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A remark on weak-strong uniqueness for
suitable weak solutions of the Navier–Stokes

equations

Pierre Gilles Lemarié–Rieusset∗

Abstract

We extend Barker’s weak-strong uniqueness results for the Navier–
Stokes equations and consider a criterion involving Besov spaces and
weighted Lebesgue spaces.
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1 The Prodi–Serrin criterion for weak-strong

uniqueness

In this paper, we are interested in extensions of the Prodi–Serrin weak-strong
uniqueness for (suitable) weak Leray solutions of the Navier–Stokes equa-
tions. We consider solutions of the Navier–Stokes equations

∂t~u+ ~u · ~∇~u = ∆~u− ~∇p
div ~u = 0

~u(0, .) = ~u0

where ~u0 is a square-integrable divergence-free vector field on the space R3.
Looking for weak solutions, where the derivatives are taken in the sense

of distributions, it is better to write the first line of the system as

∂t~u+ div (~u⊗ ~u) = ∆~u− ~∇p.
∗LaMME, Univ Evry, CNRS, Université Paris-Saclay, 91025, Evry, France; e-mail :
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1



If ~u is a solution on (0, T )×R3 such that ~u ∈ L∞((0, T ), L2), then the pressure
p can be eliminated through the formula

div (~u⊗ ~u) + ~∇p = P(div (~u⊗ ~u))

where P is the Leray projection operator on solenoidal vector fields:

P~f = − 1

∆
~∇∧ (~∇∧ ~f).

Moreover, ~u can be represented as a distribution which depends continuously
on the time t [LR 5] as

~u = ~u0 +

∫ t

0

∆~u− P(div (~u⊗ ~u)) ds.

Leray [LER] proved existence of solutions ~u on (0,+∞)×R3 such that :

• ~u ∈ L∞t L2
x ∩ L2

t Ḣ
1
x

• limt→0+ ‖~u(t, .)− ~u0‖2 = 0

• we have the Leray energy inequality

‖~u(t, .)‖2
2 + 2

∫ t

0

‖~∇⊗ ~u‖2
2 ds ≤ ‖~u0‖2

2 (1)

Such solutions are called Leray solutions1. His proof is based on a compact-
ness criterion, it does not provide any clue on the uniqueness of the solution
to the Cauchy initial value problem.

A classical case of uniqueness of Leray weak solutions is the weak-strong
uniqueness criterion described by Prodi and Serrin [PRO, SERR]: if ~u0 ∈ L2

and if the Navier-Stokes equations have a solution ~u on (0, T ) such that

~u ∈ LptLqx with
2

p
+

3

q
≤ 1 and 2 ≤ p ≤ +∞

then, if ~v is a Leray solution with the same initial value ~u0, we have ~u = ~v
on (0, T ). Let us remark that the existence of such a solution ~u restricts
the range of the initial value ~u0: as a matter of fact, when 2 < p < +∞,
existence of a time T > 0 and of a solution ~u ∈ LptLqx is equivalent to the fact

that ~u0 belongs to the Besov space B
− 2
p

q,p (see Theorem 6 below).

1Remark that the continuity at t = 0 of t 7→ ~u(t, .) in L2 norm is a consequence of the
Leray inequality (1)
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We will see that a corollary of Barker’s theorem [BAR] shows the following
extension of the criterion: if ~u0 ∈ L2 and if the Navier-Stokes equations have
a solution ~u on (0, T ) such that

sup
0<t<T

t
1
p‖~u‖q < +∞ with

2

p
+

3

q
≤ 1 and 2 < p < +∞

and with

lim
t→0

t
1
p‖~u‖q = 0 if

2

p
+

3

q
≤ 1

then, if ~v is a Leray solution with the same initial value ~u0, we have ~u = ~v
on (0, T ). Let us remark again that the existence of such a time T and such
a solution ~u is equivalent to the fact that ~u0 belongs to the Besov space

B
− 2
p

q,∞ ∩ bmo−1
0 (see Definition 1 and Theorem 7 below).

The space bmo−1 was introduced in 2001 by Koch and Tataru [KOT] for
the study of mild solutions to the Navier–Stokes problem. Let us recall the
characterization of bmo−1 through the heat kernel [KOT, LR 1]:

Proposition 1.
For 0 < T <∞, define

‖~u‖XT = sup
0<t<T

√
t‖~u(t, .‖∞ + sup

0<t<T,x0∈R3

(t−3/2

∫ t

0

∫
B(x0,

√
t)

|~u(s, y)|2 dy ds)1/2.

Then ~u0 ∈ bmo−1 if and only if (et∆~u0)0<t<T ∈ XT (with equivalence of the
norms ‖~u0‖bmo−1 and ‖et∆~u0‖XT .

Recall that the differential Cauchy problem for Navier–Stokes equations
reads as 

∂t~u+ ~u.~∇~u = ∆~u− ~∇p
div ~u = 0

~u(0, .) = ~u0

Under reasonable assumptions, the problem is equivalent to the following
integro-differential problem :

~u = et∆~u0 −B(~u, ~u)(t, x)

where

B(~u,~v) =

∫ t

0

e(t−s)∆P div(~u⊗ ~v) ds (2)

and P is the Leray projection operator. (See [LR 1, LR 5] for details).
Koch and Tataru’s theorem is then the following one:
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Theorem 1.
There exists C0 (which does not depend on T ) such that, if ~u and ~v are defined
on (0, T )× R3, then

‖B(~u,~v)‖XT ≤ C0‖~u‖XT ‖~v‖XT .

Corollary 1.
Let ~u0 ∈ bmo−1 with div ~u0 = 0. If ‖et∆~u0‖XT < 1

4C0
, then the inte-

gral Navier–Stokes equations have a solution on (0, T ) such that ‖~u‖XT ≤
2‖et∆~u0‖XT .

This is the unique solution such that ‖~u‖XT ≤ 1
2C0

.

The solution ~u can be computed through Picard iteration as the limit of
~Un, where ~U0 = et∆~u0 and ~Un+1 = et∆~u0−B(~Un, ~Un). In particular, we have,
by induction,

‖~Un+1 − ~Un‖XT ≤ (4C0‖et∆~u0‖XT )n+1‖et∆~u0‖XT .

Thus, Corollary 1 grants local existence of a solution for the Navier–Stokes
equations when the initial value belongs to the space bmo−1

0 :

Definition 1.
~u0 ∈ bmo−1

0 if ~u ∈ bmo−1 and limT→0 ‖et∆~u0‖XT = 0.

We may now recall Barker’s theorem [BAR]:

Theorem 2.
Let ~u0 be a divergence-free vector field with ~u0 ∈ L2. Assume moreover

~u0 ∈ bmo−1
0 ∩B−sq,∞ with 3 < q < +∞ and s < 1− 2

q

and let ~u be the mild solution of the Navier–Stokes equations with initial value
~u0 such that ‖~u‖XT ≤ 1

2C0
. If ~v is a weak Leray solution of the Navier–Stokes

equations with the same initial value ~u0, then ~u = ~v on (0, T ).

Again, we remark that, if 0 < s < 1 − 2
q

and if ~u0 ∈ bmo−1
0 , if ~u is the

mild solution with ‖~u‖XT ≤ 1
2C0

, then ~u0 ∈ B−sq,∞ is equivalent to

sup
0<t<T

ts/2‖~u(t, .)‖q < +∞.

In the following theorems, we shall state the assumptions in terms of the mild
solution ~u instead of the initial value ~u0. In Theorem 5, we shall give the
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equivalence between the assumption on the solution ~u and the assumption
on the initial value ~u0.

We aim to generalize Barker’s result to a larger class of mild solutions.
Barker’s result is based on an interpolation lemma which states that, if ~u0 ∈
bmo−1

0 ∩ L2 ∩ B−sq,∞ with 3 < q < +∞ and −s > −1 + 2
q
, then ~u0 ∈

[L2, B−δ∞,∞]θ,∞ for some θ ∈ (0, 1) and some δ ∈ (0, 1). (Those conditions are
in a way equivalent, as we shall see in Corollary 2.) Then the comparison
between the Leray solution ~v and the mild solution ~u is performed through
an estimation of both ‖~u− ~wε‖2 and ‖~v− ~wε‖2, where ~wε is the solution of the
Navier–Stokes problem with initial value ~w0,ε such that ‖~w0,ε − ~u0‖2 ≤ C1ε

θ

and ‖~wε‖B−δ∞,∞ < C1ε
θ−1 (with C1 depending on ~u0 but not on ε).

Our idea is to replace the space L2 by the larger space L2
w = L2(w dx)

with w(x) = 1
(1+|x|)2 , and use the interpolation space [L2

w, B
−δ
∞,∞]θ,∞ for some

θ ∈ (0, 1) and some δ ∈ (0, 1). As we shall no longer deal with the L2 norm,
the Leray inequality on ‖~v‖2 will not be sufficient. Instead, we shall consider
a stricter class of weak solutions, namely the suitable weak Leray solutions
[CKN]:

Definition 2.
A Leray solution is suitable on (0, T ) if it fulfills the local energy inequality:
there exists a non-negative locally finite measure µ on (0, T ) × R3 such that
we have

∂t(|~u|2) + 2|~∇⊗ ~u|2 = ∆(|~u|2)− div((2p+ |~u|2)~u)− µ. (3)

We may now state our main results. The first one (stated in [LR 6])
weakens the integrability requirement on the solution ~u from the Lebesgue
space Lq to the Morrey space Mp,q. Recall that the Morrey space Mp,q,
1 < p ≤ q < +∞, is defined by

‖f‖Mp,q = sup
x0∈R3

sup
0<r≤1

r
3
q
− 3
p (

∫
B(x0,r)

|f(x)|p dx)
1
p < +∞.

For p = 1, one replaces the requirement f ∈ Lploc by the assumption that f
is a locally finite Borel measure µ with

‖f‖M1,q = sup
x0∈R3

sup
0<r≤1

r
3
q
−3

∫
B(x0,r)

d|µ|(x) < +∞.

For 1 < p ≤ +∞, we have the continuous embeddings

Lq ⊂M q,q ⊂Mp,q ⊂M1,q.
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The idea of considering Morrey spaces instead of Lebesgue spaces is quite
natural. Indeed, in the direct proof of the Prodi–Serrin criterion, a key
estimate is the inequality∫

|uv||~∇w| dx ≤ C‖u‖q‖v‖1−θ
2 ‖~∇v‖θ2‖~∇w‖2

for 0 ≤ θ ≤ 1 and 1
q

= θ
3
. This inequality still holds when the Lq norm is

replaced by the norm in the homogeneous Morrey space Ṁ2,q with 0 < θ < 1
and 1

q
= θ

3
[LR 2].

Theorem 3.
Let ~u0 be a divergence-free vector field with ~u0 ∈ L2 ∩ bmo−1

0 . Assume more-
over that the mild solution ~u of the Navier–Stokes equations with initial value
~u0 such that ‖~u‖XT ≤ 1

2C0
is such that

sup
0<t<T

ts/2‖~u(t, .)‖Ṁp,q < +∞ with 2 < p ≤ q < +∞ and 0 ≤ s < 1− 2

p
.

If ~v is a suitable weak Leray solution of the Navier–Stokes equations with the
same initial value ~u0, then ~u = ~v on (0, T ).

Let us remark that the statement and proof of Theorem 3 we gave in
[LR 6] was false (we assumed only that s < 1− 2

q
)2.

The second one weakens the integrability requirement on the solution ~u
from the Lebesgue space Lq to the weighted Lebesgue space Lq( 1

(1+|x|)N dx)
for some N ≥ 0.

Theorem 4.
Let ~u0 be a divergence-free vector field with ~u0 ∈ L2 ∩ bmo−1

0 . Assume more-
over that the mild solution ~u of the Navier–Stokes equations with initial value
~u0 such that ‖~u‖XT ≤ 1

2C0
is such that

sup
0<t<T

ts/2‖~u‖Lq( 1

(1+|x|)N
dx) < +∞ with N ≥ 0, 2 < q < +∞ and 0 ≤ s < 1−2

q
.

If ~v is a suitable weak Leray solution of the Navier–Stokes equations with the
same initial value ~u0, then ~u = ~v on (0, T ).

Of course, Theorem 3 is a corollary of Theorem 4, asMp,q ⊂ Lp( 1
(1+|x|)N dx)

for N > 3− 3p
q

.

The paper is then organized in the following manner:

2The mistake was due to an incorrect equality ρ = ηγ while it should have been γ = ηρ;
as η < 1, the equality turned to be incorrect.
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• In Section 2, we define stable spaces and collect some technical results
on generalized Besov spaces based on stable spaces.

• In Section 3, we define potential spaces based on stable spaces and
prove some interpolation estimates.

• In section 4, we give some remarks on the Koch and Tataru solutions
for the Navier–Stokes problem.

• In section 5, we study stability estimates for suitable weak Leray solu-
tions with initial data in L2 ∩ [L2( 1

(1+|x|)2 , B
−δ
∞,∞]θ,∞ (see Theorem 8).

• In section 6, we prove the uniqueness theorem (Theorem 4).

• In section 7, we pay some further comments on Barker’s conjecture on
the uniqueness problem.

2 Stable spaces and Besov spaces.

We define the convolutor space K by the following convention:

• a suitable kernel is a function K ∈ L1(R3) such that K is radial and
radially non-increasing (in particular, K is nonnegative); this is noted
as K ∈ K0

• f is a convolutor if f ∈ L1 and if there exists K ∈ K0 such that |f | ≤ K
almost everywhere

• the norm of f in K is defined as

‖f‖K = inf{‖K‖1 / K ∈ K0 and |f | ≤ K a.e.}.

One easily checks that ‖ ‖K is a norm and that (K, ‖ ‖K) is a Banach
space.

Definition 3.
A stable space of measurable functions on R3 is a Banach space E such
that

• E ⊂ L1
loc(R3)

• if f ∈ E and g ∈ L∞, fg ∈ E and ‖fg‖E ≤ C‖f‖E‖g‖∞ (where C
does not depend on f nor g)
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• if f ∈ E and g ∈ K, f ∗ g ∈ E and ‖f ∗ g‖E ≤ C‖f‖E‖g‖K (where C
does not depend on f nor g).

Examples of stable spaces

a) E = Lp, 1 ≤ p ≤ +∞.

b) E = Lp(w dx) where w belongs to the Muckenhoupt class Ap for some
1 < p < +∞: if g ∈ K0, then

|f ∗ g(x)| ≤ ‖g‖1Mf (x)

where Mf is the Hardy–Littlewood maximal function of f ; recall that
the Hardy–Littlewood maximal function is a bounded sublinear oper-
ator on Lp(w dx) when w ∈ Ap [STE 2].

c) E = Lpuloc for some 1 ≤ p ≤ +∞, where

‖f‖Lpuloc = sup
x0∈R3

(

∫
B(x0,1)

|f(x)|p dx)
1
p .

By Minkowski’s inequality, we have

‖f ∗ g‖E ≤
∫
|g(y)|‖f(.− y)‖Lpuloc dy = ‖g‖1‖f‖Lpuloc .

d) This example can be generalized to other shift-invariant spaces (for
which the norms ‖f‖E and ‖f(. − y)‖E are equal). For instance, we
may take E as the Morrey space Mp,q, 1 < p ≤ q < +∞.

Our next step is to introduce Besov-like Banach spaces based on stable
spaces and to describe the regularity of Koch–Tataru solutions when the
initial value belongs moreover to the Besov space.

Definition 4.
Let T ∈ (0,+∞). Let E be a stable space of measurable functions on R3.
For s > 0 and 1 ≤ q ≤ +∞, we define the Besov-like Banach space B−sE,q as
the space of tempered distributions such that

t
s
2‖et∆f‖E ∈ Lq((0, T ),

dt

t
).

The norms ‖t s2‖et∆f‖E‖Lq((0,T ), dt
t

) are all equivalent, so that B−sE,q does not

depend on T .
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Proof. Assume that t
s
2‖et∆f‖E ∈ Lq((0, T ), dt

t
) for some T > 0 and consider

t ≥ T . We have

et∆f =
2

T

∫ T

T/2

e(t−θ)∆eθ∆f dθ

so that

‖et∆f‖E ≤C
2

T

∫ T

T/2

‖eθ∆f‖E dθ

≤C 2

T
‖θs/2‖eθ∆f‖E‖Lq((0,T ), dθ

θ
)‖1T/2<θθ

1− s
2‖

L
q
q−1 ((0,T ), dθ

θ
)
.

Equivalence of the norms is proved.

Remark: this proofs shows as well that, if 1 ≤ q ≤ r ≤ +∞, then
B−sE,q ⊂ B−sE,r. Another obvious property of Besov spaces is that, if 0 < s < σ,

then B−sE,∞ ⊂ B−σE,1.

The main result in this section is the following theorem:

Theorem 5.
Let E be a stable space of measurable functions on R3. Let 0 < T < +∞, and
let ~u0 ∈ bmo−1 with div ~u0 = 0 and ‖et∆~u0‖XT < 1

4C0
. Let ~u be the solution of

the integral Navier–Stokes equations on (0, T ) such that ‖~u‖XT ≤ 1
2C0

. Then
the following assertions are equivalent for 0 < σ < 1 and 2 < q ≤ +∞:
(A) ~u0 ∈ B−σE,q
(B) t

σ
2 ‖~u‖E ∈ Lq((0, T ), dt

t
).

Proof. Let us remark that the operator e(t−s)∆Pdiv is a matrix of convolution
operators whose kernels are bounded by C 1

(
√
t−s+|x−y|)4 , hence are controlled

in the convolutor norm ‖ ‖K by C 1√
t−s . We thus have the inequality

‖B(~u,~v)‖E ≤C
∫ t

0

1√
t− s

‖~u⊗ ~v‖E ds

≤C ′ sup
0<s<t

√
s‖~u(s, .)‖∞

∫ t

0

1√
t− s

1√
s
‖~v(s, .)‖E ds

(and a similar estimate interchanging ~u and ~v in the last line). We thus want

to estimate J(t) = t−
1
q

+σ
2
∫ t

0
1√
t−s

1√
s
s

1
q
−σ

2L(s) ds with L ∈ Lq((0, T ), dt).

• if q = +∞, we easily check that ‖J‖∞ ≤ Cσ‖L‖∞ (since σ < 1).
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• if σ ≤ 2
q
, we have s

1
q
−σ

2 ≤ t
1
q
−σ

2 , so that J(t) ≤
∫ t

0
1√
t−s

1√
s
L(s) ds. If

2 < q < +∞, as 1√
s

belongs to the Lorentz space L2,∞, we use the
product laws and convolution laws in Lorentz spaces to get that, if
L ∈ Lq, 1√

s
L ∈ Lr,q with 1

r
= 1

q
+ 1

2
and 1√

s
∗ ( 1√

s
L) ∈ Lq,q = Lq. Thus,

‖J‖q ≤ C‖L‖q.

• if σ > 2
q
, we write

J(t) ≤ C(

∫ t

0

(t− s)−
1
q

+σ
2

√
t− s

1√
s
s

1
q
−σ

2L(s) ds+

∫ t

0

1√
t− s

s−
1
q

+σ
2

√
s
s

1
q
−σ

2L(s) ds)

and we use again the product laws and convolution laws in Lorentz
spaces to get that, if L ∈ Lq, 1

s
1+σ
2 − 1

q
L ∈ Lr,q with 1

r
= 1+σ

2
and

1

s
1−σ
2 +1

q
∗ ( 1

s
1+σ
2 − 1

q
L) ∈ Lq,q = Lq. We find again ‖J‖q ≤ C‖L‖q.

We may now easily check that (B) =⇒ (A) : we just write et∆~u0 =
~u+B(~u, ~u) and∥∥tσ2 ‖B(~u, ~u)‖E

∥∥
Lq((0,T ), dt

t
)
≤ C sup

0<t<T

√
t‖~u(t, .)‖∞

∥∥tσ2 ‖~u‖E∥∥Lq((0,T ), dt
t

)
.

In order to prove (A) =⇒ (B), we write ~u as the limit of ~Un, where
~U0 = et∆~u0 and ~Un+1 = et∆~u0 −B(~Un, ~Un). By induction, ~Un satisfies∥∥∥tσ2 ‖~Un‖E∥∥∥

Lq((0,T ), dt
t

)
< +∞

and∥∥∥tσ2 ‖~Un+1 − ~Un‖E
∥∥∥
Lq((0,T ), dt

t
)

≤ C sup
0<t<T

√
t‖~Un − ~Un−1‖∞(

∥∥∥tσ2 ‖~Un‖E∥∥∥
Lq((0,T ), dt

t
)
+
∥∥∥tσ2 ‖~Un−1‖E

∥∥∥
Lq((0,T ), dt

t
)
).

If

AN =
∥∥∥tσ2 ‖~U0‖E

∥∥∥
Lq((0,T ), dt

t
)
+

N−1∑
n=0

∥∥∥tσ2 ‖~Un+1 − ~Un‖E
∥∥∥
Lq((0,T ), dt

t
)

and ε = 4C0‖~U0‖XT , we have∥∥∥tσ2 ‖~UN‖E∥∥∥
Lq((0,T ), dt

t
)
≤ AN

and

AN+1 ≤ AN(1 + 2CεN+1) ≤ A0

N+1∏
j=1

(1 + 2Cεj).

This proves that
∥∥tσ2 ‖~u‖E∥∥Lq((0,T ), dt

t
)
< +∞.

10



Let us remark that the assumption ~u0 ∈ bmo−1 can be dropped in some
cases, as for example the solutions ~u in the Serrin class Lq((0, T ), Lr) with
2
q

+ 3
r
≤ 1 and 3 < r < +∞. In analogy with Lr, we define r-stable spaces in

the following way:

Definition 5.
For 2 < r < +∞, a r-stable space of measurable functions on R3 is a stable
space E such that

• E is contained in B
− 3
r∞,∞ and, for f ∈ E, ‖f‖

B
− 3
r∞,∞
≤ C‖f‖E.

• E is contained in L2
loc

• If f, g ∈ E then fg ∈ B−
3
r

E,∞ and ‖fg‖
B
− 3
r

E,∞
≤ C‖f‖E‖g‖E.

The Morrey space M2,r is a r-stable space; it is more precisely the largest
r-stable space:

Lemma 1.
Let E be a r-stable space of measurable functions on R3, where r ∈ (2,+∞).
Then E ⊂M2,r and ‖f‖M2,r ≤ C‖f‖E.

Proof. Let ρ < 1 and x0 ∈ R3. We have

eρ
2∆(f 2)(x0) ≥

∫
B(x0,ρ)

f 2(y)dy inf
y∈B(x0,ρ)

Wρ2(x0−y) =
e−

1
4

(4πρ2)3/2

∫
B(x0,ρ)

f 2(y)dy

where Wt(x) = 1
(4πt)3/2

e−
x2

4t . On the other hand, we have

eρ
2∆(f 2)(x0) ≤ Cρ−

3
r ‖eρ2∆(f 2)‖

B
− 3
r∞,∞
≤ C ′ρ−

3
r ‖e

ρ2

2
∆(f 2)‖E ≤ C ′′ρ−

6
r ‖f‖2

E.

This gives ∫
B(x0,ρ)

f 2(y)dy ≤ Cρ3− 6
r ‖f‖2

E

and thus f ∈M2,r.

Theorem 6.
Let E be a r-stable space of measurable functions on R3. Let ~u0 ∈ E with
div ~u0 = 0. Let 0 < σ < 1 and 2 < q < +∞, with

2

q
≤ σ ≤ 1− 3

r

11



and q < +∞ if σ = 1− 3
r
. Then the following assertions are equivalent:

(A) ~u0 ∈ B−σE,q
(B) There exists T > 0 and a solution ~u of the integral Navier–Stokes equa-
tions on (0, T ) with initial value ~u0 such that t

σ
2 ‖~u‖E ∈ Lq((0, T ), dt

t
).

(This theorem thus holds for solutions ~u ∈ Lq((0, T ), E) under the Serrin
condition 2

q
+ 3

r
≤ 1.)

Proof. (A) =⇒ (B) is a direct consequence of Theorem 5 and of the em-
bedding B−σM2,r,q ⊂ bmo−1

0 for σ ≤ 1− 3
r

and (σ, q) 6= (1− 3
r
,∞). Indeed, we

have, for 0 < t < 1,

‖et∆f‖∞ ≤
2

t

∫ t

t/2

‖eθ∆f‖∞ dθ

≤C 2

t
t−

3
2r

∫ t

t/2

‖e
θ
2

∆f‖M2,r dθ

≤C ′t−1− 3
2r ‖θσ/2‖eθ∆f‖M2,r‖Lq((0,t),dθ)‖θ−

σ
2 ‖

L
q
q−1 ((t/2,t),dθ)

.

≤C ′′t−1− 3
2r t

1
q ‖θσ/2‖eθ∆f‖M2,r‖Lq((0,t), dθ

θ
)t

1− 1
q t−

σ
2

≤C ′′′t−1/2t
1−σ−3/r

2 (

∫ t

0

(θσ/2‖eθ∆f‖M2,r)q
dθ

θ
)1/q

and∫ t

0

∫
B(x0,

√
t)

|es∆f |2 dy ds ≤C
∫ t

0

‖es∆f‖2
M2,rt3/2−3/r ds

≤C ′t3/2−3/r‖s
σ
2 ‖es∆f‖M2,r‖2

Lq((0,t), ds
sσ

)
‖1‖

L
q
q−2 ((0,t), ds

sσ
)

≤C ′′t3/2−3/rt(1−σ) 2
q ‖s

σ
2 ‖es∆f‖M2,r‖2

Lq((0,t), ds
s

)
t(1−σ)(1− 2

q
)

≤C ′′t3/2t1−σ−
3
r (

∫ t

0

(sσ/2‖es∆f‖M2,r)q
ds

s
)2/q.

We now prove (B) =⇒ (A). We use again the identity

et∆~u0 =
2

t

∫ t

t/2

e(t−s)∆es∆~u0 ds

and get

e2t∆~u0 =
2

t

∫ t

t/2

e(2t−s)∆~u(s, .) ds+
2

t

∫ t

t/2

e(2t−s)∆B(~u, ~u) ds = ~v(t, .) + ~w(t, .).

12



We want to estimate ‖tσ/2‖e2t∆~u0‖E‖Lq((0,T ), dt
t

) = ‖tσ/2−1/q‖e2t∆~u0‖E‖Lq((0,T ),dt).

We have

tσ/2−1/q‖~v(t, .)‖E ≤Ctσ/2−1/q 2

t

∫ t

t/2

‖~u‖E ds

≤C 2

t

∫ t

t/2

‖sσ/2−1/q‖~u‖E‖ ds

≤4CMsσ/2−1/q‖~u‖E(t)

and thus tσ/2−1/q‖~v(t, .)‖E ∈ Lq((0, T ), dt).
On the other hand, we have

‖~w(t, .)‖E ≤ sup
t/2≤s≤t

‖
∫ s

0

e( 3t
2
−τ)∆Pdiv e

t
2

∆(~u⊗ ~u) dτ‖E

≤C
∫ t

0

1√
3t
2
− τ
‖e

t
2

∆(~u⊗ ~u)‖E dτ

≤C ′
∫ t

0

t
1
2
−σ+ 1

q

(t− τ)1−σ+ 1
q

‖et∆|~u|2‖Edτ

≤C ′′t
1
2
−σ+ 1

q
− 3

2r

∫ t

0

1

(t− τ)1−σ+ 1
q

‖~u‖2
Edτ

and thus

tσ/2−1/q‖~w(t, .)‖E ≤CT
1
2
−σ

2
− 3

2r

∫ t

0

1

(t− τ)1−σ+ 1
q

‖~u‖2
Edτ

=CT
1
2
−σ

2
− 3

2r

∫ t

0

1

(t− τ)1−σ+ 1
q

τ−σ+ 2
q (τσ/2−

1
q ‖~u‖E)2dτ.

If J(τ) = τσ/2−
1
q ‖~u‖E, we have J(τ) ∈ Lq((0, T ), dτ), hence J2 ∈ Lq/2((0, T ), dτ),

τ−σ+ 2
qJ2 ∈ Lp0,q/2((0, T ), dt) with 1

p0
= 2

q
+σ−2

q
= σ and 1

τ
1−σ+1

q
∗(τ−σ+ 2

qJ2) ∈
Lp1,q/2((0, T ), dt) with 1

p1
= 1

p0
+ 1− 1

σ
+ 1

q
− 1 = 1

q
.

Thus tσ/2−1/q‖e2t∆~u0(t, .)‖E ∈ Lq((0, T ), dt) and ~u0 ∈ B−σE,q.

The case (σ, q) = (1− 3
r
,+∞) can be treated in a similar way:

Theorem 7.
Let E be a r-stable space of measurable functions on R3 with 3 < r < +∞.
Let ~u0 ∈ E with div ~u0 = 0. Then the following assertions are equivalent:

13



(A) ~u0 ∈ B
−1+ 3

r
E,∞ and limt→0 t

1
2
− 3

2r ‖et∆~u0‖E = 0.
(B) There exists T > 0 and a solution ~u of the integral Navier–Stokes equa-

tions on (0, T ) with initial value ~u0 such that sup0<t<T t
1
2
− 3

2r ‖~u‖E < +∞ and

limt→0 t
1
2
− 3

2r ‖~u‖E = 0.

Remark: We have the embedding B
−1+ 3

r
E,∞ ⊂ bmo−1, but this does not grant

existence of a solution. The extra condition limt→0 t
1
2
− 3

2r ‖et∆~u0‖E = 0 is used
to get ~u0 ∈ bmo−1

0 , and thus to have existence of a local solution.

3 Potential spaces and interpolation

If E is a stable space, we define, for s ∈ R, the potential space Hs
E as

Hs
E = (Id−∆)−s/2E, normed with ‖f‖Hs

E
= ‖(Id−∆)s/2f‖E. For positive s,

we have an obvious comparison of the potential space H−sE with the Besov
spaces:

Lemma 2. Let E be a stable space, and s > 0. Then,

B−sE,1 ⊂ H−sE ⊂ B−sE,∞.

Proof. Indeed, we have

(Id−∆)−s/2 =
1

Γ(s/2)

∫ +∞

0

e−tet∆ts/2
dt

t
.

If f belongs to B−sE,1, then ts/2‖et∆f‖E ∈ L1((0, 1), dt
t
) while ‖e∆f‖1 ≤

‖f‖B−sE,∞ ≤ C‖f‖B−sE,1 so that

‖f‖H−sE ≤
1

Γ(s/2)
(

∫ 1

0

ts/2‖f‖E
dt

t
+ C‖e∆f‖E

∫ +∞

0

e−tts/2
dt

t
) ≤ C ′‖f‖B−sE,1 .

Conversely, if f ∈ H−sE , f = (Id−∆)s/2g and if 0 < θ < 1, then we pick
N ∈ N with N > s/2 and write

eθ∆f =eθ∆(Id−∆)N(Id−∆)s/2−Ng

=
1

Γ(N − s/2)

∫ +∞

0

e−t(Id−∆)Ne(t+θ)∆g tN−
s
2
dt

t
.

For α ∈ N3, with 0 ≤ |α| ≤ 2N , we have

‖∂αe(t+θ)∆g‖E ≤ Cα(t+ θ)−
|α|
2 ‖g‖E ≤ Cα(1 + (t+ θ)−N)‖g‖E

14



so that

‖eθ∆f‖E ≤C‖g‖E
∫ +∞

0

e−t(1 + (t+ θ)−N) tN−
s
2
dt

t

≤C‖g‖E(Γ(N − s/2) +

∫ θ

0

tN−
s
2
dt

t
+

∫ +∞

θ

dt

t1+s/2
)

≤C ′‖g‖Eθ−s/2.

The lemma is proved.

Let us recall the definition of Calderón’s interpolation spaces [A0, A1]θ
and [A0, A1]θ [CAL]. We assume that A0 and A1 are subspaces of S ′, so that
A0 ∩ A1 and A0 + A1 are well-defined.

We begin with the definition of the first interpolate [A0, A1]θ. Let Ω be
the open complex strip Ω = {z ∈ C / 0 < <z < 1}. F(A0, A1) is the space
of functions F defined on the closed complex strip Ω such that :

1. F is continuous and bounded from Ω to A0 + A1

2. F is analytic from Ω to A0 + A1

3. t 7→ F (it) is continuous from R to A0, and lim|t|→+∞ ‖F (it)‖A0 = 0

4. t 7→ F (1+it) is continuous from R to A1, and lim|t|→+∞ ‖F (1+it)‖A0 =
0

Then
f ∈ [A0, A1]θ ⇔ ∃F ∈ F(A0, A1), f = F (θ)

and
‖f‖[A0,A1]θ = inf

f=F (θ)
max(sup

t∈R
‖F (it)‖A0 , sup

t∈R
‖F (1 + it)‖A1).

Now, let us recall the definition of the second interpolate [A0, A1]θ. G(A0, A1)
is the space of functions G defined on the closed complex strip Ω such that :

1. 1
1+|z|G is continuous and bounded from Ω to A0 + A1

2. G is analytic from Ω to A0 + A1

3. t 7→ G(it)−G(0) is Lipschitz from R to A0

4. t 7→ G(1 + it)−G(1) is Lipschitz from R to A1

15



Then
f ∈ [A0, A1]θ ⇔ ∃G ∈ G(A0, A1), f = G′(θ)

and

‖f‖[A0,A1]θ = inf
f=G′(θ)

max( sup
t1,t2∈R

‖G(it2)−G(it1)

t2 − t1
‖A0 , sup

t1,t2∈R
‖G(1 + it2)−G(1 + it1)

t2 − t1
‖A1).

Threeimportant properties of those complex interpolation functors are:

• the equivalence theorem: if A0 (or A1) is reflexive, then [A0, A1]θ =
[A0, A1]θ for 0 < θ < 1;

• the duality theorem: if A0∩A1 is dense in A0 and A1, then ([A0, A1]θ)
′ =

[A′0, A
′
1]θ for 0 < θ < 1.

• the density theorem: A0 ∩ A1 is dense in [A0, A1]θ

An easy classical example of interpolation concerns the Lebesgue spaces
Lp on a measured space (X,µ): [Lp0 , Lp1 ]θ = Lp with 1 < p0 < +∞, 1 < p1 <
+∞, 0 < θ < 1 and 1

p
= (1− θ) 1

p0
+ θ 1

p1
. Indeed, if f ∈ Lp, we write f = Fθ

where Fz(x) = |f(x)|(1−z)
p
p0

+z p
p1

f(x)
|f(x)| . If p0 ≤ p1, we have |Fz(x)| ≤ |f(x)|

p
p0 if

|f(x)| ≥ 1. and |Fz(x)| ≤ |f(x)|
p
p1 if |f(x)| < 1. By dominated convergence,

this gives the continuity of F from Ω to Lp0 + Lp1 . For the holomorphy, we
use the equivalence beetween (strong) holomorphy and weak-* holomorphy;
thus, it is enough to check that z ∈ Ω 7→

∫
Fz(x)g(x) d/mu is holomorph if

g ∈ Lq0 ∩ Lq1 , where 1
qi

+ 1
pi

= 1. Thus, we obtain that Lp ⊂ [Lp0 , Lp1 ]θ. As

[Lp0 , Lp1 ]θ = [Lp0 , Lp1 ]θ = ([Lq0 , Lq1 ]θ)
′

and as Lq is dense in [Lq0 , Lq1 ]θ (where 1
q

+ 1
p

= 1), we obtain from the

embedding Lq ⊂ [Lq0 , Lq1 ]θ that [Lp0 , Lp1 ]θ ⊂ Lp.
A similar result holds for weighted Lebesgue spaces Lp(w dµ):

[Lp0(w0 dµ), Lp1(w1 dµ)]θ = Lp(w dµ)

with 1 < p0 < +∞, 1 < p1 < +∞, 0 < θ < 1 and 1
p

= (1 − θ) 1
p0

+ θ 1
p1

and

w = w1−θ
0 wθ1. If f ∈ Lp(w dµ), one defines

Fz(x) =

(
w(x)

w0(x)

)(1−z) 1
p0

(
w(x)

w1(x)

)z 1
p1

|f(x)|(1−z)
p
p0

+z p
p1
f(x)

|f(x)|
.

We have

|Fz(x)| ≤ max(

(
w(x)

w0(x)

) 1
p0

|f(x)|
p
p0 ,

(
w(x)

w1(x)

) 1
p1

|f(x)|
p
p1

)
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The proof then is similar to the case of Lebesgue spaces.
If we want to interpolate Morrey spaces Mp0,q0(R3) and Mp1,q1(R3) and

obtain a Morrrey space, then it is necessary to assume that p0
q0

= p1
q1

[LR 3,

LR 4]. We then obtain:

[Mp0,q0 ,Mp1,q1 ]θ = Mp,q

when 1 < p0 ≤ q0 < +∞, 1 < p1 ≤ q1 < +∞, p0
q0

= p1
q1

, 0 < θ < 1,
1
p

= (1−θ) 1
p0

+θ 1
p1

and 1
q

= (1−θ) 1
q0

+θ 1
q1

. As Mp0,q0 ∩Mp1,q1 is not dense in

Mp,q and is dense in [Mp0,q0 ,Mp1,q1 ]θ, we can see that we must use the second

interpolation functor. The embedding [Mp0,q0 ,Mp1,q1 ]θ ⊂ Mp,q is obvious:
for a ball B with radius r ≤ 1, we have that the map f 7→ f1B is bounded

from Mp0,q0 to Lp0 with norm less or equal to r
3( 1
p0
− 1
q0

)
and from Mp1,q1 to Lp1

with norm less or equal to r
3( 1
p0
− 1
q0

)
, hence from [Mp0,q0 ,Mp1,q1 ]θ to [Lp0 , Lp1 ]θ

with norm less or equal to r3( 1
p
− 1
q

). As [Lp0 , Lp1 ]θ = Lp, we obtain the desired
estimates.

If f belongs toMp,q, we define Fz(x) = |f(x)|(1−z)
p
p0

+z p
p1

f(x)
|f(x)| . As |Fz(x)| ≤

max((|f(x)|
p
p0 |f(x)|

p
p1 ), we find that z 7→ Fz is bounded from Ω to Mp0,q0 +

Mp1,q1 and holomorph on the open strip Ω (again by equivalence between
analyticity and weak-* analyticity). But it is no longer continuous, and
we cannot apply the first functor of Calderón. Instead, we follow Cwikel
and Janson [CWJ] and define Gz =

∫ z
1/2
Fw dw. We may then apply the

definition of the second functor and find that f ∈ [Mp0,q0 ,Mp1,q1 ]θ. Thus,
[Mp0,q0 ,Mp1,q1 ]θ = Mp,q.

Now, we are going to describe complex interpolation of potential spaces
on weighted Lebesgue spaces when varying both the regularity exponents
and the weights3:

Proposition 2.
Let θ ∈ (0, 1), s0, s1 be real numbers, 1 < p0, p1 < +∞ and s = (1−θ)s0+θs1

and 1
p

= (1 − θ) 1
p0

+ θ 1
p1

. Then, if w0 is a weight in the Muckenhoupt class
Ap0 and w1 is a weight in the Muckenhoupt class Ap1,

(Id−∆)−sLp(w1−θ
0 wθ1 dx) = [(Id−∆)−s0Lp0(w0 dx), (Id−∆)−s1Lp1(w1 dx)]θ.

Proof. Let f = (Id−∆)−sg where g ∈ Lp(w dx) We define

Hz(x) =

(
w(x)

w0(x)

)(1−z) 1
p0

(
w(x)

w1(x)

)z 1
p1

|f(x)|(1−z)
p
p0

+z p
p1
f(x)

|f(x)|
3This can be seen as a variation on Stein’s interpolation theorem [STE 1, CWJ].
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and

Fz,ε(.) =

(
2− θ
2− z

)4

eε∆(Id−∆)−(1−z)s0−zs1Hz.

We first remark that, for ε > 0 fixed, the operators eε∆(Id−∆))−τ with
τ ∈ [s0, s1] are equicontinuous from Lpi(wi dx) to (Id−∆)−siLpi(wi dx) (it is
enough to check that the norms of the convolutors eε∆(Id−∆)si−τ in K are
uniformly bounded.

Moreover, the operators
(

2−θ
2−it

)4
(Id−∆)−it, t ∈ R, are uniformly bounded

on Lpi(wi dx). Let us recall the definition of Calderón–Zygmund convolutors.
A Calderón–Zygmund convolutor is a distribution K ∈ S ′(R3) such that
K̂ ∈ L∞ (so that convolution with K is a bounded operator on L2) and
such that, when restricted to R3 \ {0}, K is defined by a locally Lipschitz

function such that supx 6=0 |x|3|K(x)| + |x|4|~∇x| < +∞. The space CZ of
Calderón–Zygmund convolutors is normed by

‖K‖CZ = ‖K̂‖∞ + sup
x 6=0
|x|3|K(x)|+ |x|4|~∇x|.

If 1 < p < +∞ and w ∈ Ap and K ∈ CZ, we have ‖f ∗ K‖Lp(w dx) ≤
Cw,p‖f‖Lp(w dx)‖K‖CZ. Since we have

‖K‖CZ ≤ C
∑
|α|≤4

‖|ξ||α|∂αξ K̂‖∞,

it is clear that
(

2−θ
2−it

)4
(Id−∆)−itf = Kt ∗ f with supt∈R ‖Kt‖CZ < +∞.

We may apply the second interpolation functor and find that eε∆f =
Fθ,ε ∈ [(Id−∆)−s0Lp0(w0 dx), (Id−∆)−s1Lp1(w1 dx)]θ if g ∈ Lp(w dx). More-
over its norm is controlled independently from ε > 0 as, for α = 0 or α = 1,

the functionsHα+it are bounded in Lpα(wα dx), the operators
(

2−θ
2−it

)4
(Id−∆)−it

are equicontinuous on Lpα(wα dx) and the operators ε∆ are equicontinuous
on Lpα(wα dx). One then writes

Fα+it,ε = (Id−∆)−(1−α)s0−αs1

(
eε∆
(

2− θ
2− it

)4

(Id−∆)−itHα+it

)
.

To conclude, we remark that Lpi(wi dx) is the dual of Lqi(w
− qi
pi dx) and

that S is dense in this predual. Thus eε∆f is bounded in

[Hs0
Lp0 (w0 dx), H

s1
Lp1 (w1 dx)]

θ = ([(Id−∆)s0Lq0(w
− q0
p0

0 dx), (Id−∆)s1Lq1(w
− q1
p1

1 dx)]θ)
′
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if (Id−∆)sf ∈ Lp(w dx). As ε goes to 0, eε∆f is weak-* convergent to f .
Thus,

(Id−∆)−sLp(w dx) ⊂ [(Id−∆)−s0Lp0(w0 dx), (Id−∆)−s1Lp1(w1 dx)]θ

and we can switch the second and the first interpolation functors asHs0
Lp0 (w0 dx)

is reflexive.
Conversely, assume that f ∈ [(Id−∆)−s0Lp0(w0 dx), (Id−∆)−s1Lp1(w1 dx)]θ

and pick F ∈ F((Id−∆)−s0Lp0(w0 dx), (Id−∆)−s1Lp1(w1 dx))) such that
f = F (θ). Define

Hz,ε =

(
2− θ
2− z

)4

eε∆(Id−∆)(1−z)s0+zs1Fz.

We easily check thatHz,ε ∈ A(Lp0(w0 dx), Lp1(w1 dx)) withHθ,ε = eε∆(Id−∆)sf .
Thus, we find that eε∆(Id−∆)sf is bounded in [Lp0(w0 dx), Lp1(w1 dx]θ =
Lp(w dx), and finally f ∈ (Id−∆)−sLp(w dx).

Corollary 2.
Let 2 < q < +∞ and s < 1− 2

q
. Then there exists such that :

a) There exists γ > 0 and 2 < r < +∞ such that γ + 3
r
< 1 and θ ∈ (0, 1)

such that
B−sq,∞ ⊂ [L2, H−γr ]θ,∞ ⊂ [L2, B−σ∞,∞]θ,∞.

b) For 0 ≤ N < 4
q
, there exists γ > 0 and 2 < r < +∞ such that γ + 3

r
< 1

and and θ ∈ (0, 1) such that

B−s
Lq(1+|x|−Ndx),∞ ⊂ [L2(

dx

(1 + |x|)2
), H−γr ]θ,∞ ⊂ [L2(

dx

(1 + |x|)2
), B−σ∞,∞]θ,∞.

Proof. If s < σ < 1 − 2
q
, we have B−sq,∞ ⊂ H−σLq and B−s

Lq(1+|x|−Ndx),∞ ⊂
H−σ
Lq(1+|x|−Ndx)

. Thus, if r > q, we have, for θ ∈ (0, 1), γ > σ such that

(1− θ)1
2

+ θ 1
r

= 1
q

and θγ = σ,

B−sq,∞ ⊂ [L2, H−γr ]θ ⊂ [L2, H
−γ
r ]θ,∞ ⊂ [L2, B

−γ− 3
r∞,∞ ]θ,∞.

As γ+ 3
r

= (1− 2
r
) σ

1− 2
q

+ 3
r

= σ
1− 2

q

+O(1
r
), we have γ+ 3

r
< 1 for r large enough.

Similarly, if (1− θ)M = N and M < 2 (so that in particular 1
(1+|x|)M ∈ A2),

we have

B−s
Lq( 1

(1+|x|)N
dx),∞ ⊂[L2(

1

(1 + |x|)M
dx), H−γr ]θ

⊂[L2(
1

(1 + |x|)2
dx), H−γr ]θ,∞ ⊂ [L2(

1

(1 + |x|)2
dx), B

−γ− 3
r∞,∞ ]θ,∞.

As M = N
1−θ = N

1
2
− 1
r

1
q
− 1
r

= qN
2

+O(1
r
), we have M < 2 for r large enough.
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4 Mild solutions for the Navier–Stokes equa-

tion.

In this section, we develop some remarks on the solutions provided by Koch
and Tataru’s theorem (Theorem 1 and Corollary 1).

Let ~u0 ∈ bmo−1
0 with div ~u0 = 0. If ‖et∆~u0‖XT < 1

4C0
, then the inte-

gral Navier–Stokes equations have a solution on (0, T ) such that ‖~u‖XT ≤
2‖et∆~u0‖XT . This solution is computed through Picard iteration as the limit

of ~Un, where ~U0 = et∆~u0 and ~Un+1 = et∆~u0 − B(~Un, ~Un). In particular, we
have, by induction,

‖~Un+1 − ~Un‖XT ≤ (4C0‖et∆~u0‖XT )n+1‖et∆~u0‖XT

and
‖~Un‖XT ≤ 2‖et∆~u0‖XT .

It is easy to check that ~u is smooth: if Xα = L∞ if α = 0 and Ḃα
∞,∞ if

α > 0, we have

‖uv‖Xα ≤ Cα(‖u‖∞‖v‖Xα + ‖v‖∞‖u‖Xα)

and ‖~u‖∞ ≤ 2‖et∆~u0‖XT 1√
t

for 0 < t < T while

~u(t, .) = e
t
2

∆~u(t/2, .)−
∫ t/2

0

e( t
2
−s)∆P div(~u(

t

2
+ s, .)⊗ ~u(

t

2
+ s, .)) ds

so that

‖~u(t, .)‖X(n+1)/2
≤ C

1

t1/4
‖~u(t/2, .)‖Xn/2+C‖e

t∆~u0‖XT
∫ t/2

0

1

( t
2
− s)3/4

1√
s
‖~u(

t

2
+s, .)‖Xn/2 ds

and, by induction on n,

‖~u(t, .)‖Xn/2 ≤ Cnt
− 1

2
−n

4 .

Thus, for 0 < t < T , ~u is smooth with respect to the space variable x. So
is ~∇p, by hypoellipticity of the Laplacian (as ∆p = −

∑3
i=1

∑3
j=1 ∂iuj∂jui).

Then we have smoothness with respect to the time variable by controlling
the time derivatives through the Navier–Stokes equations.

Proposition 3.
Let ~u0 ∈ bmo−1

0 with div ~u0 = 0. Let E ⊂ S ′ be a stable space. If more-
over ~u0 belongs to E, then the small solution ~u to the integral Navier–Stokes
equations with initial value ~u0, i.e. the solution on (0, T ) such that ‖~u‖XT ≤
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2‖et∆~u0‖XT , satisfies sup0<t<T ‖~u(t, .)‖E < +∞ and limt→0 ‖~u(t, .)−et∆~u0‖E =
0. In particular, if S is dense in E, then limt→0 ‖~u(t, .)− ~u0‖E = 0.

Moreover, if E ⊂ S ′ is the dual of a space E0 where S is dense,

sup
0<t<T

√
t‖~∇⊗ ~u‖E < +∞.

Proof. We have

‖B(~u,~v)(t, .)‖E ≤ CE

∫ t

0

1√
t− s

min(‖~u‖∞‖~v‖E, ‖~u‖E‖~v‖∞) ds.

By induction we have ~Un ∈ L∞((0, T ), E) with, for n ≥ 0 [and ~U−1 = 0]

‖~Un+1(t, .)− ~Un(t, .)‖E

≤C
∫ t

0

1√
t− s

1√
s

√
s‖~Un(s, .)− ~Un−1(s, .)‖∞(‖~Un(s, .)‖E + ‖~Un−1(s, .)‖E) ds

≤C ′(4C0‖et∆~u0‖XT )n
n∑
k=0

‖~Uk − ~Uk−1‖L∞((0,T ),E).

Thus, we have

+∞∑
k=0

‖~Uk − ~Uk−1‖L∞((0,T ),E) ≤ ‖~U0‖L∞((0,T ),E)

∞∏
n=0

(1 + C(4C0‖et∆~u0‖XT )n).

Thus, sup0<t<T ‖~u(t, .)‖E < +∞.

We have supt>0

√
t‖~∇ ⊗ ~U0‖E < +∞. We will show by induction that

supt>0

√
t‖~∇⊗ ~Un‖E < +∞. Indeed, for η ∈ (0, 1) and 0 < t < T , we have

~Un+1(t, .) = eηt∆~Un+1((1−η)t, .)−
∫ ηt

0

e(ηt−s)∆P div(~Un((1−η)t+s, .)⊗~Un((1−η)t+s, .)) ds

and, since div(~u⊗ ~v) = ~u · ~∇~v,

∂j ~Un+1(t, .) = eηt∆~Un+1((1−η)t, .)−
∫ ηt

0

e(ηt−s)∆P∂j(~Un((1−η)t+s, .)·~∇~Un((1−η)t+s, .)) ds.

This gives

‖~∇~Un+1(t, .)‖E

≤C 1√
ηt
‖~Un+1‖L∞((0,T ),E)

+ C

∫ ηt

0

1√
ηt− s

1

(1− η)t+ s
ds sup

0<s<T

√
s‖~∇⊗ ~Un(s, .)‖E

√
s‖~Un(s, .)‖∞

≤C1
1√
ηt

+ C1

√
η

1− η
1√
t

sup
0<s<T

√
s‖~∇⊗ ~Un(s, .)‖E
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where C1 does not depend on n nor on η. For η small enough, we have
C1

√
η

1−η <
1
4

and sup0<s<T

√
s‖~∇⊗ ~U0(s, .)‖E ≤ 2C1

1√
η
. By induction, we get

sup0<s<T

√
s‖~∇⊗ ~Un(s, .)‖E ≤ 2C1

1√
η

for every n ∈ N. If E ⊂ S ′ is the dual

of a space E0 where S is dense, we conclude that sup0<s<T

√
s‖~∇⊗~u(s, .)‖E <

+∞.

Proposition 4.
Let ~u0 ∈ bmo−1

0 with div ~u0 = 0. Let w = 1
(1+|x|)N where 0 ≤ N < 3. If

moreover ~u0 belongs to L2(w dx)), then the small solution ~u to the integral
Navier–Stokes equations with initial value ~u0, i.e. the solution on (0, T ) such

that ‖~u‖XT ≤ 2‖et∆~u0‖XT , satisfies ~u ∈ L∞((0, T ), L2(w dx)) and ~∇ ⊗ ~u ∈
L2((0, T ), L2(w dx))

Proof. Let φR = θ( x
R

) 1
(1+|x|)2)N/2

where θ ∈ D is equal to 1 on a neighborhood

of 0. We know that ~u is smooth, so that, for 0 < t0 ≤ t < T ,

∂t(|~u|2) + 2|~∇⊗ ~u|2 = ∆(|~u|2)− div((2p+ |~u|2)~u)

and thus ∫
φR(x)|~u(t, x)|2 dx+ 2

∫ t

t0

∫
φR(x)|~∇⊗ ~u(s, x)|2 dx ds

=

∫
φR(x)|~u(t0, x)|2 dx+

∫ t

t0

∫
∆(φR(x))|~u(t, x)|2 dx ds

+

∫ t

t0

∫
(2p+ |~u|2)~u · ~∇(φR(x)) dx ds.

We have, for |α| ≤ 2, |∂α(φR)| ≤ Cw. On the other hand, we know that
~u ∈ L∞(L2(w dx)), that

√
tuiuj ∈ L∞(L2(w dx)), and thus

√
t(2p + |~u|2) ∈

L∞(L2(w dx)) (as w ∈ A2 and p = −
∑

1≤i≤3

∑3
j=1

∂i∂j
∆

(uiuj)), thus we get
that ∫

φR(x)|~u(t, x)|2 dx+ 2

∫ t

t0

∫
φR(x)|~∇⊗ ~u(s, x)|2 dx ds

≤C sup
0<s<T

∫
|~u(s, x)|2w(x) dx+ C

∫ T

0

∫
|~u(t, x)|2w(x) dx ds

+

∫ T

0

∫ √
s
∣∣2p+ |~u|2

∣∣ |~u|w(x) dx
ds√
s
< +∞.

We then let R go to +∞ and t0 go to 0.
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5 Barker’s stability theorem

In this section, we extend a lemma of Barker on Leray weak solutions with
initial values in L2∩ [L2, Ḃ−δ∞,∞]θ,∞ (for some δ < 1 and θ ∈ (0, 1)) to the case
of some solutions with initial values in L2(w dx) ∩ [L2(w dx), H−γr ]θ,∞ where
w = 1

(1+|x|)N and 0 ≤ N ≤ 2, and γ + 3
r
< 1.

Definition 6.
A weighted Leray weak solution for the Navier–Stokes equations with divergence-
free initial value ~u0 ∈ L2(w dx), where w = 1

(1+|x|)N and 0 ≤ N ≤ 2, is a

divergence-free vector field ~u defined on (0, T )× R3 such that

• ~u ∈ L∞((0, T ), L2(w dx)) and ~∇⊗ ~u ∈ L2((0, T ), L2(w dx))

• there exists p ∈ D′((0, T )× R3 such that

∂t~u = ∆~u− ~u · ~∇~u− ~∇p

• limt→0 ‖~u(t, .)− ~u0‖L2(w dx) = 0

• ~u fulfills the weighted Leray inequality: for 0 < t < T ,∫
|~u(t, x)|2w(x) dx+ 2

∫ t

0

∫
|~∇⊗ ~u(s, x)|2w(x) dx ds

≤
∫
|~u0(t, x)|2w(x) dx− 2

3∑
i=1

∫ t

0

∫
∂iw(s, x)~u(s, x) · ∂i~u(s, x) dx ds

+

∫ t

0

∫
(|~u(s, x)|2 + 2p(s, x))~u(s, x) · ~∇w(x) dx ds

The Navier–Stokes problem in L2(w dx) has recently been studied by
Bradshaw, Kukavica and Tsai [BKT], and Fernández-Dalgo and Lemarié-

Rieusset [FLR 1]. As |~∇w| ≤ Nw, we find that
√
w~u ∈ L2((0, T ), H1). In

particular, we have wuiuj ∈ L4((0, T ), L6/5). The pressure p is determined by
the equation ∆p = −

∑3
i=1

∑3
j=1 uiuj (see [FLR 2]) and, as w6/5 ∈ A6/5, we

have p ∈ L4((0, T ), L6/5(w6/5 dx)). As |~∇w| ≤ Nw3/2, we see that the right-
hand side of the weighted Leray inequality is well-defined.As in the case of
Leray solutions, the strong continuity at t = 0 of t ∈ [0, T ) 7→ ~u(t, .) ∈
L2(w dx) (which is only weakly continuous for t > 0) is a consequence of the
weighted Leray inequality.
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Theorem 8.
Let ~u0 be a divergence-free vector field such that ~u0 ∈ L2(w dx), where w =

1
(1+|x|)N and 0 ≤ N ≤ 2. Let ~u1, ~u2 be two weighted Leray weak solutions for

the Navier–Stokes equations with initial value ~u0. If moreover ~u0 belongs to
[L2(w dx), H−γr ]θ,∞ for some γ > 0, 2 < r < +∞ with γ + 3

r
< 1 and θ ∈

(0, 1), then there exists T0 > 0, C ≥ 0 and η > 0 such that, for 0 ≤ t ≤ T0,

‖~u1(t, .)− ~u2(t, .)‖L2(w dx) ≤ Ctη.

Proof. This theorem was proved by Barker [BAR] in the case N = 0. Our
proof will follow the same lines as Barker’s proof.

As ~u0 ∈ [L2(w dx), H−γr ]θ,∞, for every ε ∈ (0, 1) we may split ~u0 in
~u0 = ~v0,ε + ~w0,ε with ‖~v0,ε‖H−γr ≤ C1ε

θ−1 and ‖~w0,ε‖L2(w dx) ≤ C1ε
θ, where

C1 depends only on ~u0. As ~u0 = P~u0 and as P is continuous on H−γr and on
L2(w dx), we may assume (changing the value of the constant C1) that ~v0,ε

and ~w0,ε are divergence free. Let δ = γ+ 3
r
< 1. Since H−γr ⊂ B−δ∞,∞, we have

for 0 < t ≤ 1, ‖et∆~v0,ε‖∞ ≤ C2t
−δ/2εθ−1. If 0 < T1 < 1, we have

sup
0<t<T1

√
t‖et∆~v0,ε‖∞ ≤ C2ε

θ−1T
1−δ
2

1

and

sup
0<t<T1,x∈R3

√
1

t3/2

∫ t

0

∫
B(x,

√
t)

|et∆~v0,ε|2 dx ≤ C3ε
θ−1T

1−δ
2

1

so that ‖et∆~v0,ε‖XT1 ≤ (C2 + C3)εθ−1T
1−δ
2

1 < 1
8C0

if T1 < min(1, C4ε
2

1−δ (1−θ)).
By (the proof of) Theorem 5, we know that the Navier–Stokes equations

with initial value ~v0,ε will have a solution ~vε on (0, T1) such that ‖~vε(t, .)‖∞ ≤
C5t

−δ/2εθ−1. Moreover, by Proposition 3, ~vε is a weighted Leray weak solu-
tion.

Let ~u be a weighted Leray solution on (0, T ) for the Navier–Stokes equa-
tions with initial value ~u0. We are going to compare ~u and ~vε. We know
that ~vε is smooth, so that ∂t(~u · ~vε) = ~u · ∂t~vε + ~vε · ∂t~u. If pε is the pressure
associated to ~vε, we have on (0, T2) where T2 = min(T, T1)

∂t(~u · ~vε) =~u ·∆~vε + ~vε ·∆~u− div(pε~u+ p~vε)− ~u · (~vε · ~∇~vε)− ~vε · (~u · ~∇~u)

=~u ·∆~vε + ~vε ·∆~u− div(pε~u+ p~vε)

− (~u− ~vε) · (~vε · ~∇~vε)− ~vε · (~u · ~∇(~u− ~vε))− div(
|~vε|2

2
(~u+ ~vε))

=~u ·∆~vε + ~vε ·∆~u− ~vε · ((~u− ~vε) · ~∇(~u− ~vε))

− div(pε~u+ p~vε +
|~vε|2

2
(~u+ ~vε) + (~vε · (~u− ~vε))~vε).
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As ~vε ∈ L2((0, T2), L∞), this can be integrated on (0, t) × R3 against the
measure w(x) dx ds and gives

∫
~u · ~vεw(x) dx−

∫
~u0 · ~v0,εw(x) dx

= −
∫ t

0

∫ 3∑
i=1

∂iw(x)(~u(s, x) · ∂i~vε(s, x) + ~vε(s, x) · ∂i~u(s, x)) dx ds

− 2

∫ t

0

∫
(~∇⊗ ~u(s, x) · ~∇⊗ ~vε(s, x))w(x) dx ds

−
∫ t

0

∫
~vε(s, x)·((~u(s, x)− ~vε(s, x)) · ~∇(~u(s, x)− ~vε(s, x)))w(x) dx ds

+

∫ t

0

∫
p(s, x)~vε(s, x) · ~∇w(x) + pε(s, x)~u(s, x) · ~∇w(x) dx ds

+

∫ t

0

∫
|~vε(s, x)|2

2
(~u(s, x)− ~vε(s, x)) · ~∇w(x) + (~vε(s, x) · ~u(s, x))~vε(s, x) · ~∇w(x) dx ds.

Together with∫
|~u(t, x)|2w(x) dx+ 2

∫ t

0

∫
|~∇⊗ ~u(s, x)|2w(x) dx ds

≤
∫
|~u0(t, x)|2w(x) dx− 2

3∑
i=1

∫ t

0

∫
∂iw(s, x)~u(s, x) · ∂i~u(s, x) dx ds

+

∫ t

0

∫
(|~u(s, x)|2 + 2p(s, x))~u(s, x) · ~∇w(x) dx ds

and∫
|~vε(t, x)|2w(x) dx+ 2

∫ t

0

∫
|~∇⊗ ~vε((s, x)|2w(x) dx ds

=

∫
|~v0,ε(t, x)|2w(x) dx− 2

3∑
i=1

∫ t

0

∫
∂iw(s, x)~vε((s, x) · ∂i~vε((s, x) dx ds

+

∫ t

0

∫
(|~vε((s, x)|2 + 2pε(s, x))~vε((s, x) · ~∇w(x) dx ds,
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this gives∫
|~vε(t, x)− ~u(t, x)|2w(x) dx+ 2

∫ t

0

∫
|~∇⊗ (~vε − ~u)|2w(x) dx ds

≤
∫
|~v0,ε − ~u0|2w(x) dx− 2

3∑
i=1

∫ t

0

∫
∂iw(~vε − ~u) · ∂i(~vε − ~u) dx ds

+2

∫ t

0

∫
(pε − p)(~vε − ~u) · ~∇w dx ds− 2

∫ t

0

∫
~vε · ((~u− ~vε) · ~∇(~u− ~vε))w dx ds

+

∫ t

0

∫
|~vε − ~u|2~vε · ~∇w + (|~u|2 − |~vε|2)(~u− ~vε) · ~∇w dx ds.

Thus, we have

∫
|~vε(t, x)− ~u(t, x)|2w(x) dx+ 2

∫ t

0

∫
|~∇⊗ (~vε − ~u)|2w(x) dx ds

≤
∫
|~v0,ε − ~u0|2w(x) dx+ C6

∫ t

0

‖
√
w(~u− ~vε)‖2‖

√
w~∇(~u− ~vε)‖2 ds

+ C6

∫ t

0

‖(p− pε)w‖L6/5‖
√
w(~vε − ~u)‖6 ds

+ C6

∫ t

0

‖~vε‖∞‖
√
w(~u− ~vε)‖2‖

√
w~∇⊗ (~u− ~vε)‖2 ds

+ C6

∫ t

0

‖
√
w(~u− ~vε)‖2

3(‖
√
w~u‖3 + ‖

√
w~vε‖3) ds.

We have

‖w(p−pε)‖6/5 ≤ C7‖w(~u⊗~u−~vε⊗~vε‖6/5 ≤ C7‖
√
w(~u−~vε)‖2(‖

√
w~u‖3+‖

√
w~vε‖3)

‖
√
w(~u− ~vε)‖2

3 ≤ ‖
√
w(~u− ~vε)|2‖

√
w(~u− ~vε)‖6

and

‖
√
w(~u− ~vε)‖6 ≤ C8

(
‖
√
w(~u− ~vε)‖2 + ‖

√
w~∇⊗ (~u− ~vε)‖2

)
,
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so that

‖
√
w(~u(t, .)− ~vε(t, .))‖2

2 + 2

∫ t

0

∫
‖
√
w ~∇⊗ (~vε − ~u)‖2

2 ds

≤ ‖
√
w(~v0,ε − ~u0)‖2

2 + C9

∫ t

0

‖
√
w(~u− ~vε)‖2‖

√
w~∇(~u− ~vε)‖2 ds

+C9

∫ t

0

(‖
√
w(~u− ~vε)‖2 + ‖

√
w~∇⊗ (~u− ~vε)‖2)‖

√
w(~u− ~vε)‖2(‖

√
w~u‖3 + ‖

√
w~vε‖3) ds

+ C9

∫ t

0

‖~vε‖∞‖
√
w(~u− ~vε)‖2‖

√
w~∇⊗ (~u− ~vε)‖2 ds

≤ ‖
√
w(~v0,ε − ~u0)‖2

2 +

∫ t

0

‖
√
w ~∇⊗ (~vε − ~u)‖2

2 ds

+ C10

∫ t

0

‖
√
w(~u− ~vε)‖2

2(1 + ‖
√
w~u‖2

3 + ‖
√
w~vε‖2

3 + ‖~vε‖2
∞) ds.

By Gonwall’s lemma, we find that, for 0 < t < T2, we have

‖
√
w(~u(t, .)− ~vε(t, .))‖2

2 ≤ ‖
√
w(~v0,ε − ~u0)‖2

2e
∫ T2
0 C10(1+‖

√
w~u‖23+‖

√
w~vε‖23+‖~vε‖2∞) ds.

We know that T2 ≤ T ,
∫ T2

0
‖
√
w~u‖2

3 ds ≤
∫ T

0
‖
√
w~u‖2

3 ds < +∞, and, by

Propositions 3 and 4,
∫ T2

0
‖
√
w~vε‖2

3 ds ≤
∫ T1

0
‖
√
w~vε‖2

3 ds ≤ C11‖~u0‖2
L2(w dx).

Finally, we have∫ T2

0

‖~vε‖2
∞) ds ≤ C12

∫ T1

0

t−δ‖~v0,ε‖2
B−δ∞,∞

dt ≤ C13T
1−δ
1 ε2(θ−1) ≤ C14.

Thus, we have
‖
√
w(~u(t, .)− ~vε(t, .))‖2

2 ≤ C15ε
2θ.

C15 depends only on ~u and ~u0.
We may now estimate ‖~u1(t, .) − ~u2(t, .)‖L2(w dx) for two weighted Leray

weak solutions defined on (0, T ). If t ∈ (0, T ), we define ε = ( 4
C4
t)

1−δ
2(1−θ)

and T3 = 1
2
C4ε

2
1−δ (1−θ) = 2t. If t is small enough, we have 0 < ε < 1 and

T3 < min(1, T ). Thus, we know that, for a constant C that depends only on
~u1, ~u2 and ~u0,

‖~u1(t, .)− ~u2(t, .)‖L2(w dx) ≤‖~u1(t, .)− ~vε(t, .)‖L2(w dx) + ‖~vε(t, .)− ~u2(t, .)‖L2(w dx)

≤Cεθ = C(
4

C4

t)θ
1−δ

2(1−θ)

The theorem is proved.
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6 Weak-strong uniqueness

We may now prove Theorem 4.

Proof. Recall that we consider two solutions ~u, ~v of the Navier–Stokes equa-
tions on (0, T ) with the same initial value ~u0 such that:

• ~u0 be a divergence-free vector field with ~u0 ∈ L2 ∩ bmo−1
0

• ‖et∆~u0‖XT < 1
4C0

• ~u is the mild solution of the Navier–Stokes equations with initial value
~u0 such that ‖~u‖XT ≤ 1

2C0

• for some N ≥ 0 , 2 < q < +∞ and 0 ≤ s < 1− 2
q
,

sup
0<t<T

ts/2‖~u‖Lq( 1

(1+|x|)N
dx) < +∞

• ~v is a suitable weak Leray solution of the Navier–Stokes equations.

We know, by Propositions 3 and 4, that the mild solution ~u is a suitable
weak Leray solution. In particular, we have sup0<t<T ‖~u(t, .)‖2 < +∞, while
sup0<t<T t

1/2‖~u(t, .)‖∞ ≤ ‖~u‖XT < +∞. Thus,

sup
0<s<T

t
1
2
− 1
q ‖~u‖q < +∞.

If 0 ≤ α ≤ 1, we find that

sup
0<t<T

(
√
t)(1−α)(1− 2

q
)+αs‖~u‖Lq( 1

(1+|x|)αN
dx) < +∞.

By Theorem 5, we find that

~u0 ∈ B−sαLq( 1

(1+|x|)αN
dx,∞ with sα = (1− α)(1− 2

q
) + αs.

For 0 < α < min(1, 4
Nq

), 0 < sα < 1− 2
q

and αN < 4
q
, so that we may apply

Corollary 2.
The next step is to check that ~u and ~v, that are suitable Leray weak

solutions, are weighted Leray weak solutions, for the weight w(x) = 1
(1+|x|)2 .

It means that we must check that ~v (and ~u) fulfills the weighted Leray energy
inequality. We consider a non-negative function θ ∈ D(R3) equal to 1 on a
neighborhood of 0 and 0 for |x| ≥ 1 and a function α smooth on R, such
that 0 ≤ α ≤ 1, with α(t) equal to 0 on (∞, 0) and 1 on (1,+∞). For
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0 < t0 < t1 < T , R > 0 and 0 < ε < min(t1 − t0, T − t1), we define the test
function

ϕt0,t1,ε,R(t, x) = α(
t− t0
ε

)(1−α(
t− t1
ε

))
1

(1 +
√

1
R2 + x2)2

θ(
x

R
) = αt0,t1,ε(t)θR(x)

which is non-negative and supported in [t0, t1 + ε] × B(0, R). We have, by
suitability of ~v, if q is the pressure associated to the solution ~v,∫∫

ϕt0,t1,ε,R

(
∂t(|~v|2) + 2|~∇⊗ ~v|2 −∆(|~v|2) + div((2q + |~v|2)~v)

)
dx dt ≤ 0.

As , for R ≥ 1, |θR| ≤ Cw and |~∇θR| ≤ Cw3/2, dominated convergence when
R goes to +∞ gives us∫∫

(
1

ε
α′(

t− t1
ε

)− 1

ε
α′(

t− t0
ε

))|~v|2w(x) dx dt+ 2

∫∫
αt0,t1,ε|~∇⊗ ~v|2w(x) dx dt

≤− 2
3∑
i=1

∫∫
αt0,t1,ε∂iw(~v · ∂i~v) dx dt+

∫∫
αt0,t1,ε(|~v|2 + 2q)~v · ~∇w dx dt

If ε goes to 0, we get

lim sup
ε→0

∫
(
1

ε
α′(

s− t1
ε

)− 1

ε
α′(

s− t0
ε

))(

∫
|~v(s, x)|2w(x) dx) ds

+ 2

∫ t1

t0

∫
|~∇⊗ ~v|2w(x) dx ds

≤− 2
3∑
i=1

∫ t1

t0

∫
∂iw(~v · ∂i~v) dx ds.+

∫ t1

t0

∫
(|~v|2 + 2q)~v · ~∇w dx ds

For almost every t0, t1, we have that t0 and t1 are Lebesgue points of the
map s 7→

∫
|~v(s, x)|2w(x)) dx, so that

lim
ε→0

∫
(
1

ε
α′(

s− t1
ε

)− 1

ε
α′(

s− t0
ε

))(

∫
|~v(s, x)|2w(x) dx) ds

=

∫
|~v(t1, x)|2w(x) dx−

∫
|~v(t0, x)|2w(x) dx.

If t0 goes to 0 and t1 goes to t, we have ‖~v(t0, .) − ~u0‖L2(w dx) ≤ ‖~v(t0, .) −
~u0‖2 → 0, so that

lim
t0→0

∫
|~v(t0, x)|2w(x) dx =

∫
|~u0(x)|2w(x) dx
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while ~v(t1, .) is weakly convergent to ~v(t, .) so that∫
|~v(t, x)|2w(x) dx ≤ lim inf

t1→t

∫
|~v(t1, x)|2w(x) dx.

Thus, we get the weighted Leray energy inequality.
By Theorem 8, we then know that there exists T0 > 0, C ≥ 0 and η > 0

such that, for 0 ≤ t ≤ T0,

‖~u(t, .)− ~v(t, .)‖L2(w dx) ≤ Ctη.

Moreover, we can do the same computations as in the proof of Theorem 8 in
order to estimate ∂t(~u.~v) (since ~u is smooth) and write, if p is the pressure
associated to ~u and q the pressure associated to ~v,

∂t(~u · ~v) =~u ·∆~v + ~v ·∆~u− ~u · ((~u− ~v) · ~∇(~u− ~v))

− div(q~u+ p~v +
|~u|2

2
(~u+ ~v) + (~u · (~v − ~u))~u).

As ~u ∈ L2((ε, T ), L∞) for every ε > 0, this can be integrated on (ε, t)×R3

against the measure w(x) dx ds and gives

∫
~u(t, x)·~v(t, x)w(x) dx−

∫
~u(ε, x) · ~v(ε, x))w(x) dx

=−
∫ t

ε

∫ 3∑
i=1

∂iw(~u · ∂i~v + ~v · ∂i~u) dx ds

− 2

∫ t

ε

∫
(~∇⊗ ~u · ~∇⊗ ~v)w(x) dx ds

−
∫ t

ε

∫
~u·((~u− ~v) · ~∇(~u− ~v))w(x) dx ds

+

∫ t

ε

∫
p~v · ~∇w + q~u · ~∇w dx ds

+

∫ t

ε

∫
|~u|2

2
(~v − ~u) · ~∇w + (~v · ~u)~u · ~∇w(x) dx ds.
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As ~u(ε, .) and ~v(ε, .) are strongly convergent to ~u0 in L2(w dx), we find∫
~u(t, x)·~v(t, x)w(x) dx−

∫
~u0 · ~u0w(x) dx

=−
∫ t

0

∫ 3∑
i=1

∂iw(~u · ∂i~v + ~v · ∂i~u) dx ds

− 2

∫ t

0

∫
(~∇⊗ ~u · ~∇⊗ ~v)w dx ds

− lim
ε→0

∫ t

ε

∫
~u·((~u− ~v) · ~∇(~u− ~v))w dx ds

+

∫ t

0

∫
p~v · ~∇w + q~u · ~∇w dx ds

+

∫ t

0

∫
|~u|2

2
(~v − ~u) · ~∇w + (~v · ~u)~u · ~∇w dx ds.

We have

lim
ε→0

∫ t

ε

∫
~u·((~u−~v)·~∇(~u−~v))w dx ds =

∫ t

0

∫
sη~u·s−η((~u−~v)·~∇(~u−~v))w dx ds

as sη~u ∈ L2L∞, s−η(~u−~v) ∈ L∞(L2(w dx)) and ~∇⊗ (~u−~v) ∈ L2(L2(w dx)).
Using now the weighted Leray inequalities on ~v and on ~u, we get∫
|~v(t, x)− ~u(t, x)|2w(x) dx+ 2

∫ t

0

∫
|~∇⊗ (~v − ~u)|2w dx ds

≤− 2
3∑
i=1

∫ t

0

∫
∂iw(~v − ~u) · ∂i(~v − ~u) dx ds

+2

∫ t

0

∫
(q − p)(~v − ~u) · ~∇w dx ds− 2

∫ t

0

∫
~u · ((~u− ~v) · ~∇(~u− ~v))w dx ds

+

∫ t

0

∫
|~v − ~u|2~u · ~∇w + (|~u|2 − |~v|2)(~u− ~v) · ~∇w dx ds,
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and thus∫
|~v(t, x)− ~u(t, x)|2w(x) dx+ 2

∫ t

0

∫
|~∇⊗ (~v − ~u)|2w dx ds

≤C
∫ t

0

‖
√
w(~u− ~v)‖2‖

√
w~∇(~u− ~v)‖2 ds

+ C

∫ t

0

‖(p− q)w‖L6/5‖
√
w(~v − ~u)‖6 ds

+ C

∫ t

0

‖~u‖∞‖
√
w(~u− ~v)‖2‖

√
w~∇⊗ (~u− ~v)‖2 ds

+ C

∫ t

0

‖
√
w(~u− ~v)‖2

3(‖
√
w~u‖3 + ‖

√
w~v‖3) ds.

At this point, we get

‖
√
w(~u(t, .)− ~v(t, .))‖2

2 + 2

∫ t

0

∫
‖
√
w ~∇⊗ (~v − ~u)‖2

2 ds

≤
∫ t

0

‖
√
w ~∇⊗ (~v − ~u)‖2

2 ds

+ C

∫ t

0

‖
√
w(~u− ~v)‖2

2(1 + ‖
√
w~u‖2

3 + ‖
√
w~v‖2

3 + ‖~u‖2
∞) ds.

Let
A(t) = t−2η‖

√
w(~u(t, .)− ~v(t, .))‖2

2

and
B(t) = 1 + ‖

√
w~u‖2

3 + ‖
√
w~v‖2

3.

We have

A(t) ≤ C

∫ t

0

A(s)B(s) ds+ Ct−2η

∫ t

0

A(s)s2η‖~u‖2
∞ ds.

Thus, for 0 < t < τ < T ,

A(t) ≤ C sup
0<s<τ

A(s)(

∫ τ

0

B(s) ds+
1

2η
sup

0<s<τ
s‖~u(s, .)‖2

∞).

For τ small enough, we have

C(

∫ τ

0

B(s) ds+
1

2η
sup

0<s<τ
s‖~u(s, .)‖2

∞) < 1

and thus sup0<t<τ A(t) = 0. We conclude that ~u = ~v on [0, τ ]. Since ~u is
bounded on [τ, T ], then uniqueness is easily extended to the whole interval
[0, T ].
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7 Further comments on Barker’s conjecture

In his paper [BAR], Barker raised the following question :

Question 1. If ~u0 belongs to L2∩bmo−1
0 , does there exists a positive time T

such that every weak Leray solution of the Cauchy problem for the Navier–
Stokes equations with ~u0 as initial value coincide with the mild solution in
XT ?

This can be seen as the endpoint case of the Prodi–Serrin weak-strong
uniqueness criterion, as the assumption of Prodi–Serrin’s criterion, i.e. exis-
tence of a solution ~u such that

~u ∈ LptLqx with
2

p
+

3

q
≤ 1 and 2 ≤ p ≤ +∞,

is equivalent, if 2 < p < +∞, to the fact that ~u0 belongs to B
−1+ 3

q
q,p ⊂ bmo−1

0 .

Existence of a mild solution when ~u0 belongs to B
−1+ 3

q
q,p goes back to the

paper of Fabes, Jones and Rivière [FJR]. Existence of mild solutions has

been extended by Cannone [CAN] to the case of B
−1+ 3

q
q,∞ ∩ bmo−1

0 , and Koch
and Tataru’s theorem [KOT] can be seen as the endpoint case of the theory
for existence of mild solutions.

Barker [BAR] extended weak-strong uniqueness to the case B
−1+ 3

q
q,∞ ∩

bmo−1
0 , and could even relax the regularity exponent and consider the case

B−sq,∞ ∩ bmo−1
0 with s < 1 − 2

q
. We have shown that the integrability could

even be relaxed into B
−1+ 3

q

Lq( 1

(1+|x|)N
dx),∞∩bmo−1

0 with N ≥ 0 and s < 1− 2
q
. But

under the sole assumption ~u0 ∈ L2∩bmo−1
0 , weak-strong uniqueness remains

an open question.
An alternative way to study the problem is to impose restrictions on

the class of solutions, beyond the Leray energy inequality or the local Leray
energy inequality. One may for instance consider an approximation process
that provides weak Leray solutions when ~u0 ∈ L2 and consider whether
the solutions provided by this process coincide with the mild solution when
moreover ~u0 ∈ bmo−1

0 . There are many processes that pave the way to Leray
solutions (and in most cases to suitable weak Leray solutions); in [LR 5], we
described fourteen different processes (including α-models, frequency cut-off,
damping, artificial viscosity, hyperviscosity,. . . ).

The scheme is always the same. One approximates the Navier–Stokes
equations (NS) by equations (NSα) depending on a small parameter α ∈
(0, 1). Equations (NSα) with initial value ~u0 ∈ L2 have a unique solution
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~uα. One then establishes an energy (in)equality that allows to control ~uα
uniformly on L∞((0, T ), L2) ∩ L2((0, T ), H1). Moreover, one proves that
∂t~uα is controlled uniformly in L6/5((0, T ), H−3). By the Aubin–Lions the-
orem, there exists a sequence αk → 0 such that ~uαk is weakly convergent
in L2((0, T ), H1) and strongly convergent in (L2((0, T ) × R3))loc to a limit
~v. One then checks that ~v is a weak Leray solution of the Navier–Stokes
equations with initial value ~u0.

Some of those processes behave well for initial values ~u0 ∈ bmo−1
0 , oth-

ers don’t seem to be well adapted to such initial values. More precisely,
if one can prove that, when ~u0 belongs to L2 ∩ bmo−1

0 , there exists a time
T0 such that the solutions ~uα remain small in XT0 (‖et∆~u0‖XT0 < η < 1

40

and supα∈(0,1) ‖~uα‖XT0 ≤ 2η ≤ 1
2C0

), then the weak limit ~v will still remain
controlled in XT0 . But there is only one weak solution ~u in XT0 such that
‖~u‖XT0 ≤

1
2C0

. Thus, the process cannot create a Leray solution that would
escape the weak–strong uniqueness.

Such processes can be found in processes that mimick Leray’s mollifi-
cation. Mollicication has been introduced by Leray [LER] in his seminal
paper on weak solutions for the Navier–Stokes equations. The approximated
problem he considered is the following one: solve

∂t~uα + (ϕα ∗ ~uα).~∇~uα = ∆~uα − ~∇pα

with div ~uα = 0 and ~uα(0, .) = ~u0. Here, ϕ ∈ D, ϕ ≥ 0,
∫
ϕdx = 1

and ϕα(x) = 1
α3ϕ( x

α
). Solving the mollified problem amounts to solve the

following integro-differential problem :

~v = et∆~u0 −B(ϕα ∗ ~v,~v)(t, x)

where

B(~v, ~w) =

∫ t

0

e(t−s)∆P div(~v ⊗ ~w) ds.

Since ‖ϕα ∗ ~v(t, .)‖∞ ≤ ‖~v(t, .)‖∞ and

(

∫ t

0

∫
B(x0,

√
t)

|ϕα ∗ ~v(s, .)(y)|2 dy ds)1/2

=(

∫ t

0

∫
B(x0,

√
t)

|
∫
ϕα(z)~v(s, y − z) dz|2 dy ds)1/2

≤(

∫ t

0

∫
B(x0,

√
t)

∫
ϕα(z)|~v(s, y − z)|2 dz dy ds)1/2

=(

∫
ϕα(z)

(∫ t

0

∫
B(x0+z,

√
t)

|~v(s, y)|2 dy ds
)
dz)1/2,
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we find that ‖ϕα ∗ ~v‖XT ≤ ‖~v‖XT . Thus, the theorem of Koch and Tataru
(Theorem 1 and Corollary 1) still applies :

• for every α > 0 and every T > 0, we have

‖B(ϕα~v, ~w)‖XT ≤ C0‖~v‖XT ‖~w‖XT .

• If ‖et∆~u0‖XT < 1
4C0

, then the mollified Navier–Stokes equations have a

solution on (0, T ) such that ‖~uα‖XT ≤ 2‖et∆~u0‖XT .

Now, we may consider various other approximations of the Navier–Stokes
equations of the form

~v = et∆~u0 −
N∑
i=1

ϕi,α ∗Bi(ψi,α ∗ ~v, χi,α ∗ ~v)(t, x) (4)

where

• ϕi, ψi, χi are either the Dirac mass or functions in L1

• fα(x) = 1
α3f( x

α
) for f ∈ {ϕi, ψi, χi, i = 1, . . . N}

• Bi(~v, ~w) =
∫ t

0
e(t−s)∆σi(D)(~v⊗ ~w) ds where σi is given convolutions with

smooth Fourier multipliers homogeneous of degree 1: if ~z = σi(D)(~v ⊗
~w), zk =

∑
p,q≤3Ki,k,p,q ∗ (vpwq) where the Fourier transform of Ki,k,p,q

is and homogenous of degree 1 and is smooth on R3.

The proof of the Koch and Tataru theorem asserts that operators of the form
B(~v, ~w) =

∫ t
0
e(t−s)∆σ(D)(~v ⊗ ~w) ds are bounded on XT .

Writing ‖δ‖1 = 1, we have

‖
N∑
i=1

ϕi,α ∗B(ψi,α ∗ ~v, χi,α ∗ ~v)(t, x)‖XT

≤ (
N∑
i=1

‖Bi‖op‖ϕi‖1‖ψi‖1‖χi‖1)‖~v‖XT ‖~w‖XT

= C1‖~v‖XT ‖~w‖XT

If ‖et∆~u0‖XT < 1
4C1

, then the modified equations (4) have a solution on (0, T )

such that ‖~uα‖XT ≤ 2‖et∆~u0‖XT .
Remark that the equations (4) can be written as well

∂t~v = ∆~v −
N∑
i=1

ϕi,α ∗ σi(D)((ψi,α ∗ ~v)⊗ (χi,α ∗ ~v))
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with initial value ~v(0, .) = ~u0. Among example of such approximations, we
have the various α-models studied by Holm and Titi:

• The Leray-α model.
The Leray–α model has been discussed in 2005 by Cheskidov, Holm,
Olson and Titi [CHOT]. The approximated problem is the following
one: solve

∂t~uα + ((Id−α2∆)−1~uα).~∇~uα = ∆~uα − ~∇pα

with div ~uα = 0 and ~uα(0, .) = ~u0. This is equivalent to write

∂t~uα = ∆~uα − P div(((Id−α2∆)−1~uα)⊗ ~uα).

• The Navier–Stokes-α model.
The mathematical study of the Navier–Stokes-α model has been done
by Foias, Holm and Titi in 2002[FHT]. The approximated problem is
the following one: solve

∂t~uα+((Id−α2∆)−1~uα).~∇~uα = ∆~uα−
3∑

k=1

uα,k ~∇(Id−α2∆)−1uα,k− ~∇pα

with div ~uα = 0 and ~uα(0, .) = ~u0. We can rewrite the equation as

∂t~uα + ((Id−α2∆)−1~uα).~∇~uα =∆~uα −
3∑

k=1

(α2∆(Id−α2∆)−1uα,k)~∇(Id−α2∆)−1uα,k

− ~∇(pα +
|((Id−α2∆)−1~uα|2

2
)

This is equivalent to write

∂t~uα = ∆~uα − P div(((Id−α2∆)−1~uα)⊗ ~uα)

−
3∑
j=1

3∑
k=1

P∂j((α∂j(Id−α2∆)−1uα,k)(α~∇(Id−α2∆)−1uα,k)).

• The Clark-α model.
The Clark-α model has been discussed in 2005 by Cao, Holm and Titi
[CHT]. The approximated problem is the following one: solve

∂t~uα + (Id−α2∆)−1~uα.~∇ ~uα =∆~uα + ((Id−α2∆)−1~uα − ~uα) · ~∇(Id−α2∆)−1~uα

+α2

3∑
k=1

(∂k(Id−α2∆)−1~uα) · ~∇(∂k(Id−α2∆)−1~uα)− ~∇pα
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with div ~uα = 0 and ~uα(0, .) = ~u0. We can rewrite the equation as

∂t~uα + ((Id−α2∆)−1~uα).~∇~uα

=∆~uα +
3∑

k=1

α2∂k

(
(∂k(Id−α2∆)−1~uα)) · ~∇(Id−α2∆)−1~uα

)
− ~∇.pα

This is equivalent to write

∂t~uα = ∆~uα − P div(((Id−α2∆)−1~uα)⊗ ~uα)

−
3∑

k=1

P∂j((α∂k(Id−α2∆)−1~uα) · (α~∇(Id−α2∆)−1~uα)).

• The simplified Bardinal model.
The simplified Bardina model is another α-model studied by Cao, Lu-
nasin and Titi in 2006 [CLT]. This model is given by

∂t~uα + ((Id−α2∆)−1~uα) · ~∇ ((Id−α2∆)−1~uα) = ∆~uα − ~∇pα

where we have again div ~uα = 0 and ~uα(0, .) = ~u0.

∂t~uα = ∆~uα − P div(((Id−α2∆)−1~uα)⊗ ((Id−α2∆)−1~uα)).

Thus, when ~u0 ∈ bmo−1
0 , all those α-models give back the mild solution

~u ∈ XT when α goes to 0.

References

[BAR] T. Barker, Uniqueness Results for Weak Leray–Hopf Solutions of the
Navier–Stokes System with Initial Values in Critical Spaces, J. Math.
Fluid Mech. 20 (2018), 133–160.

[BKT] Z. Bradshaw, I. Kukavica, and T.P. Tsai, Existence of global weak
solutions to the Navier–Stokes equations in weighted spaces. To appear
in Indiana Univ. Math. J

[CKN] L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suit-
able weak solutions of the Navier–Stokes equations, Comm. Pure Appl.
Math. 35 (1982), 771–831.

[CAL] A.P. Calderón, Intermediate spaces and interpolation: the complex
method, Studia Math. 24 (1964), 113–190.

37



[CAN] M. Cannone, Ondelettes, paraproduits et Navier–Stokes, Diderot
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