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Abstract

Estimators based on non-convex sparsity-promoting penalties were shown to yield
state-of-the-art solutions to the magneto-/electroencephalography (M/EEG) brain
source localization problem. In this paper we tackle the model selection problem
of these estimators: we propose to use a proxy of the Stein’s Unbiased Risk
Estimator (SURE) to automatically select their regularization parameters. The
effectiveness of the method is demonstrated on realistic simulations and 30 subjects
from the Cam-CAN dataset. To our knowledge, this is the first time that sparsity
promoting estimators are automatically calibrated at such a scale. Results show
that the proposed SURE approach outperforms cross-validation strategies and
state-of-the-art Bayesian statistics methods both computationally and statistically.

1 Introduction

Magneto- and electroencephalography (M/EEG, [6, 13]) are non-invasive technologies tailored for
monitoring electrical brain activity with a high temporal resolution (milliseconds). Yet, reconstructing
the spatial cortical current density at the origin of M/EEG data is a challenging high-dimensional
ill-posed linear inverse problem [16, 3]. The M/EEG inverse problem is typically addressed using
Lasso-type estimators [42], and more precisely group-Lasso penalties [31, 23]. The latter approaches
can be refined with non-convex penalties [11, 40] that exhibit several advantages: they yield sparser
physiologically-plausible solutions, mitigate the intrinsic Lasso amplitude bias, and rely on iterative
convex optimization problems which can be solved efficiently with coordinate descent [44, 37, 28].

The major practical bottleneck of these techniques remains the calibration of the regularization
parameter, i.e., the parameter trading the data-fitting term against the sparsity-promoting prior.
State-of-the-art hyperparameter selection techniques for the M/EEG source localization problem
include hierarchical Bayesian modelling [30, 35] and hyperparameter optimization (HO) [14, 26,
22]. Hierarchical Bayesian approaches require to specify a prior distribution on the regularization
hyperparameter. Regression coefficients and the regularization parameter can then be inferred with
multiple techniques [43, 32, 4, 45]. The idea of HO is to select the regularization parameter such that
the regression coefficients minimize a given criterion. This then boils down to a bilevel optimization
problem can then be solved using zero-order methods [7, 27, 1] or first-order methods [21, 8, 9].
Popular statistical criteria include K-fold cross-validation (folds are created across sensors [15]),
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which is however not well-suited for the M/EEG inverse problem: samples are not i.i.d. due to
spatially-correlated sensors [16]. Therefore, the crucial question revolves around finding a criterion
to properly identify the neural generators at the origin of the observed signal. Stein [38] proposed
an unbiased estimator of the quadratic risk of estimators: Stein’s Unbiased Risk Estimator (SURE),
which has proved to be well-suited for inverse problem hyperparameter selection [10, 34, 33].

In this paper, we combine reweighting techniques with a SURE-based model selection to identify
active brain sources. The main contributions of this paper are as follows:

1. We combined the SURE criterion with a non-convex estimator. This yields a fast and
parameter-free approach to select the regularization parameter for the irMxNE algorithm.

2. With experiments on more than 30 subjects from the Cam-CAN biobank [41], we exten-
sively show that the proposed SURE-based hyperparameter selection technique for irMxNE
achieves state-of-the-art results on real M/EEG data.

3. Code is available at https://github.com/PABannier/automatic_hp_selection_
for_meg and already disseminated via the popular brain imaging package MNE [24].

Notation. The Frobenius norm of A is denoted by ‖A‖F. For any integer d ∈ N, we denote by [d]
the set {1, . . . , d}. With M/EEG data, N is the number of sensors, T the number of time instants of
the measurements, and S the number of source locations positioned on the cortical mantle.

2 Method

Model. The M/EEG source localization problem can be cast as a high-dimensional inverse problem:

M = GX∗ + E , (1)

where M ∈ RN×T is a measurement matrix, G ∈ RN×P is the (known) design matrix, X∗ ∈ RP×T
is the unknown true regression parameters, E ∈ RN×T is the noise matrix, which is assumed
Gaussian i.i.d. : Ei,t ∼ N (0, 1),∀i ∈ [N ],∀t ∈ [T ]. The coefficient matrix X∗ ∈ RP×T is to be
recovered from the observation of M and G. While simpler models assume the source orientations
are normal to the cortical mesh, we rely on free orientation models, where amplitudes and orientations
are jointly inferred. It boils down to reconstructing the amplitudes of three orthogonal sources at each
spatial location: P = 3S and X ∈ R3S×T is partitioned into S blocks Xs ∈ R3×T , where each Xs

is the block corresponding to the sth source location [25].

Estimator. Given a regularization parameter λ > 0, the irMxNE optimization problem reads:

X̂(λ) ∈ arg min
X∈RP×T

1

2
‖M−GX‖2F + λ

S∑
s=1

√
‖Xs‖F . (2)

Non-convex problem (2) is solved by iterativaly solving convex problems [11, 40], see Alg. 1.

Model selection. The parameter λ is often chosen such that the corresponding regression coefficients
X̂(λ) (in Eq. (2)) minimize a given criterion. [38] proposed a criterion to avoid overcomplex models:

SURE(X̂(λ)) = −NTσ2 + ‖M−GX̂(λ)‖2F + 2σ2dof(X̂(λ)) , (3)

where dof(X̂) is the degrees of freedom of X̂ [18] and σ is the true noise level of the measurements.
The non-convex penalty used in Eq. (2) prevents the derivation of a closed-form formula for the
irMxNE degree of freedom. To circumvent this issue, multiple SURE proxies have been proposed
[34]. In this work we use the Finite-Difference Monte-Carlo SURE (FDMC SURE, [17], Alg. 2).
Due to the non-convexity of the problem, the dof term can only be evaluated numerically [29].

3 Experiments

Several strategies have been proposed to calibrate the regularization parameter in Eq. (2): SURE
(proposed, Alg. 2 in App. B.1), spatial cross-validation [39], and hierarchical Bayesian model with a
Gamma hyperprior on λ (λ-MAP, [4]). It is worth mentioning that λ-MAP is not a fully automatic
method: the default value of the Gamma hyperprior parameter β given in [5] yields poor results in
our experiments. We had to handtune β = 10 for simulated data, and β = 5 for real data. Data is
assumed to be whitened, therefore the true noise level σ is assumed to be known and equal to 1 [19].

2

https://github.com/PABannier/automatic_hp_selection_for_meg
https://github.com/PABannier/automatic_hp_selection_for_meg


λ-MAP Spatial CV SURE

20 40 60 80 100
Source amplitude (nAm)

0

1

R
ec

al
l

20 40 60 80 100
Source amplitude (nAm)

δ-
pr

ec
is

io
n

Figure 1 – Simulated data, statistics on the active set recovery. Statistics for each model selection
procedure on the reweighted Lasso, fitted on a simulated setup from the left auditory task.

(a) SURE. (b) Spatial CV. (c) λ-MAP.

Figure 2 – Real data, brain source locations aggregated across subjects. Brain source locations
reconstructed in each hemisphere after an auditory stimulation for each model selection procedure.

Experiments on simulated data (Fig. 1). We compared the robustness of each hyperparameter
selection technique in various signal-to-noise ratio regimes. We simulated two sources, one in each
auditory cortex and varied their amplitude. We computed δ-statistics [12] on the recovery of the
active set, and chose an extent with 7 mm of radius. SURE correctly reconstructs the active sources (1
of δ-precision) but fails at identifying all of them. Since both spatial CV and λ-MAP tend to overfit
the data, they predict larger supports than expected and yield high recall values.

Experiments on real data (Tab. 1 and Fig. 2). We compared hyperparameter selection for the
regularization parameter λ of the reweighted multitask Lasso (Eq. (2)) on 30 subjects of the Cam-CAN
biobank dataset [41]. Data consists in the recording of N = 306 magnetometers and gradiometers
after a left auditory stimulation (T = 71 time samples). We used Eq. (2) to estimate the active sources
among the P = 24, 582 source candidates. For each hyperparameter selection technique, we obtain
active sources for each subject that we represent on an average brain in Fig. 2. Summary statistics of
the experiment are provided in Tab. 1. Regarding computational efficiency, λ-MAP, spatial CV and
SURE took respectively 8, 1184 and 492 seconds per subproblem for the 30 subjects.

Tab. 1 shows that spatial CV consistently overfits the dataset by choosing a too small regularization
hyperparameter. As predicted by theory [36, 2], spatial CV yields overly large supports, most often
with more than two sources. λ-MAP provides an average number of recovered sources similar to
SURE. Nonetheless, SURE yields a significantly better explained variance.

Fig. 2 shows the reconstructed sources after a left auditory stimulation on 30 subjects, registered on
an average template brain. Each dot represents an active source in the brain, each color corresponds
to a subject. The areas colored in red are the auditory cortices obtained using a functional atlas
[20]. Ideally, we expect one reconstructed source in each auditory cortex, and a low dispersion of
the sources across subjects. Spatial CV yields sources all over the brain surface. λ-MAP correctly
localizes the sources but fails to recover any sources on almost one third of the subjects (see Tab. 1).
SURE always recovers correctly at least one source, and often the correct two sources in both cortices.

Table 1 – Real data, aggregated results.
Average metrics Spatial CV SURE λ-MAP
λ/λmax 0.30 0.61 0.9
Explained variance 0.67 0.32 0.06
# of sources 9.30 1.44 1.3
% of zero sources 0 0 29.63
% of one source 0 55.56 40.74
% of two sources 3.7 44.44 18.52
% of > 2 sources 96.3 0 11.11
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4 Broader impact

This paper paves the way to a wider adoption of recent results in machine learning in the context of
non-invasive brain source imaging commonly employed in cognitive and clinical neuroscience. Since
the code is already available in the MNE package, the proposed algorithm could soon be impactful in
the neuroimaging community.
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A MxNE

We recall that G ∈ RN×P denotes the design matrix, M ∈ RN×T is the measurement matrix. Given
a regularization parameter λ > 0, the MxNE optimization problem [23] reads:

X̂(λ) ∈ arg min
X∈RP×T

1

2
‖M−GX‖2F + λ

S∑
s=1

‖Xs‖F . (4)

It relies on a convex optimization problem that can be solved using block coordinate descent solvers
[44, 37, 28].

B Algorithms details

B.1 FDMC SURE

Evaluating the FDMC SURE consists in solving the following bilevel optimization problem [17]:

λ̂ ∈ arg min
λ∈R

1

2
‖M−GX̂(λ,1)‖2F +

2σ2

ε
〈G(X̂(λ,2) − X̂(λ,1)),∆〉

s.t. X̂(λ,1) ∈ arg min
X∈RP×T

1

2
‖M−GX‖2F + λ

S∑
s=1

√
‖Xs‖F

X̂(λ,2) ∈ arg min
X∈RP×T

1

2
‖M + ε∆−GX‖2F + λ

S∑
s=1

√
‖Xs‖F ,

(5)

with ε > 0 and ∆ ∈ RN×T a matrix which coefficients are independent and identically dis-
tributed from a normal distribution of mean 0 and of variance 1. Since data is assumed to be
whitened, σ is set to 1. The finite difference step ε is chosen using the heuristic from [17]:
ε = 2σ

N0.3 . Alg. 1 shows how to solve the inner problem of Eq. (5). The computation of the
FDMC SURE can be found in Alg. 2. Below � stands for the element-wise multiplication.

Algorithm 1 irMxNE [40]
input :G ∈ RN×P ,M ∈ RN×T , λ > 0,K ∈

N
init :X̃ = 0RP×T ,W = IP ,w = 0S

ε = 10−8

for k = 1, . . . ,K do
G̃ = GW
// Iteratively solve convex problems

X̃← MxNE(G̃,M) // Using X̃ to warm
start

X = WX̃
w = ((2‖Xs‖F + ε)−1)s∈[S]
W = diag(w ⊗ 1(3))

return X

Algorithm 2 COMPUTE FDMC SURE
(adapted from [17])
input :G ∈ RN×P ,M ∈ RN×T , λ > 0,K ∈

N
init :∆ ∈ RN×T , ε > 0, σ > 0

∀(n, t) ∈ [n]× [T ],∆n,t ∼ N (0, 1)

X(λ,1) ← Alg. 1(G,M, λ,K)
X(λ,2) ← Alg. 1(G,M + ε∆, λ,K)
// Degree of freedom computation
J = G(X(λ,2) −X(λ,1))�∆
// Finite-difference

dof = 1
ε

∑N
i=1

∑T
j=1 Ji,j

// FDMC SURE computation
SURE = ‖M−GX(λ,1)‖2F −NTσ2 + 2σ2dof
return SURE

Combining both algorithms, we propose in Alg. 3 the procedure to automatically select λ > 0 for
irMxNE.
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Algorithm 3 GRID-SEARCH TO SOLVE PROBLEM 5
input :G ∈ RN×P ,M ∈ RN×T , λ1, . . . , λn > 0,K ∈ N
init :SUREopt = +∞
for λ = λ1, . . . , λn do

SURE←Alg. 2(G,M, λ,K)
if SURE < SUREopt then

λopt = λ; SUREopt = SURE
return λopt

B.2 Cross-validation

Cross-validation consists in partitioning data (G,M) into V ∈ N∗ hold-out datasets (Gtrainv ,Mtrainv ),
v ∈ [V ]. The matrices are partitioned along the row axis, a setup referred to as spatial cross-validation
when dealing with M/EEG data. The regularization parameter λ is then chosen to minimize the
averaged squared norm of the errors:

λ̂ ∈ arg min
λ∈R

1

V

V∑
v=1

‖Mvalv −GvalvX̂(λ,v)‖2F

s.t. X̂(λ,v) ∈ arg min
X∈RP×T

1

2
‖Mtrainv −GtrainvX‖2F + λ

S∑
s=1

√
‖Xs‖F , ∀v ∈ [V ] .

(6)

B.3 Hierarchical Bayesian modelling

Algorithm 4 λ-MAP [4]

input :G ∈ RN×P ,M ∈ RN×T , λ(0) ∈ R+, niter ∈ N∗, β > 0, ε > 0
init :λmax = ‖G>M‖2,∞, m = λmax/2, α = mβ + 1
for i = 1, . . . , niter do

X← Alg. 1 ( G, M, λ(i−1)) // Solve ixMxNE problem

λ(i) = (2ST + α− 1)/(
∑S
s=1

√
‖Xs‖F + β)

if |λ(i) − λ(i−1)| < ε then
return λ(i)

return λniter

For λ-MAP, we had to fine-tune by hand the hyperprior parameter. We set β = 10 for simulated data,
and β = 5 for real data. While λ-MAP is robust to the initialization of λ, it remains highly dependent
of β, making it not fully automatic. Some experiments required an order of magnitude larger β to
prevent the iterate scheme to converge over λmax. Indeed, we have noticed that λ-MAP often selects
a hyperparameter λ larger than λmax, due to a poorly-chosen β.

B.4 Warm start

To accelerate the grid-search procedure, we sequentially solve the first convex subproblems (before
the first reweighting) and initialize the weights of the i-th Lasso estimator X̂(λi) with X̂(λi−1). This
computational trick is known as warm start (Alg. 5).

8



Algorithm 5 EFFICIENT WARM START FOR REWEIGHTED LASSO WITH GRID-SEARCH

input :G ∈ RN×P ,M ∈ RN×T , λ1, . . . , λn > 0,K ∈ N∗
init :X(λ0) = 0N×T
// First solve problems without reweighting
for i ∈ [n] do

// This leads a more efficient warm start
X(λi) ← MxNE(G,M, λi) // Solve MxNE using X(λi−1) to warm start

// Then solve the remaining subproblems
for i ∈ [n] do

X(λi) ← irMxNE(G,M, λi,K − 1) // Solve irMxNE using X(λi) to warm start
return X(λ1), . . . ,X(λn)
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