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Abstract

With the recent successes of black-box models in Artificial Intelligence (AI) and the growing
interactions between humans and AIs, explainability issues have risen. In this article, in the context
of high-stake applications, we propose an approach for explainable classification and annotation of
images. It is based on a transparent model, whose reasoning is accessible and human understandable,
and on interpretable fuzzy relations that enable to express the vagueness of natural language. The
knowledge about relations is set beforehand by an expert and thus training instances do not need
to be annotated. The most relevant relations are extracted using a fuzzy frequent itemset mining
algorithm in order to build rules, for classification, and constraints, for annotation. We also present
two heuristics that make the process of evaluating relations faster. Since the strengths of our approach
are the transparency of the model and the interpretability of the relations, an explanation in natural
language can be generated. Supported by experimental results, we show that, given a segmentation
of the input, our approach is able to successfully perform the target task and generate explanations
that were judged as consistent and convincing by a set of participants.

1 Introduction

Explainable Artificial Intelligence (XAI) has recently received special attention. XAI aims at obtaining a
relative understanding of what a model does or why a decision was made [57]. It involves several different
fields such as machine learning, knowledge representation and reasoning, cognitive science or law and
provides a set of tools that enable to build explainable models, to extract post-hoc interpretations from
black-box models or to evaluate explanations.

An explanation involves an explainer, the model, and an explainee, the end-user. Consequently, as
illustrated in Figure 1, the type of explanations, and thus the XAI method we rely on, should depend on:

• The application: different applications may require different models and so different approaches for
explaining them. For example, we can resort to a post-hoc interpretability method for interpreting
a deep neural network while a decision tree is intrinsically explainable (assuming that it is shallow
enough to be considered explainable).

• The end-user : the form of the explanation should be strongly dependent on the knowledge of the
end-user. First, if this user has no knowledge about the model being used, high-level explanations
may be required. Second, the vocabulary used to build the explanations should be suited to the
user.

We focus here on high-stake applications of AI, where the cost of making a mistake is high. For such
applications, it has been claimed that black-box models are not appropriate because getting a faithful and
detailed enough explanation is tricky [70]. Indeed, in most cases, it consists in attributing importance
scores to features [69, 53, 72] that are not necessarily interpretable, like pixels in an image [69, 3]. In
such critical applications, transparent models, i.e. models whose trace and reasoning can be conveniently
tracked, are better suited for producing reliable explanations. However, such models are not suited
for dealing with images because explanations should not be based on raw input features (pixels) but on
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Figure 1: An explanation is provided to a user and should render the reasoning of the model under study
on the features (denoted as x) it was fed with.

features that are semantically interpretable. Understanding an image relies on understanding the relations
between the entities in this image [8, 26], and thus these relations should be part of the explanations.

In this article, we propose an approach that aims at building an explainable model for performing
classification or annotation of images. Relying on a human-in-the-loop strategy [33], a vocabulary of
potentially relevant relations is set beforehand. Those are fuzzy relations, which enable to manage
the imprecision of the data and the vagueness of the language used for generating the model and the
explanations. Then, the most frequent sets of relations are extracted to build rules for classification
or constraints for defining a fuzzy constraint satisfaction problem in the case of annotation. Since our
model is fully transparent and our relations are interpretable, an explanation in natural language can be
generated for each decision in order to achieve causability [34]. While learning fuzzy relations to build
rules for classification was proposed by Gonzalez et al. [28], their approach was not able to deal with
images and annotation problems.

This article is structured as follows. Section 2 gives a brief overview of the types of transparent
models that were proposed in the literature. This enables us to specify how the model we want to build
differs from them. We also remind how the interpretability of state-of-the-art approaches is evaluated
when dealing with images. In Section 3, we remind the core theoretical notions that our approach relies
on. The following section presents the whole approach for building an explainable classifier or annotator.
Then, we describe two heuristics that enable to evaluate relations in an efficient way, which is paramount
since a brute force approach is too time-consuming. Section 6 is dedicated to presenting the experiments
we carried out to assess our model on classification and annotation tasks. Finally, we discuss our results
and the prospects we envision.

2 Related Works

In this section, we present the two types of approaches that can be performed to generate explanations
from a model working on images. First, we talk about models that are inherently transparent and thus
explainable by design. The other type of approaches consists in using a black-box model and interpreting
it afterwards with a post-hoc method.

2.1 Explainable Models by Design

While there has been recently a surge of interest for explaining the decisions returned by AIs, this is not a
new problem. The first expert system, Dendral [22, 52], was released in 1965 for describing the molecular
structure of unknown organic chemical compounds. It was not able to explain its outputs but it could
provide a trace of the program reasoning steps. The first intelligent systems that were able to provide an
explanation were developed in the 1970’s. Among them, MYCIN was one of the first rule-based expert
systems [71]. It was an automated consultation system for improved antimicrobial selection. It returned
an explanation as a subset of rules that led to the final result. Later, decision trees and bayesian networks
were proposed and enabled to get interpretable models.

Recently, several approaches have relied on decision rules to provide explanations [47, 45, 56]. They
are close to the way humans reason and can thus be used as explanations. Another type of models that
has been extensively used by the XAI community is linear regression and its derivatives [3, 61, 30].

All these models are considered transparent assuming they are compact enough. Indeed, if they
are too complex, even though their design favors explainability, they cannot provide an understandable
explanation [1, 68].
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2.2 Post-hoc Interpretability Methods for Images

In the last decade, deep neural networks have become very popular because of the great performance
they achieve on image- and language-related tasks. While this performance is often unequalled by other
types of models, their opacity and vulnerability to attacks [44] raised several issues. Multiple methods
have been proposed to get clues about what a deep neural network, or more generically a black box, is
doing.

Feature attribution methods, which aim at quantifying the impact of all features on the final decision
provided by the model under study, have got a lot of attention: we distinguish model agnostic methods
[69, 53, 16] from more specific ones relying on the generation of saliency maps [72, 85, 73, 59, 42, 74].
Another type of strategies consists in visualizing the patterns that activate a unit (a single neuron,
channel or a complete layer) the most [21, 81, 62]. At the scope of the whole model, knowledge distillation
[17, 11, 32, 24] enables to train a student model, which is usually explainable (cf. Section 2.1), with a
teacher model, which is hardly interpretable. Some other approaches are based on concept activation
vectors [41, 29, 27], which enable to assess how a user-defined concept contributes to a result, or on
prototypes and criticisms [40], which are instances that are respectively highly representative or not
representative at all of the dataset.

3 Theoretical Background

3.1 Fuzzy Logic

Fuzzy Logic and the fuzzy set theory have been introduced by Zadeh in [82]. It can be seen as an
extension of Boolean logic that enables to manage imprecision. While a value is either true or false in
Boolean logic, it can range from 0 (false) to 1 (true) in Fuzzy Logic.

In a universe U , a fuzzy set F is characterized by a mapping µF : U → [0, 1]. This mapping specifies
in what extent each u ∈ U belongs to F and it is called the membership function of F .

If F is a non-fuzzy set (also known as crisp set), µF (u) is either 0, i.e. u is not a member of F , or 1,
i.e. u is a member of F . In the following, we will use the expressions non-fuzzy and crisp interchangeably.

In [83], Zadeh defined a linguistic variable as a triplet (V,∆V , FV ) such as:

• V is the name of the variable,

• ∆V is the domain on which V is defined,

• FV = {F1, F2, ...} is a finite collection of linguistic terms, which are formalized as fuzzy sets. Each
of these linguistic terms qualifies V .

For example, let us consider the linguistic variable (“distance”, [0; 100], {Fshort, Flong}) represented in
Figure 2. ∆V is here the domain of distances in metres. The fuzzy set Fshort enables to characterize how
short a distance is while Flong evaluates how long it is. For δ ∈ [0; 25], µshort(δ) = 1 so a distance of δ
metres is short. For δ ∈ [25; 75], the shortness is imprecise. The values of µshort enable to quantify the
vagueness of the definitions. For δ ∈ [75; 100], µshort(δ) = 0 so the distance is not short. However, that
does not necessarily mean that it is long. Indeed, there can be several intermediary linguistic terms in
FV between “short” and “long”, which would contribute to make the approach more expressive.

25 50 75 100

1

0

0

distance (m)

µ µshort
µlong

core(Flong)core(Fshort)

Figure 2: Representation of the linguistic variable (“distance”, [0; 100], {Fshort, Flong}). The membership
functions of the two fuzzy sets Fshort and Flong are represented in blue and red respectively. The core [6]
of Fshort is [0; 25] and the core of Flong is [75; 100].
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An elementary fuzzy proposition “V is A” is defined from a linguistic variable (V,∆V , FV ) with
A ∈ FV . For example, the fuzzy proposition “the distance is short” is assessed using the membership
function µshort. For a specific duration δ ∈ ∆V , the truth value of this proposition is returned by µshort(δ)
and it is interpreted as shown in the previous example.

3.2 Fuzzy Frequent Itemset Mining

Frequent itemset mining aims at extracting frequent patterns in a database. It has originally been
introduced for performing association rule learning [2]. In such problems, the goal is to build rules that
catch the frequent patterns in the database. The most common example of association rule learning
is the market basket problem. In this problem, we have a dataset of transactions made by customers:
each transaction contains items that one customer purchased. Based on this dataset, the objective is
to extract rules that describe well the behaviour of consumers and relies on assessing which items are
frequently bought together. In this example, an item belongs to a transaction or not, so a transaction
can be represented as a crisp set of items. However, when the information in the database is vague,
traditional frequent itemset mining methods are not well suited.

Fuzzy frequent itemset mining has been introduced to deal with such databases. It relies on the notion
of fuzzy formal context, which is defined as a tuple (T , I,R) such as

• T is a set of transactions,

• I is a set of items,

• R : T × I → [0; 1] is a dyadic fuzzy relation that expresses to which extent items belong to
transactions.

Given a fuzzy formal context (T , I,R), we can define the support of a set I of items [67]:

∀I ⊆ I, support(I) =

∑
t∈T

min
i∈I
R(t, i)

|T |
. (1)

support(I) represents the frequency of I in the database. Thus, we can set a threshold S to assess if a
set of items is frequent or not. We call this threshold the minimum support and all the sets I of items
are considered frequent if, and only if, support(I) ≥ S.

A frequent set I of items is maximal if, and only if, there exists no I ′ ⊆ I such that I ⊂ I ′. Given a
closure operator h defined on I, I is closed if, and only if, I = h(I). Maximal and closed frequent sets of
items have interesting properties that our approach relies on (cf. Section 4.3).

3.3 Fuzzy Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP) [58, 54, 78] consists in assigning some values to a set of variables
that must respect a set of constraints. Many problems can be represented as a CSP like scheduling
problems or the Golomb Ruler problem for placing sensors.

Dubois et al. [19] present an extension of CSPs to the fuzzy logic framework to deal with imprecise
parameters and flexible constraints. This is called a Fuzzy Constraint Satisfaction Problem (FCSP),
which is defined by:

• A set of variables V = {v1, ..., vm}.

• A set of domains D = {D1, ..., Dm} such as Di is the range of values that can be assigned to vi.

• A set of flexible constraints C = {c1, ..., cp}. Each constraint ck is defined by a fuzzy relation Rk

and by the set of variables Vk that are involved in it.

To solve a FCSP, a backtracking algorithm is applied. It starts with an empty set of instantiations
and selects a variable vi ∈ V to instantiate. Then, it finds a value in the domain Di that maintains the
consistency of the current instantiation, regarding the set of constraints C. The steps are repeated until
all the variables are instantiated. When a variable vj has no more value to test, the algorithm backtracks
and tries the next value of the previously instantiated variable.

To solve the problem faster, [19] proposed the FAC-3 algorithm, which is based on its crisp counterpart
AC-3 [54]. The principle is to update the domains in D after each new instantiation of a variable (i.e.
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after each iteration of the backtracking algorithm). This is performed by evaluating the constraints on
the current instanciations and then discarding the values that are inconsistent.

FCSPs can be suitable to solve image annotation problems in which the labels and the objects to
annotate are known (even if they are automatically detected, by a segmentation of the input image for
instance) [77]. The intuition behind that approach is that such an annotation problem can be combina-
torial and the labels are affected accordingly to each other, by opposition to individually like in classical
approaches. In such a setting, the set of variables V corresponds to the objects we would like to instan-
tiate. These variables share the same domain D that represents the regions obtained by segmentation.
The constraints in C are defined by fuzzy relations between variables, which may involve groups of n
objects (n ≥ 1) [77].

4 Approach Description

As we saw in Section 2, explainable models should be favoured if the objective is to render the reasoning
of the model. Such models usually rely on features that are interpretable, which makes the generation
of a proper explanation easier. When we deal with raw input features, such as pixels in images, black
box models are able to extract higher-level features that are more insightful for building an explanation.
However, it is complicated to semantically characterize those automatically extracted features and to
render the reasoning of these models.

In this section, we present our approach to build an explainable model that extracts higher-level
features in images. These features are actually relations between entities in the input, like A is to the left
of B. The model being explainable, we can directly express its reasoning and, since it handles interpretable
relations between entities in the inputs, it is possible to generate an explanation that renders the reasoning
of the model in a way understandable to humans.

4.1 Overview

The goal is to build a classification or annotation model by learning relations of interest from a given
vocabulary on a training set. The explanations will be based on these learnt relations.

In the case of classification, we propose to rely on decision rules. They are closer to human reasoning
[12] and to the language of reasoning [65], which is logic. Decision trees possess similar advantages, but
they are known to be unstable [75, 20] because they can produce very different models for small changes
in a dataset. Rules are usually inferred on the feature space but, as we wrote earlier, input features may
not be suited to build explanations on. This is why we propose to extract relations that are associated
to linguistic descriptions. A convenient framework for representing such relations is Fuzzy Logic, which
enables to take into account both qualitative and quantitative information [82, 84]. Also, there exists an
extensive literature about spatial fuzzy relations [10], which makes the whole framework well-suited for
managing images.

For annotation, we propose to learn in a similar way constraints that will be then used to solve a
Fuzzy Constraint Satisfaction Problem (FCSP) [77]. This constraint-based approach also satisfies the
transparency requirement.

The knowledge about relations is brought by a vocabulary of potentially relevant relations that is
set beforehand. Therefore, we can use regular datasets (where entities are labeled but not the relations
between them) without labeling any relation in the instances. These relations are then assessed on entities
that are part of the instances in the training set. Those entities are either directly provided in the dataset
we use or we have to extract them using a segmentation algorithm.

Given a vocabulary of nV relations V and a training set of n instances D, the approach we propose
consists in three main steps:

1. The relations from the vocabulary V are assessed on the training set D. In Section 5, we present
two strategies to prevent unnecessary computations to make the evaluation process faster.

2. The most relevant sets of relations are extracted according to the learning algorithm presented in
Section 4.3.

3. Rules or constraints are generated from the relevant sets of relations so that classification or anno-
tation can be performed. They can then be translated into a natural language explanation using the
linguistic description associated to each relation in the rules/constraints, as shown in Section 4.4.

The whole approach is illustrated in Figure 3 in the case of image annotation.
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Step 1:

Assessing the relations from V  on the 

training set D

Step 2:

Extracting 
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Step 3:

Generating rules/constraints for classi cation/annotation

Explanation:

The red entity is annotated as the liver with a high con dence because 

it is to the right of the purple entity annotated as the spleen,...

liver

right

kidney

right psoas

major muscle
urinary

bladder

left psoas

major muscle

spleen

n

Figure 3: Illustration of our approach in the particular case of image annotation. V is a vocabulary
of relations and D is the training set. For each annotation, an explanation is provided based on the
constraints that directly led to this result.

4.2 Expressivity

The performance of a model strongly depends on the features it is fed with and on the way it handles
feature values to compute a decision. If it is provided with few features, it may not be able to deal with a
wide variety of situations. The same observation can be made if the reasoning of the model is too simple.
In those two cases, the model is restricted by a lack of expressivity. In the context of XAI, the expressivity
of the model also has an impact on the explanations it provides. Indeed, a lack of expressivity will lead
to unconvincing explanations.

Our goal is to build a model able to perform classification or annotation and to provide an explanation
to the decisions it makes. The relevance of the explanation depends on the relations that have been
learnt and how the system uses them. That means that the original set of relations from which the
most relevant ones are learnt has to be built wisely. A poor vocabulary could lead to bad decisions and
irrelevant explanations. Thus, we need to ensure that our model is expressive enough to avoid this kind
of situations.

Let us introduce the following notations:

• Let V = {R1, . . . ,RnV} be the vocabulary given for building a model. It is a set of nV relations.

• Let α : V → N be a function such as α(R) denotes the arity of the relation R for each R in V.

• Let X be the space where instances are defined.

• Let x be an instance defined on the space X .
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• Let Ox = {ox,1, . . . , ox,K | ox,i ∈ X ,∀i ∈ J1;KK} be a set of K entities in x that are defined on X .

• Let Ex(V) = {R(ox,1, ..., ox,α(R)) | R ∈ V, (ox,1, ..., ox,α(R)) ∈ P(Ox)} be the set of all the relations
in V evaluated on the entities in Ox. P(Ox) is the power set of Ox.

P
(
Ex(V)

)
is the set of all the possible explanations. It represents all the situations the model can express

and it characterizes the expressivity of the model. The number of relations to evaluate for one instance
x is:

|Ex(V)| =
nV∑
j=1

|Ox|!(
|Ox| − α(Rj)

)
!
. (2)

The time complexity for computing all the evaluations thus depends on the factorial of the number of
entities present in Ox. Levesque and Brachman stated first that there is a dependency between the
expressive power of a knowledge representation language and its computational tractability [48]. We
encounter here a similar issue and we will propose two methods for pruning the evaluation space in
Section 5.

4.3 Learning Relevant Relations and Descriptors

Being able to express relations between entities in an instance is a necessary but not sufficient condition
for actually using these relations in an XAI. As an explanation should depict the reasoning of the system,
it should rely only on the relations that are relevant enough for solving the given problem.

Since we aim at extracting the most relevant sets of relations for describing each class, we must first
define what relevance means. Given a classification or annotation task, the relevance of a set of relations
characterizes its appropriateness, in other words how it fits the classes, and how closely connected it is
to the task, which means that it should help solving the problem induced by the task to perform.

In this work, we would like to determine the relations that are the most relevant to classes of entities.
Thus, they should be representative of a class. However, that does not mean that they necessarily help
to perform classification or annotation. For instance, the property that a tangerine is orange is relevant
for classifying tangerines from bananas whereas it is not for classifying tangerines from oranges. While
this property is important in describing the class tangerine, it is not sufficient for classification. As such,
it should be part of a higher-level structure that represents a class and that is unambiguous. In other
words, this structure should be both descriptive and discriminative [31, 46].

In this article, we call descriptor a set of relations that describes a class. So, given the vocabulary and
the expressivity of the approach, we would like to extract the most relevant class descriptors. Relevant
features should occur consistently whereas irrelevant features should occur inconsistently [39], which
means that entities from one given class should share the same relevant relations. Thus, these relations
should be frequent among the observations of entities from this class. As a consequence, we propose to
rely on frequent itemset mining to extract the most frequent descriptors in the training set. We assume
here that relevance and frequency are equivalent.

The limits of this assumption is that learning on few instances could be highly impacted by the
presence of one or several outliers. Therefore, we will have to be careful about the way the training set
is built. On the other hand, if the training set contains few outliers, it is theoretically possible to learn
descriptors from few data because our model does not rely on a high number of parameters.

Since we are looking for the frequent subsets of relations of each class, we decide to carry out the
learning phase using a one vs all approach. The learning is thus performed class by class. For one given
class, instances should share the relations that are relevant, which means that they are highly correlated
to each other. In order to take advantage of this property, we decided to rely on a fuzzy frequent itemset
mining called Fuzzy Close [67]. This algorithm relies on a closure operator to take advantage of the high
correlation between instances. This enables to return all the frequent sets of relations faster than other
algorithms from the literature [4, 43, 35, 36, 63, 50, 51].

Let us represent a database of instances from the same class as a fuzzy formal context [7] (T , I,R)
such as:

• T is a set of instances,

• I is a set of evaluated relations,

• R : T × I → [0; 1] is a function that expresses the evaluation of relations in I on the instances in
T .

7



The goal is to extract all the frequent subsets of relations or, in other words, all the subsets I ⊆ I such
that support(I) ≥ S. Given a closure operator, the Fuzzy Close algorithm is able to do that in two steps
[67]:

1. Determine all the frequent closed sets of relations. This is done in an iterative way: we first search
all the frequent closed singleton of relations, then the frequent closed sets of size 2, and so on until
we obtain all the frequent closed sets of relations.

2. Derive all the frequent subsets of relations from the frequent closed sets of relations.

When dealing with a dataset whose instances are highly correlated with each other, the number of closed
frequent subsets of relations is much lower than the number of frequent subsets of relations. So, after
the first step, we can derive frequent subsets of relations from just a few frequent closed subsets. That
is why, in a setting where the dataset contains correlated data, this algorithm is faster than alternatives
from the literature.

At the end of this step, we have for each class a set of descriptors that can be used for building rules
or constraints.

4.4 Building the Model and Generating Explanations

The descriptors that we extracted at the previous step enable to build the model. For classification, we
build fuzzy relational rules for each class. In the case of annotation, we generate constraints in order to
define a FCSP.

4.4.1 Classification

The rules that are used in our approach involve fuzzy relations [60] and are called fuzzy relational rules
[79, 80]

In our approach, we have already extracted relevant subsets of relations, which are the descriptors.
Now, we are going to build fuzzy relational rules based on these.

In the Fuzzy Close algorithm, we derive frequent sets of items from the frequent closed sets of items.
Consequently, there are many redundancies between frequent sets of items. We can get rid of those
redundancies resorting to maximal sets of items. We also know that the set of maximal frequent sets of
items is the same as the set of maximal frequent closed sets of items [64]. So we just need to find the
maximal frequent closed subsets of relations among the frequent closed ones, which are given at the end
of the first step of the Fuzzy Close algorithm (cf. Section 4.3). This task is straightforward. Let Y be the
set of all possible labels where each label y ∈ Y is associated to a class of entities. For each y ∈ Y, we get
a set MFCy of maximal frequent closed subsets of relations by applying the first step of the Fuzzy Close
algorithm. In order to have discriminative descriptors, we remove from the descriptors all the relations
that are common to several classes to get the set of discriminative descriptors MFC∗

y such as:

MFC∗
y =

{
I∗ | I∗ = I \

⋃
y′∈Y\{y}

( ⋃
J∈MFCy′

J
)
, I ∈MFCy

}
(3)

Thus, we ensure that we get a descriptor that is both descriptive and discriminative. We assume here
that the vocabulary has been set properly so that there is at least one I∗ ∈MFC∗

y such that I∗ ̸= ∅.
Then, for each y ∈ Y, we can build a rule for each descriptor I∗ in MFC∗

y such as

IF
∧

R∈I∗

R THEN label = y (4)

In this work, conjunctions are computed as the minimum t-norm [23], which is the min operator.
Since there may be several descriptors for a given class, rules are actually aggregated following a fuzzy

inference process [55]:

∀y ∈ Y,x ∈ X , µy(x) =
∨

I∗∈MFC∗
y

(
∧

R∈I∗

R) (5)

with µy(x) the membership degree of x to the class represented by label y and
∨

an aggregation operator,
such as the supremum or the mean.

However, this definition does not rely on the support of the descriptors, which brings valuable infor-
mation about their reliability. Indeed, descriptors do not all have the same support and so the rules they
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entail should not all have the same weight in the final decision. Thus, we take into account the support
of each descriptor to weigh the rules as proposed in fuzzy inference systems [55]:

∀y ∈ Y,x ∈ X , µy(x) =
∨

I∗∈MFC∗
y

(
support(I∗)×

∧
R∈I∗

R
)

(6)

where we can interpret µy(x) as the confidence in assigning the label y to the instance x. Then, the
predicted label ŷ is the label associated to the highest confidence: ŷ = argmax

y∈Y
µy(x).

Depending on the value we set for the minimum support in the fuzzy frequent itemset mining step,
some extracted relations might not be so relevant. Ideally, a few relations would be extracted when the
value of the minimum support is equal to 1. In practice, it is not likely to happen. That is why we have
to set this value carefully. If it is too high, there will not be enough frequent relations to discriminate
classes. This is a case of underfitting. If it is too low, most relations may be considered as frequent while
some of them are actually irrelevant, this is overfitting. Our strategy is to consider the minimum support
as an hyperparameter of the problem. Thus, there are as many hyperparameters as there are classes.
These hyperparameters will be set in a validation phase.

4.4.2 Annotation

As defined in Section 3.3, a constraint c is a pair (R, V ) composed of a sequence V of variables, repre-
senting entities, and one relation R linking those variables. Thus, relations in descriptors can be directly
translated into constraints.

The generation of a set of fuzzy constraints C for defining a FCSP is analogous to the generation of
rules: it is performed class by class and it is based on extracting the set of maximal frequent closed subsets
of relations using the Fuzzy Close algorithm. However, unlike rules, we do not prune the descriptors from
the relations that are common to several classes. The idea is that we do not want to have too few
constraints in our FCSP and that we should just ensure that there is no descriptor that describes several
classes. The risk if too few constraints are learnt is that there may be too many highly consistent solutions.
On the other hand, we could get no consistent solution if too many constraints are learnt, but this case
should not happen if the various minimum supports (for each class) are set properly.

The difference with the previous case is that we only retain the descriptor with the largest cardinality.
If there are several such descriptors, we select the one that has the greatest support in the training set.
Let y ∈ Y be a label. Let IMy be the descriptor in MFCy with the largest cardinality such that

IMy = argmax
I∈J

[
support(I)

]
such as J = {J ∈MFCy | |J | = max

P∈MFCy

|P |} . (7)

As explained above, we assume the itemset of largest cardinality will be the most helpful for solving
the problem since it enables to generate more constraints. Since constraints are fuzzy, we prefer having
more constraints that may lead to a smaller degree of consistency than fewer constraints that may not be
enough to solve the problem. In addition, the union of frequent maximal itemsets is not an acceptable
choice since it is not a frequent itemset (otherwise it would be the only one maximal frequent itemset).

We know that each evaluated relation R in IMy links one or several classes of entities. Let ΩR be a
set that contains those classes. In the definition of the FCSP, each variable is associated to a different
class of entities. Therefore, for each item in IMy , we generate a constraint (R, VΩR) with VΩR the set of
variables corresponding to the set of classes ΩR.

After generating constraints for each relation and for each class, we have a set of constraints that
can be used for defining and solving a FCSP. Given a new instance, the most consistent solution to this
problem will lead to the annotation of every entity in the instance under study. As for rules, a confidence
degree can be computed for a given annotation y ∈ Y as the product of the support of the descriptor IMy
and the evaluation of the least consistent constraint in IMy .

There might be some constraints that appear several times. That means that several different classes
produced the same constraint. That happens with symmetrical p-ary relations with p > 1. In that case,
the set of constraints is reduced so that it contains this constraint only once.

4.4.3 Explanation Generation

We presented in the previous sections our methods for performing classification and annotation. Since
our goal is to provide both a result and its explanation, we focus now on the generation of explanations
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from the models we built. The explanation we would like to provide to the end-user is a sentence in
natural language that explains how a result has been produced.

In particular, this step relies on using a surface realizer. In linguistics, a realization consists in
generating a surface form, which is a correct sentence in a given natural language, from a more abstract
representation in which the different components such as the subject or the verb are specified. Therefore, a
surface realizer is a system that is able to take an abstract semantic representation as an input to generate
a syntactically correct sentence. In this work, we decided to rely on SimpleNLG [25] for performing this
task. This realization engine provides an API that is user-friendly and complete enough for the kind of
explanations we would like to generate.

All the relations in the vocabulary are associated to a linguistic variable. That enables to express these
relations in natural language. In addition, the evaluated relations that have been learnt to form class
descriptors involve entities whose class is known. Thus, for each relation, we can generate a description in
natural language. For example, let us consider a descriptor of a class of entities β containing the relation
Requal(β, η), η being another class of entities. It can be expressed in natural language such as “β equals
η”. Since each relation has a known and constant arity, automating the generation of an expression in
natural language can be performed by associating a template to each relation. This template will be used
in SimpleNLG, which will realize the corresponding sentence. In addition, since it is straightforward to
convert a constraint into a relation (cf. the definition of a constraint in Section 3.3), constraints can be
used to generate a natural language expression as we do with relations.

At a higher level, the surface realizer can express conjunctions of relations (classification) or constraints
(annotation) and the confidence degree of the prediction being explained. The latter is represented as a
linguistic variable representing the different levels of confidence: very high, high, average, low and very
low. Then, a subordinating conjunction enables to link the prediction to its explanation and we get a
complete explanation in natural language. For example, classifying an instance as a tangerine could lead
to the following explanation:

This instance belongs to class “tangerine” with a high confidence because entity A is orange, it is round
and it is small.

For classification, the result is returned by an aggregation of rules. When the aggregation operator
is the supremum, only one rule contributes to the final result and thus generating the explanation is
straightforward following the process described in the previous paragraph. When the aggregation operator
is the mean, the basis for the explanation is the union of the antecedents of all the rules that are being
aggregated.

In the case of annotation, one explanation is generated for each annotation on the basis of all the
constraints the variable corresponding to the annotation was involved in.

Further works have been proposed for generating in natural language more complex explanations that
can also express more logical combinations like disjunctions or negations, as in [5].

5 Optimizing the Evaluation of Relations

The approach we propose requires to evaluate fuzzy relations from a given vocabulary before learning
the most frequent descriptors. At the end of the evaluation step, the system has a dataset that can
be represented as a formal fuzzy context on which it can perform fuzzy frequent itemset mining (cf.
Section 4.3).

The time complexity of this step directly depends on the relations that are evaluated. Keeping the
same notations as in Section 4.2, the total number of evaluations to compute on the whole training set
D is:

|ED(V)| =
n∑

i=1

nV∑
j=1

|Oxi
|!(

|Oxi | − α(Rj)
)

!
(8)

In particular, this quantity directly depends on the number of relations and their arities. Moreover, some
relations may be compute-intensive, which makes the whole step longer. In order to keep it fast enough,
two different types of strategies can be deployed:

• Speeding up the computation of relations based on their definition. The speed-up may be obtained
by algorithm enhancement, distributed computation or approximating the result. It is a local
optimization process (relation by relation).
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• Filtering relations based on available knowledge, which is a global optimization process. Indeed,
some evaluations of relations could be deduced from former evaluations if they satisfy some prop-
erties (symmetry, dependencies,...).

Both kinds of strategy are compatible since the first kind aims at reducing the computation time of one
evaluation of a specific relation while the second kind enables to prevent unnecessary computations.

We propose two global heuristics that enable to prune the evaluation space and thus make the process
faster. The first heuristic we present consists in not evaluating the relations that, after a few training
instances, are bound to be infrequent. Each time a training instance has been studied, we compare the
current support of each relation to the lowest value it must have to make the relation frequent. The
other heuristic is based on the knowledge we have about the relations in the vocabulary. Such knowledge,
like dependencies and implications between relations, can be represented in a graph. Then, this graph
can be turned into a directed acyclic graph so that a topological sort can be obtained to get an order of
evaluation on the relations in the vocabulary. Thus, only the necessary evaluations are computed.

5.1 Online Pruning of Infrequent Relations

Instances in the training set are evaluated one by one. Thus, the support of each relation can be updated
each time an instance has been fully analyzed. Furthermore, to ensure that the frequency assumption
holds true, the minimum support S is always set to a value greater than or equal to at least 0.50. We
assume here that a relation that is, on average, fully satisfied in less than half of the instances in the
training set is not representative of the class under study. This assumption is not restrictive since we do
not expect to classify and explain an instance on the basis of such a relation. Indeed, this could harm the
performance of the model and the reliability of the explanations. Thus, that enables to detect relations
whose current support (after k < n evaluated training instances) prevents their final support (after n
evaluated training instances) to be greater than or equal to 0.5. This also presents the advantage of being
independent of the vocabulary and the task to perform.

For example, let us consider the database Dfuzzy given in Table 1. Dfuzzy forms a fuzzy formal context
(T , I,R). With our assumption, we have S ≥ 0.5. For any relation i ∈ I and k ∈ J1;nK, let us note
Sk({i}) the support of i after k instances. For example, we have here

S4({R2}) =
1

4

4∑
i=1

R(ti,R2) = 0.325

according to Equation (1). So, in the best case, if R(t5,R2) = 1, we would get

S5({R2}) = S({R2}) =
1

5

( 4∑
i=1

R(ti,R2) + 1

)
= 0.46 .

This value is lower than 0.5, so we can discard the relation R2 after the first four transactions. However,
for the singleton {R3}, we need the five transactions to assess whether it is frequent or not.

Using the same reasoning as in the previous example, we can obtain the condition on which a relation
can be discarded for any value of the minimum support. Let i ∈ I be a relation. Let k be an integer
in J1;n − 1K. Let Sk({i}) be the support of {i} after k examples. Let S be the value of the minimum

Transactions
Items

R1 R2 R3 R4 R5

t1 0.8 0.1 0.9 0.8 0
t2 0 0.3 0.2 0 0.9
t3 1 0.7 0.7 1 0.6
t4 0 0.2 0 0.2 1
t5 0.9 0.6 0.8 1 0.9

Table 1: The fuzzy database Dfuzzy. For a minimum support greater than or equal to 0.5, we can know
that {R2} cannot be frequent after having processed the first four instances. However, for {R3}, we need
its evaluation in t5 to assess whether it is frequent or not.
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support. {i} is bound to be infrequent if, and only if, it verifies

Sk(i) <
n(S − 1)

k
+ 1 (9)

We call B the bound n(S−1)
k + 1.

Proof. The support of {i}, Sn({i}), can be expressed as

Sn({i}) =

kSk({i}) +
n∑

j=k+1

R(tj , i)

n
,∀k ∈ J1;n− 1K . (10)

After k instances, the greatest possible value for Sn({i}) is thus reached when
R(tj , i) = 1,∀j ∈ Jk + 1;nK. As a consequence, {i} is bound to be infrequent if, and only if

kSk({i}) + n− (k + 1) + 1

n
< S (11)

which leads to

Sk({i}) < n(S − 1)

k
+ 1 . (12)

B depends on S, on the size of the dataset n and on the current evaluation iteration k. That makes
this heuristic independent of the task and the vocabulary. With our assumption, we have S ≥ 0.5 and
thus, in the worst case when S = 0.5, we have B = 1 − n

2k . If S is required to be greater than 0.5, it
is possible to get a higher value of B, which enables to discard even more relations. In Figure 4, we
represented B for several values of S and for n = 30. Values of S that are lower than 0.50 are not
considered since it would mean that either our assumption that a relevant relation is frequent is false or
that the vocabulary we use is too poor or not suited to the dataset. We chose n so that its magnitude is
representative of the size of the training sets we dealt with in our experiments.

0 3 6 9 12 15 18 21 24 27 30

Number of assessed examples (k)
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Figure 4: Curves representing the evolution of B = n(S−1)
k + 1 with the number of assessed examples

k for a total number of examples n = 30. For the sake of clarity, only the positive values of B are
displayed (if B is negative, no support can be discarded because it is always positive or null).
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Overall, the greater the threshold S, the earlier we should be able to discard relations. When S = 0.50,
we can start discarding relations once half of the training set has been treated. So, if a relation is never
satisfied in the first half of the training set, we can avoid computing it for the second half.

While this heuristic takes advantage of the way frequent subsets of relations are learnt, another
strategy is to exploit the properties of the relations in the vocabulary.

5.2 Knowledge-Based Ordering of the Evaluation of Relations

The previous heuristic does not require any knowledge about relations. When this knowledge is available,
it is possible to conduct strategies that are fully compatible with the one presented in the previous section.

The heuristic we present in this section relies on the knowledge we can get from the definitions of
the relations in the vocabulary. This knowledge enables to express links between relations. In this
work, we are interested in three kinds of links: dependency, implication and symmetry. The principle
is to propagate the information of evaluated relations (using the links between relations) to gain insight
on non-evaluated relations. This materializes as an order of evaluation on relations with the relations
conveying more information at the front.

5.2.1 Dependency

The first link between relations that we present is the dependency. Let R1 and R2 be two p-ary fuzzy
relations defined on a space A. R1 is said to be dependent on R2 if, and only if, there exists a function
dep : [0; 1]→ [0; 1] such as

∀e ∈ Ap,R2(e) = dep
(
R1(e)

)
.

where e is a set of p entities in A.
This link means that R2(e) needs the result of R1(e) to be computed. Thus, for each e ∈ Ap, R1(e)

should be computed before R2(e). While this link between relations does not directly discard useless
relations, it enables to prevent redundant computations. In addition, it is straightforward to set since it
is directly given by the definitions of relations.

For example, let us consider a relation Rconnected : A × A → [0; 1] that assesses if two entities are
connected. We could define a second relation, Rdisconnected : A × A → [0; 1], as the complement of the
first relation to assess if two entities are disconnected. In that case, there is a dependency between those
two relations.

5.2.2 Symmetry

The second type of link represents a specific property of relations: symmetry. Let R be a p-ary fuzzy
relation defined on a space A such as R : Ap → [0; 1]. ∀(e1, . . . , ep) ∈ Ap, R is said to be symmetric if,
and only if, any permutation of (e1, . . . , ep) does not modify the result of the evaluation of R on the set
of entities {e1, . . . , ep}.

For instance, with Rconnected, we have
Rconnected(a1, a2) = Rconnected(a2, a1),∀a1, a2 ∈ A. So this relation is symmetric.

For any p-ary symmetric relation R, for a set Ox of p entities associated to an instance x, the number
of evaluations to compute involving R is (according to Section 4.2)

|Ex(R)| = |Ox|!(
|Ox| − p

)
!
. (13)

Using the symmetry property, this can be divided by the number of permutations, p!, and we get

|Ex(R)| = |Ox|!

p!
(
|Ox| − p

)
!
. (14)

Therefore, it will be important to determine which relations in the vocabulary are symmetric. In the
special case of a dyadic relation (p = 2), we also say that this relation is commutative.
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5.2.3 Implications

We consider here the implications between relations from the vocabulary. The idea is to propagate the
result of one relation to another. For example, for two p-ary relations R1 and R2 defined on a space A,
for any tuple of entities e ∈ Ap, if R1 ⇒ R2, then R1(e) should be evaluated before R2(e). The value of
R2(e) could then be deduced from R1(e).

We are interested in the following four kinds of implications:

• The logical implication between two relations. If R1 ⇒ R2, then, for each e ∈ Ap, R1(e) should
be evaluated before R2(e) because the evaluation of R1(e) gives information about the evaluation
of R2(e). For instance, let us consider two dyadic relations: Requal that characterizes whether two
entities are equal or not and Rsame size that characterizes if two entities have the same size. Since
two equal entities have the same size, we have Requal ⇒ Rsame size. So it may be more convenient
to evaluate Requal first and to then deduce the value of Rsame size.

• The logical implication between a relation and the complement of another relation: R1 ⇒ R2. For
instance, if two entities are connected, then they cannot be disconnected.

• The logical implication between the complement of a relation and another relation: R1 ⇒ R2. For
instance, if two entities are not connected, then they are disconnected.

• The logical implication between the complement of a relation and the complement of another
relation: R1 ⇒ R2. For instance, if two entities are not connected, then they cannot overlap with
each other.

Since the relations we use are not Boolean, we have to use fuzzy implications. We use here the  Lukasiewicz

implication
L−→ [6], which is the same implication as in the fuzzy frequent itemset mining algorithm we

apply [67]. To have an approach that is always consistent, we are only interested in situations where
the fuzzy implication is equal to 1. The four following paragraphs are dedicated to establish properties
for detecting relations verifying an implication. We also specify how to propagate the results for each
implication.

Implication between two relations We consider here the implication R1 ⇒ R2. Let us recall that,

∀a, b ∈ [0; 1],
L−→ (a, b) = min(1 + b− a, 1). We want this implication to be equal to 1:

min(1 + b− a, 1) = 1⇔ 1 + b− a ≥ 1⇔ b ≥ a (15)

This result is also satisfied by other residual implications. Let R1 and R2 be two p-ary fuzzy relations
defined on a space A. There exists a logical implication R1 ⇒ R2 if, and only if,

∀e ∈ Ap,R2(e) ≥ R1(e) (16)

Proof. According to Equation (15), for each e ∈ Ap, we have
L−→

(
R1(e),R2(e)

)
= 1 if, and only if, R1(e) ≤ R2(e).

To be able to deduce the exact value of R2(e) given R1(e), the relation between R1(e) and R2(e)
must be an equality. Since the upper bound on our fuzzy relations is 1, we have R2(e) ≤ 1. If R1(e) = 1,
then we have also R2(e) ≥ 1 according to Section 5.2.3. That gives R2(e) = 1. So that implication
enables to propagate the relations that are fully satisfied.

When R1(e) < 1, we have R1(e) ≤ R2(e), which does not enable to get the exact value of R2(e).
This may still be valuable information but we do not tackle that in this work.

Implication between a relation and the complement of another relation We consider here the
implication R1 ⇒ R2. We use the standard negation defined in [23] as the fuzzy complement. We can
perform a reasoning similar to what we did for the previous implication.

Let R1 and R2 be two p-ary fuzzy relations defined on a space A. There exists a logical implication
R1 ⇒ R2 if, and only if,

∀e ∈ Ap,R2(e) ≤ 1−R1(e) (17)

Proof. For each e ∈ Ap, we have according to Equation (15)
L−→

(
R1(e),R2(e)

)
= 1 if, and only if, R2(e) ≤ 1−R1(e).
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When R1(e) = 1, the exact value of R2(e) is 0 since the fuzzy relations we use have a lower bound
equal to 0. So we can propagate a fully satisfied relation to deduce that another relation is not satisfied
at all.

Implication between the complement of a relation and another relation Let R1 and R2 be
two p-ary fuzzy relations defined on a space A. There exists a logical implication R1 ⇒ R2 if

∀e ∈ Ap,R2(e) ≥ 1−R1(e) (18)

Proof. For each e ∈ Ap, we have according to Equation (15)
L−→

(
R1(e),R2(e)

)
= 1 if, and only if, R2(e) ≥ 1−R1(e).

When R1(e) = 0, the exact value of R2(e) is 1 since the fuzzy relations we use have an upper bound
equal to 1. So we can propagate a relation that is not satisfied at all to deduce that another relation is
fully satisfied.

Implication between the complements of two relations Let R1 and R2 be two p-ary fuzzy
relations defined on a space A. There exists a logical implication R1 ⇒ R2 if

∀e ∈ Ap,R2(e) ≤ R1(e) (19)

Proof. For each e ∈ Ap, we have according to Equation (15)
L−→

(
R1(e),R2(e)

)
= 1 if, and only if, R2(e) ≤ R1(e).

When R1(e) = 0, the exact value of R2(e) is 0 since the fuzzy relations we use have a lower bound
equal to 0. So we can propagate a relation that is not satisfied at all to deduce that another relation is
not satisfied at all.

Table 2 recaps the four properties that we have just established and how to propagate the results for
each type of implication.

Implication Condition Propagation

R1 ⇒ R2 R2(e) ≥ R1(e) If R1(e) = 1, then R2(e) = 1
R1 ⇒ R2 R2(e) ≤ 1−R1(e) If R1(e) = 1, then R2(e) = 0
R1 ⇒ R2 R2(e) ≥ 1−R1(e) If R1(e) = 0, then R2(e) = 1
R1 ⇒ R2 R2(e) ≤ R1(e) If R1(e) = 0, then R2(e) = 0

Table 2: This table shows the four types of implications between relations that our approach can process.
Those implications enable to propagate the result of one relation to another. R1 and R2 are two p-ary
fuzzy relations defined on a space A. e is a tuple of entities defined on Ap.

5.2.4 Graph Representation

The different links between relations that we use have been presented in the previous subsections. Each
type of link can be represented in a graph using the edges defined in Table 3. This is a labeled directed
graph.

A labeled directed graph is a triple (G,L, l) such that:

• G = (V,E) is a directed graph such that:

– V is a set of vertices,

– E is a set of edges such that each edge in E is an ordered pair (v1, v2) ∈ V 2,

• L is a finite set of labels,

• l : E → P(L) is a function that assigns a subset of labels to each edge in E.

For example, let us consider a vocabulary of relations V = {R1,R2,R3,R4,R5}, with, ∀i ∈ J1; 5K,
Ri : Ap → [0; 1], and a set of links between relations L = {d, i, ni, e, ne} such that:

• l(R1,R2) = {ni, e},
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• l(R2,R1) = {d, ni, e},

• l(R1,R3) = {ne},

• l(R3,R1) = {d, i},

• l(R3,R4) = {e},

• l(R4,R3) = {e},

• l(R5,R5) = {c}.

The corresponding labeled directed graph is represented in Figure 5. The meaning of the edges in the
graph are specified in Table 3.

The original goal of this strategy is to obtain an order on relations based on the way they are linked
to each other. However, the labeled directed graph we generate here can be cyclic (like in Figure 5),
which does not enable to define an order on relations.

Link Notation Corresponding edge

R2 depends on R1 d R2
d−−−−→ R1

R1 is symmetrical c R1 ýc

R1 ⇒ R2 i R1
i−−−−→ R2

R1 ⇒ R2 e R1
e−−−−→ R2

R1 ⇒ R2 ni R1
ni−−−−−→ R2

R1 ⇒ R2 ne R1
ne−−−−−→ R2

Table 3: Recap of the different kinds of link we con-
sider between relations and their notation in the graph
representation. The third column specifies how the cor-
responding edge is represented in a graph. R1 and R2

are two arbitrary p-ary fuzzy relations defined on a
space A.

R₁

R₂

ni,e

R₃

ned,ni,e d,i

R₄

e e

R₅ c

Figure 5: Example of labeled directed
graph. The vertices are relations and the
directed edges between vertices are labeled
according to the links between relations.
For each edge, its corresponding labels are
to its right.

5.2.5 Extracting an Acyclic Graph

Our goal is to get an order on relations based on the knowledge graph representing them and their links.
We propose to achieve that by getting rid of the cycles in the graph while keeping as much knowledge as
possible to get a meaningful order. Then, once we have an acyclic graph, an order on its vertices can be
obtained by topological sorting.

The knowledge graph representing the links between relations is directed. However, in order to obtain
a topological sort of this graph, it must also be acyclic. We introduce Algorithm 1 and Algorithm 2 that
enable to obtain a directed acyclic graph from the knowledge graph we have. The idea here is to build a
new acyclic graph that preserves, insofar as possible, the information contained in the original one. Thus,
we can get an order on relations that is faithful to the available knowledge.

Algorithm 1 is the main algorithm for converting our labeled directed graph LDG, which is the
knowledge graph, into a directed acyclic graph DAG. The main loop starts at line 3 and loops over all
the subgraphs g in LDG. At line 4, the conditional statement enables to check whether the subgraph
has at least one edge or not. If the subgraph has no edge, then its vertices are added to VDAG (line 5).
Otherwise (from line 7), we loop over the edges of g (line 8). This loop first detects commutative relations
and removes selfloops (line 9 to 12). Then, it extracts the dependency links and insert them in DAG (lines
13 to 17). We prioritize dependency over implications since the resulting relation cannot be computed
without the relation it depends on. Then, the goal is to loop over LDG to extract implication links. The
vertex used to start this exploration is selected from line 19 to line 25. We select one vertex in DAG,
which is called root, that has the most outcoming edges among vertices without incoming edges (lines 20
and 21). root thus represents the relation involved in the most dependencies while not depending on any
other relation. This is usually a generic relation so this choice enables to favour having this relation at
the front of our order. If this is not possible, we select a random vertex in Vg (line 24). Then, we call the
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Algorithm 1: algorithm that converts a labeled directed graph of relations into a directed

acyclic graph of relations.

input : a labeled directed graph LDG = (GLDG, L, l) representing the links between relations

output: a directed acyclic graph DAG

1 DAG← (VDAG, EDAG) such that VDAG = ∅ and EDAG = ∅
2 LDG2← copy(LDG)

3 forall subgraph g = (Vg, Eg) ∈ GLDG do

4 if Eg = ∅ then

5 VDAG ← VDAG ∪ Vg

6 end

7 else

8 forall edge (v1, v2) ∈ Eg do

9 if v1 = v2 then

10 VDAG ← VDAG ∪ {v∗1}a

11 Eg ← Eg \ {(v1, v1)}
12 end

13 else if d ∈ l(v1, v2) then

14 VDAG ← VDAG ∪ {v1, v2}
15 EDAG ← EDAG ∪ {(v2, v1)}
16 Eg ← Eg \ {(v1, v2)}
17 end

18 end

19 if ∃(v1, v2) ∈ V 2
g such that (v1, v2) ∈ EDAG then

20 noParents← {v ∈ VDAG ∩ Vg | ∄(v1, v2) ∈ EDAG such that v2 = v)}
21 root← argmax

v∈noParents

∣∣{(v, v′) ∈ EDAG}
∣∣

22 end

23 else

24 root← randomly select v in Vg

25 end

26 generateOtherLinks(LDG, DAG, LDG2, root)

27 end

28 end

29 return DAG

aThe mark ∗ is added to v1 to specify that it represents a symmetrical relation.
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Algorithm 2: algorithm that fills the directed acyclic graph with implication links. It represents

the function genrateOtherLinks.

input:

• the labeled directed graph under study LDG = (GLDG, L, l),

• the directed acyclic graph DAG = (VDAG, EDAG) that is being built,

• a copy LDG2 of the original LDG (no edges have been removed),

• the vertex from which the algorithm starts, root.

1 visited← ∅
2 Q← queue(root)

3 while Q is not empty do

4 v0 ← dequeue(Q)

5 neighbours← {v ∈ VLDG2 | (v0, v) ∈ ELDG2 or (v, v0) ∈ ELDG2}
6 if ∃(v1, v2) ∈ ELDG such that v1 = v0 then

7 forall v3 ∈ {v ∈ VLDG | (v0, v) ∈ ELDG)} do
8 VDAG ← VDAG ∪ {v3}
9 EDAG ← EDAG ∪ {(v0, v3)}

10 if DAG is cyclic then

11 EDAG ←
(
EDAG \ {(v0, v3)}

)
∪ {(v3, v0)}

12 end

13 ELDG ← ELDG \ {(v0, v3), (v3, v0)}
14 end

15 end

16 forall v ∈ neighbours do

17 if v /∈ visited then

18 visited← visited ∪ {v}
19 Q← queue(Q, v)

20 end

21 end

22 end

function generateOtherLinks(LDG, DAG, root) that is represented in Algorithm 2 and that completes
DAG. Finally, once this is over, DAG is returned.

In Algorithm 2, we loop over the vertices of the graph using a breadth-first strategy starting from
the vertex root. The objective is to complete the graph DAG with implication links (since dependencies
and symmetries have already been filtered in Algorithm 1). At each iteration, the edges involving the
node under consideration are added to the graph DAG. Since each edge (u, v) entails an edge (v, u) (by
contraposition of the implication), we always select the direction that enables to ensure that the graph is
acyclic (from line 9 to 12). Thus, a cycle cannot exist. Indeed, there cannot be a cycle of dependencies
since it would mean that no relation can be computed first, which is absurd. Since selfloops are removed
(line 11 in Algorithm 1) and we ensure that parallel edges of opposite directions cannot both be added to
DAG (line 13 in Algorithm 2), this new directed graph is acyclic by construction, which was the primary
goal of this new method. The following example illustrates it.

Let us consider the knowledge graph represented in Figure 5. It is a directed graph but it is not
acyclic. We apply Algorithm 1 to get a directed acyclic graph so that we can perform topological sorting.
The resulting graph is represented on Figure 6. The star in R∗

5 means that it is a symmetric relation.
Once we get a directed acyclic graph DAG, we can perform topological sorting on all the subgraphs

of DAG to get an order on the vertices, and so on the relations.
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R₅* R₁

R₂ R₃

R₄

Figure 6: Example of directed acyclic graph that we get using Algorithm 1 on the knowledge graph
displayed in Figure 5.

5.2.6 Global Method

In the previous subsections, we first studied the different kinds of links that may exist between the
relations in the vocabulary. These links can be represented in a labeled directed graph where the vertices
are the relations. Then, we saw how to convert this graph into a directed acyclic graph in order to
perform topological sorting, which returns an order on vertices. Thus, the whole method consists in the
following steps:

1. setting the links between relations from the vocabulary based on their definitions,

2. building a labeled directed graph LDG representing relations and how they are linked to each other,

3. converting LDG into a directed acyclic graph DAG using Algorithm 1,

4. obtaining a topological sort for each subgraph of DAG,

5. evaluating relations according to the topological sort we got in the previous step.

The following example depicts how we use the results of topological sorting to evaluate relations.
For each tuple of entity, the order we got enables to propagate the values of evaluated relations to the
ones that have not been evaluated yet. We extracted the links between relations in the vocabulary V =
{R1,R2,R3,R4,R5} and represented them in a labeled directed graph in Figure 5. Then, Algorithm 1
converted it into a directed acyclic graph that is displayed in Figure 6. In this acyclic graph, there are two
subgraphs corresponding to the set of vertices {R1,R2,R3,R4} and {R∗

5}. After performing topological
sorting, we have the following results:

• R1 → R3 → R4 → R2,

• R∗
5.

where R → R′ means that R should be evaluated before R′. Since those two topological sorts are
independent on each other, we can start by evaluating either R1 or R∗

5, which is a symmetric relation.
That means that, for a given tuple of entities in Ap, R∗

5 should be evaluated only once. Let us now
focus on the topological sort we got on the set of vertices {R1,R2,R3,R4}. It means that R1 must be
evaluated before R3, R3 must be evaluated before R4 and R4 must be evaluated before R2. Considering
the original knowledge graph represented on Figure 5, this ordering of relations is justified by:

• R2 and R3 both depend on R1, so R1 should be computed before them.

• There are two parallel edges in opposite directions between R3 and R4 on Figure 5. Thus, there are
two possibilities and, considering only these two relations, one could be computed before the other
and vice versa. The way the graph DAG is completed depends on the node that is first visited.
This is the node root, which is defined between lines 19 and 25 in Algorithm 1. If possible, this is
the node that has the most relations dependent on itself. Consequently, in most cases, this node
should not be a leaf. Here, the starting node was R1 and so R3 is visited before R4. That is why
the edge between R3 and R4 is directed toward R4. We know that we have R3 ⇒ R4, so if there
exists e ∈ Ap such that R3(e) = 1, then we get R4(e) = 0 without computing R4(e).

In the next section dedicated to experiments, we assess both heuristics on classification and annotation
tasks.
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6 Experimental Results and Discussion

In this section, we present the two experiments we carried out to assess our approach. The first one deals
with image classification while the second one tackles image annotation.

6.1 Image Classification on a Toy Dataset

6.1.1 Dataset

In this toy dataset of images, each example contains three fuzzy shapes: a square, a disk and an ellipse.
These shapes correspond to the entities that will be handled in this experiment. Images from this dataset
are divided into four classes. The difference between the classes is the spatial distribution of the fuzzy
shapes. The shapes in each image of the same class are similarly spatially distributed. Examples from
each class are shown in Figure 7. The dimensions and the fuzziness of each shape in each image vary
independently of the class. In addition, four borderline examples have been added to each class in order
to test the reliability of the system. Each class contains 44 images and so the whole dataset is composed
of 176 examples. Each image contains 500× 500 pixels.

Each shape is placed randomly in a restricted area of the image. Thus, for class 1, the square should
be to the left of and slightly above the ellipse. The disk should be below and slightly to the left of the
square. The ellipse should be to the top right of the disk. Classes 2, 3 and 4 are generated the same way
and are rotated 90°, 180° and 270° counterclockwise respectively. In addition, for the sake of simplicity,
ellipses always have the same orientation in every instance of each class.

6.1.2 Vocabulary of Relations

Based on the way the dataset has been built, we limited the dyadic relations that are used in this
experiment to directional relations. In particular, those are fuzzy directional dilations [9]. We use four
of them: to the left of, above, to the right of and below. Figure 8 illustrates the evaluation process for
evaluating the relation ellipse to the right of disk. Since the fuzzy dilation is a compute-intensive operator,
generating fuzzy landscapes (cf. Figure 8c) is expensive. So we would like to prevent their generation
when they are not necessary by using our two heuristics. When we do have to compute them, we relied
on a fast implementation of this operator [66].

The unary relations we selected are shape-related. One of them assesses how close or far to a disk
the shape of an entity is, another one assesses how close or far to a square the shape is and a third one
assesses how close or far to an ellipse it is. We call them is disk, is square and is ellipse. They are based
on an extension to fuzzy objects of the shape signature expressing the distance of boundary points to
the centroid of the object [15]. It is based on averaging the signatures over the α-cuts [23] of the fuzzy
object. We use this signature to build our three unary relations. Let χ be the signature of an entity. The
relation is disk is defined as:

isDisk(χ) =

{
1−∆ if ∆ ≤ 1

0 otherwise
(20)

with ∆ = max(χ)−min(χ)
mean(χ) . The relations is square and is ellipse are defined differently. They both return

the absolute value of the correlation coefficient between χ and the signature χref of a reference shape,

(a) Class 1 (b) Class 2 (c) Class 3 (d) Class 4

Figure 7: Examples from each class of the dataset used in the example of image classification in Section 6.1.
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(a) Input (b) Disk (c) To the right of disk (d) Ellipse to the right of
disk

Figure 8: Example of how a fuzzy directional relation is computed in an instance. Here, the goal is to
compute the relation ellipse to the right of disk. Given an instance (Figure 8a), the disk, which is the
reference object in the relation to evaluate, is extracted (Figure 8b). The fuzzy landscape to the right
of disk can then be computed as the fuzzy dilation of the disk (Figure 8c). Finally, as illustrated in
Figure 8d, the relation can be evaluated using a fuzzy pattern matching approach [14], which consists in
computing the fuzzy degree of intersection between the fuzzy landscape and the ellipse.

such as:
isSquare(χ) = |corr(χ, χref)| (21)

with the reference shape a perfect square. isEllipse is defined the same way with a perfect ellipse as the
reference shape.

Overall, we have 4 different spatial dyadic relations and 3 different unary relations. As there are 3
different entities in an instance, the total number of relations to evaluate per instance is equal to 33
according to Equation (2).

6.1.3 Ordering of Relations

In order to get an ordering of relations that enables to prevent some useless computations, the logical links
between relations from the vocabulary are represented in a graph. This graph is displayed in Figure 9.
The edges between directional relations hold because of the specific shapes of the entities present in the
dataset.

Relying on the heuristic presented in Section 5.2, we applied Kahn’s algorithm [38] to apply a topo-
logical sort and we get the following order:

above → below → to the left of → to the right of → is disk → is square → is ellipse (22)

is disk

is square

e

is ellipse

e

e

e

e

e

to the left of

to the right of

e e

above

below

e e

Figure 9: Graph representing the logical links between the relations in the vocabulary. There are three
subgraphs with only one type of edge: e, which represents R1 ⇒ R2.

6.1.4 Results

In this experiment, we evaluated the accuracy of the classifier using a 10-fold stratified cross validation
strategy. Stratification enables to ensure that classes are uniformly distributed among all folds.
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Figure 10: Plot displaying the performance of the model with respect to the value of the minimum
support. We reach an accuracy of 100% between 0.5 and 0.65. The red dashed line represents the
average number of relations in rules before they were pruned from relations common to other classes.
The red plain line is its counterpart for rules that were pruned from these common relations.

Since the spatial arrangements of entities are similar for all classes and mainly differs from each other
in the way they are rotated, we decided to set the minimum support at the same value for each class.

The results we got are displayed in Figure 10. For the sake of explaining the behaviour of the model,
we studied the influence of the value of the minimum support over the whole range [0; 1]. We manage to
reach an accuracy of 100% when the minimum support ranges from 0.5 to 0.65. This corresponds to the
range of values where rules that were pruned from relations common to other classes reach a maximum
length of 6. This observation seems logical: pruned rules contain relations that are class-specific, so
longer pruned rules should have a better discriminative power.

We verify that the length of unpruned rules increases when the minimum support decreases. However,
pruned rules do not follow the same trend. When the value of the minimum support is too low, many
relations are considered frequent and thus rules from all classes share many common relations. Therefore,
the pruning remove most of these relations, which are not relevant. That is actually a case of overfitting,
since too many irrelevant relations are learnt.

On the other hand, when the value of the minimum support is too high, only few frequent relations
are extracted. The risk is that those relations are common to all classes and thus cannot be used for
classification. This is a case of underfitting. When all the relations in a rule are shared by some rules
from other classes, the pruning turns this rule into an empty rule. This is why, in Figure 10, the average
length of pruned rules is equal to 0 when the minimum support is set to 1.

Figure 11 and Figure 17, Figure 18 and Figure 19 in A show an example of explained classification for
class 1, 2, 3 and 4 respectively. We can see that the most obvious relations are used for explaining the
output. Moreover, one can notice in the example of Figure 11 that the relations object B is below object
A and object A is above object B express the same situation. That seems obvious that if one of these two
relations is used, the other one will be too. However, that may not always be the case due to the way
these relations are computed. Indeed, when we apply a fuzzy dilation, the result depends on the shape
of the reference object. So two reciprocal relations may not have the same evaluation. That is why there
are slight differences that can affect the relations involved in the antecedent of the rule.

Our first heuristic, which consists in discarding infrequent relations to evaluate online, enabled us to
avoid computing about 28% of the evaluations. For one given class, there are 44 instances. 33 relations
are evaluated on each instance. That makes a total of 1452 relations to evaluate and our heuristic prevents
403 of them for classes 1 and 2, 401 for class 3 and 404 for class 4. In particular, it prevents useless
computation of a few fuzzy landscapes, such as above square in class 1.
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C

A

B

This instance belongs to class 1 with a very high confidence because:

• object C is disk,
• object A is square,
• object B is ellipse,
• object A is above object C,
• object A is to the left of object B,

• object C is below object A,
• object C is to the left of object B,
• object B is to the right of object C,
• object B is to the right of object A.

Figure 11: Example of explanation for an instance from class 1.

However, our second heuristic, which consists in using the logical links between relations, is not suited
for this experiment. Indeed, there are no relations depending on others nor symmetrical ones. In the
graph displayed in Figure 9, we represented the implications between a few relations. As we explained
in Section 5.2, implications are useful when a relation is fully satisfied or not at all. Here, there are only
implications that requires relations to be fully satisfied. Overall, only one relation has been evaluated to
1: this is the relation object C below object A in Figure 19. This enabled us to deduce that the relation
object C above object A was equal to 0 before assessing it.

6.2 Image Annotation on a Medical Dataset

6.2.1 Dataset

The original dataset we use here is called Anatomy3 and was presented in [37]. It is composed of 391 CT
and MRI images:

• CT images:

– unenhanced CT scans of the whole body (CTwb);

– enhanced CT scans of the whole trunk (CTce);

• MRI images:

– unenhanced MRI scans of the whole body (MRIwb);

– enhanced MRI scans of the abdomen (MRIce).

Figure 12 displays one example for each category of scan. Those are all 3D images that are actually the
superposition of 2D slices. As we work on 2D images, we consider only slices in the following.

20 different organs are segmented among these images. Segmentation files are provided as binary
images for each organ. Thus, the entities we deal with in this experiment are not fuzzy.

From these images, we created our own dataset for the purpose of this experiment. Since most
images from the original dataset contain few segmented organs, we selected the instances containing the
9 following organs: the liver, the spleen, the urinary bladder, the left and right kidneys, the left and right
lungs and the left and right psoas major muscles. That makes 35 images and 315 segments. These nine
organs are represented in Figure 13. The goal will be to label them in each instance. This new dataset
is small, which enables to assess how our model can perform by learning from few examples.
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(a) CTwb (b) CTce (c) MRIwb (d) MRIce

Figure 12: Examples of the four types of scans in the dataset [37].

Left lung

Spleen

Left kidney

Left psoas
major muscle

Bladder

Right lung

Liver

Right kidney

Right psoas
major muscle

Figure 13: In this experiment, we consider the 9 colored organs in this figure.

6.2.2 Vocabulary of Relations

In this example, we used 9 relations. Four of them are the same directional relations [9] as we used in
the previous experiment: to the left of, above, to the right of and below.

Four other relations are also directional. They express the same directions (left, right, above, below)
but their fuzzy landscapes cover a smaller area of the image to express the following relations: completely
to the left of, completely to the right of, completely above and completely below. They can be obtained by
tweaking the structuring element in the definition of the relation [9]. Thus, these relations are less often
satisfied and enable to express more accurate situations.

The last relation is the symmetry measure that is presented in [76]. The goal of this operator is
to assess if two organs are symmetrical. It should be relevant since our dataset contains three pairs of
organs: lungs, kidneys and psoas major muscles. This operator is applied on an image that includes only
the two organs of interest for the relation to evaluate.

We have 9 fuzzy dyadic relations and each instance contains 9 entities. Applied on all entities,
that makes 648 relations to assess per instance. These relations and how they are logically linked are
represented in Figure 14. For our second heuristic, that leads to the following order of evaluation:

symmetrical to → above → completely above → below → completely below →
to the left of → to the right of → completely to the left of → completely to the right of

(23)

6.2.3 Definition of the Fuzzy Constraint Satisfaction Problem

Since this is an annotation problem, our approach consists in solving a FCSP to annotate the organs.
The set of variables and the set of domains of this FCSP are:

V = {vliver, vspleen, vbladder, vr psoas, vl psoas, vr lung, vl lung, vr kidney, vl kidney} (24)

D = {Dliver, Dspleen, Dbladder, Dr psoas, Dl psoas, Dr lung, Dl lung, Dr kidney, Dl kidney} (25)
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Figure 14: Graph representing the logical links between the relations handled by the model in this
experiment.

where Di is the set of all the possible values of vi. The flexible constraints are generated from the frequent
subsets of relations class by class as explained in Section 4. As a result, we get a set of constraints C.
Furthermore, since every organ is unique, there cannot be identical labels in this problem. That means
C has to be extended with constraints representing that two variables cannot be the same, which is the
AllDifferent constraint:

∀(vi, vj) ∈ V 2 such that vi ̸= vj , ci,j, ̸= = (vi, vj ,R ̸=) (26)

where the constraint ci,j, ̸= represents the relation R̸= between two variables vi and vj . R̸=(a, b) is a crisp
relation that equals 0 if a = b and 1 otherwise.

The FCSP is thus defined automatically. Then, for a given example, it can be solved as described
in Section 3.3 using the FAC-3 algorithm, for filtering inconsistent domain values, and the backtracking
algorithm, for exploring the possible solutions. At the end, the entities of interest have been labeled and
an explanation can be produced based on the constraints that were derived from the descriptors. This
explanation takes the form of a sentence in natural language so that the system achieves causability,
which is essential in the medical domain [34].

6.2.4 Results

The model we build with our approach relies on the frequent subsets of relations that are extracted.
There are as many hyperparameters as labels and they correspond to the thresholds used for assessing
the frequency of a subset of relations. Model selection is necessary to get optimized thresholds. However,
we have a small dataset so performing hyperparameter tuning by splitting the dataset into a training set,
a validation set and a test set is not convenient. In order to get a better performance estimation and
an efficient tuning of hyperparameters, we resorted to nested cross-validation [13]: (1) an outer cross-
validation is performed in which we get a training set and a test set for each iteration (this corresponds
to a regular cross-validation), (2) an inner cross-validation is performed on the training set of the outer
cross-validation to get an inner training set and a validation set for tuning hyperparameters. This enables
to get an unbiased tuning of hyperparameters while also having the advantages of cross-validation.

In the inner cross-validation, hyperparameter tuning is performed using bayesian optimization over
20 iterations with a Gaussian process prior. The acquisition function is the expected improvement.

We first decided to perform a 5-fold cross-validation (it corresponds to the outer cross-validation in
the description above). That means we have at each iteration a training set of 28 images while the test set
is composed of 7 instances. The inner cross-validation, performed on the 28 examples in the training set,
contains 3 folds. In this configuration, we reached 100% of accuracy. That means that, given accurate
segments of the entities to label, our model performs well on this dataset.

One example of explained annotations is displayed in Figure 15. The length of the explanation directly
depends on the number of constraints in which the organs were involved. Thus, all organs were involved
in at least 4 constraints, except the bladder. Only one constraint involving this organ was learnt, which
may not be ideal for generating a convincing explanation. We also notice that several reciprocal relations
are present in explanations. This was expected based on our observations from the previous experiment
(cf. Section 6.1.4). However, we get situations where two different direction accuracies are used: for
example, in the explanation of entity 3 (the spleen) in Figure 15, we have:
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Entity 1 is annotated as the left lung with a high confidence because:

• it is completely to the left of entity 2 (annotated as
the right lung by the model),

• entity 2 (right lung) is completely to its right,
• it is above entity 3 (spleen),

• entity 3 (spleen) is completely below it,
• it is above entity 7 (left psoas),
• entity 7 (left psoas) is completely below it,
• entity 5 (left kidney) is completely below it.

Entity 2 is annotated as the right lung with a very high confidence because:

• it is completely to the right of entity 1 (left lung),
• entity 1 (left lung) is completely to its left,
• entity 3 (spleen) is to its left,
• entity 4 (liver) is below it,

• it is above entity 8 (right psoas),
• entity 8 (right psoas) is completely below it,
• entity 6 (right kidney) is completely below it,
• entity 9 (bladder) is below it.

Entity 3 is annotated as the spleen with an average confidence because:

• it is completely to the left of entity 4 (liver),
• entity 4 (liver) is completely to its right,
• it is completely below entity 1 (left lung),
• entity 1 (left lung) is above it,

• it is to the left of entity 6 (right kidney),
• entity 6 (right kidney) is to its right,
• entity 5 (left kidney) is below it,
• entity 7 (left psoas) is below it.

Entity 4 is annotated as the liver with a very high confidence because:

• it is below entity 2 (right lung),
• it is completely to the right of entity 3 (spleen),
• entity 3 (spleen) is completely to its left,

• entity 8 (right psoas) is below it,
• entity 6 (right lung) is completely below it.

Entity 5 is annotated as the left kidney with a high confidence because:

• it is below entity 3 (spleen),
• it is to the left of entity 6 (right kidney),

• it is completely below entity 1 (left lung),
• it is above entity 7 (left psoas.

Entity 6 is annotated as the right kidney with a high confidence because:

• it is completely below entity 4 (liver),
• it is to the right of entity 7 (left psoas),
• it is completely below entity 2 (right lung),
• it is to the right of entity 7 (spleen),

• entity 7 (spleen) is to the left of it,
• entity 5 (left kidney) is to the left of it,
• entity 8 (right psoas) is below it.

Entity 7 is annotated as the left psoas major muscle with an average confidence because:

• it is is completely to the left of entity 8 (right psoas),
• entity 8 (right psoas) is completely to its right,
• it is completely below entity 1 (left lung),
• entity 1 (left lung) is above it,

• it is below entity 3 (spleen),
• entity 6 (right kidney) is to its right,
• entity 5 (left kidney) is above it.

Entity 8 is annotated as the right psoas major muscle with a high confidence because:

• it is completely to the right of entity 7 (left psoas),
• entity 7 (left psoas) is completely to its right,
• it is completely below entity 2 (right lung),

• entity 2 (right lung) is above it,
• it is below entity 6 (right kidney),
• it is below entity 4 (liver).

Entity 9 is annotated as the bladder with a very high confidence because:

• it is below entity 2 (right lung).

Figure 15: Example of explained annotations.
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Organ Minimum support
Average number

of constraints
Average confidence

per annotation

Liver 0.99 5 0.99
Spleen 0.77 8.2 0.71
Bladder 0.96 1 0.97
Right lung 0.99 8 0.91
Left lung 0.99 7 0.89
Right kidney 0.99 7 0.88
Left kidney 0.99 4.2 0.88
Right psoas major muscle 0.91 6 0.86
Left psoas major muscle 0.85 6.8 0.70

Table 4: Table representing several results for each class of organ when performing a nested cross-
validation with 5 folds in the outer loop. First, the minimum support associated to the learning of
the frequent subsets of relations is given for each class. In the second column, the average number of
constraints that we get for each class of organ at the end of the learning is displayed. Finally, we show
the average confidence that we got for each annotation during the testing (accuracy of 100%).

• it is completely below entity 1 (left lung),

• entity 1 (left lung) is above it.

One may expect to get both completely below and completely above or both below and above in the
explanation. This is due to the fact that, because of the shapes and sizes of the reference organs, the
fuzzy landscape corresponding to completely below the left lung covers a bigger area of the image than
the fuzzy landscape corresponding to completely above the spleen.

The constraints associated to the FCSP that enabled to annotate this instance are given in B.
The average values for the minimum supports associated to each organ are displayed in Table 4. We

can notice that several organs have a minimum support of 0.99, which means that several relations are
almost always fully satisfied. This happens because these organs satisfy very well the directional relations
in the vocabulary. For example, the relation left lung to the left of right lung is equal to 1 in every instance
of the dataset. Thus, for such organs, even a high minimum support enables to extract relations that are
relevant to the problem under study.

Table 4 also displays the average number of constraints per organ over all the folds of the cross-
validation. In particular, we notice that the spleen is the organ that is represented in the greater number
of constraints. Even though each organ satisfies relations in a different way, this observation is consistent
with the fact that the spleen has the lowest minimum support by a large margin. However, we can also
notice that the right lung is involved on average in 8 constraints although its minimum support is equal to
0.99. This happens because it fully satisfies a few relations in every instance of the dataset, as described
in the previous paragraph. Besides, there is always only one constraint involving the bladder, which is
translated in the explanation of entity 9 in Figure 15. While we looked for the hyperparameters that
enable to get the highest annotation performance, this may not always be compatible with the objective
of explainability. This is one instance of the kind of tradeoff we encounter between performance and
explainability.

The last column in Table 4 presents the average values of the confidences associated to the annotations
of each organ. We notice that the two lowest average confidences correspond to the two classes of organ
that have the lowest minimum supports. This is logical since the minimum support is one of the two
factor in the computation of the confidence. All the organs that have a high minimum support and, on
average, several constraints get a high confidence, which confirms the relevance of the constraints that
were extracted during the learning phase. However, the case of the bladder is again interesting. It gets a
high confidence although it is linked to only one constraint that may not seem relevant to a human (cf.
Figure 15). We discuss this in further detail in Section 6.2.5.

We also investigated the number of training examples needed for our model to perform well. Using the
nested cross-validation, we can evaluate the performance of the model for a number of training examples
ranging from 17 to 34. Then, doing a reverse cross-validation (the training set and the test set are
inverted), we can assess the performance of the model for a number of training examples ranging from
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1 to 17. In that situation, instances are part of the test set in several iterations, but we ensure that the
model has learnt from all the possible combinations of instances.

From 7 to 34 training examples, the model reaches an accuracy of 100%. Then, we get 99.6% for 5
training examples, and 99% with 3 and 2 training examples. These results show that the model can learn
valuable information from a small dataset. In this experiment, the whole dataset does not contain any
outlier (like a missing organ for example) so it is suited to learning from few data.

Before training, 21420 relations are evaluated over the whole dataset. We evaluated our first heuristic
on these evaluations. Overall, this strategy enabled to prevent 32% of all the evaluations. We are
especially interested in preventing expensive computations, which, given our vocabulary of relations, are:

• Fuzzy directional landscapes since they rely on the computation of a fuzzy dilation [66]. Since the
evaluation of a relation is not expensive once the corresponding fuzzy landscape has been generated,
we would like to avoid computing fuzzy landscapes if possible. For example, the fuzzy landscape
corresponding to to the right of the liver is not generated if all the relations e to the right of the
liver (e being any entity different from the liver) have been previously filtered by the heuristic. This
is a strong constraint but in practice it is often satisfied when an entity is close to an edge of the
image. For instance, if an entity e is always in the top left corner of the images, it is likely that the
fuzzy landscapes to the left of e or above e will be dismissed at one point.

• Symmetries are also expensive since they rely on several operations that are compute-intensive [76].

Applying this heuristic, we managed to save 484 computations of the symmetry relation out of 1260 over
the whole dataset (for a total of 2520 computations before taking into account the commutativity of this
relation). For fuzzy landscapes, 220 computations were prevented out of 2520 over the whole dataset.
Approximately 38% of the symmetries were prevented while about 9% of the fuzzy landscapes were.
Preventing more symmetries than fuzzy landscapes is consistent with the fact that fuzzy landscapes are
avoided if several relations are dismissed (against only one for the symmetry).

For the second heuristic, there are two different cases. First, the symmetry relation is commutative.
That means that half of the evaluations of this relation can be saved. As mentioned in the previous
paragraph, there were originally 2520 symmetries to evaluate and this number is thus reduced to 1260.
For directional relations, the order presented in Equation (23) is followed to make the most of the logical
links between these relations. It is important to note that once a relation is discarded with the first
heuristic, we do not count it as a saved computation here. The results are presented in Table 5. This
strategy enables to avoid computing the evaluation of 1636 relations, which represents 7.6% of the total
number of evaluations. In particular, we notice that the logical link

ne−−−−−→ is more efficient than
e−−−−→

on this dataset. This is due to the fact that there are more relations whose evaluation is equal to 0 than
relations which are evaluated to 1: indeed, 3.8% of the evaluations are equal to 1 whereas about 50%
of them are equal to 0. This high proportion of null evaluations also explains the efficiency of the first
heuristic.

Overall, combining both heuristics, we manage to avoid computing about 40% of the total number
of evaluations (8596 out of 21420 evaluations). In particular, it enables to avoid computing expensive
relations like the symmetry or morphological directional relations. Coupled with the work presented in

Logical link
Number of

prevented evaluations
Proportion among

all evaluations

above
ne−−−−−→ completely above 367 1.7%

above
e−−−−→ below 14 0.065%

below
ne−−−−−→ completely below 376 1.8%

to the left of
ne−−−−−→ completely to the left of 381 1.8%

to the left of
e−−−−→ to the right of 113 0.53%

to the right of
ne−−−−−→ completely to the right of 385 1.8%

Total 1636 7.6%

Table 5: Table presenting the number of prevented evaluations using our second heuristic. Following the
order of relations that we got, the results for each logical link are shown. Overall, this strategy enables
to prevent 1636 evaluations, which represents 7.6% of the total number of evaluations.
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[66], it has led to a significant improvement in the execution time of the evaluation step. However, we
notice that the first heuristic, which aims at pruning infrequent relations online, is more efficient by a
large margin.

6.2.5 Evaluation of Explanations

To evaluate explanations, we decided to perform a human-grounded evaluation [18] that relies on the
method proposed by Baaj and Poli [5]. It consists in assessing a set of assertions that evaluate the
language used in the explanations, the content and the form of the explanations, and how helpful to
humans they are.

In this experiment, we asked 26 people, including one medical doctor, to answer the following asser-
tions:

1. Explanations are simple and easy to read,

2. Explanations are convincing,

3. Data and explanations are sufficient to trust the system,

4. Explanations indirectly express the way the system reasons,

5. The length of the explanations is adequate,

6. It is difficult to read explanations until the end,

7. Explanations seem consistent,

8. Explanations are true.

Participants were asked to assess these assertions using the following Likert scale [49]: strongly disagree,
disagree, undecided, agree, strongly agree. Participants also had the possibility to insert any comment
for each assertion evaluation.

The results we got are displayed in Figure 16. Regarding the form of the explanations, 88% of
the participants think that explanations are simple and easy to read. However, about 30% of them
believe that it is difficult to read explanations until the end and 15% are undecided. That suggests that
explanations may be too long, which is supported by the assessment of the length of the explanations.
Indeed, half of the participants are not convinced by the length of the explanations. Thus, this is an area
of improvement. In our approach, a higher minimum support should lead to shorter explanations but it
also has a direct impact on the performance of the model. There is no clear way to favour one criterion
over another.

Besides, several participants highlighted the redundancy in the explanations as a reason why they
are difficult to read until the end. Although it is not the goal of this work, using synonyms or different
sentence structures to break the monotony of the explanations could help.

Most participants think that the explanations are convincing (69%), are true (65%), seem consistent
(96%), render the reasoning of the system (81%) and enables to trust it (62%). Those are all good points
since a few of the goals of explainable approaches are to increase trust in AIs and to make their reasoning
more transparent.

However, while 96% of the participants think that the explanations seem consistent, fewer of them
(although still a majority) find them convincing (69%) and trustworthy (62%). That means that con-
sistency is not enough to ensure that people will trust the model. For example, it was pointed out that
the explanation for the annotation of the bladder is consistent but is not convincing. In particular, the
doctor that answered the survey said that explanations should favour local relations. This is not the case
in the explanation of the annotation of the bladder since it relies on a relation between the bladder and
the right lung. This may be a limit of our assumption that relevance is equivalent to frequency. It also
means that our vocabulary lacks the relevant local relations that could explain this annotation better.

Furthermore, a few participants were confused because the order in which the entities were annotated
is unknown, which harms the trustworthiness of the model. While the trace of the resolution of the FCSP
could be made clear, we are not sure it would increase the trust in the system, especially for people who
do not have any knowledge about CSPs.

Overall, this survey shows that most participants are convinced by the explanations and they under-
stand the logic of the model. It also enabled to highlight the areas of improvement, such as the length of
the explanations, their redundancy and the use of non-local relations.
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• Explanations are simple and easy to
read:

• Explanations are convincing:

• Data and explanations are sufficient to
trust the system:

• Explanations indirectly express the
way the system reasons:

• The length of the explanations is ade-
quate:

• It is difficult to read explanations until
the end:

• Explanations seem consistent: • Explanations are true:

Figure 16: Answers to the eight assertions.
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7 Conclusion

In this paper, we first introduced a fully explainable approach for performing image classification or
annotation in the context of high-stake applications. It relies on learning the most relevant relations in a
training set to build fuzzy rules or constraints. Since the reasoning is transparent and the relations are all
associated to a linguistic variable, an explanation in natural language can be generated for each decision
provided by the model. As evaluating all relations is too expensive, we proposed two heuristics that take
advantage of the characteristics of the relations and of the learning algorithm to prevent unnecessary
computations. Our experiments show that, given a segmentation of the input, the model our approach
builds is able to successfully perform classification or annotation and to generate consistent and convincing
explanations.

As future work, we aim at enriching our model with rules that can express disjunctions, negation or
existence to deal with a wider range of situations. Also, when we extract the most frequent subsets of
relations, we would like to insert a criteria that enables to specify the intended length of explanations.
Finally, we think our approach is generic and can be extended to other kinds of inputs, such as time
series.
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A Toy Dataset: Additional Results

B

A

C

This instance belongs to class 2 with a high confidence because:

• object B is disk,

• object C is square,

• object A is ellipse,

• object C is to the left of object B,

• object C is below object A,

• object B is to the right of object C,

• object B is below object A,

• object A is above object C,

• object A is to above object B.

Figure 17: Example of explanation for an instance from class 2. This is one of the borderline example
we generated.

A

B
C

This instance belongs to class 3 with a very high confidence because:

• object A is disk,

• object C is square,

• object B is ellipse,

• object C is below object A,

• object C is to the right of object B,

• object A is above object C,

• object A is to the right of object B,

• object B is to the left of object A,

• object B is to the left of object C.

Figure 18: Example of explanation for an instance from class 3.
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A

B

C

This instance belongs to class 4 with an average confidence because:

• object A is disk,

• object B is square,

• object C is ellipse,

• object B is to the right of object A,

• object B is above object C,

• object A is to the left of object B,

• object A is above object C,

• object C is below object A,

• object C is to below object B.

Figure 19: Example of explanation for an instance from class 4. This is one of the borderline example
we generated.
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B Medical Dataset: Additional Results

In this section, we specify the constraints that enabled to generate the explanations in Figure 15 on
page 26.

C = {(xl lung, xr lung,Rcompletely to the left of),

(xl kidney, xspleen,Rbelow),

(xr psoas, xr kidney,Rbelow),

(xl kidney, xr kidney,Rto the left of),

(xl kidney, xl lung,Rcompletely below),

(xr kidney, xr lung,Rcompletely below),

(xl lung, xl psoas,Rabove),

(xspleen, xr lung,Rto the left of),

(xliver, xspleen,Rcompletely to the right of),

(xl psoas, xr psoas,Rcompletely to the left of),

(xl lung, xspleen,Rabove),

, (xr kidney, xspleen,Rto the right of),

(xr psoas, xr lung,Rcompletely below),

(xspleen, xr kidney,Rto the left of),

(xspleen, xl lung,Rcompletely below),

(xr lung, xl lung,Rcompletely to the right of),

(xr kidney, xliver,Rcompletely below),

(xr lung, xr psoas,Rabove),

(xl psoas, xl lung,Rcompletely below),

(xr psoas, xliver,Rbelow),

(xbladder, xr lung,Rbelow),

(xliver, xr lung,Rbelow),

(xr psoas, xl psoas,Rcompletely to the right of),

(xr kidney, xl psoas,Rto the right of),

(xspleen, xliver,Rcompletely to the left of),

(xl psoas, xspleen,Rbelow),

(xl kidney, xl psoas,Rabove)}
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