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Introduction

Electronics and signal processing, especially in their linear modalities, have largely relied on the algebraic operations of sum, subtraction, and product of signals. Filtering, self-and cross correlations are just some examples of the interesting applications of linear signal processing (e.g. [START_REF] Brigham | Fast Fourier Transform and its Applications[END_REF][START_REF] Oppenheim | Discrete-Time Signal Processing[END_REF][START_REF] Raikos | Low-voltage current feedback operational amplifiers[END_REF]) and electronics (e.g. [START_REF] Horowitz | The Art of Electronics[END_REF][START_REF] Streetman | Solid State Electronic Device[END_REF][START_REF] Ryder | Electronic Systems and Circuits[END_REF]).

Multisets (e.g. [START_REF] Hein | Discrete Mathematics[END_REF][START_REF] Knuth | The Art of Computing[END_REF][START_REF] Blizard | Multiset theory[END_REF][START_REF] Blizard | The development of multiset theory[END_REF][START_REF] Mahalakshmi | Properties of multisets[END_REF][START_REF] Singh | Complementation in multiset theory[END_REF]) corresponds to an interesting and conceptually powerful extension of set theory that allows repeated elements to be taken into account. In a sense, multiset theory seems to be even more compatible with human intuition than the now classic set theory.

While multisets had been mostly applied to categorical or non-negative values, they can be generalized to real values, including possibly negative values [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | Multisets[END_REF][START_REF] Da | Analogies between boolean algebra, set theory and function spaces[END_REF]. This can be achieved by allowing the multiset difference operation to lead to negative multiplicities, which implies the universe multiset to be identical to the empty multiset, therefore establishing a stable complement operation.

Real-value multisets have been further generalized to real function spaces, allowing the integration of multiset concepts and properties with all the algebraic operations, so that hybrid expressions such as:

[f (t) ∪ g(t)] C cos(h(t) ∪ -g(t))
can be obtained [START_REF] Da | Multisets[END_REF][START_REF] Da | Analogies between boolean algebra, set theory and function spaces[END_REF]. When applied to real function spaces, multisets have been called multifunctions, while their image whiles are associated with the real-valued multisets multiplicities. These generalizations paved the way to a wide range of possible developments and applications in the most diverse areas. For instance, it has been shown that the common product between two functions provides substantially enhanced potential for performing filtering and pattern recognition operations, including template matching [START_REF] Da | Multisets[END_REF][START_REF] Da | Comparing cross correlationbased similarities[END_REF].

More specifically, not only sharper and narrower matching peaks are obtained at the same time as secondary matches and noise are effectively eliminated. These desirable features stem from the fact that, though involving the extremely simple operations as the minimum and maximum binary operations (in the sense of taking two arguments), the common product as well as several multifunction operations are ultimately non-linear. Results derived from these developments have also been found to allow impressive performance for clustering (non-supervised pattern recognition) [START_REF] Da | Real-valued jaccard and coincidence based hierarchical clustering[END_REF] and Complex network represen-tations and community finding [START_REF] Da | Coincidence complex networks[END_REF].

The present work addresses the application of realvalued multisets and multifunctions to the areas of signal processing and electronics. There are several motivations for doing so. First, we have that the effective implementation of operations such as the common product paves the way to especially accurate and effective real-time applications in several related areas, including pattern recognition, deep learning, an control systems. Particularly promising is the implementation of the suggested electronic operators in integrated electronics. Second, the implementation of the multifunction operations in electronic devices paves the way to their effective incorporation into the area of signal and image processing.

After introducing and illustrating some of the main multiset/multifunction operations, the common product in its elementwise and functional forms, as well as the respectively obtained correlation methods, are briefly outlined. Subsequently, we propose respective implementations in relatively simple electronic circuits involving a combination of linear and digital devices, including analog switches, operational amplifiers, comparators and xor logic. A complement implementation of the elementwise common product is then proposed and discussed.

Basic Real-Valued Multiset Operations

Given a signal f (t), its complement is immediately obtained as -f (t).

The sign function of f (t) is henceforth understood to corresponds to:

s f (t) = +1 if f (t) ≥ 0 -1 otherwise. Observe that s f (x)f (x) = |f (x)|.
Given an additional signal g(t), the intersection between these signals can be obtained as:

min {f (t), g(t)} = f (t) if f (t) ≤ g(t) g(t) otherwise.
Similarly, the union between the two signals can be expressed as:

max {f (t), g(t)} = f (t) if f (t) ≥ g(t) g(t) otherwise.
The conjoint sign function between the signals f (t) and g(t) is defined as:

s f g (t) = s f (t)s g (t) (1) 
Figure 1 illustrates two considered signals, namely a cosine (a) and sine (b) along a complete respective period, as well as the associated sign (c-d) and conjoint (e) sign functions.

Shown in Figure 7 are the operations of these realvalued multiset operations with respect to two signals f (t) and g(t) shown in Figure 1.

The Common Product and Correlation

Given two signals f (t) and g(t), their elementwise common product [START_REF] Da | Multisets[END_REF][START_REF] Da | On similarity[END_REF] can be defined as:

f (t) g(t) = s f g min {s f (t)f (t), s g (t)g(t)} ( 2 
)
This operation is illustrated in Figure 7(g) with respect to the sine and cosine functions. Observe that the respective result can be understood as the common region of the functions while taking them into account with respect to the horizontal axis.

The common product, corresponding to the functional of the elementwise common product in a support region S can now be expressed [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | Multisets[END_REF][START_REF] Da | On similarity[END_REF] as:

f (t), g(t) = ˆS s f g min {s f (t)f (t), s g (t)g(t)} dt (3) 
Observe that, though analogous to the classic inner product, this functional is actually non-bilinear, therefore not constituting formally an inner product. It is precisely the non-linear characteristics of this operation that allow its enhanced performance when applied to filtering and pattern recognition.

Given the common product functional, a respective cross-correlation can be immediately obtained as:

f g [τ ] = ˆS f (t), g(t -τ ) dt (4) 
This operation has been observed to yield interesting results in filtering and pattern recognition applications. When employed jointly with other multifunction operations, the common product convolution becomes the realvalued Jaccard and coincidence indices [START_REF] Da | Further generalizations of the Jaccard index[END_REF], which have been verified to allow remarkable performance for tasks such as non-supervised classification and complex networks representation and community enhancement [16, ?, 18].

As such, it becomes of particular interest to contemplate the implementation of the elementwise common product, which provides the basis for a wide range of applications including those commented above, in electronic hardware, which is addressed in the two following sections. 

Electronic Implementation

Interestingly, all the basic real-valued multiset operations presented in Section 2 can be ready and effectively implemented in analog circuitry though, as we will see, special attention is required regarding switching noise. All the proposed circuit implementations in the remainder of this work are not immediately operational or particularly efficient, being mostly conceived from the didactic perspective and as a proof of concept of the possibilities proposed in the current work.

Figure 3 illustrates a possible implementation of the sign function by using the electronic device known as comparator, which basically corresponds to an operational amplifier optimized for fast switching. This is a classic basic circuit involving an operational amplifier [START_REF] Tobey | Operational Amplifiers: Design and Applications[END_REF][START_REF] Raikos | Low-voltage current feedback operational amplifiers[END_REF].

The intersection between signals f (t) and g(t) can be conveniently obtained by using an operational amplifier and an analog switch as illustrated in Figure 4(a), while the signal union can be readily obtained by swapping the operational amplifier inputs as shown in Figure 4(b).

The absolute value of f (t), namely s f f (t), can be easily obtained by employing an analog switch, a comparator, and an inverting amplifier, as illustrated in Figure ??.

The conjoint sign function between the signals f (t) and g(t), illustrated in Figure 6, two comparators and an analog XOR gate.

Another multiset operation that needs to be electronically implemented concerns the here called signification, which consists of implementing the sign provided by a sign function s f into a respective function f (t). Observe that this operation can be understood as corresponding to the inverse of the absolute value operation. Indeed, the absolute operation on any signal f (t) followed by the respective signification will recover the original function f (t).

Elementwise Common Product Implementation

Having proposed preliminary respective electronic implementations for several important multifunction opera- The elementwise common product (Section 3) is shown in (d) together with the original functions f (t) and g(t). Observe that the common product corresponds to the regions of the two functions that are common while taking as reference the horizontal axis.

Figure 3: The sign detection operation can be immediately implemented by using a comparator.

tions, we are now in position to propose a complete design of an elementwise common product operator, which is shown in Figure 8. This suggested design involves only three operational amplifiers, five comparators, for switches and an analogic XOR gate. This implementation is aimed mostly as a proof or concept, being by no means intended to be particularly operational or effective. Indeed, much more efficient designs can be achieved at the level of more basic componentes such as transistors, especially when considering implementations in integrated electronics. One aspect deserving particular attention regards the need to condition and control the high frequency switch- Observe that, except for eventual electronic artifacts, the conjoint operator followed by the respective significator will have not effect on the input signal f (t), as these two operations are one the inverse of the other.

ing noise implied by the four analog switches. This can be addressed by incorporating respective low-pass capacitors and related techniques, though at the probably expense of signal speed. Additional research is required before an operational version of the proposed implementation of the elementwise common product can be obtained.

Concluding Remarks

Electronics and signal processing have intensively relied on algebraic operations such as sums, subtractions and products between functions.

The recent generalization of multiset concepts to take into account real-valued functions has paved the way to a wide range of possible new concepts, developments, and applications.

In this work, we addressed the possibility to establish analogous implementations of each of the main multiset/multifunction operations, including the sign and conjoint sign functions, the minimum (intersection) and maximum (union) between pairs of signals, as well as the absolute value and the inverse operation of signification.

These developments allowed us to propose a complete possible implementation of the elementwise common product, which is the basic element in the respective common product and common product correlation between signals, all of which have been shown to have impressive potential for several applications such as in signal processing, patter recognition, deep learning, and control systems.

Further developments include but are not limited to devising more effective and operational implementations of the elementwise common product, as well as circuits capable of performing the common product and respective correlation. Particular attention should be given to controlling and conditioning the switching noised implied by the analog switches. Respective works are in development and the results should be communicated opportunely. 
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 1 Figure 1: Two functions, namely a complete period of cosine (a) and sine (b), as well as their respective sign function s(c-d) and conjoint sign function (e).

Figure 2 :

 2 Figure 2: Real-valued multifunction operations of intersection (a), union (b) of f (t) and g(t), and absolute value (c) respectively to f (t).The elementwise common product (Section 3) is shown in (d) together with the original functions f (t) and g(t). Observe that the common product corresponds to the regions of the two functions that are common while taking as reference the horizontal axis.
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 4 Figure 4: The intersection and union real-valued multiset operations can be readily implemented by using an analog switch and an operational amplifier, both of which being standard devices in electronics.
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 5 Figure 5: The absolute value operation s f f (t) can be implemented by using an analog switch, a comparator, and an inverting operational amplifier.

Figure 6 :

 6 Figure 6: The conjoint sign function s f g can be obtained by combining two comparators and an analogic XOR gate.

Figure 7 :

 7 Figure 7: The signification operation takes an absolute value function s f f (t) and recovers its respective signed original form f (t).Observe that, except for eventual electronic artifacts, the conjoint operator followed by the respective significator will have not effect on the input signal f (t), as these two operations are one the inverse of the other.

Figure 8 :

 8 Figure8: An implementation of the elementwise common product employing comparators, operational amplifiers, and analog switches. This circuit is capable of identifying the common area between the two input signals f (t) and g(t). The integration of the elementwise product, which can be obtained by adding just another operational amplifier, provides an effective quantification of the similarity between the two signals. Observe that this operation is intrinsically non-linear as a consequence of the minimum operator. More effective designs can be obtained by taking advantage of redundant portions of this design. Particularly effective integrated electronics implementations can be obtained. A point deserving special attention regards the switching noise implied by the analog switches.
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