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I introduction

The possible reintrusion of crystal-rich magma reservoirs with crystal-poor magmas (e.g. [START_REF] Caricchi | Frequency and magnitude of volcanic eruptions controlled by magma injection and buoyancy[END_REF][START_REF] Annen | Construction and evolution of igneous bodies: Towards an integrated perspective of crustal magmatism[END_REF][START_REF] Wiebe | Mafic replenishments into floored silicic magma chambers[END_REF][START_REF] Carrara | The architecture of intrusions in magmatic mush[END_REF], the crystal content of eruptive products (e.g. [START_REF] Pallister | Magma mixing at Mount Pinatubo: petrographic and chemical evidence from the 1991 deposits. Fire and mud: eruptions and lahars of Mount Pinatubo[END_REF][START_REF] Eichelberger | Eruption of andesite triggered by dyke injection: contrasting cases at Karymsky Volcano, Kamchatka and Mt Katmai, Alaska[END_REF][START_REF] Takahashi | Formation of a compositionally reverse zoned magma chamber: Petrology of the ad 1640 and 1694 eruptions of Hokkaido-Komagatake volcano, Japan[END_REF], and the occurrence of mechanisms leading to the extraction of melt or exsolved volatiles from crystal-rich reservoirs (e.g. [START_REF] Bachmann | On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes[END_REF][START_REF] Huber | Thermo-mechanical reactivation of locked crystal mushes: Melting-induced internal fracturing and assimilation processes in magmas[END_REF][START_REF] Parmigiani | Bubble accumulation and its role in the evolution of magma reservoirs in the upper crust[END_REF][START_REF] Holness | Melt segregation from silicic crystal mushes: a critical appraisal of possible mechanisms and their microstructural record[END_REF], Bachmann & Huber 2019[START_REF] Degruyter | How do volatiles escape their shallow magmatic hearth[END_REF]) are evidences of the episodic existence in upper crustal magma reservoirs of volumes dominated by the presence of fluids. The crystals and exsolved volatiles of a magma affect its rheology (e.g. [START_REF] Caricchi | Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics[END_REF][START_REF] Petford | Which effective viscosity?[END_REF][START_REF] Mader | The rheology of two-phase magmas: A review and analysis[END_REF]) and can dramatically change eruptive styles (e.g. [START_REF] Karlstrom | Caldera size modulated by the yield stress within a crystal-rich magma reservoir[END_REF][START_REF] Cassidy | Controls on explosive-effusive volcanic eruption styles[END_REF]. When the solid volume fraction reaches a threshold, crystals start to touch each other, forming a semi-rigid skeleton inhibiting magma flow [START_REF] Bergantz | On the kinematics and dynamics of crystalrich systems[END_REF]. As a result, the volumes dominated by the presence of fluids likely represent the eruptible portions of the reservoir. Therefore, the detection of such volumes and the estimation of the volume fraction of each phase and is of paramount importance to enhance our ability to predict the occurrence and style of eruptions and to best assess volcanic hazards.

Among geophysical methods, tomography of seismic wave velocities and attenuations has been widely employed to map magma reservoirs but has not clearly evidenced the presence of fluiddominated bodies [START_REF] Waite | VP Structure of Mount St. Helens, Washington, USA, imaged with local earthquake tomography[END_REF][START_REF] Paulatto | Magma chamber properties from integrated seismic tomography and thermal modeling at Montserrat[END_REF][START_REF] De Siena | Attenuation and scattering tomography of the deep plumbing system of Mount St. Helens[END_REF][START_REF] Huang | The Yellowstone magmatic system from the mantle plume to the upper crust[END_REF][START_REF] Delph | Imaging a magma plumbing system from MASH zone to magma reservoir[END_REF][START_REF] Kiser | Focusing of melt near the top of the Mount St. Helens (USA) magma reservoir and its relationship to major volcanic eruptions[END_REF][START_REF] Hooft | Seismic imaging of Santorini: Subsurface constraints on caldera collapse and present-day magma recharge[END_REF]. Tomography images are computed with the first wave arrival at the stations, which corresponds to the fastest travel from the source. The velocities of compressional waves (also called sound speed) are lower in fluid-rich magmas. As a result, the ray paths of the first arrivals may circumvent and undersample such volumes in the resulting images. The spatial averaging of the seismic properties resulting from tomography may also smooth the effects of the presence of small fluid bodies, which are then interpreted as partially molten rocks. Finally, seismic waves may be attenuated during their propagation across the magma reservoir. Hence, improving our knowledge of the acoustic properties of the materials constituting the magma reservoir can reduce the uncertainties in interpretation.

While models exist to compute the speed of sound and/or the associated attenuation coefficient in partially molten rocks (e.g. [START_REF] Mavko | Velocity and attenuation in partially molten rocks[END_REF][START_REF] Hammond | Upper mantle seismic wave attenuation: Effects of realistic partial melt distribution[END_REF][START_REF] Takei | Effect of pore geometry on VP/VS: From equilibrium geometry to crack[END_REF][START_REF] Hier-Majumder | Influence of contiguity on seismic velocities of partially molten aggregates[END_REF][START_REF] Carcione | Seismic attenuation in partially molten rocks[END_REF] or in bubbly melts (e.g. [START_REF] Chouet | New Methods and Future Trends in Seismological Volcano Monitoring[END_REF][START_REF] Kumagai | Acoustic properties of a crack containing magmatic or hydrothermal fluids[END_REF][START_REF] Morrissey | Trends in long-period seismicity related to magmatic fluid compositions[END_REF][START_REF] Neuberg | A model of the seismic wavefield in gas-charged magma: application to Soufrière Hills Volcano, Montserrat[END_REF][START_REF] Collier | Attenuation in gas-charged magma[END_REF][START_REF] Karlstrom | Excitation and resonance of acoustic-gravity waves in a column of stratified, bubbly magma[END_REF], no model addresses the acoustic properties of magmas composed of crystals and gas bubbles suspended in the melt. Here we aim at calculating the velocity of a compressional wave at the frequencies used in volcano seismology (~0.001-1000 Hz) in a three-phase suspension composed of solids and gas bubbles suspended in a viscous liquid. Previous models for the acoustic properties of a suspension employed methods based on the effective medium theory (e.g. [START_REF] Kuster | Velocity and attenuation of seismic waves in two-phase media: Part I. Theoretical formulations[END_REF][START_REF] Berryman | Long-wavelength propagation in composite elastic media I. Spherical inclusions[END_REF]) because they are applicable at any frequency, and account for the presence of an unlimited number of phases. However this approach neglects, the influence of the liquid phase viscosity, the relative motion (or relative velocity) between the constituents, the evolution of the temperature of the phases, and the interaction between neighboring solids grazing each other.

Alternatively, methods using the coupled phase theory (e.g. [START_REF] Harker | Velocity and attenuation of ultrasound in suspensions of particles in fluids[END_REF][START_REF] Atkinson | Acoustic wave speed and attenuation in suspensions[END_REF][START_REF] Margulies | A multiphase continuum theory for sound wave propagation through dilute suspensions of particles[END_REF][START_REF] Kytömaa | Theory of sound propagation in suspensions: a guide to particle size and concentration characterization[END_REF][START_REF] Evans | Coupled phase theory for sound propagation in emulsions[END_REF][START_REF] Valier-Brasier | Sound propagation in dilute suspensions of spheres: Analytical comparison between coupled phase model and multiple scattering theory[END_REF] can capture all these effects for bi-phasic suspensions (e.g. solids in a liquid or bubbles in a liquid) but are restricted to the long-wavelength approximation (wavelength of the perturbation much larger than the size of the discrete phases). The coupled phase theory is, therefore, suitable to compute the acoustic properties of magmas because the long-wavelength approximation is always valid at the frequencies used in geophysics. To be extended to a three-phase magma, the method requires modifications to account for both viscous and thermal effects and the joint presence of crystals and gas bubbles.

Here, we adapt the coupled phase theory to the computation of the velocity of compressional waves traveling in magmas where the crystals are not touching each other and where the melt is the carrier phase. We first introduce the conservation equations controlling the propagation of an acoustic perturbation in a suspension and present the calculation of the speed of sound using the coupled phase theory. The resulting model allows us to compute both the velocity and intrinsic attenuation coefficient of compressional waves. In this work, we focus on the speed of sound and we will address attenuation in a future communication. Results are first presented for a suspension representative of magmas to illustrate how its composition and the characteristics of the perturbation (frequency and propagation direction) affect the speed of sound. We then apply the model to magmas having different chemical compositions representative of arc magmatism to highlight the key features of the propagation of sound in magmas. Finally, we compare the results of our model with other relationships proposed or employed by authors to estimate the speed of sound in magmas.

II Method

To present the model, we first introduce the physical model and assumptions about the initial conditions (section II.1). Then, we introduce the conservation equations describing the dynamics of the phases (section II.2). These equations are similar to those reported in the literature (e.g. [START_REF] Harker | Velocity and attenuation of ultrasound in suspensions of particles in fluids[END_REF][START_REF] Atkinson | Acoustic wave speed and attenuation in suspensions[END_REF][START_REF] Evans | Coupled phase theory for sound propagation in emulsions[END_REF] and include a few modifications to account for the presence of three phases and the dynamic viscosity of the melt. The details of the derivation of these equations are presented in supplementary material 1 (online). In section II.3 we present the relationships controlling the transfer momentum between the phases and within the liquid and solid phases. Section II.4 details the relationship we used to account for the transfer of heat within the liquid phase and between the carrier and suspended phases. Section II.5 describes briefly the calculation of the speed of sound using the coupled phase theory. We employed the same method as presented and employed by several authors to calculate the velocity of a compressional wave from the(e.g. [START_REF] Harker | Velocity and attenuation of ultrasound in suspensions of particles in fluids[END_REF][START_REF] Atkinson | Acoustic wave speed and attenuation in suspensions[END_REF][START_REF] Evans | Coupled phase theory for sound propagation in emulsions[END_REF]. We detail the calculation of the speed of sound in supplementary information 2 (online). In section II.6, we derive the bounds of the speed of sound in magma using an alternative approach considering an isotropic compression of an isolated volume of magma. Finally, we present the initial composition of the magmas and how the evolution of their physical properties change as a function of temperature are computed (section II.7).

II.1 Physical model

We consider an elementary volume of a suspension composed of solid particles and gas bubbles in a viscous liquid (Fig. 1). Both discrete phases are represented with monodisperse spheres. For the initial conditions, we consider all the constituents of the suspension to be static and in thermodynamic equilibrium. The thermodynamic properties of each phase (e.g. bulk modulus or heat capacity) are considered uniform within the elementary volume and constant with pressure and temperatures. The presence of mass transfer or chemical reactions between the phases is neglected.

A plane and monochromatic compressional wave propagates in the direction x with an angle θ from the horizontal with respect to the gravitational acceleration (Fig. 1). The geometry of the acoustic perturbation allows us to express the conservation equations describing the dynamics of each phase in one dimension aligned with the propagation direction x (∂y = ∂z = 0). The wave has a small amplitude and a frequency in the range of the acoustic signals recorded in nature (0.001-1000 Hz) for which its wavelength is much larger than the diameters of the particles and bubbles. Therefore, the scattering of the acoustic wave resulting from resonance effects in the discrete solids and bubbles may be neglected [START_REF] Atkinson | Acoustic wave speed and attenuation in suspensions[END_REF].

II.2 Conservation equations

The propagation of an acoustic perturbation in the suspension is governed by the conservation equations of each phase. Neglecting the transfer of mass between the phases and chemical reactions, the conservation of mass of the liquid phase reads:

∂ t ( ϕ l ρ l )+ ∂ x ( ϕ l ρ l u )= 0 , (1) 
where ρ l is the density of the liquid phase, ϕ l is the volume fraction of liquid in the suspension, and u is the liquid velocity in the direction x (u=u x , the velocities in the other directions are null because we consider a plane wave and the suspension to be initially static). Similarly, for the solid and gas phases, mass conservations are:

∂ t ( ϕ s ρ s ) + ∂ x ( ϕ s ρ s v)= 0 , (2) ∂ t ( ϕ g ρ g )+ ∂ x (ϕ g ρ g w)= 0 , (3) 
where ρ s is the density of the solids, ϕ s is the volume fraction of solids, v is the velocity of the solids in the direction x, ρ g is the gas density, ϕ g is the volume fraction of gas, and w is the velocity of the gas bubbles.

The rate of change of momentum of the liquid equals the sum of the applied force and may be expressed as (see supplementary material 1, online):

ϕ l ρ l (∂ t (u) + u ∂ x (u)) + ϕ l ∂ x ( P)+ I ll + I ls + I lg + ϕ l ρ l g sin θ = 0 , ( 4 
)
where P is the pressure, I ll is the rate of momentum exchange among the liquid, I ls is the rate of momentum exchange between the liquid and solid phases, I lg is the rate of momentum exchange between the liquid and gas phases, and g is the gravitational acceleration. The exchange of momentum within the liquid, I ll , is equal to the divergence of the viscous stress tensor and indicates the rate at which the viscous stress propagates in the liquid. The two other terms, I ls and I lg , expresses the exchanges of momentum between the carrier and discrete phases through the drag forces when they experienced relative velocities. The conservation of momentum in the solid phases is:

ϕ s ρ s (∂ t ( v)+ v ∂ x ( v)) + ϕ s ∂ x ( P)+ I ss -I ls + ϕ s ρ s g sin θ = 0 , (5) 
where I ss represents the transfer of momentum between close solids. Here this term corresponds to the lubrication forces relating to the squeezing of the interstitial liquid located between two grazing particles (see next section for details about this term). The momentum conservation in the gas phase reads:

ϕ g ρ g (∂ t (w)+ w ∂ x ( w)) + ϕ g ∂ x (P) -I lg + ϕ g ρ g g sin θ = 0 . ( 6 
)
The conservation of energy in the carrier liquid expressed as a function of the temperature reads:

ϕ l ρ l C Pl (∂ t (T l )+ u ∂ x (T l )) -ϕ l T l α l (∂ t (P) + u ∂ x (P)) + 2 ϕ l ρ l g u sin θ -σxx ∂ x (u) + H ll + H ls + H lg = 0 (7)
where T l is the temperature of the liquid phase, C Pl is the specific heat capacity at a constant pressure of the liquid, α l is the coefficient of thermal expansion of the liquid, σ is the liquid viscous stress tensor, H ll is the rate of heat diffusion within the liquid phase by conduction, H ls is the rate of heat exchange between the carrier liquid and discrete solids, and H lg is the rate of heat exchange between the liquid and gas bubbles. The two terms H ls and H lg are the total heat flux over the interfaces between the carrier and discrete phases and depend on the temperature difference between constituents. Similarly, in the solid and gas phases, the conservation of energy is:

ϕ s ρ s C Ps (∂ t (T s )+ v ∂ x (T s )) -ϕ s T s α s (∂ t (P)+ v ∂ x (P)) + 2 ϕ s ρ s g v sin θ -H ls = 0 , (8) ϕ g ρ g C Pg ( ∂ t (T g ) + w ∂ x (T g )) -ϕ g T g α g (∂ t ( P)+ w ∂ x (P)) + 2 ϕ g ρ g g w sin θ -H lg = 0 ,(9)
where T s is the temperature of the solids, T g is the temperature of the gas, C Ps is the specific heat capacity at a constant pressure of the particles, C Pg is the specific heat capacity of the gas, α s is the coefficient of thermal expansion of the solid particles, and α g is the coefficient of thermal expansion of the gas.

The state equations link the variation of the density of the phases to the evolution of their temperatures and pressure:

d ρ l - ρ l K l dP + α l ρ l dT l = 0 , ( 10 
)
d ρ s - ρ s K s dP + α s ρ s dT s = 0 , ( 11 
)
d ρ g - ρ g K g dP + α g ρ g dT g = 0 , ( 12 
)
where K l is the bulk modulus of the liquid phase (inverse of the coefficient of isothermal compressibility), K s is the bulk modulus of the solids, and K g is the bulk modulus of the gas. The last conservation equation ensures that the sum of the volume fraction of all the phases is always equal to one. In differential form, it reads:

∂ t ( ϕ l )+ ∂ t (ϕ s ) + ∂ t (ϕ g )+ u ∂ x (ϕ l ) + v ∂ x ( ϕ s ) + w ∂ x (ϕ g ) = 0 . ( 13 
)

II.3 Interphase exchanges of momentum

The exchange of momentum within the liquid phase, I ll , is equal to the divergence of the viscous stress tensor, σ , which depends on the dynamic shear viscosity, η, and volume viscosity, λ, of the liquid ( I ll =ϕ∇⋅[ ηε+λtr (ε ) Ī ] , where ε is the strain rate tensor and Ī is the unit tensors). For a magmatic melt in relaxed conditions (low-frequency perturbations) [START_REF] Dingwell | Structural relaxation in silicate melts and non-Newtonian melt rheology in geologic processes[END_REF], showed that λ=η/3. Since the velocity of the liquid in the directions y and z are null, the rate of momentum exchange in the liquid can be calculated as:

I ll = 7 3 ϕ l η ∂ x 2 (u) . ( 14 
)
While contacts are neglected, crystals can exchange momentum through lubrication forces [START_REF] Marzougui | Microscopic origins of shear stress in dense fluidgrain mixtures[END_REF][START_REF] Bergantz | On the kinematics and dynamics of crystalrich systems[END_REF][START_REF] Carrara | Lubrication effects on magmatic mush dynamics[END_REF]. Lubrication refers to the hydrodynamic forces resulting from the resistance of the liquid located in the gap between two neighboring particles to their relative motions. These forces influence the duration of the initiation and closure of motion of the solid phase [START_REF] Carrara | Lubrication effects on magmatic mush dynamics[END_REF]. The propagation of a wave in a suspension can be viewed as a "transient steady-state" in which the relative motions between neighboring solids are repetitively initiated and dissipated. To derive an expression of the rate of momentum exchange between the solids, I ss , we consider a suspension where spherical particles are regularly organized forming a hexagonal close-packed lattice (Fig. 2). In this configuration, the distances between the particles are identical and minimized such that the influence of lubrication is maximized. The solid lattice is oriented along the direction of propagation of the wave (x) such that it can be represented as three layers of particles orthogonal to the direction x (Fig. 2). The total lubrication force between two neighboring particles (here labeled as i and k) including both normal and tangential components can be expressed as [START_REF] Marzougui | Microscopic origins of shear stress in dense fluidgrain mixtures[END_REF][START_REF] Carrara | Lubrication effects on magmatic mush dynamics[END_REF]:

F lub (k , i)= 3 η A ρ s d s 2 (v k -v i ) , ( 15 
)
where A is a geometrical parameter indicating the relative importance between normal and tangential lubrication forces that depends on the distance between the surface of the particles and on the grazing angle β [START_REF] Carrara | Lubrication effects on magmatic mush dynamics[END_REF]:

A = 3 cos β 2 j -ln ( j) sin β , ( 16 
)
where j is the ratio between the distance separating the surface of the neighboring particles and their radius. Both the incidence angle and distance between the surface of the particles can be deduced from geometrical arguments since the solid lattice is regular. For a compressional wave β=(2/3) 1/2 and j is related to the volume fraction of solids by [START_REF] Atkinson | Acoustic wave speed and attenuation in suspensions[END_REF]):

j = 1 -( ϕ s ϕ s max ) 1 3 , ( 17 
)
where ϕ s max is the maximum volume fraction at which the solids start to touch each other. For a hexagonal close-packed lattice, ϕ s max =0.64. Summing all the lubrication interaction experienced by the particle located on the second layer in Fig. 2 gives:

F lub tot (2)= 9 η A ρ s d s 2 ( v 1 + v 3 -2 v 2 ) , (18) 
where v 1 , v 2 , and v 3 are the velocity of the particles in the layer 1, 2, and 3 in Fig. 2, respectively. The sum of the solid velocities on the right-hand side of Eq. ( 18) may be approximated with the secondorder derivative in space of the solid velocity:

∂ 2 v x ∂ x 2 ≃ ( v 1 + v 3 -2 v 2 ) Δ x 2 , ( 19 
)
where Δ x is the distance in the direction x separating two successive layers of solids in Fig. 2, which can be calculated as:

Δ x = √ 2 3 d s ( j 2 + 1 ) . ( 20 
)
Inserting Eqs. (19-20) into Eq. ( 18) gives the following expression for the exchange of momentum between the solids:

I ss = F lub ≃ 6 η A ( j 2 + 1 ) 2 ρ s ∂ 2 v ∂ x 2 . ( 21 
)
The liquid exchanges momentum with the other phases (particles and bubbles) because of their relative motions. The transfers of momentum between the carrier and discrete phases include both steady (drag) and unsteady (added mass and Basset forces) contributions. Because of the viscosity of magmatic melts, the frequency range considered here is well below those at which unsteady forces become significant compared to the steady contribution [START_REF] Gumerov | Sound waves in monodisperse gas-particle or vapour-droplet mixtures[END_REF][START_REF] Atkinson | Acoustic wave speed and attenuation in suspensions[END_REF]. Therefore, the rate of momentum exchange between the liquid and solid phases can be reduced to the steady term [START_REF] Gidaspow | Multiphase flow and fluidization: continuum and kinetic theory descriptions[END_REF]:

I ls = β ls (u -v) , (22) 
and the rate of momentum exchange between liquid and bubbles is:

I lg = β lg ( u -w) , (23) 
where β ls is the coefficient of momentum exchange between the liquid and solids and β lg is the coefficient of momentum exchange between the liquid and gas phases. To compute these two coefficients, several empirical correlations exist in the literature (e.g. [START_REF] Ergun | Fluid flow through packed columns[END_REF][START_REF] Wen | A generalized method for predicting the minimum fluidization velocity[END_REF][START_REF] Syamlal | MFIX documentation theory guide[END_REF][START_REF] Gidaspow | Multiphase flow and fluidization: continuum and kinetic theory descriptions[END_REF][START_REF] Benyahia | Extension of Hill-Koch-Ladd drag correlation over all ranges of Reynolds number and solids volume fraction[END_REF]). Here, we combine a Stokes drag law for high porosity (high liquid volume fraction) and an Ergun relationship at lower liquid volume fraction.

Because of the high viscosity of the liquid phase, the Ergun drag law may be reduced to the Carman-Kozeny relationship because the inertial term becomes negligible:

β ls = { 18 η ϕ s d s 2 if ϕ l > 25 28 150 ϕ s 2 η ϕ l d s 2 if ϕ l ≤ 25 28 , ( 24 
)
β lg = { 18 η ϕ g d g 2 if ϕ l > 25 28 150 ϕ g 2 η ϕ l d g 2 if ϕ l ≤ 25 28 , ( 25 
)
where d s is the diameter of the solid particles and d g is the diameter of the gas bubbles. The drag laws we used here are similar to the one proposed by [START_REF] Gidaspow | Multiphase flow and fluidization: continuum and kinetic theory descriptions[END_REF], but uses the Stokes drag instead of the Wen-Yu drag correlation at high porosity such that the drag forces are linearly dependent on the relative velocities between the phases, which is suitable for the coupled phase theory.

II.4 Interphase exchanges of heat

The amount of heat transferred within the carrier liquid by conduction is calculated using Fourier's law:

H ll = ϕ l k l ∂ x 2 (T l ) , ( 26 
)
where k l is the heat conductivity of the liquid.

The rate of heat exchange between the carrier and discrete phases are expressed by:

H ls = γ ls ( T l -T s ) , (27) 
and,

H lg = γ lg ( T l -T g ) , (28) 
where γ ls is the coefficient of heat transfer between the fluid and solids, and γ lg is the coefficient of heat exchange between the fluid and gas. In the absence of mass transfer between the phases, the coefficients of heat transfer can be estimated as [START_REF] Syamlal | MFIX documentation theory guide[END_REF]:

γ ls = 6 k l ϕ s Nu d s 2 , ( 29 
)
and,

γ lg = 6 k l ϕ g Nu d g 2 , ( 30 
)
where Nu is the Nusselt number. To estimate Nu, we used the empirical correlation proposed by Gunn (1978), which depends on both the porosity and relative velocity between the phases. Since in our case the relative velocities are very small because of the small amplitude of the perturbation and the viscosity of the liquid, Nu may be expressed as a function of ϕ l only:

Nu = (7 -10 ϕ l + 5 ϕ l 2 ) . ( 31 
)

II.5 Coupled phase model

To compute the speed of sound from Eqs. (1-13), we employed the coupled phase theory (e.g. [START_REF] Harker | Velocity and attenuation of ultrasound in suspensions of particles in fluids[END_REF][START_REF] Atkinson | Acoustic wave speed and attenuation in suspensions[END_REF][START_REF] Evans | Coupled phase theory for sound propagation in emulsions[END_REF][START_REF] Valier-Brasier | Sound propagation in dilute suspensions of spheres: Analytical comparison between coupled phase model and multiple scattering theory[END_REF]; see supplementary material 2, online, for details about the method and equations), which consists in imposing a small and monochromatic perturbation to all the variables that oscillate during the propagation of the acoustic perturbation (ρ l , ρ s , ρ g , u, v, w, T l , T s , T g , ϕ l , ϕ s , ϕ g , P) by using wave-like solutions (here for the density of the liquid phase):

ρ l = ρ l 0 + ρl e i (kx -ω t) , (32) 
where ρ l 0 is the static fluid density, ρl is the amplitude of the perturbation of the fluid density at the source, and i 2 =-1. Note that since all the phases are static and in thermal equilibrium before the perturbation, u 0 =v 0 =w 0 =0 and T l 0 =T s 0 =T g 0 =T 0 . The exponential term in Eq. ( 32) expresses the spatial and temporal variations of the liquid density and depends on ω, the angular frequency (ω=2πf, f is the frequency of the perturbation), and k the complex wavenumber defined as:

k = ω c + i α , ( 33 
)
where c is the speed of sound and α is the associated intrinsic attenuation coefficient. After the introduction of the oscillating variables and linearization (the products of two small oscillations are neglected), the set of equations can be expressed as a matrix equation (see supplementary information 1 for details about the matrix equation):

M [ ρl , ρs , ρg , φl , φs , φg , Tl , Ts , Tg , ū , v , w , P] T = 0 ,

where M is a coefficients matrix containing k as unique unknown. To ensure the equality in Eq [START_REF] Carcione | Seismic attenuation in partially molten rocks[END_REF], the nontrivial solution (a perturbation exists) imposes that M can be inverted and thus:

det (M )= 0 . ( 35 
)
The speed of sound and associated attenuation coefficient at a given frequency can be found from the wavenumber, k, that is physically meaningful and that satisfies Eq (35).

II.6 Bounds of the sound speed in magmas

The speed of sound in a suspension depends on the variation of its density and volume during an adiabatic compression or dilatation [START_REF] Temkin | Sound propagation in dilute suspensions of rigid particles[END_REF]). Let's consider an elementary volume, V, containing a constant mass of solids and gas bubbles suspended in a viscous liquid. By neglecting the relative motions between the phases, the suspension can be approximated as a homogeneous material having a bulk density, ρ*, defined as [START_REF] Brennen | Fundamentals of Multiphase Flow[END_REF]:

ρ * = ϕ l ρ l + ϕ s ρ s + ϕ g ρ g . ( 36 
)
The total net change of the elementary volume, dV, can be written as the sum of the net changes of the volume of the three phases:

dV = dV l + dV s + dV g , ( 37 
)
where dV l is the net change of the volume of liquid, dV s is the net change of the volume of solid, and dV g is the net change of the volume of gas. Neglecting phase transformations, Eq. ( 37) may be expressed as:

d ρ * ρ * = ϕ l ρ l d ρ l + ϕ s ρ s d ρ s + ϕ g ρ g d ρ g , ( 38 
)
where dρ* is the net change in the bulk density of the suspension, dρ l is the net change of the liquid density, dρ s is the net change of the density of the solids, and dρ g is the net change of the density of the gas bubbles. The evolution of the density of each phase depends on the change in pressure (here we consider that the pressure is the same in all the phases) and in its temperature as (here for a phase i):

d ρ i = ( ∂ ρ i ∂ P ) T dP + ( ∂ ρ i ∂ T i ) P dT i , (39) 
where (∂ρ i /∂P) T is the variation of the density of a constituent with the pressure at a constant temperature, and (∂ρ i /∂T i ) P is the derivative of its density with respect to its temperature at a constant pressure. Introducing Eq. ( 39) into (38) yields: (40) where K* is the bulk modulus characterizing the suspension and defined as:

d ρ * ρ * = 1 K * dP+ ϕ l ρ l ( ∂ ρ l ∂ T l ) P dT l + ϕ s ρ s ( ∂ ρ s ∂ T s ) P dT s + ϕ g ρ g ( ∂ ρ g ∂ T g ) P dT g ,
1 K * = ϕ l K l + ϕ s K s + ϕ g K g , ( 41 
)
with K l /ρ l =(∂P/∂ρ l ) T , K s /ρ s =(∂P/∂ρ s ) T , and K g /ρ g =(∂P/∂ρ g ) T . When the net changes in temperature of the phases are neglected, the isothermal speed of sound is:

c -2 = d ρ * dP = ρ * K * . ( 42 
)
When considering temperature variations, the speed of sound depends on the evolution of the bulk density of the suspension with pressure at constant entropy [START_REF] Temkin | Attenuation and dispersion of sound in dilute suspensions of spherical particles[END_REF][START_REF] Rienstra | An introduction to acoustics[END_REF]. The net change of entropy, dS, in each phase may be expressed as a function of the net change in its temperature and pressure (here for a phase i):

T i dS i = ( ∂ S i ∂ T i ) P dT i + ( ∂ S i ∂ P ) T dP . ( 43 
)
Considering an isentropic transformation, Eq. ( 43) can be expressed as:

( ∂ T i ∂ P ) S =-( ∂ T i ∂ S i ) P ( ∂ S i ∂ P ) T . (44) 
Because the magma constituents have different thermodynamic properties, the net changes in temperature of the phases for the same net change in pressure are not equal. Two end-member scenarios may be considered as a function of the perturbation frequency and characteristic times for the phases to reach thermal equilibrium, τ. When f≫τ -1 , the heat exchanges between the phases may be neglected such that dT l ≠ dT s ≠ dT g . Inserting Eq. ( 44) into Eq. ( 40) and considering the relationships dTi=(∂T i /∂P) S dP, (∂T i /∂S i ) P = T i /C Pi , (∂S i /∂P) T = -α i /ρ i , and (∂ρ i /∂T) P = -α i ρ i , the speed of sound at thermal disequilibrium reads:

c -2 = d ρ * dP = ρ * ( 1 K * - ϕ l α l 2 T 0 C Pl ρ f - ϕ s α s 2 T 0 C Ps ρ s - ϕ g α g 2 T 0 C Pg ρ g ) . ( 45 
)
When f≪τ -1 , the rates of heat exchanges between the phases are efficient such that the phases may be considered in thermal equilibrium during the propagation of the perturbation. In adiabatic conditions, the total change of temperature in the suspension at equilibrium, dT*, may be calculated as:

dT * = ϕ l ρ l C Pl dT l + ϕ s ρ s C Ps dT s + ϕ g ρ g C Pg dT g ϕ l ρ l C Pl + ϕ s ρ s C Ps + ϕ g ρ g C Pg . ( 46 
)
Considering dT l = dT s = dT g = dT* into Eq. ( 40) and inserting Eqs. ( 44) and ( 46) gives the following relationship for the speed of sound at thermal equilibrium:

c -2 = d ρ * dP = ρ * K * - α * 2 T 0 C P * , ( 47 
)
where α* is the bulk coefficient of thermal expansion defined as:

α * = ϕ l α l + ϕ s α s + ϕ g α g , (48) 
and C P * is the specific bulk heat capacity at constant pressure calculated as the mass average (:

C P *= ϕ l ρ l C Pl + ϕ s ρ s C Ps + ϕ g ρ g C Pg ρ * . ( 49 
)
The characteristic time at which the transition between the two regimes occurs depends on the rate at which the heat is exchanged between the phases. Two characteristic times may be calculated since both the gas and solids are suspended in the liquid. To estimate these critical frequencies, we start by considering a static suspension of gas bubbles in a liquid. The evolution of the difference in temperature between the two phases resulting only from the heat exchanged between them may be approximated as:

∂ t (T l -T g )+ τ g -1 (T l -T g )= 0 . ( 50 
)
where τ g is the characteristic time to equilibrate the temperature of the liquid and the gas phases given by:

τ g -1 = γ lg ( 1 ϕ l ρ l C Pl + 1 ϕ g ρ g C Pg ) . (51) 
Similarly, the characteristic time to equilibrate the temperature of the phases in a suspension of solids in a liquid, τ s , is:

τ s -1 = γ ls ( 1 ϕ l ρ l C Pf + 1 ϕ s ρ s C Ps ) .
(52)

II.7 Magma under considerations

We considered three different magmas representative of compositions that may be encountered in arc magmatism (basalt, andesite, and dacite) and simulated their adiabatic cooling and crystallization using the software MELTS [START_REF] Ghiorso | An equation of state for silicate melts. I. Formulation of a general model[END_REF]) at a pressure of 150 MPa using the Ni-NiO oxygen buffer for the andesite and dacite, and the quartz-fayalite-magnetite buffer for the basalt. The initial compositions were taken from [START_REF] Dufek | Quantum magmatism: Magmatic compositional gaps generated by melt-crystal dynamics[END_REF] and [START_REF] Martel | Effects of f O2 and H2O on andesite phase relations between 2 and 4 kbar[END_REF] (see Table 1). We set the initial amounts of dissolved water in the magmas to ~3.5wt% to ensure that water vapor starts exsolving once the mass fraction in liquid is ~70 wt% [START_REF] Duan | A general model for predicting the solubility behavior of H2O-CO2 fluids in silicate melts over a wide range of pressure, temperature and compositions[END_REF]. We used the thermodynamic properties of each phase computed during the cooling simulations to estimate the speed of sound in the magmas as a function of their temperature. All the simulations were stopped when the crystallinity of the magmas reached the maximum packing fraction (ϕ l = 0.36).

III Results

III.1 The speed of sound in 3 phases suspensions

To illustrate how the material properties and characteristics of the perturbation affect the speed of sound in magmas, we define reference conditions relevant to magmas (Table 2) and vary selected parameters independently from each other. Figure 3A displays the evolution of the velocity of a compressional wave as a function of the volume fraction in liquid, solids, and gas bubbles when f=0.01

Hz. It shows that the speed of sound decreases rapidly once a small volume fraction of volatiles is exsolved. When ϕ g > 0.05, the solid volume fraction has a negligible influence on the compressional wave velocity compared to that in the presence of gas.

Figure 3B displays the speed of sound in the same suspension as in Fig. 3A when f=100 Hz.

Results show the same dependence of the wave velocity on ϕ g . The amplitude of the decrease of the speed of sound for the same volume fraction of gas is, however, slightly lower as illustrated by the shift of the position of the isocontour of c = 500 m s -1 . The frequency of the perturbation changes both the minimum (c ≈ 457 m s -1 when f = 0.01 Hz and c ≈ 482 m s -1 when f = 100 Hz) and maximum (c ≈ 3117 m s -1 when f = 0.01 Hz and c ≈ 3150 m s -1 when f = 100 Hz) velocities computed by the model. On the contrary, when ϕ l = 1 the speed of sound is the same at the two frequencies (2582 m s -1 ).

To further investigate the influence of the perturbation frequency on sound speed in a magma, we set the volume fractions of its constituents to ϕ l = 0.65, ϕ s = 0.3, and ϕ g = 0.05 and calculate the dispersion curve of the acoustic waves (Fig. 4). Results show that the speed of sound increases nonlinearly with the frequency and that three plateaux can be identified. The lowest plateau at c ≈ 1020 m s -1 occurs when f < 0.01 Hz. The second velocity plateau at c ≈ 1025 m s -1 occurs when 0.1 Hz < f < 1

Hz whereas the third and fastest one at c ≈ 1090 m s -1 is reached when f > 100 Hz. As illustrated in Fig. 4, the uppermost plateau occurs when f max( ≫ τ s -1 ,τ g -1 ) and corresponds to the thermal disequilibrium bound of the speed of sound predicted by Eq. ( 38). The lowest plateau is found when f min( ≫ τ s -1 ,τ g -1 )

and corresponds to thermal equilibrium bound of the speed of sound given by Eq. ( 40). The isothermal bound (Eq. 35) underestimate the speed of sound at all frequencies.

Figure 5 displays the evolution of the wave velocity as a function of the propagation angle, θ, and frequency of the perturbation. When f ≥ 0.1 Hz, the velocity of the wave is lower when the wave propagates upward than when it propagates downward. When f < 0.1 Hz, the speed of sound show a complex dependence on the propagation angle. The maximum velocity is computed when θ=π/2 whereas the minimum sound speed occurs when the wave propagates downward with a propagation angle of ~30° from the horizontal. The propagation angle influences sound speed because of the terms involving the gravitational acceleration in Eqs. (4-9). In momentum conservation, these terms express the contribution of the change in the density of the phases to the gravitational force. In the energy conservations, the term involving the gravitational acceleration express the rate at which the potential energy change as a function of the velocity of the phase along the vertical direction. The amplitude of the differences in the wave velocity as a function of the propagation angle (<1%) is negligible compared to the influence of the volume fraction of the constituents (Fig. 3) and frequency of the perturbation (Fig. 4).

Figure 5A displays the difference between the speed of sound computed when lubrication is accounted for and when it is neglected as a function of the ratio ϕ s /ϕ s max and perturbation frequency.

The difference when the influence of lubrication forces increases with the ratio ϕ s /ϕ s max and with wave frequency. When f<10 3 Hz, neglecting lubrication forces results in a negligible underestimation of the speed of sound (< 10 -4 m s -1 ).

III.2 Application to magmas

Figure 6A-E displays the evolution of the phase assemblages and thermodynamic properties of the three magmas computed by the cooling simulations and averaged over the phases with Eq. ( 29), ( 34), (41), and (42) (see supplementary material 3, online, for details on the thermodynamic properties of the constituents). The thermodynamic properties show sharp changes once the water vapor is exsolved. The bulk moduli of the magmas, in particular, drop by almost one order of magnitude once a small fraction of water is exsolved (Fig. 6D), resulting in a sharp decrease of the sound speed (Fig 6F). In the absence of gas, the influence of the frequency of the perturbation is weak enough for the lower (Eq. 40) and upper (Eq. 38) bounds of the sound speed to be almost equal. On the contrary, the two bounds show significant differences when a gas phase is present (Fig. 6F). The amplitude of the difference between the two bounds increases with the volume fraction of gas and decreases with the temperature. In the final phases assemblages, the gas volume fractions are ϕ g ≈0.15 in the basalt (Fig 6A ), ϕ g ≈0.1 in the andesite (Fig. 6B), and ϕ g ≈0.05 in the dacite (Fig. 6C). These values translate into amplitude differences between the upper and lower bounds of ~150 m s -1 in the basalt, ~200 m s -1 in the andesite, and ~250 m s -1 in the dacite (Fig 6F ).

IV. Discussion

IV.1 Predicting the speed of sound in magmas

Several relationships have been proposed to estimate the speed of sound in two-phase suspensions (e.g. [START_REF] Kuster | Velocity and attenuation of seismic waves in two-phase media: Part I. Theoretical formulations[END_REF][START_REF] Kieffer | Sound speed in liquid-gas mixtures: Water-air and water-steam[END_REF][START_REF] Berryman | Long-wavelength propagation in composite elastic media I. Spherical inclusions[END_REF][START_REF] Harker | Velocity and attenuation of ultrasound in suspensions of particles in fluids[END_REF][START_REF] Commander | Linear pressure waves in bubbly liquids: Comparison between theory and experiments[END_REF][START_REF] Atkinson | Acoustic wave speed and attenuation in suspensions[END_REF], and employed for bubbly magmas (e.g. [START_REF] Chouet | New Methods and Future Trends in Seismological Volcano Monitoring[END_REF][START_REF] Kumagai | Acoustic properties of a crack containing magmatic or hydrothermal fluids[END_REF][START_REF] Morrissey | Trends in long-period seismicity related to magmatic fluid compositions[END_REF][START_REF] Neuberg | A model of the seismic wavefield in gas-charged magma: application to Soufrière Hills Volcano, Montserrat[END_REF][START_REF] Karlstrom | Excitation and resonance of acoustic-gravity waves in a column of stratified, bubbly magma[END_REF]. To compare all these models with the results of Eq. ( 28) based on the coupled phase theory, we considered a suspension of bubbles of an ideal gas suspended in water (see Table 3 for thermodynamic properties of the phases). Figure 6A displays the comparison of the speed of sound estimated with the different models for 10 -3 ≤ f ≤ 10 3 Hz. The models neglecting the evolution of the temperature of the phases [START_REF] Kuster | Velocity and attenuation of seismic waves in two-phase media: Part I. Theoretical formulations[END_REF][START_REF] Berryman | Long-wavelength propagation in composite elastic media I. Spherical inclusions[END_REF][START_REF] Harker | Velocity and attenuation of ultrasound in suspensions of particles in fluids[END_REF][START_REF] Atkinson | Acoustic wave speed and attenuation in suspensions[END_REF][START_REF] Neuberg | A model of the seismic wavefield in gas-charged magma: application to Soufrière Hills Volcano, Montserrat[END_REF][START_REF] Karlstrom | Excitation and resonance of acoustic-gravity waves in a column of stratified, bubbly magma[END_REF] give the same results as Eq. ( 35) and underestimate the speed of sound and do not capture its dispersion (Fig. 6A).

When a material is compressed or decompressed, the temperature of its constituents changes accordingly, inducing their thermal expansions, which oppose the change of volume resulting from the change in pressure. As a result, neglecting the thermal effects results in overestimating the ratio (dρ*/dP), and in turn, underestimating the speed of sound. In magmas and at low frequency, the difference between the isothermal and isentropic speed of sounds is, however, small when a gas phase is present (Fig. 6F). Neglecting the evolution of the temperature of the phases is thus an acceptable assumption for bubbly magmas at low frequencies (f<~10 -2 Hz in Fig. 4) given the uncertainty on the thermodynamic properties of the constituents. At higher frequencies, the isothermal assumption results in a large underestimation of the speed of sound in a bubbly magma (of ~200 m s -1 in andesite with ϕ g ≈0.10; Fig 5F). On the contrary, in the absence of exsolved volatiles, the isothermal assumption results in a significant underestimation of the speed of sound compared with the isentropic case at any frequency (of ~50 m s -1 in Fig. 6F).

Other relationships account for the thermal effects during the propagation of an acoustic wave.

The model proposed by [START_REF] Kieffer | Sound speed in liquid-gas mixtures: Water-air and water-steam[END_REF] predicts sound speeds between the upper and lower bounds but does not capture the dispersion of the sound (Fig. 7A). In this model, while the temperature changes are accounted for in the gas phase, they are neglected in the liquid. As a result, the compression and decompression are isentropic in the gas while isothermal in the liquid, which explains why this model predicts speed of sounds between those predicted with Eqs. ( 42) and ( 45). The lack of sound dispersion results from the absence of heat exchange between the phases in the model. The dispersion of sound is particularly important in bubbly magmas (Fig. 3 and Fig. 6F). In general, α g /(ρ g C pg ) ≫ α l /(ρ l C pl ). As a result, for the same net change in pressure |dT l |<|dT*|<|dT g |. Since α g ≫ α f the amplitude of the thermal expansion of the gas bubbles increases significantly out of thermal equilibrium, which in turn amplifies the resistance of bulk material to compression and decompression and increases the speed of sound [START_REF] Temkin | Attenuation and dispersion of sound in dilute suspensions of spherical particles[END_REF]. This effect results in the two increases of the speed of sound with frequency observed in Fig. 4. The first increase occurs when the solids become out of thermal equilibrium with the liquid.

This velocity jump may be ignored in crystal-bearing magmas (Fig 6F) because the coefficients of thermal expansion of the melt and crystals are smalls (see supplementary material 3, online).

The relationship proposed by [START_REF] Commander | Linear pressure waves in bubbly liquids: Comparison between theory and experiments[END_REF] and employed by [START_REF] Chouet | New Methods and Future Trends in Seismological Volcano Monitoring[END_REF], [START_REF] Kumagai | Acoustic properties of a crack containing magmatic or hydrothermal fluids[END_REF] and [START_REF] Morrissey | Trends in long-period seismicity related to magmatic fluid compositions[END_REF] accounts for the exchange of heat from the bubbles to the liquid and captures the increase of the speed of sound at the same range of frequencies as Eq. ( 28) (Fig. 6A). The evolution of the temperature in the liquid is, however, neglected in this model. Consequently, it predicts sound speeds slower than Eq. ( 28) for all the frequencies. This model also considers the dynamics of the interface between the gas bubbles and surrounding liquid, a phenomenon not accounted for in our model. The dynamics of the bubbles are expected to cause a sudden increase in sound speed at a resonance frequency [START_REF] Commander | Linear pressure waves in bubbly liquids: Comparison between theory and experiments[END_REF][START_REF] Chouet | New Methods and Future Trends in Seismological Volcano Monitoring[END_REF], which is not captured in Eq. ( 28) (Fig 7B). In magmas, the resonance frequency of bubbles is on the order of the kHz [START_REF] Chouet | New Methods and Future Trends in Seismological Volcano Monitoring[END_REF]. This is above the frequencies usually used in geophysics and can be ignored for most applications.

It should be noted that another increase in the speed of sound is expected for each discrete phase at higher frequencies than explored herein [START_REF] Temkin | Attenuation and dispersion of sound in dilute suspensions of spherical particles[END_REF]. These velocity jumps result from the translational relative motions between the liquid and the discrete phases. As for heat, the constituents of the suspension exchange momentum during the propagation of an acoustic perturbation because of their relative motions. The rates of momentum transfer in the suspension depend on the coefficients of momentum exchange given by Eqs. (16)(17). The evolution of the relative velocity between the carrier and suspended phases is (here between the liquid and the gas):

∂ t (u -w) + ν lg (u -w)= 0 (46)
where ν lg is the critical frequency above which translational effect cannot be neglected. It is defined as the inverse of the characteristic time needed for the relative velocity between the gas and liquid phases to vanish:

ν lg = β lg ( 1 ϕ l ρ l + 1 ϕ g ρ g ) (47) 
Similarly, the critical frequency for translational relative motion between the solids and liquid, ν ls , is:

ν lg = β ls ( 1 ϕ l ρ l + 1 ϕ s ρ s ) (48) 
When f>max(ν ls ,ν lg ) the magnitude of the relative velocity between the carrier liquid and discrete phases becomes significant and cannot be ignored when computing the speed of sound in the suspension. At these frequencies, the assumption of homogeneity required to express Eq. ( 29) is violated such that Eq. ( 38) cannot be employed to estimate the velocity of compressional waves. The relative motions between the phases cause the increase in the speed of sound predicted by Eq. ( 28) observed in Fig. 6B. The critical frequency for translational effects is inversely proportional to the dynamic viscosity of the liquid phases. For magmas, ν lg and ν ls are far above (>1 MHz) the maximum frequencies considered here and used in geophysics. The influence of the translational relative motions on the speed of sound can thus be safely neglected in magmas for most applications.

IV.2 Limit of validity of the model

In a suspension, the initiation of interactions between the discrete particles marks the onset of rigidity and the transition from liquid-like to solid-like elastic body. In our model, while contacts are neglected, we accounted for the exchange of momentum between neighboring crystals through lubrication forces. The initiation of lubricated interactions between neighboring particles has been suggested to result in an increase in the speed of sound, marking the onset of rigidity in the suspensions [START_REF] Esquivel-Sirvent | Critical mechanical behavior in the fluid/solid transition of suspensions[END_REF]. Their experiment was performed at frequencies of the order of MHz, which are far above the one considered in our model. For the same solid volume fraction, Eq (21)

shows that I ss varies as a function of ηk²/ρ s . For magmas and perturbations in the range of frequency used in geophysics, ~10 -9 <ηk²/ρ s <~10¹, such that the influence of lubrication on the speed of sound is negligible (Fig. 5B). As a result, the initiation of contact between the crystals is associated with the onset of rigidity in magmas and is expected to result in the sharp increase of the velocity of the compressional waves and the emergence of shear waves [START_REF] Caricchi | Propagation of P and S-waves in magmas with different crystal contents: Insights into the crystallinity of magmatic reservoirs[END_REF]). The volume fraction at which a continuous contact network form (at random loose packing) in a magma depends on the sizes, shapes, orientations, and roughnesses of the crystals such that it can be significantly larger than ϕ l ≈0.36, which corresponds to the minimum random close packing calculated for frictionless and monodisperse spheres [START_REF] Bergantz | On the kinematics and dynamics of crystalrich systems[END_REF]. The difference between random loose and close packings is expressed in the coordination numbers (average number of particle-particle contacts per particle),

which is larger at random close packing than at random loose packing. The transition between the two packings occurs as a consequence of the reorganization of the crystal network due to contact sliding and particle non-affine motions. The increase in the coordination number raises the rigidity of the suspension and the speed of sound. Thus the rigidity modulus is expected to increase progressively with the decreases of ϕ f between the random loose and close packings. Since the influence of the contact between the solids is beyond the scope of our model, the initiation of a fragile contact network [START_REF] Bergantz | On the kinematics and dynamics of crystalrich systems[END_REF] between the crystals at magma/mush transition represents the limit of its applicability. Contacts between solids are implicitly accounted for in the effective medium theory (e.g. [START_REF] Kuster | Velocity and attenuation of seismic waves in two-phase media: Part I. Theoretical formulations[END_REF][START_REF] Berryman | Long-wavelength propagation in composite elastic media I. Spherical inclusions[END_REF]) and the Hertz-Mindlin contact theory. In dense suspensions where solids are in cohesionless contact, the bulk and rigidity moduli also depend on the confining pressure and amplitude of the perturbation, which affects the non-affine motions of the grains, contact slidings, and shear dilatancy (e.g. [START_REF] Makse | Granular packings: Nonlinear elasticity, sound propagation, and collective relaxation dynamics[END_REF][START_REF] Brum | Drastic slowdown of the Rayleigh-like wave in unjammed granular suspensions[END_REF]. Such phenomena may induce either strengthening or weakening of the rigidity of the suspension because of the change in the contact network (Van den [START_REF] Van Den Wildenberg | Evolution of granular packings by nonlinear acoustic waves[END_REF]. The effective medium theory is not able to account for the relaxations associated with changes in the contact network and usually overestimates the shear modulus [START_REF] Makse | Granular packings: Nonlinear elasticity, sound propagation, and collective relaxation dynamics[END_REF]). As a result, the applicability of methods based on the effective medium theory to compute the speed of sound between the random loose and random close packing is uncertain given the proneness of the crystal network to structural reordering and non-affine motions.

In addition to the absence of contact between particles, we made assumptions when deriving the conservation equations that may affect sound speed. We neglected the mass transfers associated with the precipitation or melting of crystals and the growth, dissolution, or nucleation of gas bubbles. The importance of the mass transfers on the acoustic properties of a suspension depends on the rates of mass exchange between the constituents [START_REF] Fuster | Mass transfer effects on linear wave propagation in diluted bubbly liquids[END_REF]. In magmas, the exsolution or dissolution of the volatiles depends on the changes in their solubility in the melt phase, which is mainly controlled by the pressure changes. The nucleation of bubbles is expected to occur during a short period [START_REF] Toramaru | Numerical study of nucleation and growth of bubbles in viscous magmas[END_REF] and requires a large supersaturation pressure (> 5 Mpa) even in the presence of crystals [START_REF] Hurwitz | Bubble nucleation in rhyolitic melts: Experiments at high pressure, temperature, and water content[END_REF][START_REF] Shea | Bubble nucleation in magmas: a dominantly heterogeneous process[END_REF]). In our model, we considered small perturbations and the magma being initially at thermodynamic equilibrium (no steady mass or heat transfers). Thereby, the small amplitudes of the perturbations in pressure are not expected to trigger the nucleation of bubbles, which requires large amplitude waves [START_REF] Rothery | Impact vesiculation? a new trigger for volcanic bubble growth and degassing[END_REF]. The rate of the exchange of mass between the dissolved and exsolved volatiles is controlled by the bubbles sizes and the diffusion coefficient of the volatiles species in the melt phase [START_REF] Toramaru | Numerical study of nucleation and growth of bubbles in viscous magmas[END_REF]. The competition between diffusion and the rate of pressure change can be measured by the ratio of the diffusive time scale over the decompression time scale [START_REF] Lensky | Bubble growth during decompression of magma: experimental and theoretical investigation[END_REF]). The diffusivity coefficient of water (the most common volatile in magma) is low (between ~10 -13 and ~10 -10 m 2 s -1 ; [START_REF] Zhang | H2O diffusion in rhyolitic melts and glasses[END_REF] so that mass transfer between the melt and gas phases is negligible (i.e. the diffusive ratio is >1) when changes in pressure are faster than ~0.01-0.0001 Hz for bubbles of 10-100 μm in radius, respectively. Similarly, the rates of the precipitation or melting of the crystals in magmas are small (e.g. ~10 -13 and 10 -12 m s -1 for crystal growth; [START_REF] Hawkesworth | Time scales of magmatic processes[END_REF]) so that we do not expect the mass transfer between the liquid and solid phases to have a significant influence on the velocity of a compressional wave in magma.

Heat and mass exchanges between the phases are controlled by the coupling terms (β ls , β lg , γ ls , and γ lg ), which are based on empirical correlations. The choice for the correlations employed to calculate the coefficients of momentum exchange, β ls and β lg , influences the two critical frequencies, ν ls and ν lg , at which the translational relative velocities between the suspended and carrier phases start to significantly influence sound speed (when f >10 5 Hz in Fig. 8B). Here we considered the creeping and steady flow of the liquid around the discrete phases because of the dynamic viscosity of the melt allowing us to neglect inertial and unsteady terms. We employed a Stokes law for high porosity (ϕ l > ~0.893) as usually used in the coupled phase theory (e.g. [START_REF] Harker | Velocity and attenuation of ultrasound in suspensions of particles in fluids[END_REF][START_REF] Atkinson | Acoustic wave speed and attenuation in suspensions[END_REF][START_REF] Evans | Coupled phase theory for sound propagation in emulsions[END_REF]. For lower porosity (ϕ l < ~0.893), we used a Kozeny-Carman relationship instead of the Stokes law to account for the influence of the presence of the surrounding crystals and the associated decrease in permeability. The maximum difference between the momentum exchanges coefficients predicted by the Stokes and Kozeny-Carman relationships occurs at the maximum packing fraction and reaches ~1 order of magnitude. Therefore, account for the Stokes law instead of the Kozeny-Carman law would result in a decrease of the critical frequencies, β ls and β lg , of ~1 order of magnitude at maximum. The two critical frequencies, β ls and β lg , calculated considering a Stokes law remain above the range of frequency considered (10 -3 -10 3 Hz). As a result, in the range of the frequency considered here, the choice of the law for the exchange of momentum has a negligible influence on the calculated speed of sound in magma.

Similarly, the choice of the empirical relationship employed to predict Nusselt number in the coefficient of heat transfer between the phases, γ ls and γ lg , impacts the critical frequencies at which the transition between thermal equilibrium and disequilibrium regimes occurs. We used the correlation proposed by [START_REF] Gunn | Transfer of heat or mass to particles in fixed and fluidised beds[END_REF] to obtain an expression depending on the porosity of the suspension. This expression also accounts for the influence of the relative velocity between the carrier and suspended phases. We showed that within the range of frequency considered, the relative velocity between the constituents is negligible. As a result, the influence of the relative motion between the constituents on the rates of heat exchange is weak and can be neglected. Furthermore, other empirical relationships predicting the Nusselt number exist (e.g. [START_REF] Ranz | Evaporation from drops, Parts I & II[END_REF][START_REF] Li | A computational investigation of transient heat transfer in pneumatic transport of granular particles[END_REF] but often reduce to Nu = 2 in the absence of relative flow between the constituents, which is the same Nu as predicted by Eq. ( 31)

when ϕ l =1. At the minimum porosity (ϕ l =0.36), Eq. ( 31) predicts Nu = ~4. As a result, employing another empirical correlation to calculate the Nusselt number will tend to decrease the two critical frequencies, τ g -1 and τ g -1 , by a factor of 2 at maximum. The two theoretical maximum and minimum wave velocities (Eqs. 45 and 47) remain unchanged since the correlation of the Nusselt number only affects the rate of the heat exchanges but not the equilibrium temperature predicted by Eq. ( 46).

IV.3 Implication in volcanology:

Our results have implications for the interpretation of seismic signals recorded around volcanoes. Long Period (LP) signals are thought to result from the radiation from the acoustic excitation of the magma located in cracks (e.g. [START_REF] Chouet | Dynamics of a fluid-driven crack in three dimensions by the finite difference method[END_REF][START_REF] Kumagai | Acoustic properties of a crack containing magmatic or hydrothermal fluids[END_REF] or in the volcanic conduit (e.g. [START_REF] Jousset | Modelling the time-dependent frequency content of lowfrequency volcanic earthquakes[END_REF][START_REF] Jousset | Modelling low-frequency volcanic earthquakes in a viscoelastic medium with topography[END_REF]) with the surrounding solid rock. The velocity of compression waves in the magma located in the cracks or conduit affects the resonance frequency, radiation attenuation, and delay between two successive LP events. The presence of exsolved volatiles in magma induces that compressional waves propagate faster at high frequency (>100 Hz) than low frequency (< 1 Hz). Consequently, the resonance frequency of a crack filled with bubbly magma will be higher, and the radiation attenuation lower, at a high frequency than at a low one. In the context of a volcanic conduit, the higher velocity of the wave at high frequency translates to the decrease of the delay between two successive LP events and an increase in their frequency.

The detection of exsolved volatiles and estimation of their volume fraction in magma is important to assess volcanic hazards. Tomography images of seismic waves velocity are an interesting tool to map compositional changes in magma reservoirs. The speed of sound in magma depends on the crystal and exsolved volatiles content. Crystals increase the velocity of compressional waves but weakly affect the dispersion of sound in the magma. The presence of gas bubble greatly decrease and induces the dispersion of sound. The difference between the speed of sound at high and low frequencies is proportional to the gas volume fraction. Consequently, the comparison of tomography images computed for different frequencies at low and high frequencies might help in highlighting the presence of gas and in mapping magma reservoirs.

V. Conclusion

We developed an analytical model to estimate the speed of sound in magmas consisting of a suspension of solids and/or gas bubbles in a viscous liquid. Our model shows that the velocity of compressional waves in a magma varies non-linearly with frequency between two asymptotic bounds.

These two bounds correspond to the speed of sound when all the constituents of the magma are in thermal equilibrium (lower bound) and when the heat exchanges between the phases are neglected (upper bound). We then simulated the cooling of three magmas representative of the diversity of compositions that may be encountered in arc magmatism and applied our model to calculate the speed of sound. Results show that the presence of gas in a magma yields a sharp decrease in the velocity of sound and enhances significantly its dispersion. We found that the exchanges of heat between the constituents may be neglected in crystal-bearing magmas, but that they cannot be ignored once a gas phase is present. Finally, we compared the speed of sound predicted by our model to the results of other relationships usually used by authors for magmas in the range 10 -3 -10 3 Hz. The difference between our modeled of the velocity of compressional acoustic waves and literature values results from the simplifications and assumptions made when considering the evolution of the temperature of the phases and the heat exchanges. These differences typically range from 0.5 to 8% and are largest at frequencies >10 Hz. 45), respectively. The black and blue vertical doted lines indicate the critical frequencies above which the solid and gas bubbles are not in thermal equilibrium with the surrounding liquid, respectively (Eqs.

40 and 41). The material properties of the constituents and the incidence angle are indicated in Table 2. 1300 J kg -1 K -1 C Ps 1200 J kg -1 K -1 C Pg 3750 J kg -1 K -1 α l 10 -4 K -1 α s 10 -6 K -1 α g 10 -3 K -1 k l 1 W m -1 K -1 d s 5 mm d g 0.5 mm g -9.81 m s -2 θ 0°T able 3: List of the thermodynamical properties, or expressions employed to estimate them, used to compare the different models in Fig. 6. The surface tension at the interfaces between the bubbles and liquid is neglected. The thermodynamic properties and relationships are taken from [START_REF] Kieffer | Sound speed in liquid-gas mixtures: Water-air and water-steam[END_REF].

Parameters

Expression or value ρ l 0 1000 kg m -3 ρ g 0 

C Pl 1300 J kg -1 K -1 C Pg C Pg = R M g ( 1-1 γ ) K f 1 GPa K g K g =P α l
1 10 -4 K -1 α g α g =1/T 53 738

Figure 1 :

 1 Figure 1: Schematic representation of a suspension of solid particles and gas bubbles in a viscous liquid. The scheme represents a cross-section of an elementary volume perpendicular to the north direction. The liquid phase is represented in gray. The black and white disks correspond to the solid particles and gas bubbles, respectively. The three gray axes (east, north, and vertical) indicate the orientation with respect to the gravitational acceleration vector. The black orientation axes (x, y, and z) indicate the coordinate system used to express the conservation equations, in which the direction x is aligned in the direction of the propagation of the wave. The sinusoid represents the plane acoustic perturbation propagating along the direction x with an angle θ (positive clockwise) from the east direction.

Figure 2 :

 2 Figure 2: Conceptual configuration of the crystals used to derive the rate of momentum exchange between the solids. The scheme represents one target particles located in the layer 2 and its six closest neighbors located in the layer 1 and 3. The color of the boundary of each particle depends on the layer in which it is located (green for layer 1, red for layer 2, and blue for layer 3). Each arrow indicates the velocity vector of the corresponding particles. The grazing angle β is represented in purple.

Figure 4 :

 4 Figure 4: Dispersion curve of a magmatic suspension. The volume fraction of the constituents are ϕ l = 0.6, ϕ s = 0.35, and ϕ g = 0.05. The solid black curve indicates the results obtained with Eq. (35). The black, red, and blue dashed lines indicate the isothermal speed of sound (Eq. 42), the isentropic speed of sound at thermal equilibrium (Eq. 47), and isentropic speed of sound out of thermal equilibrium (Eq.

Figure 6 :

 6 Figure 6: Influence of the lubrication forces on the speed of sound in a suspension of solid particles in a viscous fluid. [A] Difference between the speed of sound computed with Eq. (35) considering and neglecting lubrication forces. The physical properties of the liquid and solids are the ones indicated in Table 2. [B] Evolution of the difference between the speed of sound computed with Eq. (35) considering (c lub ) and neglecting (c nolub ) lubrication forces as a function of ηk²/ρ s . The shaded area indicates the area covered by magmas.

Figure 7 :

 7 Figure 7: Evolution of the phase assemblage, thermodynamic properties, and speed of sound of the magmas during the cooling simulations. [A], [B], and [C] are the phases assemblage computed during the simulation of the cooling of the basalt (A), andesite (B), and dacite (C). [D] evolution of the bulk densities and bulk moduli of the magmas. [E] Evolution of the bulk coefficient of thermal expansion and bulk heat capacity at constant pressure as a function of temperature. [F] Evolution of the speed of sound in the magmas. The solid, dashed and dashed-doted curves indicate the thermal disequilibrium, thermal equilibrium, and isothermal bounds, respectively. The shaded area corresponds to the range of velocity that may be computed with Eq. (35) at different frequencies.

  

  

Table 1 :

 1 Initial chemical composition, pressure, and temperature of the magmas.

	Composition wt% Basalt	Andesite	Dacite
	SiO 2	48.108	59.736	66.013
	TiO 2	0.970	0.469	0.440
	Al 2 O 3	16.883	17.341	15.263
	Fe 2 O 3	1.755	1.277	0.663
	FeO	8.279	4.765	2.031
	MnO	0.174	0.176	0.069
	MgO	5.925	2.239	0.908
	CaO	10.396	6.100	2.910
	Na 2 O	2.657	3.451	3.691
	K 2 O	1.193	1.026	4.004
	P 2 O 5	0.214	0.000	0.186
	H 2 O	3.447	3.4213	3.435
	T start (°C)	1100	1050	950
	T stop (°C)	960	700	715
	P (Mpa)	150	150	150
	fO 2 buffer	QFM	Ni-NiO	Ni-NiO
	Source	Dufek & Bachmann (2010)	Martel et al. (1999)	Dufek & Bachmann (2010)

Table 2 :

 2 Reference physical properties used to explore the influence of the composition of the suspension and characteristics of the perturbation on the speed of sound. They correspond to an approximate total pressure of 150 MPa.

	Variable	Reference value
	T	1000	°C
	ρ l 0	2500 kg m -3
	ρ s 0	3000 kg m -3
	ρ g 0	350 kg m -3
	K l	15 GPa
	K s	50 GPa
	K g	150 MPa
	η	1000 Pa s
	C Pl		
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 35) and with Eq. ( 41) in Commander & Prosperetti (1988) for 10 3 ≤f≤10 6 . The properties of the fluid are the same as in (A). The density of the water and gas were calculated following Eq. ( 8) and (9) in [START_REF] Kieffer | Sound speed in liquid-gas mixtures: Water-air and water-steam[END_REF]. The bulk modulus and coefficient of thermal expansion, K g =P, α g =1/T. The heat capacity of the gas is calculated as C Pg = (γ/(γ-1))R/M g , where γ is the heat capacity ratio (γ=1.4), R is the ideal gas constant, and M g is the molar mass of the gas.