y)dy ≤ K19 + C

∫
B

|w|p+1+ερ(y)dy, (3.44)∫ s2

s1

∫
B

|y.∇w∂sw|ρ(y)dyds ≤ K19

ν0

+K19ν0

∫ s2

s1

∫
B

e−
2(p+1)s
p−1 s

2a
p−1F (φw)ρ(y)dyds,

(3.45)

sup
s∈[s1,s2]

∫
B

w2(y, s)ρ(y)dy ≤ K19

ν0

+K19ν0

∫ s2

s1

∫
B

e−
2(p+1)s
p−1 s

2a
p−1F (φw)ρ(y)dyds, (3.46)∫ s2

s1

∫
B

w∂sw
|y|2ρ(y)

1− |y|2
dyds ≤ K19

ν0

+K19ν0

∫ s2

s1

∫
B

e−
2(p+1)s
p−1 s

2a
p−1F (φw)ρ(y)dyds,

(3.47)∫
B

|w∂sw|ρ(y)dy ≤
∫
B

(∂sw)2ρ(y)dy +
K19

ν0

+K19ν0

∫ s2

s1

∫
B

e−
2(p+1)s
p−1 s

2a
p−1F (φw)ρ(y)dyds, (3.48)

∫
B

(
(∂sw(y, s1))2 + (∂sw(y, s2))2

)
ρ(y)dy ≤ K19, (3.49)

|A1| ≤
K19

ν0

+ (K19ν0 +
C

s1

)

∫ s2

s1

∫
B

e−
2(p+1)s
p−1 s

2a
p−1F (φw)ρ(y)dyds, (3.50)

|A2|+ |A3|+ |A4| ≤
K19

ν0

+K19ν0

∫ s2

s1

∫
B

e−
2(p+1)s
p−1 s

2a
p−1F (φw)ρ(y)dyds, (3.51)

|A5|+ |A6| ≤ C +
C

s1

∫ s2

s1

∫
B

e−
2(p+1)s
p−1 s

2a
p−1F (φw)ρ(y)dyds. (3.52)
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Indeed, from (3.42) and this Lemma, we deduce that∫ s2

s1

∫
B

e−
2(p+1)s
p−1 s

2a
p−1F (φw)ρ(y)dyds ≤ K19

ν0

+ (K19ν0 +
C

s1

)

∫ s2

s1

∫
B

e−
2(p+1)s
p−1 s

2a
p−1F (φw)ρ(y)dyds.

Now, we can use the fact that s1 ≥ −1− log(T ∗(x)− t3(x0)) ≥ −1− log(T (x0)− t3(x0))
and we choose T (x0) − t3(x0) small enough, so that C

s1
≤ 1
−1−log(T (x0)−t3(x0))

≤ 1
4
. If we

choose ν0 small enough so that K19ν0 ≤ 1
4
, we obtain∫ s2

s1

∫
B

e−
2(p+1)s
p−1 s

2a
p−1F (φw)ρ(y)dyds ≤ K19.

Since [s, s+ 1] ⊂ [s1, s2], we derive from (A.4) that (3.38).

It remains to prove Lemma 3.7.

Proof of Lemma 3.7: By (A.9) and (A.10), we can write easily (3.43) and (3.44).
Thanks to (3.43), we can adapt with no difficulty the proof in the unperturbed case
[34, 35] (up to some very minor changes), in order to get the proof of the estimates
(3.45), (3.46), (3.47), (3.48) and (3.49). Also, by using (3.43) and the Hardy inequality∫

B

w2 |y|2ρ(y)

1− |y|2
dy ≤ C

∫
B

|∇w|2(1− |y|2)ρ(y)dy + C

∫
B

w2ρ(y)dy.

(see the appendix in [34] for a proof), we easily conclude (3.50) and (3.51).

Finally, it remains only to control the terms A5 and A6. Note from (A.4), (A.5) and
(A.6) that

|F1(φw)|+ |F2(φw)| ≤ C + C
F (φw)

s
. (3.53)

The result (3.52) follows immediately from (3.53). This concludes the proof of Lemma
3.7 and Proposition 3.6 too.

Proof of Theorem 2 : Since the derivation of the boundedness of the H1
loc,u(RN)

norm of solution of equation (1.18) from Proposition 3.6 is the same as in Proposition
2.1 (from the estimates (2.1), (2.2) (2.3) and (2.5) (up to some very minor changes).
Moreover, thanks to the estimate (3.35), the boundedness of the H1

loc,u(RN) norm, we

prove easily the boundedness of L2
loc,u(RN) norm of ∂sw with the ball B(0, 1

2
). Thanks

to the covering technique (we refer the reader to Merle and Zaag [35] (pure power case)
and Hamza and Zaag in Lemma 2.8 in [24]), we easily extend this estimate from B(0, 1

2
)

to B. This concludes the proof of Theorem 2.

A Some elementary lemmas.

Let f , F , F2 be the functions defined in (1.2), (1.25) and (3.11). Clearly, we have
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Lemma A.1. Let q > 1,

∫ u

0

|v|q−1v loga(2 + v2)dv ∼|u|
q+1

q + 1
loga(2 + u2), as |u| → ∞, (A.1)

F (u) ∼uf(u)

p+ 1
as |u| → ∞, (A.2)

F2(u) ∼ Cuf(u)

log2(2 + u2)
as |u| → ∞. (A.3)

Proof. See Lemma A.1 in [28].

Thanks to (A.1), (A.2) and (A.3), we can state and prove the following estimates:

Lemma A.2. For all s ≥ 1, for all z ∈ R,

C−1φ(s)zf(φ(s)z)) ≤ C + F (φ(s)z) ≤ C(1 + φ(s)zf(φ(s)z)) , (A.4)

F1(φ(s)z) ≤ C + C
φ(s)z

s
f(φ(s)z), (A.5)

F2(φ(s)z) ≤ C + C
φ(s)z

s2
f(φ(s)z), (A.6)

e−
2ps
p−1 s

a
p−1 |f(φ(s)z)| ≤ C + C(ε)|z|p+ε, ∀ε > 0, (A.7)

|z|p−ε ≤ C(ε)e−
2ps
p−1 s

a
p−1 |f(φ(s)z)|+ C, ∀ε ∈ (0, p), (A.8)

e−
2(p+1)s
p−1 s

2a
p−1F (φ(s)z) ≤ C + C(ε)|z|p+ε+1, ∀ε > 0, (A.9)

|z|p−ε+1 ≤ C(ε)e−
2(p+1)s
p−1 s

2a
p−1F (φ(s)z) + C, ∀ε ∈ (0, p+ 1), (A.10)

where φ, F , F1 and F2 are given in (1.21), (1.25), (3.10) and (3.11).

Proof. Note that (A.4) obviously follows from (A.2). In order to derive estimates
(A.5) and (A.6), considering the first case z2φ(s) ≥ 4, then the case z2φ(s) ≤ 4, we
would obtain (A.5) and (A.6) by using (A.1), (A.2) and(A.3). Similarly, by taking into
account the inequality loga(2 +u2) ≤ C(ε) + |u|ε, we conclude easily (A.7), (A.8), (A.9)
and (A.10). This ends the proof of Lemma A.2.

References

[1] S. Alinhac, Blowup for nonlinear hyperbolic equations, Progress in Nonlinear Dif-
ferential Equations and their Applications, vol. 17, Birkhäuser Boston Inc., Boston,
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