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a b s t r a c t 

Progress in digitalization opens opportunities to capture accurate transportation logistics data and pro- 

vide advanced decision support, which leads into the question of how to efficiently exploit this progress 

in order to improve solution quality in transportation services. Here we address this issue in the con- 

text of a dynamic and stochastic patient transportation problem, where besides considering new events, 

we also incorporate stochastic information about future events. We propose different anticipatory algo- 

rithms and investigate which algorithm performs best according to the given settings in a real-world 

application. We therefore address different types of dynamic events, appropriate response times, and the 

synchronization of real-world data with the plan. In order to test and analyze how the algorithms behave 

and perform, we apply the concept of a digital twin. The implemented anticipatory algorithms compared 

here are a sample scenario planning approach and two waiting strategies. The question of the value of 

more sophisticated algorithms compared to algorithms with less computational effort is investigated. The 

experimental results show that solution quality benefits from incorporating information about future re- 

quests, and that simple waiting strategies prove most suitable for such a highly dynamic environment. We 

find that in highly stochastic environments, a rescheduling should be done whenever a new event occurs, 

whereas in less stochastic environments it is better to let the optimization engine run a bit longer and 

not start reoptimization after every new event. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Recent advances information technology (detailed tracking in- 

ormation, efficient data storage, mobile communications, etc.) pro- 

ide a strong foundation for extensive data collection and real- 

ime support, and the allied increase in computing power facil- 

tates improvements in solution quality by processing this data. 

esearch attention in the area of transportation problems has re- 

ently turned to focus on dynamic and stochastic approaches, 

here besides considering dynamic events, information about pos- 

ible future events is incorporated during the solution-finding pro- 

ess. The focus of research is mainly on obtaining better results 

y incorporating stochastic information compared to the pure dy- 

amic counterpart. Even though most dynamic and stochastic solu- 

ion approaches show that solution quality benefits from incorpo- 
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ating stochastic information, it usually comes at a cost of higher 

omputational and implementational effort. However, modern de- 

ision support systems demand real-time decision-making, which 

equires fast reactions and responses. Crainic, Gendreau, & Potvin 

2009) assert that, there is a gap between state-of-the-art opti- 

ization methods and their applications in real-time decision sup- 

ort systems. A crucial advance to close this gap would be to pro- 

ide solutions where the time for computational calculations is 

ppropriate to the dynamics of the given system. Little research 

as attempted to compare more sophisticated solution approaches 

gainst approaches that are less costly in terms of implementation 

nd computation effort. Research questions thus arise on the value 

f applying a complex approach instead of using approaches re- 

uiring less time and effort, and on the suitability and applicability 

f different approaches for various dynamic factors. 

In this work, we present different anticipatory algorithms for 

 patient transportation problem and analyze their performance. 

e investigate which algorithm performs best according to the 

iven settings in a real-world application, such as different dy- 

amic events, short response times, and the synchronization of 
 under the CC BY-NC-ND license 
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Fig. 1. System overview of a digital twin-based framework. Whenever a new event happens, the current state of the digital twin (A) and the best result from the background 

optimization (B) are synchronized and the appropriate instance (AB) is handed to the decision-maker. After considering the new event information and replanning (short 

response time), the updated plan (C) is sent to both the digital twin and the background optimization. 
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eal-world data with planning data. Furthermore, we demonstrate 

hat besides the classic degree of dynamism introduced by Lund, 

adsen, & Rygaard (1996) , there are other crucial aspects that de- 

ermine the dynamism in such a system. This dynamism is an es- 

ential factor because it dictates the frequency of replannings and 

djustments and thus the computational time of the optimization 

lgorithms. For the algorithmic comparison, we develop two types 

f optimization approaches that incorporate stochastic information 

bout future events. The first type implements a waiting strategy 

hile the second type is a sample scenario approach. The waiting 

trategy determines suitable locations along a route for waiting, 

ith the aim of positioning vehicles to areas where new customer 

equests are likely to arise. This can be done by applying a priori 

ules like drive first or wait first , or by incorporating stochastic in- 

ormation about future events, as done here. In a sample-scenario 

pproach , a sample that includes scenarios with possible future 

vents is generated at any decision point and then used as known 

nformation in the optimization algorithm. Furthermore, the per- 

ormance of the algorithms is evaluated by considering different 

ynamic scenarios, such as dynamic requests and dynamic service 

nd-times. To guarantee a fair comparison, the information about 

uture events is obtained from a stochastic model and the same 

asic optimization algorithm is used for all approaches. 

To test the performance of the optimization algorithms in a 

eal-world environment, we implement a digital twin-based frame- 

ork. The digital twin mirrors the real-world framework (vehicle 

ovements and actions, service and travel times, etc.) and en- 

bles practical development, testing and analysis of our solution 

pproaches. In order to obtain high solution quality despite short 

esponse times, a background optimization process is integrated. 

henever dealing with a dynamic real world, it is necessary to 

ave a form of data synchronization between the current state 

nd the optimization process. In the case studied here, where a 

ackground optimization process is implemented, it is necessary to 

ynchronize the current system state and the optimized route plan 

efore moving on to consider new events and replanning steps. 

ig. 1 gives a schematic illustration of the system and the flow 

hen a dynamic event happens. Whenever a dynamic event causes 
592 
 reoptimization, the background optimization is interrupted and 

he best solution is synchronized with the current system state 

athered from the digital twin. The output of the synchronization 

rocess is an instance representing the current situation (includ- 

ng new events) for the optimization algorithms. After the reopti- 

ization, which reacts to the new data and very quickly provides 

 solution, decisions are made based on the best solution and then 

ropagated back to the digital twin as well as to the background 

ptimization. 

In this work, we make several key contributions to the field of 

esearch into dynamic and stochastic transportation problems: 

• We introduce anticipatory algorithms for a real-world dial-a- 

ride problem consisting of a large set of patient requests and 

multiple vehicles. The algorithms vary in their computational 

complexity, and the aim is to investigate the performance of 

more sophisticated approaches compared to approaches requir- 

ing less computational effort in a highly dynamic real-world 

environment. Furthermore, we investigate how the performance 

of the different anticipatory algorithms is affected when the 

dynamism in the system increases (e.g. deviation of planned 

times). 
• We present different reoptimization strategies and demonstrate 

their impact on solution quality and the value of applying an 

appropriate reoptimization strategy for the given problem. 
• Since the focus is on a real-world application, we propose a 

digital twin-based framework that enables sophisticated anal- 

ysis of the performance of the algorithms and reoptimization 

strategies. Furthermore, we address the issue of communication 

flow and data synchronization between real-world environment 

and decision-makers. This is a key issue when dealing with dy- 

namic vehicle routing problems, but it is often neglected in the 

literature. 

Furthermore, the key experimental findings in this work are: 

• Implementing the background optimization and the required 

synchronization process is worth the effort because results 

show an average 50% improvement on the primary objective. 
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• The frequency of calling reoptimization procedures is a cru- 

cial factor because it has an impact on the runtime of the 

background optimization. Results show that strategies involv- 

ing more frequent reoptimizations yield better results when the 

number of dynamic events increases. 
• The experimental results on the comparison of different antic- 

ipatory algorithms show that on aggregate, the waiting strate- 

gies yield better results than the sophisticated sample-scenario 

approach. 

This article continues with a review of relevant literature in 

ection 2 and a detailed description of the problem in Section 3 . 

ection 4 describes the basic optimization algorithm and its an- 

icipatory adaptations in detail. Section 5 includes a description of 

he instances generated from real-world data, the parameter set- 

ings, and the results of the performance comparison between the 

lgorithms developed. Finally, Section 6 summarizes our work and 

ives perspectives for future work. 

. Literature review 

Dynamic and stochastic transportation problems have gained 

ncreasing research attention in the past few years. As our work 

onsiders multiple aspects (like data availability, modeling, system 

esign, real-life application, anticipatory algorithms, and the prob- 

em class), here we review the most significant contributions. 

.1. Available information and uncertainty 

Vehicle routing problems (VRPs) can be categorized based on 

vailable information and uncertainty, as introduced in Schorpp 

2010) and utilized in Pillac, Gendreau, Guéret, & Medaglia (2013) . 

he first category is the static VRP , which has different formula- 

ions presented in Toth & Vigo (2001) , Cordeau, Laporte, Savels- 

ergh, & Vigo (2007) , Laporte (2007) and Laporte (2009) . The 

econd category, dynamic VRPs (DVRP) is a well-studied category 

here not all information (mostly customer requests) is known 

n advance. The degree of dynamism introduced by Lund et al. 

1996) and refined in Larsen, Madsen, & Solomon (2002) expresses 

he dynamics in a system as a ratio of dynamic requests to to- 

al number of requests. Variants of the degree of dynamism are 

iscussed, including information about time windows and reac- 

ion time (temporal distance between the time a request becomes 

nown and the end of the time window) as well. Broad reviews on 

VRPs can be found in Psaraftis (1995) , Jaillet & Wagner (2008) , 

illac et al. (2013) , and Psaraftis, Wen, & Kontovas (2016) . As 

hown in Psaraftis et al. (2016) , the scholarship mainly considers 

ynamic customers, followed by dynamic travel times and vehi- 

le breakdown, but very little research has addressed dynamic end 

imes of services ( Yan et al. (2019) ). In many real-world applica- 

ions, one or several parameters are uncertain. The third category 

s stochastic VRPs , which deal with uncertain information about 

uture events (e.g. stochastic demands, requests, travel times, or 

ervice times). A literature review is given in Oyola, Arntzen, & 

oodruff (2017) , a review of recent advances and future direc- 

ions can be found in Gendreau, Jabali, & Rei (2016) , and a uni-

ed framework for stochastic optimization is presented in Powell 

2019) . The fourth category is the dynamic and stochastic VRP , con- 

idered here. This type of VRP is now attracting greater research 

ttention, as is has the advantage of efficiently handling dynamic 

vents while also incorporating stochastic information based on 

reviously revealed data into the solution approaches. The survey 

y Ritzinger, Puchinger, & Hartl (2016b) summarizes recent liter- 

ture in this area and analyzes the difference in solution quality 

hen considering purely dynamic or stochastic approaches com- 

ared to approaches that consider dynamic and stochastic aspects 

ogether. 
593 
.2. Modeling dynamic and stochastic information 

The increasing availability of data and computing power de- 

ands new views and models for decision support( Savelsbergh 

 Van Woensel (2016) ) and brings new challenges in terms of 

odeling dynamic events while at the same time incorporat- 

ng stochastic information about future events ( Speranza (2018) ). 

lmer, Goodson, Mattfeld, & Thomas (2020) recently provided a 

odeling framework connecting applications and methods for dy- 

amic and stochastic VRPs. There is growing interest in same-day 

elivery problems , which is a dynamic routing problem where cus- 

omer requests arise during the day and vehicles have to pick up 

he goods at the depot before serving the request and where in- 

ormation about future requests is incorporated in order to make 

etter decisions. Voccia, Campbell, & Thomas (2019) propose a 

olution method based on a multiple scenario approach as intro- 

uced in Bent & Van Hentenryck (2004) for a multi-vehicle dy- 

amic pickup and delivery problem, and Ulmer, Mattfeld, & Köster 

2018) implement an approximate dynamic programming (ADP) al- 

orithm ( Powell, Simao, & Bouzaiene-Ayari (2012) ) where immedi- 

te and future impact is considered as an input to decision-making 

or single-vehicle routing. Similar to this problem is the dynamic 

ispatching problem , as investigated in Van Heeswijk, Mes, & Schut- 

en (2019) via an ADP algorithm and in Klapp, Erera, & Toriello 

2018) who applied a rollout algorithm of an a priori policy. These 

pproaches are computationally intensive and applied on single- 

ehicle problems or relatively small instances and are therefore un- 

uitable for large-scale instances like in our case. 

.3. System design 

An important task when dealing with dynamic problems is the 

esign and implementation of a system that is capable of handling 

ynamic events and evaluating the performance of the algorithms. 

ne possibility is to implement an event-driven system where pre- 

efined events cause a reoptimization (start a decision epoch) such 

s in Steever, Karwan, & Murray (2019) , Bent & Van Hentenryck 

2004) , and Schilde, Doerner, & Hartl (2011) . Another possibility is 

o define periodic decision points for updating operations ( Klapp 

t al., 2018; Najmi, Rey, & Rashidi, 2017 ). One factor in preferen- 

ially choosing a time-driven or event-driven implementation lies in 

he expected response time of the system. For quick reactions to an 

vent, the better way is to implement an event-driven approach, 

ecause periodical reoptimization may imply a longer lag to re- 

ction. Pillac, Guéret, & Medaglia (2012b) distinguish between pe- 

iodic reoptimization and continuous reoptimization , where periodic 

eoptimization approaches start with a solution, and updates are 

erformed whenever a new optimization trigger is given. To mini- 

ize response time to the dispatcher optimization algorithms with 

hort computational times are needed, as proposed in Lin et al. 

2014) , Najmi et al. (2017) and Steever et al. (2019) . Continuous 

eoptimization approaches perform optimization throughout the 

ay (background optimization) and store solutions in an adaptive 

emory (or solution pool) and the information from the mem- 

ry is aggregated whenever a reoptimization is triggered. Such 

pproaches are presented in Gendreau, Guertin, Potvin, & Tail- 

ard (1999) and Bent & Van Hentenryck (2004) . However, the in- 

emory solutions have to be coherent with the current system 

tate. The system design and the communication between the op- 

imization and the real-world configuration are often neglected in 

he literature. For example, some approaches stop the clock for the 

eoptimization procedure, whereas in the real world, the clock con- 

inues. Furthermore, the models need to specify what happens if 

nother event arises in the meantime. In this work, we address 

hese points and specify how the communication and synchroniza- 

ion between the system and the real world can be handled. A fur- 
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her research question investigated in this work is the impact of 

ifferent reoptimization strategies with respect to solution quality. 

o the best of our knowledge, the impact of frequency of reop- 

imization is only considered in Archetti, Feillet, Mor, & Speranza 

2020) . 

.4. Real-time vehicle routing 

A review on solution concepts and algorithms for real-time ve- 

icle routing is given in Ghiani, Guerriero, Laporte, & Musmanno 

2003) . Decision support systems for dynamic routing problems 

an be found in Attanasio, Bregman, Ghiani, & Manni (2007) , Pillac, 

uéret, & Medaglia (2012a) and Lin et al. (2014) . Attanasio et al. 

2007) consider a dynamic stochastic real-time fleet management 

roblem where a travel time and demand forecast module and a 

ob allocation module are presented. The problem is implemented 

s an event-based approach with parallel solution algorithms, and 

 background optimization running when there are no dynamic 

vents to handle. In contrast to Lin et al. (2014) , where the de-

ision support system aims to deliver quick responses because the 

all center has to reply to the customers immediately, Pillac et al. 

2012a) designed an event-driven framework enabling flexible on- 

ine optimization (parallelized) for a real-time VRP with stochastic 

emands. Even though there are some very interesting approaches, 

here is still a gap between state-of-the-art optimization and em- 

edding it in real-life decision support systems ( Crainic et al., 

009 ). However, technology advancements have recently spurred 

ncreasing attention to the digital twin concept across various in- 

ustries ( Cimino, Negri, & Fumagalli, 2019 ). A digital twin is a digi-

al representation of physical objects or a system and decision sup- 

ort is an important use case for digital twins in logistics systems. 

or example, Korth, Schwede, & Zajac (2018) propose a digital twin 

or real time management of logistics systems, while Greif, Stein, & 

lath (2020) present digital twins for construction site logistics. Re- 

ent reviews on this topic are given in Jones, Snider, Nassehi, Yon, 

 Hicks (2020) and Liu, Fang, Dong, & Xu (2020) . Existing digital 

wins are mainly introduced for production and logistic systems, 

o to provide a real-time decision support system, we introduce a 

ovel digital twin-based framework for transportation problems. 

.5. Anticipatory algorithms 

One contribution of this work is that we explore the bene- 

t of sophisticated algorithms compared to approaches requiring 

ess computational and implementational effort for real-world ap- 

lications. We compare the performance of two anticipatory al- 

orithms against a myopic approach by focusing on analysis with 

ractical relevance, e.g. interaction and synchronization with the 

eal world. Similar work has been done for problem classes by 

hiani, Manni, & Thomas (2012) for a dynamic stochastic traveling 

alesman problem (DSTSP) , and in Ulmer (2019) considering a DVRP 

ith stochastic requests for one vehicle. The first algorithm for com- 

arison is a sample-scenario approach, or a look-ahead algorithm 

s defined in Ulmer et al. (2020) . Sampling approaches allow de- 

ailed short-term anticipation, which is advantageous for problems 

ith a high degree of dynamism and applicable with large prob- 

em sizes. A promising algorithm in this category is the stochastic 

ariable neighborhood search (SVNS) introduced by Gutjahr, Katzen- 

teiner, & Reiter (2007) . It is the stochastic variant of the well- 

nown variable neighborhood search (VNS) introduced by Hansen, 

ladenovi ́c, Todosijevi ́c, & Hanafi (2017) , where possible future 

cenarios are sampled and used to compare two solutions. Schilde 

t al. (2011) and Sarasola, Doerner, Schmid, & Alba (2016) suc- 

essfully implemented a dynamic SVNS, and results showed an in- 

rease in solution quality compared to a myopic approach. The sec- 

nd algorithm implements a waiting strategy ( policy function ap- 
594 
roximation in Ulmer et al. (2020) ). Experiments in Schilde et al. 

2011) show that the best results are obtained by using only a 

ingle scenario with future requests in the near future. Based on 

hat assumption, the pivotal question is whether to wait at a lo- 

ation (because it is likely that new requests will occur nearby) or 

o to the next location in the current plan. Therefore, we imple- 

ented two different waiting strategies: one similar to the work 

n Vonolfen & Affenzeller (2014) , and another that fairly distributes 

he wait times of the routes. Other fruitful waiting strategies can 

e found in Mitrovic-Minic & Laporte (2004) , Branke, Middendorf, 

oeth, & Dessouky (2005) , and Thomas (2007) . To guarantee a fair 

omparison, the information about future events is gathered from 

he same stochastic model, and we used the same basic optimiza- 

ion algorithms (dynamic VNS). 

.6. Dial-a-ride problem 

The comparison of our algorithms is performed on a trans- 

ortation problem, called the dial-a-ride problem (DARP) , where 

atients and elderly people are transported. Cordeau & Laporte 

2007) and Parragh, Doerner, & Hartl (2008) both give a sum- 

ary of DARP models and algorithms, and Molenbruch, Braek- 

rs, & Caris (2017) and Ho et al. (2018) provide recent reviews 

f DARPs. The DARP is an NP-hard problem ( Healy & Moll, 1995 )

nd for the static variant many sophisticated and efficient solu- 

ion approaches have been proposed, such as in Cordeau & La- 

orte (2003) , Parragh, Doerner, & Hartl (2010) , Parragh & Schmid 

2013) , Kirchler & Wolfler Calvo (2013) , Gschwind & Irnich (2015) , 

itzinger, Puchinger, & Hartl (2016a) , Masmoudi, Braekers, Mas- 

oudi, & Dammak (2017) , and Gschwind & Drexl (2019) . The dy- 

amic variant of the DARP (DDARP), where some information is 

evealed during the day of operation, is considered in Attanasio, 

ordeau, Ghiani, & Laporte (2004) , Berbeglia, Cordeau, & Laporte 

2010) , Wong, Han, & Yuen (2014) , Häll, Lundgren, & Voß (2015) , 

antos & Xavier (2015) , and Lois & Ziliaskopoulos (2017) . New 

ustomer requests are considered as the event that requires a 

eplanning of the current plan. Only Beaudry, Laporte, Melo, & 

ickel (2010) considers additional events, such as vehicle break- 

owns. Another variant is the dynamic and stochastic DARP (DS- 

ARP) , where different types of stochastic information, such as 

uture requests presented in Xiang, Chu, & Chen (2008) , Schilde 

t al. (2011) , Hyytiä, Penttinen, & Sulonen (2012) , or stochastic 

ravel times discussed in Schilde, Doerner, & Hartl (2014) , are in- 

orporated into the solution approaches. In contrast to the work 

n Schilde et al. (2011) , further constraints, like multiple depots, 

unch breaks, different transportation modes, and different vehicle 

ypes, are added to conjugate with the real-world scenario. Fur- 

hermore, here we incorporate stochastic information about all pa- 

ient requests, and not only the return transport trips. 

. Problem description 

Our work is motivated by a real-world application of an emer- 

ency medical service in Vienna, Austria. The organization is re- 

ponsible for handling the bulk of the patient transportation re- 

uests in this city. The aim is to complete transportation requests 

etween pickup and delivery locations under user inconvenience 

onsiderations. We thus model the problem as a DSDARP, where 

atients can request a transport from their home location to a 

edical facility (outbound request) or after the medical treatment 

rom the facility back home (inbound request). In contrast to the 

iterature, where time windows are given at the delivery loca- 

ion for outbound requests and the pickup location for inbound 

equests, here the time windows are always determined at the 

ickup location and are communicated to the patient. 
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Each transportation request r consists of a pair of nodes (p r , d r ) ,

here p r represents the pickup location and d r the delivery loca- 

ion. As we are dealing with a DDARP, there is a call time c r speci-

ed for each request r. For requests known in advance the call time 

appens before the start of the day, thus c r = 0 , while for dynamic

equests the call time is during the day with c r > 0 . A time window

s assigned to each pickup location [ e p r , l p r ] and to each delivery

ocation [ e d r , l d r ] . It defines the earliest possible start time e p r ( e d r )

nd latest possible start time l p r ( l d r ). The length of the time win-

ow at the pickup node is defined according to the priority of a re-

uest o r = { low, medium, high } . As requests cannot be rejected, the

ime windows are modeled to be soft, and so we have to ensure 

hat new requests can be inserted into any solution. Starting the 

ervice after l p r (respectively l d r ) is allowed but leads to a penal- 

zation (lateness) in the objective function. Patients may demand 

ne of three transportation modes and they may or may not be 

ccompanied by a carer. The resulting demand of a pickup node is 

ither seated q 1 p r 
= 1 , lying q 2 p r 

= 1 , or in a wheelchair q 3 p r 
= 1 , and

henever the patient is accompanied, q 1 p r 
is increased by 1. The 

emand at the delivery node is exactly the negative demand of the 

ickup node. A similar formulation for a static DARP with hetero- 

eneous patients is presented in Parragh (2011) . In our case, some 

f the transport requests are declared as internal with a demand of 

, because goods are transported instead of patients, but since the 

oods are sensitive medical material, time windows and ride time 

imits are assigned as well. Furthermore, the service time needed 

o load the patient at the pickup location is given by s p r , while the

ervice time to unload the patient at the delivery point is given 

y s d r . To address user inconvenience, one constraint in the DARP 

andles the user ride time , which ensures that the patient is not in

ransport for longer than a specified maximum user ride time. As 

e consider a real-world network, the maximum user ride time 

or each request u r depends on the direct travel time ˆ t p r d r from 

he pickup node to the delivery node of request r. Based on the 

ractical experience of the emergency medical service, we allow a 

etour of at most 30 min: t p r d r ≤ ˆ t p r d r + 30 . 

All the patient requests are served by a fixed fleet of hetero- 

eneous vehicles, which are based at different depots in Vienna. 

ach vehicle k has a depot o k and a time window [ ̄e k , ̄l k ] assigned,

epresenting the start and end time of its shift. A vehicle is not 

llowed to leave the depot before ē k and should not return back 

o its assigned depot o k later than l̄ k . Returning later to the de- 

ot causes overtime and is penalized in the same way as violating 

he time window constraint at customer nodes (lateness). Since 

he shifts of the vehicles are longer than 6 hours, a lunch break 

 k must be scheduled within a given hard time window [ e b k , l b k ] .

o schedule a lunch break, the vehicle must be empty. There are 

hree types of vehicles with three different modes of transporta- 

ion available: seat, stretcher, and wheelchair. The available capac- 

ties of a vehicle are specified as a vector C k = < C 1 
k 
, C 2 

k 
, C 3 

k 
> , with

 

1 
k 

for seated patients, C 2 
k 

for lying patients, and C 3 
k 

for patients 

n a wheelchair. The vehicle types differ in the maximum avail- 

ble capacities of the transportation modes, e.g., vehicle type 1 has 

 k = < 4 , 1 , 1 > , vehicle type 2 has C k = < 4 , 0 , 1 > , and vehicle type

 has C k = < 4 , 0 , 0 > . Note, that upgrading conditions are applied

s in Parragh (2009) . For example, vehicle type 1 can transport ei- 

her a lying patient or a patient in a wheelchair at the same time. 

nother example for vehicle type 1 is that if no lying patient is 

ransported, two seated persons can be placed on the stretcher in- 

tead, but if a lying patient is aboard, the maximum capacity of 

eated persons is reduced by two. Since we consider a multi-depot 

roblem and a heterogeneous fleet where vehicles have different 

hifts and capacities assigned, we introduce a pair of vehicle nodes 

v k s , v k e ) for each vehicle k . Vehicle routes start at v k s and end at

 k e instead of starting and ending at a single depot node. As the 

umber of vehicles is given, the focus is on reducing travel times 
595 
o increase the number of requests fulfilled on time. The aim is to 

onstruct vehicle routes such that all patient requests are served 

ithout violating the precedence constraint, user ride time, lunch 

reak time windows, and capacity constraints. A lexicographic ob- 

ective function is used, which supposes that an order is given 

mong the various objective functions. The primary objective is to 

inimize the total lateness, which consists of late arrival at pa- 

ient requests and vehicle overtimes over all routes. Any ties are 

esolved using the secondary objective which is to minimize the 

otal travel time of the vehicles. 

The planning horizon of the problem consists of one working 

ay P = [0 . . . T ] . As we are dealing with a dynamic DARP, we dis-

inguish between static requests, which are known in advance with 

all time set to c r = 0 , and dynamic requests arising during the 

ay with call time 0 < c r < T . The reaction time of a request w r 

s defined as the period between the call time c r and the latest 

ossible start of service at the pickup location l p r . Larsen et al. 

2002) define several ways to express the level of dynamism in 

 dynamic routing system. The simplest one is the degree of dy- 

amism, which is the number of dynamic requests n imm 

relative to 

he total number of requests n tot . If there are call times and re- 

ction times available, a more meaningful way to express the dy- 

amics of the system is the effective degree of dynamism accounting 

or reaction times : edod tw 

= 1 /n tot 
∑ n tot 

1 
(1 − w i /T ) , as also defined

n Larsen et al. (2002) . The service times used in the solution ap-

roaches are average values based on historical data. Often, in re- 

lity, these times cannot be met because patients are not always 

eady for pickup when the vehicle arrives, or the delivery at the 

edical facility takes longer due to unexpected events. Thus, addi- 

ional dynamic events can arise whenever the service time in real 

ife deviates from the one in the plan. In this work, we consider 

wo variants of dynamic scenarios: (i) only new patient requests 

re considered as dynamic, and (ii) in addition to the dynamic re- 

uests, the service times are modeled as dynamic events. 

. Solution methods 

A major aim of this paper is to compare the performance of an- 

icipatory algorithms for a real-world patient transportation prob- 

em. To ensure that the differences in solution quality are based 

n how information about future events is incorporated, we imple- 

ent a meta-heuristic approach that can efficiently solve the real- 

orld DARP. The algorithm is VNS-based, using the same operators 

nd settings for all solution approaches to guarantee a fair com- 

arison of the performance of the anticipatory algorithms. Next, 

e propose a digital twin-based framework that mirrors real-world 

ehavior. This is essential to appropriately analyze the developed 

lgorithms in terms of solution quality and performance for an ap- 

lication in the field. The next section gives a detailed description 

f the anticipatory algorithms. First, we present a sample scenario 

pproach (SVNS), and then the anticipatory algorithms implement- 

ng waiting strategies. 

.1. Solution approach for a real-world 

DARP The base algorithm in this work is responsible for con- 

tructing a route plan for the medical emergency service fleet to 

erve all patient transportation requests. Many constraints must be 

ulfilled to cope with the real-world DARP, as specified in Section 3 . 

lmost all constraints are covered in the literature, but the chal- 

enge is to respect all of them simultaneously. In the following, we 

resent the most successful setup, which is the result of a compre- 

ensive preliminary testing phase. 
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.1.1. Route evaluation 

The performance of heuristics in this field (in the field of rich 

RPs such as multi-attribute VRPs) is tied to their ability to eval- 

ate solutions efficiently. Route evaluation is based on sequences, 

here information about route segments is stored and reused in 

he search process. The concept of an efficient concatenation of se- 

uences of routes is introduced in Vidal, Crainic, Gendreau, & Prins 

2014) . Here, segments of routes always start with a vehicle node, 

nd forward concatenations of single nodes are performed. In or- 

er to improve computational efficiency, only the data required for 

he forward concatenation, like data used for feasibility checks and 

or computing the objective function, is stored. This means that the 

ata holds information about the route segment and its state in 

he last node, but not the data for every single node on the route. 

or example, the accumulated violation of time windows is stored, 

ut not the exact arrival and departure time at each node. This in- 

ormation does not influence the objective value, because here the 

ser ride time is a constraint and not part of the objective func- 

ion. Therefore, the calculation of the arrival and departure times 

t a node is performed at the end for the best solution, as pro-

osed in Tang, Kong, Lau, & Ip (2010) . The relevant data is com-

uted by an appropriate calculator, which calculates the values for 

apacity, time window violations, user ride times, and the best slot 

or the lunch break. Below we briefly describe the components of 

he data calculator. 

Capacity Demand per transportation modes is given for each 

ode (pickup and delivery) as well as the capacity for the vehi- 

le nodes. The data stored for a sequence is an array representing 

he currently available capacity of each transportation mode in the 

ast node. To handle the upgrading conditions correctly, it is neces- 

ary to store a flag, i.e. whether or not there is a lying patient on

oard. For example, if the available capacity of a sequence is C k = <

 , 0 , 1 > and forward extension at a delivery node with two seated

atients is done, no information is given on whether C 2 
k 

= 0 , be-

ause a lying patient or seated persons are placed at the stretcher. 

n cases where a lying patient is aboard, the newly available capac- 

ty after delivering two seated patients is C k = < 2 , 0 , 1 > , but if no

ying patient is loaded, the new capacity is C k = < 2 , 1 , 1 > , because

f the upgrading conditions. 

Time windows The calculation of time window feasibility and 

iolation is based on the concept of time window relaxation in- 

roduced in Nagata, Bräysy, & Dullaert (2010) and extended by 

chneider, Sand, & Stenger (2013) for the VRP with time windows. 

he idea is that the time window penalty of a sequence is accu- 

ulated in order to meet the time window constraint. In this way, 

he violation of a time window is not propagated to a later node 

n the sequence, but the value is stored and can be used for the 

orward concatenation, i.e. calculation of the objective value (late- 

ess). Since we introduce vehicle nodes, this concept works for the 

vertime calculation as well. The data set stored for a sequence 

s the accumulated time window violation, the earliest and latest 

ossible departure time of the first node (vehicle node), and the 

uration of the segment. 

User ride time The most challenging part is to efficiently per- 

orm calculations for the user ride time constraint. Routes and 

chedules are usually generated by following the principle of start- 

ng the service at a node as early as possible. Unfortunately, this 

rinciple does not work for the DARP. It can happen that starting 

he service later at a pickup node p i will prevent waiting at a later

ode, thus decreasing the user ride time of request i (making it 

easible). The crucial part in the forward concatenation is to calcu- 

ate and store information about the latest possible delivery time 

or the open requests on the route. A request is called open if the 

ickup location is already visited, but not the corresponding deliv- 

ry location. The implementation in our calculator for the user ride 
h

596 
ime constraint follows the work presented in Gschwind & Irnich 

2015) , and Gschwind & Drexl (2019) . 

Lunch breaks Since it is requested to schedule lunch breaks for 

he vehicles, a route evaluation operator is introduced to account 

or the best choice of time and place, based on the work in Vidal

t al. (2014) . The idea is that data with a scheduled lunch break

nd data without a scheduled lunch break are stored for every 

oute segment. For the data set with a scheduled lunch break, the 

ime of the lunch break is reflected in the duration of the time 

indow calculator, and the position of the lunch break is also 

tored. With any forward concatenation of a node, again data with 

r without a scheduled lunch break is computed, and the better 

olution is stored for the new segment (dominance check). The 

est position (place and time) for the lunch break on a route is 

hus computed. 

.1.2. Meta-heuristic approach 

Several publications show the success of VNS-based solution 

pproaches for the DARP, as in Parragh et al. (2010) , Schilde et al.

2011) and Molenbruch et al. (2017) . We therefore opt for a Gen- 

ral VNS (GVNS) to solve the given real-world DARP. A detailed de- 

cription of the GVNS is given in Hansen et al. (2017) . It consists of

 shaking procedure (to escape the local minima) and an improve- 

ent procedure ( local search ) which is a variable neighborhood de- 

cent (VND) . 

Initial solution A straightforward best-fit parallel insertion 

euristic is implemented to generate an initial solution. In a first 

tep, empty routes are constructed for each vehicle k , consisting of 

he associated pair of vehicle nodes (v k s , v k e ) . This is a reasonable

pproach as the size of the fleet is given and the minimization of 

ehicles is not an objective. The requests for insertion are sorted 

ccording to the start of the time window of the pickup nodes 

rst, and then according to the length of the time window. The 

equests are then inserted iteratively into the solution. The heuris- 

ic checks all feasible insertion positions of the pickup and deliv- 

ry node and selects the one with the lowest costs in terms of 

he objective value. This procedure is also applied to insert new 

atient transportation requests into the current plan. For the in- 

ertion of a new request, a first-fit insertion heuristic was tested 

s well as a 2-regret insertion heuristic as described in Parragh & 

chmid (2013) but they did not prove competitive with the best-fit 

nsertion approach. 

Local search The improvement procedure within the VNS is a 

ND. The VND explores several neighborhood structures in a se- 

uential way in order to improve the current solution. We apply 

he sequential neighborhood change step, as described in Hansen 

t al. (2017) , where the order of the neighborhood structures is 

efined. Whenever an improvement is found in some neighbor- 

ood structure, the search continues with the first neighborhood 

tructure, otherwise the search goes on with the next neighbor- 

ood. The applied search strategy is a first improvement policy, and 

he moves in a neighborhood are explored in random order. The 

rocedure stops when a local optimum is reached in every sin- 

le neighborhood. Since a large search space must be explored 

large instances) and computational times are restricted, we also 

ntroduced a move limit within a neighborhood structure. Four 

oves defining the neighborhood structures are applied. When- 

ver a move is performed, it is ensured that both the pickup and 

elivery node are moved. The relocate move shifts a request from 

ne route to a different route, while the exchange move swaps the 

osition of two pickup nodes of different routes and inserts the 

orresponding delivery node to the other route. Based on the zero 

plit concept presented in Parragh et al. (2010) , we introduced two 

ore moves. A zero split point of a route is given whenever the ve- 

icle load is 0, and so the block relocate move shifts a sub-sequence 
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f nodes between two zero split points from one route to another 

oute. The block exchange move swaps sub-sequences of nodes be- 

ween zero split points of two different routes. 

General VNS The aim of the shaking procedure in the VNS is to 

ry to escape the local minima by performing larger moves. In this 

ork, several shaking neighborhoods are defined that differ in the 

umber of routes, and the neighborhoods are changed cyclically. 

he shaking move randomly selects a given number of routes and 

emoves a request from each route, also selected randomly. The 

emoved requests are then re-inserted into the solution. Since only 

easible solutions are created, any shake move is accepted, even if 

he objective is worse. After an iteration of the VNS (shaking and 

ocal search), the candidate solution will be accepted if the objec- 

ive value is better than the current solution. The stopping crite- 

ion of the VNS is a time limit. Since response times are critical in

eal-world applications, it is ensured that the VNS stops after the 

iven time limit. Therefore, the time limit is also propagated to the 

ND algorithm, because otherwise finishing the VND would cause 

 time limit violation. 

.2. Dynamic solution framework 

The dynamic behavior of the problem requires a simulation and 

ecision-making framework in order to effectively handle problem- 

pecific information and enable adequate testing of the proposed 

lgorithms. Fig. 1 depicts the framework, which consists of two 

ajor parts. One part is the digital twin, responsible for the repro- 

uction of the real-world environment. Besides the simulation of 

he real world (moving the vehicles accordingly), it is also respon- 

ible for time management and for preparing the instance data (ve- 

icle data, request information, call times, travel times, etc.). The 

ther part is the decision-maker , which includes the event handling 

nd the optimization of the problem instance obtained from the 

igital twin module. Based on the solution of the optimization al- 

orithms, decisions are made and communicated back to the dig- 

tal twin. In addition, this information is also handed to the back- 

round optimization, which is part of the decision-maker module, 

ith the aim of utilizing the time between events to improve so- 

ution quality. The design of the communication between the dig- 

tal twin and the decision-maker is an essential part. The goal is 

o define a setup, which corresponds to the given real-world prob- 

em, to ensure appropriate information about the solution quality 

f the algorithms, and to allow easy transition from digital twin to 

eal-world practice. Note that many simulation frameworks in the 

iterature focus on testing the developed dynamic algorithms but 

ail to address interaction with the simulation, and thus the real- 

orld setting. Though some approaches react to new requests and 

ntegrate them into the current solution, the point in time when 

he solution is propagated back to the real-world is not defined. 

ther approaches define allowed response times (e.g. one minute), 

ut fail to define what happens if new events arise in the mean- 

ime. Our framework addresses these points and provides a com- 

unication strategy and synchronization process between the real 

orld and the decision-maker. At the end of the simulation (e.g. 

ne working day), the digital twin has stored all movements of 

he vehicles, such as time of arrival, start of service, end of ser- 

ice, and the departure time of all stops. This final state is taken 

nto account for analysis and evaluation of the performance of the 

lgorithm. In the following, we describe the essential parts of the 

igital twin, while the decision-maker module consists mainly of 

he optimization algorithms proposed in this work. 

Event handling Because quick reactions to changes in the en- 

ironment are expected, the framework is set up in an event- 

riven way. Decisions can thereby be provided immediately after 

he events responsible for keeping daily business running. There 

re two types of events in the system. First, whenever new re- 
597 
uests materialize, a new event is created. The second type con- 

erns the state of the vehicles. The digital twin-based module im- 

lements a state machine where all possible vehicle states and 

ransitions are defined. Whenever a state transition occurs (e.g. 

rom vehicle is en-route to vehicle arrives at location ), an event is 

aised. Note that an event is raised at all defined state transitions, 

ut the decision on which event triggers a reoptimization of the 

oute plan falls under the responsibility of the decision-maker. This 

esults in different reoptimization strategies. In the default setting 

strategy R F ), the decision-maker listens to new request events and 

vents when a vehicle finishes the service at any location . However, 

s demonstrated in the results section, it is worth testing how the 

lgorithms perform for various event handling mechanisms, e.g. 

vents trigger a reoptimization when a new request arises and at 

ero split points instead of each stop location (strategy R Z ), or re- 

ptimization is done only at new request events (strategy R N ). De- 

ending on event type, a response time limit can be defined in 

he framework. In our case, response times are rather short (1 s) 

or all events. Since the driver only knows the current transporta- 

ion request, it is vital that when a vehicle finishes its service at a 

ero split location, the information about the next trip gets commu- 

icated immediately. Also, if the new request requires immediate 

ervice, the new plan has to be quickly available. Response times 

re thus assumed to be short for all events (1 s) in this framework. 

Interaction There are two directions of communications in the 

ramework. On one hand, the digital twin module is responsible for 

ropagating system changes and providing the current system state 

o the decision-maker. On the other hand, the decision-maker is in 

harge of sending an updated plan back, in order to continue ap- 

ropriately. Thus, the transformation from real-world status to an 

ptimization problem, as well as the transformation from a route 

lan back to the real world must both be provided correctly and 

n a well-defined manner. In this system, the interaction is event- 

riven. Once an event happens, the current system state is trans- 

ated to a problem instance for optimization. Since the redirection 

f vehicles which have transport in progress is not allowed, reop- 

imization starts at the next zero split point of the route (vehicle 

s empty again), and currently served stops are not considered for 

eoptimization (frozen stops). Hence, the instances consist of all 

nown requests (requests scheduled after the zero split point and 

f so new requests) and updated vehicle information. The start lo- 

ation and the start time of the vehicle are set to the values of the

ast frozen stop (location and end of service time). This instance is 

hen optimized until the given time limit is reached, and the new 

oute plan (combined with the frozen stops) is handed back to the 

igital twin module in order to continue. The correct transforma- 

ion is a crucial part when implementing the framework, because 

therwise the wrong system state is optimized, or else a failure in 

he route plan causes incorrect moving of the vehicles in the sim- 

lation. 

Background optimization Another feature of our framework is 

hat background optimization runs continuously as the response 

imes are rather short. The advantage is that the time between 

vents is used for further optimization, but with the issue that the 

esult of the background optimization must be synchronized with 

he current system state. The same optimization algorithm is used 

n the background optimization as in the decision-maker module, 

ut it runs in a distinct thread without a time limit. By the time 

he route plan is handed to the digital twin module, the back- 

round optimization is started with the same plan as the start- 

ng solution. Whenever a new event happens, the background op- 

imization is stopped and its best known solution is synchronized 

ith the current system state. This is important, because the state 

nd the solution can diverge since the background optimization 

oes not know what is going on in the simulation, and thus in 

he real world. A small example in Fig. 2 illustrates the importance 
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Fig. 2. This figure demonstrates the necessity of synchronization between the system state from the digital twin module (to real-world) and the plan from the background 

optimization for the reoptimization strategy R N . Part a) shows a section of the plan after finishing an event handling process (e.g. new requests were inserted) at timestamp 

t = 5. This plan is referred back to the digital twin module and the background optimization thread as well. Parts b) and c) depict the status when the next event happens 

at timestamp t = 8. The background optimization is stopped whenever a new event happens and the current best plan is available for further optimization and depicted in 

part b). According to the background optimization, it is better to exchange the two requests ( P 3 , D 3 and P 4 , D 4 ). Conversely, the system state in part c) shows that vehicle 1 

has already departed towards P 4 and thus, cannot be replanned (frozen stop). This small example demonstrates the need for synchronization when dealing with real-world 

problems, which has often been neglected in the literature. 
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f the synchronization step. Thus, before using the plan from the 

ackground optimization in the next optimization step (consider- 

ng the new event), it is adjusted to the current system state. If 

nfeasibilities arise, the corresponding requests are removed from 

he solution and re-inserted in the next optimization step (to- 

ether with possible new requests). After the optimization, the 

ackground optimization thread is restarted with the new plan as 

tarting solution and it runs until another event triggers a reopti- 

ization. In this application, inter-arrival times of events are short 

due to the large instance size), which means that the time for 

he background optimization is short as well. Although longer run- 

imes are usually beneficial, it would come with the drawback of 

ncreasing the divergence between the current state and the plan 

rom the background optimization. 

.3. Anticipatory algorithms 

Based on the fact that some of the patient requests recur on a 

egular basis (e.g. dialysis patients) and that historical data is avail- 

ble (like time windows, request types, locations of pickup and de- 

ivery), information about possible future events can be exploited 

uring the planning phase. Therefore, a stochastic model is imple- 

ented, which computes information about the expected future 

equests. The stochastic model aggregates geographical information 
598 
nd time information, computing the number of expected requests 

or each pair of districts within the next hour. To provide a fair 

omparison of the anticipatory algorithms, the information from 

he stochastic model is applied once as scenarios for a sample sce- 

ario planning approach, and once as demand information within 

 waiting strategy. The stochastic model and the anticipatory algo- 

ithms are both described below in detail. 

.3.1. Stochastic model 

Demand for patient transport trips between districts is modeled 

or one-hour intervals using Poisson models. These generalized lin- 

ar models explain the logarithm of the mean of the counts of pa- 

ient transport trips μ using a linear function of explanatory vari- 

bles x as ln (μ) = x ′ β , where β are parameters of the model fit-

ed to the data (see Zeileis, Kleiber, & Jackman, 2008 for details 

n count model regression). Similarly to Attanasio et al. (2007) , 

he explanatory variables are time of the day in one-hour inter- 

als ( time hh ) and weekdays ( Mon − Sun ). In addition, a linear trend

s added to the model as well as sine and cosine variables 

in _ i (t) = sin ( 
2 π it 

24 · 365 

) , 

hat model yearly seasonality, where t is the time interval and i = 

 . . . 4 . Finally, auto-regressive variables AR _ i and counts for trips 

n the opposite direction AR _ oppi for i = 1 . . . 24 are added to test
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Table 1 

The Poisson model for patient transport trips from the 19th district to the 9th district. 

Poisson model 

Variable name Value Std ( p -value) Variable name Value Std ( p -value) Model statistics Value 

(Intercept) −9 . 83 ∗∗∗ 1.02 (0) Mon 1 . 42 ∗∗∗ 0.23 (0) AIC 2800.16 

time _ 7 5 . 69 ∗∗∗ 1.02 (0) T ue 1 . 64 ∗∗∗ 0.22 (0) Log likelihood −1371 . 08 

time _ 8 7 . 54 ∗∗∗ 1.00 (0) Wed 1 . 51 ∗∗∗ 0.23 (0) Deviance 1804.28 

time _ 9 7 . 49 ∗∗∗ 1.00 (0) T hu 1 . 62 ∗∗∗ 0.22 (0) # Observations 10648.00 

time _ 10 6 . 02 ∗∗∗ 1.01 (0) F ri 0 . 88 ∗∗∗ 0.24 (0.0003) 

time _ 11 5 . 64 ∗∗∗ 1.02 (0) Sun −2 . 48 ∗∗∗ 0.74 (0.0007) 

time _ 12 5 . 18 ∗∗∗ 1.01 (0) cos _ 1 0 . 28 ∗∗∗ 0.07 (0) 

time _ 13 5 . 44 ∗∗∗ 1.02 (0) cos _ 3 −0 . 10 0.06 (0.1086) 

time _ 14 5 . 18 ∗∗∗ 1.04 (0) cos _ 4 −0 . 35 ∗∗∗ 0.07 (0) 

time _ 15 4 . 44 ∗∗∗ 1.09 (0) sin _ 4 −0 . 21 ∗∗∗ 0.06 (0.0007) 

time _ 16 4 . 84 ∗∗∗ 1.05 (0) AR _ opp12 0 . 61 ∗∗∗ 0.15 (0) 

time _ 17 3 . 84 ∗∗∗ 1.12 (0.0006) AR _ opp21 −0 . 16 0.10 (0.1325) 

time _ 18 4 . 13 ∗∗∗ 1.10 (0) AR _ opp23 0 . 26 ∗∗ 0.10 (0.0077) 

time _ 19 3 . 85 ∗∗∗ 1.12 (0.0006) AR _ 6 −0 . 61 0.34 (0.0764) 

time _ 20 3 . 17 ∗∗ 1.23 (0.0098) 

∗∗∗ p < 0 . 001 , ∗∗ p < 0 . 01 , ∗ p < 0 . 05 

Fig. 3. This figure depicts two examples where historical data is compared against the output of the stochastic model. The number of customer requests (y-axis) from one 

district to all other districts in Vienna is shown for different starting times ( x -axis). The left panel shows the data for the 22nd district (a suburban district), while the right 

panel gives another example for the 12th district (inner city district). 
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f return trips are booked and if trips in the same direction in 

revious hours somehow have an influence on the demand. To 

void overfitting of the models, a step wise algorithm is applied 

hat takes away or adds one variable in each step such that the 

ikake Information Criterion (AIC) is optimized (see, for instance, An 

 Gu (1989) ). An example for a resulting model for patient trans- 

ort trips from 19th district to the 9th district (where one of the 

ain hospitals in Vienna is based) is shown in Table 1 . The table

hows the variables used in the model ( Variable name ), the esti- 

ated parameter values ( Value ), the standard deviation of the pa- 

ameter values ( Std ), and the p-value of the student t -test for sig-

ificance of the parameters ( p-value ). Looking at the parameters, 

e can see that the number of trips taking place is the highest 

rom Monday to Thursday in the morning hours, and that trips in 

he opposite direction 12 and 23 hours before the time interval in- 

rease the number of trips in the current interval. Fig. 3 depicts the 

utput of the model, where the instance data is compared against 

he output data of the stochastic model. 

.3.2. Sample-scenario planning 

A sample-scenario planning approach samples stochastic infor- 

ation and constructs solutions based on sampled scenarios. Thus, 
599 
or stochastic requests, a sample consists of one or more scenarios, 

.e. possible future transportation requests. At each decision point, 

 static and deterministic problem is solved including the sampled 

nformation (requests) as known information. In our case, the sam- 

le is generated based on the information provided by a stochastic 

odel. 

Sampling A sampling procedure draws a sample Z of s indepen- 

ent scenarios ω 1 , . . . , ω s . Each scenario consists of several possi- 

le requests, based on the output of our stochastic model. Based 

n the number of possible requests for each pair of districts on 

n hourly basis, stochastic requests are generated and added to 

he scenario. The call time of the stochastic request is chosen ran- 

omly within the corresponding hour, the pickup and delivery lo- 

ations are chosen randomly within the corresponding district, and 

he time window is set randomly as well. The scenarios consist of 

equests for the entire instance, but which stochastic requests get 

sed in the optimization algorithm depends on the sampling hori- 

on S m . At each decision point, only stochastic requests where the 

ickup time window starts not more than S m minutes in the fu- 

ure are considered. Thus, the size of the applied scenario strongly 

epends on this parameter. 
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l

Stochastic VNS The implemented GVNS is extended by the SVNS 

oncept presented in Gutjahr et al. (2007) . The SVNS is based on 

he general structure of a VNS but differs mainly in the compar- 

son of solutions. Every time a comparison of solutions needs to 

e done, a sample of s scenarios is generated as described above. 

ll possible future requests of a scenario are inserted into the so- 

ution (best fit insertion), and the objective value is computed for 

he solution incorporating the future requests. In the SVNS algo- 

ithm, the solutions are compared based on the sample average es- 

imator (SAE) , which is the average objective value over all s sce- 

arios. In this way, the solution with the better average objective 

alue with respect to possible future transports, is preferred. The 

mplemented SVNS is similar to the original SVNS, except that the 

roposed tournament step is omitted because it extends runtime 

ithout meaningfully improving the results. The GVNS is adapted 

uch that before every local search, a sample Z is generated that 

espects the number of scenarios s and the given sampling horizon 

 

m . The SAE is used to explore the neighborhood structure. 

Every move evaluation within a neighborhood thus incorporates 

nformation about possible future requests. After the local search, 

 new sample is generated and the decision of whether the so- 

ution is accepted or not is again based on the SAE. Other work, 

.g. Schilde et al. (2011) and Sarasola et al. (2016) , omit the SAE 

alculation in the local search procedure for better results, but 

his is counter to the results of our preliminary experiments. Note 

hat the SAE calculation takes far more runtime but enables fewer 

oves and iterations due to the restricted response time. 

.3.3. Waiting strategies 

Results in previous work (e.g. Schilde et al., 2011 ) show that the 

ost effective setting for the SVNS is to apply a single scenario and 

 relatively small sampling horizon. We assume this setup shows a 

imilar behavior to a waiting strategy, since the sample consists 

f stochastic return transports from medical facilities in the very 

ear future. Thus, by evaluating the solution with the sample, gaps 

or possible return transports are provided at the beginning of the 

outes of vehicles currently located at medical facilities. Based on 

his assumption, and the potential of waiting strategies described 

n previously published research, e.g. for dynamic VRPs in Ichoua, 

endreau, & Potvin (2006) and for dynamic pickup and delivery 

roblems (DPDP) in Vonolfen & Affenzeller (2014) , we developed 

 waiting strategy for the problem at hand as a counterpart to the 

VNS. Another argument for applying a waiting strategy is the lim- 

ted response times in our environment. Thus, fast algorithms ex- 

loiting information about future events are desirable and enable 

s to investigate whether such an approach can compete with a 

ophisticated SVNS approach. Here we implemented two different 

aiting strategies. The first, a coverage algorithm (CA) , is based on 

he demand information provided by the stochastic model to allow 

 fair comparison against the SVNS. The second approach, an inten- 

ity algorithm (IA) , is based on the work of Vonolfen & Affenzeller 

2014) by simply utilizing historical data instead of a stochastic 

odel. The two approaches are described below in more detail. 

Coverage algorithm (CA) If wait times appear in the route plan 

etween two locations, the algorithm aims to locate vehicles at lo- 

ations in districts, where future requests are more likely to arise 

ccording to the output of the stochastic model. Note that the en- 

ire waiting time between two locations is spent either at the loca- 

ion after finishing the service or at the next location before start- 

ng the service. The aim of the presented CA here is to balance 

he number of stops with potential wait times and the number of 

ossible future demands within each district. In contrast to a sim- 

le waiting strategy (e.g. wait first , as implemented in the myopic 

pproach), the CA determines the waiting locations by an exact al- 

orithm, running as a post-processing step every time the GVNS is 

nished. Therefore, an exact model is implemented and solved by 
600 
n exact solver (CPLEX). To ensure the limited response time in our 

ystem, the time limit for the GVNS is reduced by the runtime of 

he CA (50 ms). 

For the exact CA, a set of zones Z is given that consists of all 

istricts. Additionally, a set of nodes N is defined that contains 

odes with potential wait times. This means that only nodes of the 

oute plan with node-to-node wait times are considered, the other 

odes of the route plan are not included in the problem space. Set 

 consists of those arcs (i, j) ∈ A with i, j ∈ N of the route plan,

here the vehicle has to wait either at node i or node j. For each

one z ∈ Z a demand d z is given that represents the number of pos- 

ible future requests in zone z according to the stochastic model. 

he model consists of the decision variable x z 
i 
, i ∈ N, z ∈ Z, which is

et to 1 if the vehicle has to wait at node i , and 0 otherwise. The

im is to minimize the gap between the potential wait locations 

 

z 
i 

and the demand d z for all zones. The model is defined as fol-

ows: 

in (d z −
∑ 

i ∈ N 
x z i ) 

2 , ∀ z ∈ Z (1) 

ubject to x z i + x z 
′ 

j = 1 , ∀ (i, j) ∈ A, ∀ z, z ′ ∈ Z, z � = z ′ (2) 

 

z 
i ∈ { 0 , 1 } , ∀ (i ) ∈ N, ∀ z ∈ Z (3) 

here (1) is the objective function, minimizing the gap between 

ait locations and demand for all zones, and (2) ensures that the 

ehicle waits exactly at one node (either at node i or at node j) of

he corresponding arc (i, j) ∈ A . Fig. 4 depicts the idea of the CA. 

Intensity algorithm (IA) The most decisive factor for implement- 

ng another waiting strategy is the rationale for using an inten- 

ity measure instead of a stochastic model as stated in Vonolfen 

 Affenzeller (2014) . A stochastic model needs a certain level of 

ata quality and generally requires intensive preprocessing steps 

 Ferrucci, Bock, & Gendreau, 2013 ), but this is not always given, 

specially when dealing with real-world problems. Hence, the IA 

s a counterpart to the proposed SVNS and CA that does not re- 

uire the implementation of a stochastic model. Furthermore, the 

A differs from the CA in the way that the wait time is prorated be-

ween locations according to their intensity values (the CA decides 

o wait the total time either at the current or the next location). 

he intensity value is calculated based on a set of historical trans- 

ortation requests r̄ ∈ R̄ , where the set N̄ consists of the pickup and 

elivery node of the historical requests r̄ . Based on the intensity 

alue, the wait time is distributed between the two correspond- 

ng nodes i and j. The intensity value considers the geographical 

nd temporal closeness of node i in comparison to node j. For the 

eographical closeness, a rectangle is drawn with node i as cen- 

er node, and the temporal closeness is represented by an interval 

round the service time t i of node i , which is the end of service

ime for a departure node and the start of service time for an ar- 

ival node. The calculation of the intensity value of node i con- 

iders the subset ˆ N i ⊂ N̄ , which consists of all nodes satisfying the 

eographical and temporal closeness. The intensity o i of a node is 

alculated by o i = 

∑ | ̂ N i | 
k 

ˆ t ik / | ̂  N i | , and then the ratio between nodes i

nd j is determined as I i j = 1 − (o i / (o i + o j )) . Thus, the actual wait

ime ˆ o i at node i is the available wait time y i j multiplied by the 

atio ˆ o i = y i j ∗ I i j , and the remaining time is made to wait at node

j with a wait time of ˆ o j = y i j − ˆ o i . For practical applicability and 

n order to reduce the organizational effort, wait times less than 

 minutes are not split, and the total wait time is spent at one 

ocation (if I i j > 0 . 5 at node i ). 
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Fig. 4. A small example of the idea of the CA with 6 zones (districts), giving the stochastic demand d z for zone z within the next hour (rectangles), and the potential waiting 

stops (black points) within this period. The aim is to position the vehicles such that the stochastic demand is covered in the best way, where ’covered’ means to balance the 

difference between wait stops and demand over all districts. The objective value for each zone is specified by o z . The red points in the figure represent the result from the 

CA, i.e. the determined wait stops. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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. Computational experiments 

The digital twin-based framework enables an extensive evalua- 

ion of the implemented algorithms, and the computational exper- 

ments are performed on a set of test instances generated based on 

eal-world information and data we gathered from the emergency 

edical service in Vienna. A detailed description of the instances 

s given in Section 5.1 . The framework and the optimization algo- 

ithms are implemented in Java, and experimental computations 

re performed in the VSC-3-environment ( Cluster, 2020 ). Theoreti- 

ally, each test run lasts 18 hours, starting at the 3 a.m. timestamp 

y creating an initial solution of the static requests with a runtime 

f 3 hours. The simulation of the day of operation lasts from 6 a.m. 

ntil 9 p.m. For the sake of saving computational time, the initial 

olution for each instance is calculated once and used for all test 

uns. Thus, simulation time starts at 6 a.m. and ends at 9 p.m. The 

resented results are the average objective value of 20 runs. The 

omputational effort for the results in this work is relatively high: 

btaining the final results for this section comprising 7 types of 

lgorithms, 3 reoptimization strategies, 2 types of dynamic events, 

0 instances, 20 runs, and a simulation period of 15 hours results 

n approximately 252K hours of runtime (which includes only the 

nal results presented in Sections 5.2.3 and 5.2.4 ). As stated in 

childe et al. (2011) , a speed-up factor for the simulation time does 

ot yield representative results. This is even more the case here, 

s the impact of background optimization is investigated. The pa- 

ameters for the GVNS are based on numerous preliminary results, 

nd in order to provide a fair comparison of the different algo- 

ithmic concepts (myopic vs. waiting strategies vs. stochastic), the 

ame settings are used for all variants. 

.1. Instance data 

As we had available data from an emergency medical service 

n Vienna, the generated instances are strongly based on this data. 

e generate test instances to be in line with the privacy require- 

ents of the service provider and to be able to control some of 

heir characteristics. The data available covered daily operations for 

7 months, consisting of 284,905 anonymized patient transporta- 

ion requests. For the computational experiments, we generated an 

nstance set of 4 weeks distributed over the year, considering busi- 

ess days (Monday to Friday), since the weekend patient transport 

usiness is sparse and not representative. This results in 20 test 

nstances. A substantial part of the requests is dynamic and arises 

uring the day of operation, and only a small part is available on 

he day before. The call time of static requests is c r = 0 and the dy-
601 
amic requests in the instances have their call time between 7 a.m. 

nd 6.30 p.m., since a whole day of operation is considered. Be- 

ides the call time, each request has a given due time m r at the

ickup location and a given priority o r . Based on these values, the 

oft time windows for the requests are generated such that the 

ue time plus a buffer time according to priority specify the end 

f the time window at the pickup location: l p r = m r + o r , where

 r = 10 for low, o r = 5 for medium, and o r = 0 for high priority re-

uests (in minutes). Since there is no buffer time for high-priority 

equests, the due date is the end of the time window m r = l p r . In

eneral, the service can start 10 minutes before the due time, thus 

 p r = m r − 10 ). If a vehicle arrives before e p r , it has to wait. How-

ver, there is a part of high-priority requests that have to be served 

mmediately (e.g. assistance with an emergency), thus requiring 

he start of the time window to correspond to the call time (imme- 

iate requests). For the delivery location, the time window can be 

estricted such that: e d r = e p r + s p r + ̂

 t p r d r and l d r = l p r + s p r + u r ,

here s p r refers to the service time at p r , u r refers to the user ride

ime of the request, and 

ˆ t p r d r is the direct travel time from pickup 

o delivery location. 

Average number of vehicles is 49.5 (std = 8.3%) and aver- 

ge number of transportation requests per weekday is 593.2 

std = 7.1%). Table 2 gives a summary of the average statistics of the 

nstances per week. Fig. 5 a presents the average number of call 

imes and due times per hour for all instances. The second bar dis- 

inguishes between the number of due times from the static and 

he dynamic requests. The peak at 9 a.m. and 12 p.m. for the due 

imes of static requests is based on the fact, that medical facilities 

ave specified times for special treatments (e.g. dialysis patients). 

n addition, the figure shows the high dynamics of the instances, 

ince the call times extend over the whole day. 

The service time for each location in the instances is an aver- 

ge value of the service times in the historical data, aggregated ac- 

ording to pickup and delivery location and to the transportation 

ode of a request. The average service time at pickup locations is 

6.83 minutes, while the average service time at delivery locations 

s 13.42 minutes. Note that these aggregated average service times 

re used in the optimization algorithm, while the actual service 

imes for each location are only available in the simulator mod- 

le. In this way, a set of experiments can be run where the actual 

ervice time in the real world (digital twin) may differ from the 

lanned service times. Fig. 5 b depicts the occurrence of the ac- 

ual service times of all historical requests per type (P pickup, D 

elivery) and transportation mode (I internal, L lying, S seated, W 

heelchair, M with company, O without company). Furthermore, 

ach pickup and delivery location is given by geographic coordi- 
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Table 2 

Average instance data per week (Mon-Fri). Number of vehicles, total number of requests, number of static and dynamic requests, number of outbound and inbound requests, 

number of low and medium priority requests, number of high priority requests with the share of immediate requests, degree of dynamism ( d od ) respectively, the effective 

degree of dynamism ( edod tw ), and average reaction time( w r ). 

vehicles request static dynamic outbound inbound low medium high d od edod tw w r 

week 1 47.2 579.4 124.0 455.4 254.6 244.4 3.8 182.4 317.6 | 75.6 0.778 0.770 26.91 

week 2 53.2 611.0 133.8 477.2 248.4 254.0 2.4 182.8 320.6 | 105.2 0.772 0.764 27.77 

week 3 50.4 608.0 138.0 470.0 261.8 260.6 2.2 189.0 335.2 | 81.6 0.764 0.756 29.05 

week 4 47.0 574.2 132.2 442.0 258.0 248.8 2.2 179.6 329.2 | 63.2 0.762 0.754 27.90 

avgerage 49.5 593.2 132.0 461.2 255.7 252.0 2.7 183.5 325.7 | 81.4 0.769 0.761 27.91 

Fig. 5. The two figures illustrate the high degree of dynamism (left) and the behavior of service times (right) of the given problem. 
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ates in the area of Vienna. The travel time between two locations 

s computed by Ariadne , a routing tool proposed in Prandtstetter, 

traub, & Puchinger (2013) . We verified in previous analyses that 

he travel speed of vehicles handling patient transports (in con- 

rast to emergency calls) corresponds to the regular travel speed 

n Vienna. The available fleet is gathered from the historical data, 

nd the vehicles are based at 6 different depots. Each vehicle is as- 

igned to either a shift from 6 a.m. until 2.30 p.m. or a shift from

 a.m. until 7 p.m., and an assigned time window within the lunch 

reak must be held. 

In addition to the instances, we also needed to generate sam- 

les for the SVNS algorithm. Each sample Z consists of s scenar- 

os, and the number of requests for each pair of districts per hour 

s gathered from the stochastic model. According to this amount, 

ossible future requests are generated such that a random pickup 

ocation and a random delivery location are selected for the ap- 

ropriate districts and the due time is chosen randomly within the 

iven hour. 

.2. Computational results 

In summary, the optimization algorithms differ in the way fu- 

ure information is incorporated. The myopic approach (M) does 

ot consider any future information, the two waiting strategies 

nticipate future information (CA and IA), and the SVNS incorpo- 

ates stochastic information about future requests. SVNS variants 

ith different settings in terms of number of scenarios s and sam- 

le horizon S m are considered, e.g. S.10.3, with s = 10 and S m = 3

in minutes). Then, three different reoptimization strategies are in- 

estigated: R F , R Z , and R N . All strategies perform a reoptimization 

hen a new request arises, R F also reoptimizes when a vehicle fin- 

shes the service at some location, and R Z also reoptimizes when a 

ehicle finishes the service at a zero split location (empty vehicle). 
602 
egarding the dynamic events, two settings are investigated: first, 

ynamic requests ( D 

N ), and second, dynamic requests and dynamic 

nd times of services ( D 

S ). 

.2.1. Analysis of the SVNS 

The value of incorporating stochastic information while plan- 

ing strongly depends on the sampling horizon S m and the num- 

er of scenarios s . Based on the results in Schilde et al. (2011) , we

un tests with a sample horizon S m = 1 , 3 , 5 , 10 , 20 minutes, and a

umber of scenarios s = 1 , 10 , 50 . Due to the computational effort,

e perform the analysis of the SVNS on two days and the best set- 

ings are then used for further experiments. In the following, we 

ake a closer look at the performance of the SVNS, and its results 

re presented in Table 3 . The table aggregates the results accord- 

ng to reoptimization strategy ( reopt ), the sampling horizon ( S m ), 

nd number of scenarios ( s ). The column headed shak[#] shows 

he average number of shakings in one iteration, and the column 

eaded saec[#] shows the associated average number of SAE cal- 

ulations. Note that for better readability, the values in the col- 

mn under saec are in thousands, i.e. 148 means 148K. The re- 

ptimization strategies clearly increase these numbers: for exam- 

le, the number of SAE calculations is 177K with strategy R F , but 

63K with strategy R N (for s = 1 , S m = 1 ). This is because the num-

er of shakings strongly depends on the average runtime per iter- 

tion, which depends on the reoptimization strategy (see Table 4 ). 

n the other hand, these values decrease with increasing values 

f S m and s , since move evaluation in the SVNS is computationally 

ore expensive for a larger number of scenarios and a longer sam- 

ling horizon. The next column requ shows the average number 

f requests per scenario, and column std shows the corresponding 

tandard deviation. These numbers are independent of the differ- 

nt values of s and the different reoptimization strategies, but the 

verage number of requests per scenario increases with increas- 
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Table 3 

Characteristics and results of different settings for the SVNS. The table shows number of shakings per iteration ( shak ), number of SAE calculations ( saec times thousand), 

number of requests per scenario ( requ ), standard deviation ( std ), and lateness ( late ). All values are the average values over all instances. The last row presents the ranking of 

the average lateness over all reoptimization strategies and highlights the selection of four different settings (underlined and bold) for the SVNS for further experiments. 

reopt S m s = 1 s = 10 s = 50 

shak saec requ std late shak saec requ std late shak saec requ std late 

[#] [#] [#] [%] [m] [#] [#] [#] [%] [m] [#] [#] [#] [%] [m] 

R F 1 16.8 177 0.6 4.7 1804.1 16.5 168 0.6 4.6 1714.4 14.0 148 0.6 4.5 1610.6 

3 16.5 163 1.4 6.9 1714.1 14.6 149 1.3 6.9 1694.1 12.9 136 1.3 6.9 1683.0 

5 15.0 153 2.4 9.3 1739.6 13.3 135 2.2 8.9 1735.3 12.0 122 2.2 8.9 1743.9 

10 11.7 121 4.5 12.4 1707.3 10.1 102 4.3 12.0 1652.5 9.1 90 4.3 12.0 1721.3 

20 7.8 71 7.6 12.2 1745.5 5.3 49 7.2 11.7 2016.8 4.3 40 7.2 11.6 2030.6 

R Z 1 22.7 251 0.6 4.1 1958.6 22.2 237 0.6 4.1 1779.1 19.2 213 0.5 3.9 1743.6 

3 21.5 231 1.3 6.5 1823.8 19.6 214 1.2 6.4 1862.2 17.7 194 1.3 6.4 1712.2 

5 19.7 212 2.2 8.4 1790.8 17.2 188 2.1 8.2 1712.8 15.4 168 2.1 8.2 1807.1 

10 16.2 174 4.5 12.3 1789.2 14.2 148 4.3 12.0 1680.5 12.2 129 4.3 12.0 1667.6 

20 11.1 100 7.8 12.6 1720.9 7.6 71 7.4 11.9 2035.6 5.9 59 7.4 11.9 2187.7 

R N 1 41.2 563 0.5 2.8 2489.0 38.5 534 0.4 2.6 2403.3 34.7 474 0.4 2.6 2308.7 

3 39.0 517 0.8 4.2 2400.6 37.2 490 0.8 4.0 2171.3 32.3 435 0.8 4.0 2381.0 

5 34.9 456 2.2 8.3 2251.6 29.9 407 2.1 8.0 2502.0 27.3 365 2.1 8.0 2344.9 

10 30.7 409 3.9 10.5 2352.8 24.9 338 3.7 10.3 2279.6 22.8 303 3.7 10.2 2186.6 

20 20.3 231 7.9 12.7 2346.4 14.1 162 7.6 11.9 2407.3 14.8 150 7.5 11.9 2718.4 

Rank 

S m 1 3 5 10 20 1 3 5 10 20 1 3 5 10 20 

avg. 2083.9 1979.5 1927.3 1949.7 1937.6 1965.6 1909.2 1983.4 1870.8 2153.2 1887.7 1925.4 1965.3 1858.5 2312.2 

Table 4 

Benefit of applying a background optimization procedure, and effect of the different reoptimization strategies ( reopt ) for the optimization algorithms M, CA, and S.10.3. The 

columns headed late and tt show the average improvement (in %) with background optimization compared against periodic optimization, and the columns headed runtime 

and shakings show the average runtime (in seconds) and average number of shakings per iteration. The table also shows the improvement brought by the background 

optimization ( impr_bg ) and after the synchronization ( impr_sync ) in minutes, and the gap between the two. 

algorithm reopt late[%] tt[%] events[#] runtime[s] shakings[#] impr_bg[m] impr_sync [m] gap [m] 

M R F 44.54 6.35 782.06 74.92 50.21 1174.43 1025.48 148.95 

R Z 46.16 6.44 559.36 98.77 67.12 1204.13 993.20 210.94 

R N 45.63 6.12 246.95 176.89 120.58 1513.18 970.53 542.65 

CA R F 49.88 6.89 781.03 74.03 54.30 1109.12 973.44 135.68 

R Z 50.22 6.88 559.10 97.75 72.96 1156.80 956.99 199.82 

R N 49.67 6.44 246.95 175.89 134.21 1434.97 919.68 515.29 

S.10.3 R F 55.19 7.99 781.29 73.94 18.98 1136.27 1088.77 127.50 

R Z 55.94 7.88 560.10 97.60 25.50 1173.14 984.57 188.57 

R N 52.26 6.99 246.95 175.89 48.92 1477.65 969.65 508.00 
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ng sampling horizon. This is quite intuitive, but from the VNS per- 

pective, note that with an increasing number of requests per sce- 

ario, the move evaluation takes more time, which results in fewer 

hakings because of the time limits. Thus, the value of incorporat- 

ng stochastic information in a SVNS comes with the larger num- 

er of moves, and respectively more shakings, of other algorithms. 

his is an important factor in Sections 5.2.3 and 5.2.4 when the 

erformance of the SVNS is compared to the other optimization 

lgorithms. The last column late gives average lateness (primary 

bjective) in minutes. 

In order to select the settings that perform best for the SVNS, 

e compute the average of the primary objective values (late- 

ess) over the different reoptimization strategies. The values are 

resented in the last row ( avg. ) in Table 3 . Among the five set-

ings achieving the best average values, we selected s = 10 , 50 and

 

m = 3 , 10 to conduct further experiments. 

.2.2. Analysis of reoptimization strategies 

Background optimization (continuous optimization) has the ad- 

antage of maximizing computational power utilization, but it re- 

uires a more complex and error-prone implementation and de- 

ands a well-defined synchronization between the current system 

tate and the solution of the background optimization. This set of 

xperiments investigates the gain of the background optimization 

ompared to a periodic optimization (i.e. the optimization algo- 

ithm is only run when a new optimization trigger is given) and 

he impact of different reoptimization strategies. In Table 4 , the 
603 
verage results over all instances are presented for the myopic ap- 

roach (M), the waiting strategy (CA), and the SVNS setting (S.10.3), 

ince the results of applying different reoptimization strategies for 

he other presented optimization algorithms are similar. The im- 

rovement in terms of lateness at customer locations (primary ob- 

ective) is given in the column headed late (in %) and the improve- 

ent in travel time (secondary objective) is given in the column 

eaded tt (in %). The results show that extensive implementation 

f the background optimization and the synchronization process 

s definitely worth the effort, since it achieves improvements of 

p to 55% . On the other hand, this is not very surprising, because 

he total runtime for an instance under periodic optimization is 

uch less (i.e. the number of events times 1 second, which cor- 

esponds to the specified response time in our system) than for 

he background optimization (where the cumulative runtime for 

he background optimization is about 12 h, i.e. the period where 

ew requests arise). The next three columns show the effect of the 

ifferent reoptimization strategies. The average number of events 

ausing a reoptimization is presented in the column headed events . 

he average runtime (in seconds) between two events, thus the 

untime of background optimization, is presented in the column 

eaded runtime , and the column headed shakings presents the av- 

rage number of shakings in the VNS. It shows that the number 

f events for R N (new requests cause a reoptimization) is about 

hree times less than for R F (new requests and the end of a ser- 

ice cause a reoptimization). Hence, the runtime per iteration and 

umber of shakings increase with decreasing number of events. 
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his leads into the question of which are the best points to in- 

errupt the background optimization for reoptimization. As already 

entioned, the DVRP literature has largely neglected research on 

eoptimization strategies, but our investigation demonstrates the 

alue of an appropriate reoptimization strategy. 

To demonstrate the impact of different reoptimization strate- 

ies in combination with a background optimization, the last three 

olumns in Table 4 compare the improvements of the primary ob- 

ective (lateness). For the three algorithms (M, CA, and S.10.3), the 

mprovement gained in the background optimization is shown un- 

er impr_bg , and the improvement after the synchronization pro- 

edure is shown under impr_sync . The last column gap shows the 

ifference between impr_bg and impr_sync . Note that these values 

re the resulting improvements for each algorithm separately, but 

ot the improvements over a benchmark solution. Thus, the largest 

mprovement after the synchronization (e.g. 1088.77 in impr_sync ) 

oes not indicate that R F applied with S.10.3 outperforms the other 

lgorithms. It shows that the reoptimization strategy R F yields the 

est improvement for S.10.3, compared to R Z and R N . It can be seen 

hat the background optimization produces a larger early improve- 

ent, but part of that gets lost after the synchronization with the 

ontinuing real-world setting. Thus, reoptimization strategies with 

ewer events and longer runtimes (e.g. R N ) lead to larger improve- 

ents in the background optimization but at the same time the 

ifference between the plan and the real world increases, which 

auses a greater loss of the improvement in the synchronization 

rocedure. This comes from the fact that in a highly dynamic sys- 

em, the background optimization and the real system state di- 

erge strongly, and moves in the optimization are performed on 

oute parts that are already ongoing in the real world. The experi- 

ental results show, that using reoptimization strategy R F affords 

he largest improvements, independently of the applied optimiza- 

ion algorithms. 

Even though the experiments and results illustrate the value of 

ifferent reoptimization strategies, it should be noted that these 

esults strongly depend on the underlying problem and its dy- 

amic structure. For example, in less dynamic environments, or 

roblems with smaller instances, or especially systems where 

onger parts of the routes are fixed (e.g. more stops until the next 

ero split point because of larger vehicles or because the drivers 

et information on next-scheduled customers that are not allowed 

o be replanned), it may be beneficial to apply a less frequent re- 

ptimization strategy. Another consideration for a reoptimization 

trategy, i.e. the runtime for the background optimization, could be 

ased on the diminishing returns in a heuristic search ( Woodruff, 

itzinger, & Oppen, 2011 ), such that events triggering a reoptimiza- 

ion are installed according to the point when no or only minor 

mprovements with respect to the runtime are achieved. 

.2.3. Comparison of anticipatory algorithms for D 

N 

Table 5 reports the results for the first variant of dynamic 

vents, considering the occurrence of new transportation requests 

 D 

N ). The results are the average values over all instances strat- 

fied by reoptimization strategy and the different optimization al- 

orithms. The columns headed util and reqlate deliver some insight 

nto the results for the real-world problem at the emergency med- 

cal service, whereas the other columns focus on the objective val- 

es and the comparison of the different algorithms. The first col- 

mn is average occupancy of the vehicles, which is the sum of the 

ervice times at customer locations and the sum of the travel times 

n relation to the shift duration. It shows that the vehicles are 

orking nearly to full capacity (ca. 83% ). The first column reqLate 

hows the percentage of patient requests with late arrival, and the 

ext column shows the corresponding average lateness in minutes. 

hus, for a bit more than a quarter of requests a late arrival oc- 

urs, and when this is the case, the average lateness is around 8 
604 
inutes. Given that we are dealing with a real-world problem and 

hat around 13% of the requests are immediate requests, the results 

re satisfactory and implementable. The other columns are travel- 

ime , showing the average travel time for all vehicles in minutes 

secondary objective), late showing the average lateness in min- 

tes, overtime showing the average overtime of all vehicles, and 

otallate showing the primary objective value, which is the sum of 

ateness plus overtime. The two columns gap(tt) and gap(la) show 

he average improvements in solution quality of the algorithms, as 

 function of travel time and total lateness compared to the my- 

pic approach (M). The last column gap( R ) , shows the average gap 

f the primary objective (total lateness) for the algorithms com- 

ared to the relevant results of the reoptimization strategy R F . To 

nform discussion on the comparison of different algorithmic con- 

epts, the rows in Table 5 are highlighted appropriately, i.e. no fill 

or the myopic approach (M), green for the waiting strategies (IA, 

A), and yellow for the results of the SVNS. The same table layout 

s used later on in Table 6 . 

To compare the results of the anticipatory algorithms to the 

yopic approach for each reoptimization strategy and dynamic 

etting D 

N , Table 5 shows that the waiting strategies achieve 

he largest improvement, presented in gap(la) . The improvement 

chieved by the waiting strategies is around 6% , and for R F the 

est improvement is obtained by the CA, whereas for the other 

wo reoptimization strategies, the IA works best. Regarding the so- 

ution quality of the SVNS, the best results are achieved with a 

ampling horizon of S m = 3 minutes for all reoptimization strate- 

ies. Compared to the myopic approach, the SVNS with S m = 3 reg- 

sters a small improvement for all reoptimization strategies, which 

s not the case for the SVNS with S m = 10 . As already mentioned in

ection 5.2.1 , this can be explained by the fact that fewer shakings 

re performed in the SVNS compared to the other algorithms (see 

able 4 , column shakings ), because the move evaluation (SAE cal- 

ulations) in the SVNS is more time consuming. This may be also 

he reason for the negative values in gap(tt) . Since the objective is 

exicographic, first the primary objective (lateness) is minimized, 

hich leaves less time available for minimizing the second objec- 

ive in the SVNS. Note too that the gap of the waiting strategies 

o the myopic approach is almost the same for all reoptimization 

trategies, while the gap for the SVNS deteriorates for reoptimiza- 

ion strategies with fewer triggers for reoptimization, e.g. R Z . The 

esults for the SVNS are worse in general with S m = 10 and get

ven worse than the myopic approach with reoptimization strat- 

gy R N . The results in the last column indicate that the reoptimiza- 

ion strategy R Z yields better results than R F because almost all 

lgorithms (except S.50.10) obtain better results with reoptimiza- 

ion strategy R Z . Furthermore, results for all algorithms are worse 

ith reoptimization strategy R N than with R F . This again illustrates 

he impact of the different reoptimization strategies and underlines 

he fact that the reoptimization strategy R N , where only new re- 

uests trigger a reoptimization, are less suitable for our problem 

hich has a high degree of dynamism. Concluding on the results 

or the dynamic settings of D 

N , waiting strategies yield better re- 

ults than the SVNS, and the reoptimization strategy R Z works best. 

ore precisely, the IA with R Z is the best setting for D 

N . In terms 

f implementational effort, this algorithm is comparatively simple, 

nd the incorporated information about future requests does not 

equire a stochastic model. 

.2.4. Comparison of anticipatory algorithms for D 

S 

In order to evaluate the performance of the anticipatory algo- 

ithms in terms of an even higher degree of dynamism, we intro- 

uced another dynamic effect adapted from the given real-world 

roblem: dynamic end times of services ( D 

S ). Thus, besides the 

ynamic events of new requests, the service times at patient lo- 

ations are also dynamic. This means that the service times in 
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Table 5 

Average results for all optimization algorithms for the first variant of dynamic events, considering the occurrence of new requests ( D N ). The differences between the reopti- 

mization strategies and the performance of the anticipatory algorithms compared to the myopic approach are demonstrated. The left side shows characteristics of the results 

for the real-world application ( util , reqlate ), and the right side shows the comparison of the anticipatory algorithms. Working to the primary objective (total lateness), the 

best results are obtained by the IA with reoptimization strategy R Z . 

reopt algorithm util reqlate reqlate traveltime gap(tt) lateness overtime totallate gap(la) gap( R ) 

[%] [%] [m] [m] [%] [m] [m] [m] [%] [%] 

R F M 83.04 29.25 8.12 6646.75 1535.11 30.28 1565.39 

IA 82.99 28.44 7.94 6633.60 0.21 1456.80 25.37 1482.17 5.32 

CA 82.98 28.44 7.82 6632.01 0.23 1442.39 27.04 1469.43 6.13 

S.10.3 83.12 28.57 7.98 6677.54 -0.47 1480.88 28.65 1509.53 3.57 

S.10.10 83.25 28.54 8.22 6716.89 -1.06 1497.41 25.98 1523.38 2.68 

S.50.3 83.18 28.57 8.01 6691.10 -0.67 1481.62 31.04 1512.66 3.37 

S.50.10 83.26 28.73 8.25 6726.37 -1.21 1515.42 25.75 1541.17 1.55 

R Z M 83.06 29.05 8.02 6651.16 1502.38 27.94 1530.32 2.24 

IA 83.03 28.30 7.78 6645.63 0.08 1413.22 26.14 ∗1439.36 5.94 2.89 

CA 83.02 28.27 7.90 6642.42 0.13 1438.56 24.88 1463.43 4.37 0.41 

S.10.3 83.18 28.35 7.90 6693.90 -0.64 1451.60 27.32 1478.92 3.36 2.03 

S.10.10 83.26 28.53 8.15 6721.23 -1.07 1482.42 25.02 1507.43 1.50 1.05 

S.50.3 83.18 28.41 7.97 6696.50 -0.69 1465.17 29.07 1494.24 2.36 1.22 

S.50.10 83.33 28.81 8.35 6744.85 -1.42 1535.07 25.56 1560.63 -1.98 -1.26 

R N M 83.25 29.96 8.22 6714.18 1573.96 30.48 1604.43 -2.49 

IA 83.22 29.26 7.97 6708.19 0.09 1488.82 25.61 1514.43 5.61 -2.18 

CA 83.22 29.23 8.01 6705.69 0.13 1506.67 26.59 1533.25 4.44 -4.34 

S.10.3 83.39 29.69 8.15 6765.20 -0.77 1547.11 28.90 1576.01 1.77 -4.40 

S.10.10 83.53 30.26 8.74 6806.14 -1.39 1678.28 30.87 1709.14 -6.53 -12.19 

S.50.3 83.37 29.57 8.21 6757.37 -0.65 1556.01 29.68 1585.68 1.17 -4.83 

S.50.10 83.58 30.55 8.89 6821.86 -1.61 1727.19 32.13 1759.32 -9.65 -14.15 

Table 6 

Average results for all optimization algorithms for the second variant of dynamic events, considering the occurrence of new requests and dynamic end times of services ( D S ), 

are presented. The differences between the reoptimization strategies and the performance of the anticipatory algorithms compared to the myopic approach are demonstrated. 

According to the primary objective (total lateness), the best results are obtained by the IA with the reoptimization strategy R F . 

reopt algorithm util reqlate reqlate traveltime gap(tt) lateness overtime totallate gap(la) gap( R ) 

[%] [%] [m] [m] [%] [m] [m] [m] [%] [%] 

R F M 85.77 46.99 13.60 6665.12 4012.14 193.37 4205.51 

IA 85.75 45.67 13.10 6668.89 -0.06 3753.74 172.64 ∗3926.38 6.64 

CA 85.74 46.17 13.25 6655.91 0.14 3856.18 183.77 4039.95 3.94 

S.10.3 85.93 46.95 13.80 6723.86 -0.87 4113.85 182.71 4296.56 -2.17 

S.10.10 86.04 47.18 14.34 6758.49 -1.38 4281.67 188.82 4470.49 -6.30 

S.50.3 85.93 46.85 13.86 6725.10 -0.89 4112.11 184.65 4296.76 -2.17 

S.50.10 86.12 47.16 14.82 6782.99 -1.75 4449.79 196.99 4646.78 -10.49 

R Z M 85.79 47.25 13.60 6673.38 4045.27 191.94 4237.20 -0.75 

IA 85.77 46.31 13.21 6674.33 -0.02 3847.58 180.18 4027.75 4.94 -2.58 

CA 85.74 46.31 13.32 6667.21 0.09 3887.97 179.27 4067.24 4.01 -0.68 

S.10.3 85.90 46.85 13.60 6715.07 -0.62 4025.62 179.81 4205.43 0.75 2.12 

S.10.10 86.02 47.28 14.15 6754.83 -1.21 4209.98 183.06 4393.04 -3.68 1.73 

S.50.3 85.94 47.13 13.74 6727.26 -0.80 4094.01 181.90 4275.91 -0.91 0.49 

S.50.10 86.08 47.35 14.34 6775.26 -1.52 4266.88 187.52 4454.40 -5.13 4.14 

R N M 86.05 48.82 14.24 6757.16 4342.24 195.07 4537.31 -7.89 

IA 86.04 48.20 13.91 6760.36 -0.05 4186.98 189.31 4376.29 3.55 -11.46 

CA 86.02 48.21 13.98 6755.14 0.03 4218.39 188.37 4406.76 2.88 -9.08 

S.10.3 86.20 49.01 14.33 6808.04 -0.75 4397.71 198.48 4596.19 -1.30 -6.97 

S.10.10 86.37 49.13 15.00 6865.26 -1.59 4607.48 199.33 4806.81 -5.94 -7.52 

S.50.3 86.23 48.90 14.45 6816.74 -0.88 4436.22 204.06 4640.27 -2.27 -7.99 

S.50.10 86.42 49.44 15.29 6878.60 -1.79 4707.69 209.57 4917.26 -8.37 -5.82 
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he real world differ from the average service times used in the 

ptimization algorithms, and the digital twin provides these dy- 

amic end times of services. The results of the corresponding ex- 

eriments are presented in Table 6 , which show that the addi- 

ional dynamic element not only adversely affects solution qual- 

ty and especially patient convenience but also brings disadvan- 

ages to the driver by increasing vehicle utilization and increasing 

vertimes. Regarding lateness at patient locations, the percentage 

f late arrivals increases by roughly 50% (compared to the results 

n Table 5 ), and average lateness at these locations also increases 

onsiderably to about 13 min. 

The comparison of the anticipatory algorithms to the myopic 

pproach shows that the waiting strategies yield significantly bet- 

er results than the SVNS for all reoptimization strategies. For ex- 

mple, the IA achieves an improvement of 6 . 64% compared to the 
605 
yopic algorithm for R F , while the results for the SVNS are always 

except for S.10.3 with R Z ) worse than the myopic approach. Simi- 

ar to the results in Table 5 , the SVNS with S m = 10 performs worst,

ut in contrast to the results with D 

N , where the gap in solution 

uality between the waiting strategies and the myopic approach is 

early the same for all reoptimization strategies, here the gap de- 

reases with fewer triggers for reoptimization (e.g. with R N ). An- 

ther difference com pared to the results with D 

N concerns the re- 

ptimization strategies, since it turns out that R F is the best reopti- 

ization strategy for the algorithms with waiting strategies instead 

f R Z , represented by the values in the last column gap(R) . How- 

ver, for the SVNS, reoptimization strategy R Z still yields better re- 

ults than R F . The worst results for all optimization algorithms are 

btained with the reoptimization strategy R N , leading to the con- 

lusion that as the degree of dynamism increases, it gets better to 
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pply a more frequently triggered reoptimization strategy, which 

nsures a smaller disagreement between the background optimiza- 

ion and the current system state. One explanation for the worse 

erformance of the SVNS with D 

S may be connected with the fact 

hat the stochastic model only considers information about future 

equests and does not provide any stochastic information about the 

ervice times. This is true, but on the other hand, it is practically 

mpossible to incorporate all uncertainties in a real-world applica- 

ion into a stochastic model. For example, in our case, there are un- 

ertainties in travel times, vehicle break downs, and request can- 

ellations, to name just a few. It is therefore necessary to develop 

lgorithms that are able to respond quickly to system changes. 

.3. Summary of experiments 

Our key experimental findings on the performance of anticipa- 

ory algorithms applied in a highly dynamic environment consider- 

ng different variants of dynamic events and reoptimization strate- 

ies are summarized as follows: 

• The extensive implementation effort of the background op- 

timization and the synchronization process consequently re- 

quired is definitely worth the effort, since it achieves average 

improvements of 50% on the primary objective (lateness). 
• Reoptimization strategies with fewer events achieve larger im- 

provements in the background optimization due to longer run- 

times, but they then lose a significant part of these improve- 

ments in the synchronization procedure. Consequently, reopti- 

mization strategy R F , with the highest frequency of reoptimiza- 

tion triggers, yields the best results for the given highly dy- 

namic environment, independently of the applied optimization 

algorithm. 
• Due to the generally short and limited runtimes in our system, 

the SVNS yields the best results when the sample for evaluation 

consists of 10 scenarios with a sampling horizon of 3 minutes, 

independently of the reoptimization strategy. 
• Our analysis of the performance of the different anticipatory al- 

gorithms finds that the waiting strategies outperform the SVNS 

on various points. First, the IA waiting strategy yields the best 

results in comparison to the myopic approach, and second, it 

deals best with additional uncertainties, like dynamic end times 

of services, without a loss in solution quality, and all at consid- 

erably less implementation effort. 

. Conclusion 

This paper studied a dynamic and stochastic patient transporta- 

ion problem. We provided a digital twin-based solution frame- 

ork with continuous reoptimization, which enables the develop- 

ent and analysis of different optimization algorithms for various 

ettings for an emergency medical facility. The big advantage of 

uch a sophisticated framework is the possibility of investigating 

ifferent scenarios and strategies in a highly dynamic environment, 

nd it totally pays off the high implementation effort. The main 

bjective of our work was to develop different anticipatory algo- 

ithms and to investigate which algorithm performs best according 

o the conditions in the real-world application such as different dy- 

amic events, short response times, and synchronization of the so- 

utions with the current system state. We investigated what events 

n the real-world should be consulted to trigger a reoptimization 

rocedure. Different reoptimization strategies were implemented 

nd analyzed. The results show that the frequency of reoptimiza- 

ion procedures is a crucial factor in such a setup, because the run- 

ime of the background optimization depends on it. Longer run- 

imes led to more improvement in solution quality, but it also in- 

reased the divergence between the real-world state and the cur- 
606 
ent best solution, and improvements from the background opti- 

ization were lost in the subsequent synchronization process. The 

eoptimization strategy where reoptimization is triggered by new 

equests and when a service is finished at a zero split location ( R Z )

erformed best when dynamic events were limited to the occur- 

ence of new requests, but when the system had to deal with ad- 

itional dynamic events, e.g. dynamic end times of services, a more 

requent reoptimization strategy, which is triggered by new re- 

uests and whenever a service is finished ( R F ), yielded the best re- 

ults. For the comparison of anticipatory optimization algorithms, 

e proposed a sample scenario approach (SVNS) and two waiting 

trategies (CA, IA), and the results of the algorithms were com- 

ared against the myopic approach which did not incorporate any 

nformation about future requests. The rationale for comparing the 

erformance of sophisticated algorithms, such as the SVNS, to a 

impler approach like waiting strategies, was based on the settings 

f a SVNS approach in the literature for a related problem ( Schilde 

t al., 2011 ), which indicated that a waiting strategy behaved well. 

his was confirmed here by extensive computational results as the 

aiting strategy IA, which includes stochastic information without 

he implementation of a stochastic model, outperformed the SVNS 

pproach in all cases. Compared to the myopic approach, the IA 

chieved an improvement of almost 6% for the setup where dy- 

amic requests were considered and a slightly higher improvement 

f 6 . 6% for the case where dynamic requests and dynamic end 

imes of services were handled. The improvement gained by the 

VNS is only 3 . 5% for the former case, and even worse than the

yopic approach for the latter case. Furthermore, the gap between 

he best results of the IA and the SVNS increases, when the degree 

f dynamism in the system increases. Thus, based on our exten- 

ive experiments and the results produced, the SVNS is not an ap- 

ropriate choice for a highly dynamic environment, which requires 

hort and limited response times. 

Advances in machine learning approaches may open opportuni- 

ies for future work to focus on the application of machine learning 

lgorithms to better learn from the historical data. Since there are 

o many different dynamic events in a real-world application, it 

ould be beneficial to use machine learning algorithms to identify 

atterns and similar behaviors in patient requests and their ser- 

ice times, or in vehicle states and operations. In order to enable 

fficient investigation on even more dynamic and thus more real- 

stic scenarios, our digital twin-based framework would need to be 

nhanced by incorporating more data models and including more 

nformation about state transitions. A well implemented, well doc- 

mented, and publicly-available digital twin would also have the 

dvantage of comparing various scenarios and even many different 

olution approaches efficiently and fairly, which would equally be 

 benefit for the research community. 
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