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Abstract

We develop a framework for comparing data manifolds, aimed, in particular,
towards the evaluation of deep generative models. We describe a novel tool,
Cross-Barcode(P,Q), that, given a pair of distributions in a high-dimensional space,
tracks multiscale topology spacial discrepancies between manifolds on which the
distributions are concentrated. Based on the Cross-Barcode, we introduce the
Manifold Topology Divergence score (MTop-Divergence) and apply it to assess the
performance of deep generative models in various domains: images, 3D-shapes,
time-series, and on different datasets: MNIST, Fashion MNIST, SVHN, CIFAR10,
FFHQ, chest X-ray images, market stock data, ShapeNet. We demonstrate that
the MTop-Divergence accurately detects various degrees of mode-dropping, intra-
mode collapse, mode invention, and image disturbance. Our algorithm scales
well (essentially linearly) with the increase of the dimension of the ambient high-
dimensional space. It is one of the first TDA-based practical methodologies that
can be applied universally to datasets of different sizes and dimensions, including
the ones on which the most recent GANs in the visual domain are trained. The
proposed method is domain agnostic and does not rely on pre-trained networks.

1 Introduction

Geometric perspective in working with data distributions has been pervasive in machine learning
[5, 8, 12, 10, 23, 20]. Reconstruction of the data from observing only a subset of its points has
made a significant step forward since the invention of Generative Adversarial Networks (GANs) [13].
Despite the exceptional success that deep generative models achieved, there still exists a longstanding
challenge of good assessment of the generated samples quality and diversity [7].
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For images, the Fréchet Inception Distance (FID) [16] is the most popular GAN evaluation measure.
However, FID is limited only to 2D images since it relies on pre-trained on ImageNet “Inception”
network. FID unrealistically approximates point clouds by Gaussians in embedding space; also,
FID is biased [6]. Surprisingly, FID can’t be applied to compare adversarial and non-adversarial
generative models since it is overly pessimistic to the latter ones [28].

The evaluation of generative models is about comparing two point clouds: the true data cloud Pdata

and the model (generated) cloud Qmodel. In view of the commonly assumed Manifold Hypothesis
[5, 12], we develop a topology-based measure for comparing two manifolds: the true data manifold
Mdata and the model manifoldMmodel, by analysing samples Pdata ⊂Mdata andQmodel ⊂Mmodel.

Contribution. In this work, we make the following contributions:

1. We introduce a new tool: Cross-Barcode(P,Q). For a pair of point clouds P and Q, the
Cross-Barcode(P,Q) records the differences in multiscale topology between two manifolds
approximated by the point clouds;

2. We propose a new measure for comparing two data manifolds approximated by point clouds:
Manifold Topology Divergence (MTop-Div);

3. We apply the MTop-Div to evaluate performance of GANs in various domains: 2D images, 3D
shapes, time-series. We show that the MTop-Div correlates well with domain-specific measures
and can be used for model selection. Also it provides insights about evolution of generated data
manifold during training;

4. We have compared the MTop-Div against 7 established evaluation methods: FID, discriminative
score, MMD, JSD, 1-coverage, IMD and Geometry score and found that MTop-Div is able to
capture subtle differences in data geometry;

5. We have essentially overcame the known TDA scalability issues and in particular have carried out
the MTop-Div calculations on most recent datasets such as FFHQ, with dimensions D up to 107.

The source code is available at https://github.com/IlyaTrofimov/MTopDiv.

Related work. GANs try to recover the true data distribution via a min-max game where two
players, typically represented by deep neural networks, called Discriminator and Generator, com-
pete by optimizing the common objective. Training curves are not informative since generator
and discriminator counter each other, thus, the loss values are often meaningless. Several other
measures were introduced to estimate the quality of GANs. However, there is no consensus which
of them best captures strengths and limitations of the models and can be used for the fair model
selection. The likelihood in Parzen window works poorly in high-dimensional spaces and does not
correlate with the visual quality of generated samples [30]. The Inception Score (IS) [29] measures
both the discriminability and diversity of generated samples. It relies on the pre-trained Inception
network and is limited to 2D images domain. While IS correlates with visual image quality, it ignores
the true data distribution, doesn’t detect mode dropping and is sensitive to image resolution. The
Fréchet Inception Distance (FID) [16] is a distance between two multivariate Gaussians. These
Gaussians approximate the features of generated and true data extracted from the last hidden layer
of the pretrained Inception network. Similar variant is KID [6] which computes MMD distance
between two distributions of features. The work [14] proposed to use the Duality Gap, a notion
from the game theory, as a domain agnostic measure for GAN evaluation. Another variant of a
measure inspired by game theory was proposed in [27]. Conventional precision and recall mea-
sures can be also used [22, 21]. Accurate calculation of precision and recall is limited to simple
datasets from low-dimensional manifolds. The Geometry Score (GScore) [19] is the L2-distance
between mean Relative Living Times (RLT) of topological features calculated for the model dis-
tribution and the true data distribution. The GScore is domain agnostic, does not involve auxiliary
pretrained networks and is not limited to 2D images. However, GScore is not sensitive even to
some simple transformations - like constant shift, dilation, or reflection (see our Fig. 2, 4). The
barcodes in GScore are calculated approximately, based only on the approximate witness complexes
on 64 landmark points sampled from each distribution. That’s why the procedure is stochastic
and should be repeated several thousand times for averaging. Thus, the calculation of GScore can be
prohibitively long for large datasets. We also refer reader to the comprehensive survey [7].

2

https://github.com/IlyaTrofimov/MTopDiv


2 Cross-Barcode and Manifold Topology Divergence

2.1 Multiscale simplicial approximation of manifolds

According to the well-known Manifold Hypothesis [12] the support of the data distribution Pdata is
often concentrated on a low-dimensional manifold Mdata. We construct a framework for comparing
numerically such distribution Pdata with a similar distribution Qmodel concentrated on a manifold
Mmodel. Such distribution Qmodel is produced, for example, by a generative deep neural network in
one of applications’ scenarios. The immediate difficulty here is that the manifold Mdata is unknown
and is described only through discrete sets of samples from the distribution Pdata. One standard
approach to resolve this difficulty is to approximate the manifold Mdata by simplices with vertices
given by the sampled points. The simplices approximating the manifold are picked based on proximity
information given by the pairwise distances between sampled points [5, 25]. The standard approach
is to fix a threshold r > 0 and to take the simplices whose edges do not exceed the threshold r. The
choice of threshold is essential here since if it is too small, then only the initial points, i.e., separated
from each other 0-dimensional simplices, are allowed. And if the threshold is too large, then all
possible simplices with sampled points as vertices are included and their union is simply the big blob
representing the convex hull of the sampled points. Instead of trying to guess the right value of the
threshold, the standard recent approach is to study all thresholds at once. This can be achieved thanks
to the mathematical tool, called barcode [2, 10], that quantifies the evolution of topological features
over multiple scales. For each value of r the barcode describes the topology, namely the numbers of
holes or voids of different dimensions, of the union of all simplices included up to the threshold r.

2.2 Measuring the differences in simplicial approximation of two manifolds

However, to estimate numerically the degree of similarity between the manifolds Mmodel,Mdata ⊂
RD, it is important not just to know the numbers of topological features across different scales
for simplicial complexes approximating Mmodel,Mdata , but to be able to verify that the similar
topological features are located at similar places and appear at similar scales.

Figure 1: Edges(red) connecting
P−points(red) with Q−points(blue),
and also P−points between them, are added
for three thresholds: α = 0.2, 0.4, 0.6

Our method measures the differences in the simpli-
cial approximation of the two manifolds, represented
by samples P and Q, by constructing sets of sim-
plices, describing discrepancies between the two man-
ifolds. To construct these sets of simplices we take
the edges connecting P−points with Q−points, and
also P−points between them, ordered by their length,
and start adding these edges one by one, beginning
from the smallest edge and gradually increasing the
threshold, see Figure 1. We add also the triangles
and k−simplices at the threshold when all their edges
have been added. It is assumed that all edges between
Q−points were already in the initial set. We track in
this process the births and the deaths of topological
features, where the topological features are allowed
here to have boundaries on any simplices formed by Q−points. The longer the lifespan of the
topological feature across the change of threshold the bigger the described by this feature discrepancy
between the two manifolds.

Homology is a tool that permits to single out topological features that are similar, and to decompose
any topological feature into a sum of basic topological features. More specifically, in our case, a
k−cycle is a collection of k−simplices formed by P− and Q− points, such that their boundaries
cancel each other, perhaps except for the boundary simplices formed only by Q−points. For example,
a cycle of dimension k = 1 corresponds to a path connecting a pair of Q−points and consisting of
edges passing through a set of P−points. A cycle which is a boundary of a set of (k + 1)−simplices
is considered trivial. Two cycles are topologically equivalent if they differ by a boundary, and by
collection of simplices formed only by Q−points. A union of cycles is again a cycle. Each cycle
can be represented by a vector in the vector space where each simplex corresponds to a generator. In
practice, the vector space over {0, 1} is used most often. The union of cycles corresponds to the sum
of vectors. The homology vector space Hk is defined as the factor of the vector space of all k−cycles
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modulo the vector space of boundaries and cycles consisting of simplices formed only by Q−points.
A set of vectors forming a basis in this factor-space corresponds to a set of basic topological features,
so that any other topological feature is equivalent to a sum of some basic features.

The homology are also defined for manifolds and for arbitrary topological spaces. This definition is
technical and we have to omit it due to limited space, and to refer to e.g. [15, 24] for details. The
relevant properties for us are the following. For each topological space X the vector spaces Hk(X),
k = 0, 1 . . . , are defined. The dimension of the vector space Hk equals to the number of independent
k−dimensional topological features (holes,voids etc). An inclusion Y ⊂ X induces a natural map
Hk(Y )→ Hk(X)

In terms of homology, we would like to verify that not just the dimensions of homology groups
H∗(Mmodel) and H∗(Mdata) are the same but that more importantly the natural maps:

ϕr : H∗(Mmodel ∩Mdata)→ H∗(Mmodel) (1)
ϕp : H∗(Mmodel ∩Mdata)→ H∗(Mdata) (2)

induced by the embeddings are as close as possible to isomorphisms. The homology of a pair is the
tool that measures how far such maps are from isomorphisms. Given a pair of topological spaces
Y ⊂ X , the homology of a pair H∗(X,Y ) counts the number of independent topological features
in X that cannot be deformed to a topological feauture in Y plus independent topological features
in Y that, after the embedding to X , become deformable to a point. An equivalent description,
the homology of a pair H∗(X,Y ) counts the number of independent topological features in the
factor-space X/Y , where all points of Y are contracted to a single point. The important fact for us
is that the map, induced by the embedding, H∗(Y )→ H∗(X) is an isomorphism if and only if the
homology of the pair H∗(X,Y ) are trivial. Moreover the embedding of simple simplicial complexes
Y ⊂ X is an equivalence in homotopy category, if and only if the homology of the pair H∗(X,Y )
are trivial [33].

To define the counterpart of this construction for manifolds represented by point clouds, we employ
the following strategy. Firstly, we replace the pair (Mmodel∩Mdata) ⊂Mmodel by the equivalent pair
Mmodel ⊂ (Mdata ∪Mmodel) with the same factor-space. Then, we represent (Mdata ∪Mmodel) by
the union of point clouds P∪Q, where the point clouds P ,Q are sampled from the distributionsPdata,
Qmodel. Our principal claim here is that taking topologically the quotient of (Mdata ∪Mmodel) by
Mmodel is equivalent in the framework of multiscale analysis of topological features to the following
operation on the matrix mP∪Q of pairwise distances of the cloud P ∪Q: we set to zero all pairwise
distances within the subcloud Q ⊂ (P ∪Q).

2.3 Cross-Barcode (P,Q)

Let P = {pi}, Q = {qj}, pi, qj ∈ RD are two point clouds sampled from two distributions P ,
Q. To define Cross-Barcode(P,Q) we construct first the following filtered simplicial complex. Let
(ΓP∪Q,m(P∪Q)/Q) be the weighted graph with the distance-like weights on edges defined as the
complete graph on the union of point clouds P ∪Q with the distance matrix given by the pairwise
distance in RD for the pairs of points (pi, pj) or (pi, qj) and with all pairwise distances within
the cloud Q that we set to zero. Our filtered simplicial complex is the Vietoris-Rips complex of
(ΓP∪Q,m(P∪Q)/Q).

Recall that given such a graph Γ with matrix m of pairwise distances between vertices and a
parameter α > 0, the Vietoris-Rips complex Rα(Γ,m) is the abstract simplicial complex with
simplices that correspond to the non-empty subsets of vertices of Γ whose pairwise distances are
less than α as measured by m. Increasing parameter α adds more simplices and this gives a nested
family of collections of simplices know as filtered simplicial complex. Recall that a simplicial
complex is described by a set of vertices V = {v1, . . . , vN}, and a collection of k−simplices S, i.e.
(k + 1)−elements subsets of the set of vertices V , k ≥ 0. The set of simplices S should satisfy the
condition that for each simplex s ∈ S all the (k − 1)-simplices obtained by the deletion of a vertex
from the subset of vertices of s belong also to S. The filtered simplicial complexes is the family of
simplicial complexes Sα with nested collections of simplices: for α1 < α2 all simplices of Sα1

are
also in Sα2

.

At the initial moment, α = 0, the simplicial complex Rα(ΓP∪Q,m(P∪Q)/Q) has trivial homology
Hk for all k > 0 since it contains all simplices formed by Q−points. The dimension of the 0−th
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homology equals at α = 0 to the number of P−points, since no edge between them or between a
P−point and a Q−point is added at the beginning. As we increase α, some cycles, holes or voids
appear in our complex Rα. Then, some combinations of these cycles disappear. The persistent
homology principal theorem [2, 37] implies that it is possible to choose the set of generators in the
homology of filtered complexes Hk(Rα) across all the scales α such that each generator appears at
its specific "birth" time and disappears at its specific "death" time. These sets of “birth" and “deaths"
of topological features in Rα are registered in Barcode of the filtered complex.

Definition. The Cross-Barcodei(P,Q) is the set of intervals recording the “births" and “deaths" times
of i−dimensional topological features in the filtered simplicial complex Rα(ΓP∪Q,m(P∪Q)/Q).

Examples of Cross-Barcodei(P,Q) are shown on Fig. 2, 11, 14, 17, 18. Topological features with
longer “lifespan" are considered essential. The topological features with “birth"=“death" are trivial
by definition and do not appear in Cross-Barcode∗(P,Q).

2.4 Basic properties of Cross-Barcode∗(P,Q)

Proposition 1. Here is a list of basic properties of Cross-Barcode∗(P,Q):

• if the two clouds coincide then Cross-Barcode∗(P, P ) = ∅;
• for Q = ∅, Cross-Barcode∗(P,∅) = Barcode∗(P ), the barcode of the single point cloud P itself;
• the norm of Cross-Barcodei(P,Q), i ≥ 0, is bounded from above by the Hausdorff distance

‖Cross-Barcodei (P,Q)‖B ≤ dH(P,Q). (3)

The proof is given in appendix.

2.5 The Manifold Topology Divergence (MTop-Div)

The bound from eq.(3) and the equality Cross-Barcode∗(P, P ) = ∅ imply that the closeness of
Cross-Barcode∗(P,Q) to the empty set is a natural measure of discrepancy between P and Q . Each
Cross-Barcodei(P,Q) is a list of intervals describing the persistent homology Hi. To measure the
closeness to the empty set, one can use segments’ statistics: sum of lengths, sum of squared lengths,
number of segments, the maximal length (Hi max) or specific quantile. We assume that various
characteristics of different Hi could be useful in various cases, but the cross-barcodes for H0 and H1

can be calculated relatively fast.

Our MTop-Divergence(P,Q) is based on the sum of lengths of segments in Cross-Barcode1(P,Q),
see section 2.6 for details. The sum of lengths of segments in Cross-Barcode1(P,Q) has an interesting
interpretation via the Earth Mover’s Distance. Namely, it is easy to prove (see Appendix B.2) that EM-
Distance between the Relative Living Time histogram for Cross-Barcode1(P,Q) and the histogram
of the empty barcode, multiplied by the parameter αmax from the definition of RLT, see e.g. [19],
coincides with the sum of lengths of segments in H1. This ensures the standard good stability
properties of this quantity.

Our metrics can be applied in two settings: to a pair of distributions Pdata, Qmodel, in which case
we denote our score MTop-Div(D,M), and to a pair of distributions Qmodel, Pdata, in which case
our score is denoted MTop-Div(M,D). These two variants of the Cross-Barcode, and of the MTop-
Divergence are related to the concepts of precision and recall. These two variants can be analyzed
separately or combined together, e.g. averaged.

2.6 Algorithm

To calculate the score that evaluates the similitude between two distributions, we employ the following
algorithm. First, we compute Cross-Barcode1(P,Q) on point clouds P,Q of sizes bP , bQ sampled
from the two distributions P , Q. For this we calculate the matrices mP , mP,Q of pairwise distances
within the cloud P and between clouds P and Q. Then the algorithm constructs the Vietoris-Rips
filtered simplicial complex from the matrix m(P∪Q)/Q which is the matrix of pairwise distances in
P ∪Q with the pairs of points from cloud Q block replaced by zeroes and with other blocks given
by mP , mP,Q. Next step is to calculate the barcode of the constructed filtered simplicial complex.
This step and the previous step constructing the filtered complex from the matrix m(P∪Q)/Q can
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Algorithm 1 Cross-Barcodei(P,Q)

Input: m[P, P ], m[P,Q] : matrices of pairwise
distances within point cloud P , and between
point clouds P and Q

Require: VR(M): function computing filtered
complex from pairwise distances matrix M

Require: B(C, i): function computing persis-
tence intervals of filtered complex C in dimen-
sion i
bQ ← number of columns in matrix m[P,Q]
m[Q,Q]← zeroes(bQ, bQ)

M ←
(
m[P, P ] m[P,Q]
m[P,Q] m[Q,Q]

)
Cross-Barcodei ← B(VR(M), i)

Return: list of intervals Cross-Barcodei(P,Q)
representing "births" and "deaths" of topologi-
cal discrepancies

Algorithm 2 MTop-Divergence(P,Q), see sec-
tion 2.6 for details, default suggested values:
bP = 1000, bQ = 10000, n = 100

Input: XP , XQ: NP ×D, NQ ×D arrays rep-
resenting datasets
for j = 1 to n do
Pj ← random choice(XP ,bP )
Qj ← random choice(XQ,bQ)
Bj ← list of intervals Cross-
Barcode1(Pj , Qj) calculated by Algorithm1
mtdj ← sum of lengths of all intervals in
Bj

end for
MTop-Divergence(P,Q)← mean(mtd)

Return: number MTop-Divergence(P,Q) rep-
resenting discrepancy between the distributions
P,Q

be done using one of the fast scripts1, some of them are optimized for GPU acceleration, see e.g.
[35, 4]. The calculation of barcode from the filtered complex is based on the persistence algorithm
bringing the filtered complex to its "canonical form" ([2]). Next, sum of lengths or one of other
numerical characteristcs of Cross-Barcode1(P,Q) is computed. Then this computation is run a
sufficient number of times to obtain the mean value of the picked characteristic. In our experiments
we have found that for common datasets the number of times from 10 to 100 is generally sufficient.
Our method is summarized in the Algorithms 1 and 2.

Complexity. The Algorithm 1 requires computation of the two matrices of pairwise distances
m[P, P ], m[P,Q] for a pair of samples P ∈ RbP×D, Q ∈ RbQ×D involving O(b2PD) and
O(bPbQD) operations. After that, the complexity of the computation of barcode does not de-
pend on the dimension D of the data. Generally the persistence algorithm is at worst cubic in the
number of simplices involved. In practice, the boundary matrix is sparse in our case and thanks also
to the GPU optimization, the computation of cross-barcode takes similar time as in the previous step
on datasets of big dimensionality. Since only the discrepancies in manifold topology are calculated,
the results are quite robust and a relatively low number of iterations is needed to obtain accurate
results. Since the algorithm scales linearly with D it can be applied to the most recent datasets with
D up to 107. For example, for D = 3.15× 106, and batch sizes bP = 103, bQ = 104, on NVIDIA
TITAN RTX the time for GPU accelerated calculation of pairwise distances was 15 seconds, and
GPU-accelerated calculation of Cross-Barcode1(P,Q) took 30 seconds.

3 Experiments

We examine the ability of MTop-Div to measure quality of generative models trained on various
datasets. Firstly, we illustrate the behaviour of MTop-Div on simple synthetic datasets (rings (Fig.2),
disks (Fig. 13)). Secondly, we show that MTop-Div is superior to the GScore, another topology-based
GAN quality measure. We carry out experiments with a mixture of Gaussians, MNIST, CIFAR10,
X-ray images, FFHQ. The performance of MTop-Div is on par with FID. For images, MTop-Div is
always calculated in pixel space without utilizing pre-trained networks. Thirdly, we apply MTop-Div
to GANs from non-image domains: 3D shapes and time-series, where FID is not applicable. We show
that MTop-Div agrees with domain-specific measures, such as JSD, MMD, Coverage, discriminative
score, but MTop-Div better captures evolution of generated data manifold during training 2.

3.1 Simple synthetic datasets in 2D

As illustrated on Fig. 2 the GScore does not respond to shifts of the distributions’ relative position.

1Persistent Homology Computation (wiki)
2we additionally calculated IMD [31] for the pairs of point clouds from our experiments, see Appendix E.
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Figure 2: MTop-Div and H0 max compared with GScore, for two ring clouds of 1000 points, as
function of d =distance between ring centers, the Cross-Barcode1(P,Q) is shown at d = 0.5

3.2 Mode-Droping on Gaussians

Figure 3: Difficulty of the Geometry Score to
detect the mode dropping.

One of common tasks to assess GAN’s performance
is measuring it’s ability to uncover the variety of
modes in the data distribution. A common bench-
mark for this problem is a mixture of Gaussians, see
Fig. 3. We trained two generators with very different
performance: original GAN, which managed to cap-
ture all 5 modes of the distribution and WGAN-GP,
which have only covered poorly two. However, the
Geometry score is not sensitive to such a difference
since two point clouds have the same RLT histogram.
While the MTop-Div is sensitive to such a difference.

3.3 Digit flipping on MNIST
vs Geometry Score = 0.0

MTop-Div = 6154.0

Figure 4: Two point clouds:“5”s from MNIST vs. vertically
flipped “5”s from MNIST (resembling rather “2”s). The
two clouds are indistinguishable for Geometry Score, while
the MTop-Div is sensitive to such flip as it depends on the
positions of clouds with respect to each other.

Figure 4 shows an experiment with
MNIST dataset. We compare two point
clouds: “5”s vs. vertically flipped “5”s
(resembling rather “2”s). These two
clouds are indistinguishable for Geome-
try Score, while the MTop-Div is sensi-
tive to such flip since it depends on the
relative position of the two clouds.

3.4 Synthetic modifications of CIFAR10

Figure 5: Experiment with modifications of CIFAR10. The disturbance level rises from zero to a
maximum. Ideally, the quality score should monotonically increase with the disturbance level.

We evaluate the proposed MTop-Div(D,M) using a benchmark with the controllable disturbance level.
We take CIFAR10 and apply the following modifications. Firstly, we emulate common issues in GAN:
mode drop, mode invention and mode collapse by doing class drop, class addition and intra-class
collapse (removal of objects within a class). Secondly, we apply two disturbance types: erasure
of a random rectangle and a Gaussian noise. As ‘real’ images we use the test set from CIFAR10,
as ‘generated’ images - a subsample of the train set with applied modifications. The size of the
later always equals the test set size. Figure 5 shows the results. Ideally, the quality measure should
monotonically increase with the disturbance level. We conclude that Geometry Score is monotone
only for ‘mode invention’ and ‘intra-mode collapse’ while MTop-Div(D,M) is almost monotone for
all the cases. The average Kendall-tau rank correlation between MTop-Div(D,M) and disturbance
level is 0.89, while for Geometry Score the rank correlation is only 0.36. FID performs well on this
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Figure 6: Training process of GAN applied to chest X-ray data.
Top: normalized quality measures FID, MTop-Div, Disc. score
vs. epoch. Each measure is divided by it’s maximum value: max.
FID = 304, max MTop-Div = 21, max. Disc.score = 0.5. Lower
is better. Dashed horizontal lines depict comparison of real
COVID-positive and COVID-neg. chest X-rays. Bottom: PCA
projections of real objects (red) and generated objects (green).

Figure 7: Comparison of the qual-
ity measures, FID vs MTop-Div,
on StyleGAN, StyleGAN2 trained
on FFHQ with different truncation
levels. MTop-Div(M,D) is mono-
tonically increasing in good corre-
lation with FID.

benchmark, not shown on Figure 5 for ease of perception. Additionally, we calculated MTop-Div for
higher order Cross-Barcodes, see Appendix D.

3.5 GAN model selection

Table 1: MTop-Div is consistent with FID for model selection of GAN’s
trained on various datasets.

Dataset FID MTop-Div(D,M)

WGAN WGAN-GP WGAN WGAN-GP

CIFAR10 154.6 399.2 353.1 1637.4
SVHN 101.6 154.7 332.0 963.2
MNIST 31.8 22.0 2042.8 1526.1

FashionMNIST 52.9 35.1 919.6 660.4

We trained WGAN and
WGAN-GP on various
datasets: CIFAR10,
SVHN, MNIST, Fashion-
MNIST and evaluated
their quality, see Table 1.
Experimental data show
that the ranking between
WGAN and WGAN-GP
is consistent for FID and
MTop-Div.

3.6 Experiments with StyleGAN

We evaluated the performance of StyleGAN [17] and StyleGAN2 [18] generators trained on the
FFHQ dataset3. We generated 20 × 103 samples with two truncation levels: ψ = 0.7, 1.0 and
compared them with 20× 103 samples from FFHQ. The truncation trick is known to improve average
image quality but decrease image variance. Figure 7 show the results (see also Table 2 in Appendix
for more data). Thus, the ranking via MTop-Div(M, D) is consistent with FID. We also tried to
calculate Geometry Score but found that it takes a prohibitively long time.

3.7 Chest X-rays generation for COVID-19 detection

Waheen et al. [32] described how to apply GANs to improve COVID-19 detection from chest X-ray
images. Following [32], we trained an ACGAN [26] on a dataset consisting of chest X-rays of
COVID-19 positive and healthy patients 4. Next, we studied the training process of ACGAN. Every
10’th epoch we evaluated the performance of ACGAN by comparing real and generated COVID-19
positive chest X-ray images. That is, we calculated FID, MTop-Div(D,M) and a baseline measure -

3https://github.com/NVlabs/ffhq-dataset (CC-BY 2.0 License)
4We used the ACGAN implementation https://github.com/clvrai/ACGAN-PyTorch,

(MIT License) and chest X-ray data was from https://www.kaggle.com/tawsifurrahman/
covid19-radiography-database (Kaggle Data License)
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Figure 8: Training process of GAN applied to 3D
shapes. Top, middle: quality measures MMD,
JSD, 1-Coverage, MTop-Div vs. epoch. Each
quality measure is normalized, that is, divided by
its value at the first epoch. Lower is better. Bot-
tom: PCA projection of real objects (red) and gen-
erated objects (green). Vertical red line (epoch
50) depicts the moment, when the manifold of
generated objects “explodes” and becomes much
more diverse.

Figure 9: Training dynamics of TimeGAN ap-
plied to market stock data. Top: discriminative
score vs. epoch, MTop-Div vs. epoch. Lower
is better. Bottom: PCA projection of real time-
series (red) and generated time-series (green).
Vertical red line (epoch 2000) depicts the mo-
ment when manifolds of real and generated ob-
jects become close.

discriminative score 5 of a CNN trained to distinguish real vs. generated data. The MTop-Div agrees
with FID and the discriminative score. PCA projections show that generated data approximates real
data well. Figure 20 in Appendix presents real and generated images.

Additionally, we compared real COVID-positive and COVID-negative chest X-ray images, see
horizontal dashed lines at Fig. 6. Counterintuitively, for FID real COVID-positive images are closer
to real COVID-negative ones than to generated COVID-positive images; probably because FID is
overly sensitive to textures. At the same time, evaluation by MTop-Div is consistent.

3.8 3D shapes generation

We use the proposed MTop-Div score to analyze the training process of the GAN applied to 3D
shapes, represented by 3D point clouds [1]. For training, we used 6778 objects of the “chair” class
from ShapeNet [9]. We trained GAN for 1000 epochs and tracked the following standard quality
measures: Minimum Matching Distance (MMD), Coverage, and Jensen-Shannon Divergence (JSD)
between marginal distributions. To understand the training process in more details, we computed PCA
decomposition of real and generated objects (Fig. 8, bottom). For computing PCA, each object (3D
point cloud) was represented by a vector of point frequencies attached to the 3-dimensional 283 grid.
Figure 8, top, shows that conventional metrics (MMD, JSD, Coverage) doesn’t represent the training
process adequately. While these measures steadily improve, the set of generated objects dramatically
changes. At epoch 50, the set of generated objects (green) “explodes” and becomes much more
diverse, covering a much larger space than real objects (red). Conventional quality measures (MMD,
JSD, Coverage) ignore this shift while MTop-Div has a peak at this point. Next, we evaluated the final
quality of GAN by training a classifier to distinguish real and generated object. A simple MLP with 3
hidden layers showed accuracy 98%, indicating that the GAN poorly approximates the manifold of
real objects. This result is consistent with MTop-Div: at epoch 1000 it is even larger than at epoch 1.

3.9 Time series generation

Next, we analyze training dynamics of TimeGAN [34] tailored to multivariate time-series generation.
We followed the experimental protocol from [34] and used the daily historical market stocks data

5Discriminative score equals accuracy minus 0.5. MTop-Div better correlates with the discriminative score
than FID: 0.75 vs. 0.66.
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from 2004 to 2019, including as features the volume, high, low, opening, closing, and adjusted closing
prices. The baseline evaluation measure is calculated via a classifer (RNN) trained to distinguish
real and generated time-series. Particularly, the discriminative score equals to the accuracy of such
a classifer minus 0.5. Fig. 9, top, shows the results. We conclude that the behaviour of MTop-Div
is consistent with the discriminative score: both of them decrease during training. To illustrate
training in more details we did PCA projections of real and generated time-series by flattening the
time dimension (Fig. 9, bottom). At 2000-th epoch, the point clouds of real (red) and generated
(green) time-series became close, which is captured by a drop of MTop-Div score. At the same time,
discriminative score is not sensitive enough to this phenomena.

4 Conclusions

We have proposed a tool, Cross-Barcode∗(P,Q), which records multiscale topology discrepancies
between two data manifolds approximated by point clouds. Based on the Cross-Barcode∗(P,Q), we
have introduced the Manifold Topology Divergence and have applied it to evaluate the performance
of GANs in various domains: 2D images, 3D shapes, time-series. We have shown that the MTop-Div
correlates well with domain-specific measures and can be used for model selection. Also, it provides
insights about the evolution of generated data manifold during training and can be used for early
stopping. The MTop-Div score is domain agnostic and does not rely on pre-trained networks. We
have compared the MTop-Div against 7 established evaluation methods: FID, discriminative score,
MMD, JSD, 1-coverage, IMD, and Geometry score and found that MTop-Div outperforms many of
them and captures well subtle differences in data manifolds. Our methodology permits to overcome
the known TDA scalability issues and to carry out the MTop-Div calculations on the most recent
datasets such as FFHQ, with the size of up to 105 and the dimension of up to 107.
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A Simplicial Complexes, Cycles, Barcodes

A.1 Background

The simplicial complex is a combinatorial data that can be thought of as a higher-dimensional
generalization of a graph. Simplicial complex S is a collection of k−simplices, which are finite
(k + 1)−elements subsets in a given set V , for k ≥ 0. The collection of simplices S must satisfy the
condition that for each σ ∈ S, σ′ ⊂ σ implies σ′ ∈ S. A simplicial complex consisting only of 0−
and 1−simplices is a graph.

Let Ck(S) denotes the vector space over a field F whose basis elements are k−simplices from S with
a choice of ordering of vertices up to an even permutation. In calculations it is most convenient to put
F = Z2. The boundary linear operator ∂k : Ck(S)→ Ck−1(S) is defined on σ = {x0, . . . , xk} as

∂kσ =

k∑
j=0

(−1)j{x0, . . . , xj−1, xj+1, . . . , xk}.

The k−th homology group Hk(S) is defined as the vector space ker ∂k/ im ∂k+1. The elements
c ∈ ker ∂k are called cycles. The elements c̃ ∈ im ∂k+1 are called boundaries. The general elements
c′ ∈ Ck(S) are called chains. The elements of Hk(S) represent various k−dimensional topological
features in S. A basis in Hk(S) corresponds to a set of basic topological features.

Filtration on simplicial complex is defined as a family of simplicial complexes Sα with nested
collections of simplices: for α1 < α2 all simplices of Sα1

are also in Sα2
. In practical examples the

indexes α run through a discrete set α1 < . . . < αmax.

The inclusions Sα ⊆ Sβ induce naturally the maps on the homology groups Hk(Sα) → Hk(Sβ).
The evolution of the cycles through the nested family of simplicial complexes Sα is described by
the barcodes. The persistent homology principal theorem [2, 36, 37] states that for each dimension
there exists a choice of a set of basic topological features across all Sα so that each feature appears
in Hk(Sα) at specific time α = bj and disappears at specific time α = dj . The Hi barcode of the
filtered simplicial complex is the record of these times represented as the collection of segments
[bj , dj ]. The barcodes are defined and calculated through bringing the set of matrices of the boundary
operators ∂k to the ”Canonical Form” by a change of the basis in Ck preserving the nested family Sα
[2, 3].

Let (Γ,m) be a weighted graph with distance-like weights, where m is the symmetric matrix of the
weights attached to the edges of the graph Γ. The Vietoris-Rips filtered simplicial complex of the
weighted graph Rα(Γ,m), is defined as the nested collection of simplices:

Rα(Γ,m) = {{x0, . . . , xk}, xi ∈ Vert(Γ)‖m(xj , xl) ≤ α}

where Vert(Γ) is the set of vertices of the graph Γ. Even though such weighted graphs do not always
come from a set of points in metric space, barcodes of weighted graphs have been successfully
applied in many situations (networks, fmri, medical data, graph’s classification etc).

A.2 Simplices, describing discrepancies between the two manifolds

Here we gather more details on the construction of sets of simplicies that describe discrepancies
between two point clouds P andQ sampled from the two distributions P ,Q. As we have described in
section 2, our basic methodology is to add consecutively the edges between P−points and Q−points
and between pairs of P−points. All edges between Q−points are added simultaneously at the
beginning at the threshold α = 0 . The PP and PQ edges are sorted by their length, and are added
at the threshold α ≥ 0 corresponding to the length of the edge. This process is visualized in more
details on Figures 10 and 11. The triangles are added at the threshold at which the last of its three
edges are added. The 3− and higher k−simplices are added similarly at the threshold corresponding
to the adding of the last of their edges. The added triangles and higher dimensional simplices are
not shown explicitely on Figure 1 for ease of perception, as they can be restored from their edges.
As all simplices within the Q−cloud are added at the very beginning at α = 0, the corresponding
cycles formed by the Q−cloud simplices are immediately killed at α = 0 and do not contribute to
the Cross-Barcode.
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Figure 10: We are adding edges between P−points(orange) and Q−points(blue) and between pairs
of P−points consecutively. The edges are sorted by their length, and are added at the threshold
α ≥ 0 corresponding to the length of the edge. Here at the thresholds α = 0.2, 0.4, 0.6, 0.8 edges
with length less than α were added. For ease of perception the simultaneously added triangles and
higher simplices, as well as the added at α = 0 all simplices between Q−points, are not shown
explicitly here. Notice how the 1−cycle, shown with green, with endpoints in Q−cloud is born at
α = 0.4. It survives at α = 0.6 and it is killed at α = 0.8.

The constructed set of simplices is naturally a simplicial complex, since for any added k−simplex, we
have added also all its (k− 1)−faces obtained by deletion of one of vertices. The threshold α defines
the filtration on the obtained simplicial complex, since the simplices added at smaller threshold α1

are contained in the set of simplices added at any bigger threshold α2 > α1.

With adding more edges, the cycles start to appear. In our case, a cycle is essentially a collection
of simplices whose boundary is allowed to be nonzero if the boundary consists of simplices with
vertices from Q. For example, a 1− cycle in our case is a path consisting of added edges, that can
start and end in Q−cloud and that passes through P−points. This is because any such collection can
be completed to a collection with zero boundary since any cycle from Q−cloud is a boundary of a
sum of added at α = 0 simplices from Q.

A 1−cycle disappears at the threshold when a set of triangles is added whose boundary coincides
with the 1−cycle plus perhaps some edges between Q−points.

Notice how the 1−cycle with endpoints in Q−cloud is born at α = 0.4 on Figure 10, shown with
green. It survives at α = 0.6 and it is killed at α = 0.8. The process of adding longer edges can
be visually assimilated to the building of a "spider’s web" that tries to bring the cloud of red points
closer to the cloud of blue points. The obstructions to this are quantified by "lifespans" of cycles,
they correspond to the lengths of segments in the barcode. See e.g., Figure 11 where a 1−cycle is
born between α = 0.5 and 0.9, it then corresponds to the green segment in the Cross-Barcode.

Figure 11: The process of adding the simplices between the P−cloud(red) and Q−cloud(blue) and
within the P−cloud. Here we show the consecutive adding of edges together with simultaneous
adding of triangles. All the edges and simplices within Q−cloud are assumed added at α = 0 and
are not shown here for perception’s ease. Notice the 1−cycle born between α = 0.5 and 0.9, it
corresponds to the green segment in the shown Cross-Barcode

Remark A.1. To characterise the situation of two data point clouds one of which is a subcloud of the
other S ⊂ C, it can be tempting to start seeking a "relative homology" analog of the standard (single)
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point cloud persistent homology. The reader should be warned that the common in the literature
"relative persistent homology" concept and its variants, i.e. the persistent homology of the decreasing
sequence of factor-complexes of a fixed complex: K → . . .K/Ki → K/Ki+1 → . . .K/K, is
irrelevant in the present context. In contrast, our methodology, in particular, does not involve factor-
complexes construction, which is generally computationally prohibitive. The point is that the basic
concept of filtered complex contains naturally its own relative analogue via the appropriate use of
various filtrations.

A.3 Sub-manifolds and bars in Cross-Barcode∗(P,Q)

It is natural to start analyzing the closeness of the data point cloud P to the data point cloud Q
by looking at the matrix of the PQ pairwise distances. If there are many points from P such that
their distance to their closest point from Q is relatively big then the clouds P and Q are not close.
However, in applications, it is important to distinguish the different situations here. The first case
is when all these remote from Q points are close to each other. Then this remote from Q cluster
of P points represents a single topological feature distinguishing cloud P from Q. Another case
is when the remote from Q points form several clusters so that each such remote from Q cluster
represents a separate topological feature. The long bars in the zero-dimensional Cross-Barcode record
the lifespans on the distances’ scale of these remote from Q clusters of P−points.

In practice it also happens more often that it is not possible to distinguish a separate cluster of P
points which are all remote from Q. Rather, there are some P−points inside the same P−cluster
that are close to Q and other P−points from the same P−cluster which are further away from Q, as
on Fig.1. This situation is captured and quantified by the higher dimensional topological features
distinguishing cloud P from Q. Intuitively such an i−dimensional topological feature represents an
i−dimensional P−cloud’s sub-manifold whose boundary is close to the Q−cloud, but whose interior
P−points are remote from the Q−cloud, like the green polygonal chain on Fig.10 at α = 0.4. Such
features are constructed in the algorithm using the distance matrix combinatorics from (i+ 1)−tuples
of P−points or P & Q− points. The distances within each of these tuples are less or equal to the
feature’s appearance, or birth, threshold. The disappearance, or death, of such a feature calculated by
the algorithm corresponds approximately to the scale at which the feature becomes indistinguishable
from the Q−cloud. The i−dimensional Cross-Barcodei(P,Q), i ≥ 1, is the set of segments (bars)
recording the birth and the death thresholds of such topological features.

A.4 Cross-Barcode∗(P,Q) as obstructions to assigning P points to distribution Q

Geometrically, the lowest dimensional Cross-Barcode0(P,Q) is the record of relative hierarchical
clustering of the following form. For a given threshold r, let us consider all points of the point cloud
Q plus the points of the cloud P lying at a distance less than r from a point of Q as belonging to the
single Q−cluster. It is natural to form simultaneously other clusters based on the threshold r, with the
rule that if the distance between two points of P is less than threshold r then they belong to the same
cluster. When the threshold r is increased, two or more clusters can collide. And the threshold, at
which this happens, corresponds precisely to the “death” time of one or more of the colliding clusters.
At the end, for very large r only the unique Q−cluster survives. Then Cross-Barcode0(P,Q) records
the survival times for this relative clustering.

Figure 12: Paths/membranes (red) in the void that are formed by small intersecting disks around
P points (orange), and are ending on Q (blue), are obstacles for identification of the distribution P
with Q. These obstacles are quantified by Cross-Barcode1(P,Q). Separate clusters are the obstacles
quantified by Cross-Barcode0(P,Q).

Notice that in situations, like, for example, in Figure 12, it is difficult to attribute confidently certain
points of P to the same distribution as the point cloudQ even when they belong to the “big”Q−cluster
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at a small threshold r, because of the nontrivial topology. Such “membranes” of P−points in void
space, are obstacles for assigning points from P to distribution Q. These obstacles are quantified
by the segments from the higher barcodes Cross-Barcode≥1(P,Q). The bigger the length of the
associated segment in the barcode, the further the membrane passes away from Q.

A.5 More simple synthetic datasets in 2D

Figure 13: The first picture shows two clouds of 1000 points sampled from the uniform distributions
on two different disks of radius 1 with a distance between the centers of the disks of 0.5. The
second and third pictures show the dependence of the GScore metric (the GScore is equal to zero
independently of the distance between the disks), maximum of segments in H0 and the sum of
lengths of segments H1 as a function of the distance between the centers of the disks averaged over
10 runs. The length of the maximum segment barcode in H0 grows linearly and equals to the distance
between the pair of closest points in the two distributions.

As illustrated on Figures 2,13 the GScore is unresponsive to changes of the distributions’ positions.

A.6 Cross-Barcode and precision-recall

Figure 14: Mode-dropping, bad recall & good precision, illustrated with clouds Pdata (red) and Qmodel
(blue). The Cross-Barcode0(Pdata, Qmodel) contains long intervals, one for each dropped mode, which
measure the distance from the data’s dropped mode to the closest generated mode.

The Cross-Barcode captures well the precision vs. recall aspects of the point cloud’s approximations,
contrary to FID, which is known to mix the two aspects. For example, in the case of mode-dropping,
bad recall but good precision, the Cross-Barcode0(Pdata, Qmodel) contains the long intervals, one
for each dropped mode, which measure the distance from the data’s dropped mode to the closest
generated mode. The mode-dropping case (bad recall, good precision) is illustrated on Figure 14.

Analogously, in the case of mode-invention, with good recall but bad precision, the Cross-
Barcode0(Qmodel, Pdata) contains long intervals, one for each invented mode, which measure the
distance from the model’s invented mode to the closest data’s mode.

The mode-invention (good recall, bad precision) case is illustrated on Figure 15.
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Figure 15: Mode-invention, good recall & bad precision, illustrated with clouds Pdata (red) and Qmodel
(blue). The Cross-Barcode0(Qmodel, Pdata) contains long intervals, one for each invented mode, which
measure the distance from the model’s invented mode to the closest data’s mode.

B Cross-Barcode Properties.

B.1 The Cross-Barcode’s norm and the Hausdorf distance.

The Bottleneck distance [11], also known as Wasserstein−∞ distance W∞, defines the natural norm
on the Cross-Barcodes:

‖Cross-Barcodei (P,Q)‖B = max
[bj ,dj ]∈Cross-Barcodei

(dj − bj).

The Hausdorf distance measures how far are two subsets P,Q of a metric space from each other. The
Hausdorf distance is the greatest of all the distances from a point in one set to the closest point in the
other set:

dH(P,Q) = max

{
sup
x∈P

d(x,Q), sup
y∈Q

d(y, P )

}
. (4)

Proposition 1. The norm of Cross-Barcodei(P,Q), i ≥ 0, is bounded from above by the Hausdorff
distance

‖Cross-Barcodei (P,Q)‖B ≤ dH(P,Q). (5)

Proof. Let c ∈ Rα0
(ΓP∪Q,m(P∪Q)/Q) be an i−dimensional cycle appearing in the filtered complex

at α = α0. Let us construct a simplicial chain that kills c. Let σ = {x1, . . . , xi+1} be one of the sim-
plices from c. Let qj denote the closest point inQ to the vertex xj . The prism {x1, q1, . . . , xi+1, qi+1}
can be decomposed into (i+ 1) simplices pk(σ) = {x1, x2, . . . , xk−1, qk, . . . , qi+1}, 1 ≤ k ≤ i+ 1.
The boundary of the prism consists of the two simplices σ, q(σ) = {q1, . . . , qi+1}, and of the (i+ 1)
similar prisms corresponding to the the boundary simplices of σ. If c =

∑
n anσ

n then

c = ∂(
∑
n

an
∑
k

pk(σn)) +
∑
n

anq(σn)

For any k, j, d(xj , xk) ≤ α0 since c is born at α0. Therefore

d(xj , qk) ≤ d(xj , xk) + d(xk, qk) ≤ α0 + sup
x∈P

d(x,Q).

Therefore all simplices pk(σn)) appear no later than at (α0+supx∈P d(x,Q)) in the filtered complex.
All vertices of the simplices q(σn) are from Q. It follows that the lifespan of the cycle c is no bigger
than supx∈P d(x,Q))

To illustrate the proposition 1 we have verified empirically the diminishing of
Cross-Barcode∗(Q1, Q2) when number of points in Q1, Q2 goes to +∞ and Q1, Q2 are
sampled from the same uniform distribution on the 2D disk of radius 1. The maximal length of
segments in H1 as function of number of points in the clouds of the same size is shown in Figure 16.
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Figure 16: Diminishing of the length of maximal seg-
ment in H1 with increase of the number of sampled
points for point clouds of the equal size n sampled from
the same uniform distribution on the 2D disk of radius 1.

B.2 MTop-Div
and the Cross-Barcode’s
Relative Living Times (RLT)

The Cross-Barcode for a given homology
Hi is a list of birth-death pairs (segments)

Cross-Barcodei(P,Q) = {[bj , dj ]}nj=1

Relative Living Times is a discrete dis-
tribution RLT (k) over non-negative inte-
gers k ∈ {0, 1, . . . ,+∞}. For a given
αmax > 0, RLT (k) is a fraction of
“time”, that is, parts of horizontal axis
τ ∈ [0, αmax], such that exactly k seg-
ments [bi, di] include τ .

For equal point clouds, Cross-
Barcodei(P, P ) = ∅ and the corre-
sponding RLT is the discrete distribution concentrated at zero. Let us denote by O0 such discrete
distribution corresponding to the empty set. A natural measure of closeness of the distribution RLT
to the distribution O0 is the earth-mover’s distance (EMD), also called Wasserstein-1 distance.

Proposition. Let for all di ≤ αmax, then

MTop-Div(P,Q) = αmaxEMD(RLT (k), O0).

Proof. By the definition of EMD

EMD(RLT,O0) =

+∞∑
k=1

k ×RLT (k).

Let’s use all the distinct bi, di to split [0, αmax] to disjoint segments sj :

[0, αmax] =
⊔
j

sj .

Each sj is included in K(j) segments [bi, di] from the Cross-Barcodei(P,Q). Thus,

RLT (k) =
1

αmax

∑
j:K(j)=k

|sj |.

At the same time:

MTop-Div(P,Q) =
∑
i

(di − bi) =
∑
j

K(j)|sj | =
+∞∑
k=1

∑
j:K(j)=k

K(j)|sj |

=

+∞∑
k=1

αmax × k ×RLT (k) = αmaxEMD(RLT (k), O0).

C Hyperparameters, Software used, and Experiments’ Details

We have made experiments in various settings and on the following datasets:

• on a set of gaussians in 2D in comparison with distributions generated by GAN and WGAN.
• MNIST We have observed that GScore is not sensitive to the flip of the cloud of “fives",

while our score MTop-Divergence is sensitive to such flip since it depends on the positions
of clouds with respect to each other
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• CIFAR10 We have evaluated our MTop-Div(D,M) using a benchmark with the controllable
disturbance level. We have observed that Geometry Score is monotone only for ‘mode
invention’ and ‘intra-mode collapse’ while MTop-Div(D,M) is almost monotone for all the
cases.

• FFHQ We have evaluated the quality of distributions generated by StyleGAN and StyleGAN-
2, without truncation and with ψ = 0.7 truncation. We observed that the ranking via
MTop-Div is consistent with FID

• ShapeNet6 We have studied the training dynamics of the GAN trained on 3D shapes. We
observed that MTop-Div is consistent with domain specific measures (JSD, MMD, Coverage)
and that MTop-Div better describes the evolution of the point cloud of generated objects
during epochs;

• Stock data We have studied the training dynamics of TimeGAN 7 applied to market stock
data. We observed that MTop-Div is consistent with the discriminative score but better
captures the evolution of point cloud of generated objects during epochs;

• Chest X-ray images We have studied the training dynamics of ACGAN applied to chest
X-ray images. We observed that MTop-Div is more consistent with the discriminative score
than FID;

For computation of FID we used Pytorch-FID8. For computation of Geometry Score we used the
original code9 patched to supported multi-threading, otherwise it was extremely slow. The RLTs
computation was averaged over 2500 trials. We calculated persistent homology via ripser++10.

We used the following hyperparameters to compute MTop-Div:

• MNIST: bP = 102, bQ = 103;

• Gaussians: bP = 102, bQ = 103;

• CIFAR10: bP = 103, bQ = 104;

• FFHQ: bP = 103, bQ = 104.

• ShapeNet: bP = 102, bQ = 103;

• Market stock data: bP = 102, bQ = 103;

• Chest X-ray data: bP = 102, bQ = 103.

MTop-Div scores were were averaged over 20 runs.

We compared Geometry Score and MTop-Div in the experiment with mixtures of Gaussians. Table 4
shows the results. We conclude that the MTop-Div is consistent with the visual quality of GAN’s
output while Geometry Score fails.

Figure 17 shows Cross-Barcodes for the experiment with StyleGAN’s trained on FFHQ. Figure 19
shows one of Cross-Barcodes in H0 from the experiment with CIFAR10 dataset to illustrate that the
0−dimensional Cross-Barcode can also be applied. Figure 18 shows the Cross-Barcodes in H1 from
the experiments with GAN11 and WGAN-GP 12 trained on mixture of Gaussians.

Table 3 shows extended experimental results on GAN model selection including standard error of
sample means of MTop-Div.

Figure 20 presents real and generated chest X-ray images. The generated images are of high visual
quality and resembles real images.

Figure 21 shows real and generated 3D shapes. Generated 3D shapes (bottom row) are relatively
blurry.

6The dataset is free for non-commercial purposes.
7https://github.com/jsyoon0823/TimeGAN
8https://github.com/mseitzer/pytorch-fid, (Apache Licence 2.0)
9https://github.com/KhrulkovV/geometry-score

10https://github.com/simonzhang00/ripser-plusplus, (MIT License)
11https://arxiv.org/abs/1406.2661
12https://arxiv.org/abs/1704.00028
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Figure 17: Cross-Barcodes for GAN’s trained on FFHQ. Cross-Barcodes are shown by decrease of
generator performance. For clarity, only H1 barcodes are shown. The number and the total length of
segments give the same ranking as the FID score

Figure 18: Cross-Barcodes for GAN’s trained of mixtures of Gaussians. Cross-Barcodes are shown
by decrease of generator performance. For clarity, only H1 barcodes are shown.

D MTop-Div for Cross-Barcodes of higher order

We calculated MTop-Divk(D,M) based on higher order Cross-Barcodes, that is, sums of segments’
lengths of Cross-Barcodek, k > 1 were taken in Algorithm 2. Then, we measured average Kendall-tau
rank correlation between MTop-Divk(D,M) and the disturbance level for the series of synthetic modifi-
cations of CIFAR10. For MTop-Div2(D,M) the rank correlation was 0.59, for MTop-Div3(D,M): 0.45.
To make faster calculations small batches were selected, MTop-Div2(D,M): bP = 100, bQ = 300,
MTop-Div3(D,M): bP = 100, bQ = 100. An optimization that we describe in a future publication
pre-computes the unnecessary simplices and permits faster higher degree MTop-Div computations.

Table 2: Performance measures of StyleGANs trained on FFHQ.

GAN ψ FID MTOP-DIV(M,D)

STYLEGAN2 1.0 4.75 162.08
STYLEGAN 1.0 8.25 234.33
STYLEGAN 0.7 15.86 712.57
STYLEGAN2 0.7 19.75 1011.53
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Figure 19: Cross-Barcodes for CIFAR10 vs. disturbed CIFAR10. Gaussian noise with 2 levels of
variance was applied. For clarity, only H0 barcodes are shown. For ease of perception of differences
in Cross-Barcodes0 they are shown on the same plot. The dataset with higher level of noise is
distinguished here by the longer segments in the Cross-Barcode0

Table 3: MTop-Div is consistent with FID for model selection of GAN’s trained on various datasets.
Dataset FID MTop-Div(M,D)

WGAN WGAN-GP WGAN WGAN-GP

CIFAR10 154.6 399.2 370.5±17.3 2408.5±27.0
SVHN 101.6 154.7 332.0±12.4 963.2±22.62
MNIST 31.8 22.0 2365.6±40.1 1474.2±29.7

FashionMNIST 52.9 35.1 1052.6±24.8 872.9±21.8

E Comparison with the “Intrinsic Multi-scale Distance(IMD)”

As proposed by a reviewer, we did additional experiments with IMD [31] applied to point clouds
from our experiments. IMD is not sensitive to the rings shift (Section 3.1) and the digits flipping
on MNIST (Section 3.3). For the experiment “Mode dropping on Gaussians” (Section 3.2), IMD
incorrectly ranks poorly performing WGAN-GP (see Fig.3) higher than the original GAN (Table 4).
For the experiments “GAN model selection” (Section 3.5), IMD ranks a better performing model
lower in one case, while the ranking via MTop-Div is consistent with true GAN performance. For
the “Synthetic variations of CIFAR10” experiment (Section 3.4), the average Kendall-tau correlation
between IMD score and the disturbance level is 0.55, which is lower than the same measure of
MTop-Div (0.89).

Table 4: MTop-Div and G. Score for GAN’s trained of mixtures of Gaussians.

GAN G. SCORE MTOP-DIV(M,D) MTOP-DIV(D,M) IMD

WGAN-GP 1.083 0.562 0.206 2.65
ORIG. GAN 1.087 0.081 0.149 13.87
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Figure 20: Top: real chest X-ray images. Bottom: generated chest X-ray images.

Figure 21: Top: real 3D shapes. Bottom: generated 3D shapes. Generated 3D shapes are relatively
blurry.
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