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We characterize throughout the spectral range of an optical trap the nature of the noise that drives the
Brownian motion of an overdamped trapped single microsphere and its ergodicity, comparing experimental,
analytical, and simulated data. We carefully analyze noise and ergodic properties (i) using the Allan variance for
characterizing the noise and (ii) exploiting a test of ergodicity tailored for experiments done over finite times.
We derive these two estimators in the Ornstein-Uhlenbeck low-frequency trapped-diffusion regime and study
analytically their evolution toward the high-frequency Wiener-like free-diffusion regime, in very good agreement
with simulated and experimental results. This study is performed comprehensively from the free-diffusion to the
trapped-diffusion regimes. It also carefully looks at the specific signatures of the estimators at the crossover
between the two regimes. This analysis is important to conduct when exploiting optical traps in a metrology
context.
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I. INTRODUCTION

The sensitivity of optically trapped Brownian particles,
combined with long integration times available, makes optical
traps outstanding metrological systems. They have therefore
been involved in many weak force experiments and have
been recognized as excellent systems for implementing and
simulating many results and protocols that have been brought
forward recently in the field of optomechanics and nonequi-
librium statistical physics [1–4].

The high levels of resolution necessary for such exper-
iments are usually reached by setting up large statistical
ensembles. However, this capacity relies on strong assump-
tions regarding the nature and the stability of the dynamics.
In weak force experiments, the resolution is determined by
the measurement bandwidth and can be improved when sin-
gle motional trajectories are acquired over integration times
as long as possible [5–10]. But this demands experiments
thermally limited throughout the entire measurement time.
It is therefore crucial to ensure, both in time and frequency
domains, the thermal and stationary character of the noise
at play. In precision experiments developed in the context
of stochastic thermodynamics, ensembles of synchronized
trajectories are built from the repetition of a large number
of cycles associated with the nonequilibrium protocol under
study [11–14]. But the ergodic hypothesis is necessary here to
go from one single trajectory on which a series of N cycles has
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been operated to an ensemble of N one-cycle trajectories that
represent the time evolution of ensemble-average stochastic
quantities. For such experiments, therefore, one must assess,
besides the nature and stationarity of the noise, the ergodicity
of the whole process, i.e., verifying the equivalence between
time and ensemble averages.

Considering the importance of these issues in a metrology
context, the aim of this paper is to measure the noise and
ergodic properties at play in an optical trap. To do so, we set
up two estimators: one capable of characterizing the motional
noise using the Allan variance and one assessing the ergod-
icity, exploiting an ergodicity breaking estimator proposed
recently [15–17].

An optical trap physically implements an Ornstein-
Uhlenbeck process through the harmonic trapping potential
and, interestingly, gives access to different diffusing dynam-
ics for the trapped Brownian object, ranging from confined
motion in the long timescales to free Brownian motion on the
shortest ones. It therefore enables probing the evolution of the
Ornstein-Uhlenbeck process toward the Wiener-like process
limit at short times [17–19]. In this paper, we analytically
derive our two estimators in such a way that they can com-
prehensively describe the two regimes. In excellent agreement
with analytical results and simulated data, our experiments are
able to identify over six decades of time the signatures of the
noise and ergodic estimators associated with the distinctive
features of both diffusion regimes. This description includes
the crossover which is classically seen on motional power
spectral densities in optical traps [20] but which demands
special care when it comes to assessing noise features and
ergodic properties.

Our methodology is general and the estimators can be
implemented on optical traps that operate in the underdamped
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FIG. 1. Schematic view of the experimental setup, displaying the
trapping laser (785-nm semiconductor laser, optically isolated and
expanded) and the probe laser (639 nm) used for recording the instan-
taneous displacement of a 1-μm polystyrene bead. The trapping laser
is focused inside a fluidic cell in which the bead is immersed using
a polarizing beam splitter (PBS) and a water immersion objective
(Obj1, 60×, NA = 1.2). The quarter wave-plate (λ/4) ensures that
the light scattered by the trapped bead and collected by Obj1 is
directed toward the on-axis photodiode. The probe laser illuminates
the bead from the backside using a second objective (Obj2, 60×,
NA = 0.7) and is collected by Obj1. A dichroic beamsplitter sends
the probe light to the second photodiode that gives the signal used
for our analyses.

(inertial) regime. Moreover, these estimators together will turn
very useful for characterizing colored noise and nonergodic
effects that enrich the physics of more complex Brownian
systems.

II. WIENER VERSUS ORNSTEIN-UHLENBECK
CROSSOVER IN AN OPTICAL TRAP

Free Brownian motion driven only by the Gaussian white
noise of thermal fluctuations is described by the Wiener pro-
cess Wt . The displacement of the overdamped free Brownian
object reads

dxt =
√

2DdWt , (1)

working directly with the differential dWt with the following
properties: 〈dWt 〉 = 0, 〈dWt dWt ′ 〉 = δ(t, t ′)dt . The diffusion
coefficient D = kBT/γ involves the Boltzmann constant kB,
the temperature of the surrounding fluid T , and the Stokes
drag coefficient γ .

Inside the trap, the harmonic optical potential modifies the
stochastic process by exerting on the object a restoring force
characterized by a constant stiffness κ . The same displace-
ment now follows the Ornstein-Uhlenbeck process:

dxt = − κ

γ
xt dt +

√
2DdWt . (2)

Our experiment consists of trapping in ultrapure water a
single Brownian micron-sized spherical bead in the harmonic
potential created at the waist of a focused laser beam and
recording in real time the overdamped position of the trapped
bead. The experimental setup is schematized on Fig. 1 and
detailed in Appendix A. The trapping potential is formed by
focusing a 785-nm laser beam and the instantaneous position
x(t ) is recorded using a second 639-nm low-power laser acting
as a probe, as shown in Fig. 1. All the experimental results pre-

FIG. 2. The instantaneous position of the bead trapped at the
laser waist is recorded along the optical axis with an acquisition
frequency of 215 = 32 768 Hz for 10 min. The result is a very long
trajectory that can be used as such. It can also be recombined into an
ensemble of shorter trajectories, as schematized. In our experiments,
the thermally limited axial displacement δz ∼ √

kBT/κ ∼ 40 nm of
the bead taking the values extracted below in Fig. 3 is fully contained
within the Rayleigh range ∼0.5 μm of the 639-nm laser, leading
to a linear relation between the intensity modulation and the axial
displacement. Corresponding calibration procedures are described in
Ref. [9].

sented in this paper are obtained from a 10-min-long trajectory
(i.e., 1.97 × 107 successive position measurements acquired
at an acquisition frequency of 215 = 32 768 Hz). As noted in
the Introduction, this long trajectory can be used as a whole,
for example, in high-sensitivity measurements or can also be
cut and rearranged, for instance in stochastic thermodynamics
studies, in an ensemble of subtrajectories if the system is
ergodic. The procedure is sketched in Fig. 2 and relies on the
fact that the modulation of the 639-nm light is proportional to
the axial displacement of the bead inside the trap.

These data are compared, throughout this paper, with
numerical simulations obtained from an algorithm for the
Wiener process,

xt+�t = xt +
√

2D�tθt , (3)

where θ is a dimensionless Gaussian white noise with 〈θt 〉 =
0, 〈θtθt ′ 〉 = δ(t − t ′), according to the methods detailed in
Ref. [21]. By the same token, the algorithm for the Ornstein-
Uhlenbeck process is

xt+�t = xt − κ

γ
xt�t +

√
2D�tθt . (4)

This discretization method, known as the Euler-Maruyama
method, corresponds to an O(�t1/2) approximation of Itô-
Taylor expansions [22]. As discussed in detail in Appendix D,
higher order terms lead to a more efficient algorithm known
as the Mildstein algorithm, which our simulations are based
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FIG. 3. Experimental power spectrum density (PSD) evaluated
for a trajectory x(t ) measured from 0.03 Hz to 100 kHz, displaying a
large signal-to-noise ratio, spanning over four decades. We also mark
with a vertical red dashed line the transition at the roll-off frequency
(53.6511 Hz) between the high-frequency almost-free regime and the
low-frequency trapped regime. The thermal noise plateau 4kBT γ /κ

(horizontal black dashed line) agrees well with the low-frequency
limit of the PSD, as expected. From the Lorentzian fit performed on
the PSD, we can extract the stiffness κ = 2.9614 ± 0.0673 pN/μm.
The experiments are performed at room temperature, T ≈ 295 K
and the 1-μm bead experiences a drag coefficient γ = 6πηR kg/s
where η ≈ 0.95 × 10−3 Pa s, hence γ = 8.9837 × 10−9 kg/s. These
parameters, with the stiffness extracted from the Lorentzian fit of the
PSD, are used in all numerical and analytical results done throughout
the paper.

on and which converges more quickly toward the analytical
expression as �t decreases [23,24].

From Eq. (2), the Brownian motion in the trap can be
spectrally analyzed with the position’s power spectral density
(PSD):

Sx( f ) = D

π2
(

f 2
c + f 2

) . (5)

As clearly seen on the experimental PSD displayed in
Fig. 3 over ca. four decades, the roll-off frequency
fc = κ/(2πγ )—measured at ∼53 Hz—separates the high-
frequency regime Sx( f ) ∼ D/(π2 f 2) of free Brownian
motion—see Eq. (1)—from the low-frequency trapping
regime Sx( f ) ∼ D/(π2 f 2

c ) = 4kBT γ /(κ2)—see Eq. (2). The
PSD thus clearly reveals how a Wiener regime corresponds
in the optical trap to the short time δt � γ /κ limit of the
Ornstein-Uhlenbeck process (in other words, when observed
over such a short timescale, the Brownian object moves inside
the trap as if it were freely diffusing without confinement).

III. NOISE STABILITY: ALLAN VARIANCE
AND STATISTICAL TESTS

To characterize the noise at play inside the optical trap, it
is central to measure two of its properties: its nature (color,
thermal weight, frequency contributions, etc.), and its sta-
bility in time. Testing the nature of the noise can be done
spectrally with the PSD that yields the different frequency
contributions of the noise. Integrated PSD can also reveal the

FIG. 4. Allan standard deviation evaluated for the long trajectory
experimentally recorded (blue open circles). We plot the simulated
Allan standard deviation (orange continuous line) superimposed to
the analytical result (black dashed line). We highlight the slopes in
both free (purple continuous line) and trapped regimes (green con-
tinuous line). We observe that the whole time range experimentally
accessible from ∼10−4 s up to ∼102 s and that spans more than
six decades of time is perfectly captured by the theoretical expres-
sion built with experimental parameters—γ , T, κ , see Fig. 3—with
very good agreement. The small departure of the experimental data
from the theoretical Allan variance is attributed to tracking errors
discussed in Appendix H 3.

thermal nature of the noise through the fluctuation-dissipation
theorem. However, the spectral approach turns out to be ex-
posed to possible low frequency drifts that can modify noise
properties [10,25,26]. To avoid this stability issue, we work in
the time domain and perform an Allan-variance-based test of
the system, capable of revealing low-frequency drifts within
a stochastic signal [27,28]. This approach leads us to verify
unambiguously the stationary and thermally limited properties
of the noise at play in an experiment.

The Allan variance σ 2(τ ) can be connected to the noise
PSD S( f ) through the following relation [28]:

σ 2(τ ) = 4

πτ 2

∫ +∞

−∞
S( f ) sin4(π f τ )df . (6)

It can therefore be explicitly evaluated analytically for the
Ornstein-Uhlenbeck PSD Sx( f ) of Eq. (5),

σ 2(τ ) = kBT

κτ 2
(4[1 − e−κτ/γ ] − [1 − e−2κτ/γ ]), (7)

as detailed in Appendix E.
The experimental Allan variance is shown in Fig. 4 follow-

ing the same methodology presented in our earlier work [10].
This experimental Allan variance is compared with numerical
simulations and with the analytical result of Eq. (7). We note a
remarkable experiment-theory agreement over more than six
decades in time. These results show the very high level of
noise stability up to >250 s that one can reach on a simple
optical trap setup such as ours.

However, they also reveal how the Ornstein-Uhlenbeck
and the Wiener processes are characterized by different Al-
lan variance signatures. Indeed, we identify here two clear
asymptotic regimes. The short-time regime (τ � γ /κ) falls
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FIG. 5. (a) Time-averaged covariances of positions and displace-
ments (inset). Experimental data are plotted (blue open circles)
together with the simulation results (orange continuous line) and the
analytical prediction (black dashed line). (b) Comparison between
the measured mean square displacements (MSDs) (blue open circles)
and the analytical expression given in Eq. (9) obtained in the sta-
tionary regime (black dashed line). The comparison with simulation
results is also displayed (orange continuous line). The very good
agreement with both theory and simulations shows that the measured
process can be considered as stationary. We note the same relaxation
time of 3 × 10−3s for all data, revealing the crossover between the
free (Wiener) and trapped (Ornstein-Uhlenbeck) diffusion regimes.
Again, the small departure of the experimental data with respect
to the theoretical MSD is attributed to tracking errors discussed in
Appendix H 2.

on the σfree ∼ t−1/2 slope, which is known to correspond
to the thermal white noise limit of free Brownian motion
[10,25]. Interestingly, in the long-time limit (τ 
 γ /κ) of
the Ornstein-Uhlenbeck process where the trapping action
dominates the motional dynamics, the Allan variance shows
a different slope with σtrap ∼ t−1. This change of signatures
between the two regimes, accounting for the presence of the
harmonic force field in the long-time limit, is continuous.
We observe a very good match between the experiments and
theory in the transition between asymptotic regimes.

The slight differences at short time-lags between the theory
and the experimental data will also be observed at the level
of the mean squared displacement (MSD) Fig. 5(a) and the
ergodic estimator Fig. 6. As discussed in detail in Appendix
H, these deviations are due to tracking errors unavoidably in-
duced experimentally by the photodiode and electronic system
used for recording our Brownian trajectories.

We will now use an alternative method based on the au-
tocorrelation and the MSD for identifying either a Wiener

FIG. 6. The normalized variance ε(�) playing the role of an
ergodic estimator is displayed (black dashed line) when calculated
for the Ornstein-Uhlenbeck process at play in our optical trap. Ex-
perimental results (blue open circles) for ε(�) are compared to the
theory within a 99.7% confidence interval. We also show the results
of a numerical simulation using O(3/2) algorithm (orange continu-
ous line). The slight deviation at short times between the experiment
and the theory comes again mainly from the position tracking errors
whose impact on the ergodic estimator is discussed in Appendix H 4.

or an Ornstein-Uhlenbeck process. We, however, note here
that at thermal equilibrium, Wiener and Ornstein-Uhlenbeck
processes generate trajectories x(t ) with different statistical
properties. Indeed, the Ornstein-Uhlenbeck process of the
trapped Brownian motion has a variance constant in time
with the equipartition condition 〈x2

t 〉 = kBT/κ . In contrast,
the Wiener process of free Brownian motion is nonstationary
with a motional variance that grows linearly in time, but
looking at the statistical properties of successive displace-
ments dxt whose dynamics is governed by Eqs. (1) and (2),
it becomes possible to perform the same stationarity test for
both processes. To do that, we will use the autocorrelation of
displacements and the MSD, extracted from long trajectories.
We will verify stationarity—-in the strong sense since the
noise is Gaussian—with i a fixed mean (that can be removed
without any loss of generality), (ii) a finite variance dx2

t , and
(iii) a displacement covariance (autocorrelation) dxt dxs that
depends only on the absolute time difference � =| t − s |.

The covariance of displacements can be computed using
Eq. (2) [details are given in Appendix B, see Eq. (B9)] and
yields

dxt dxs = −2κkBT

γ 2
e−κ|t−s|/γ dt2 + 2Dδ(t − s)dt . (8)

This theoretical expression is compared to the covariance
evaluated experimentally as a time average on successive
displacements. The comparison, together with simulations, is
shown in Fig. 5(a). The convergence of the time-averaging
process for the covariance toward the theoretical expression,
only function of �, shows the absence of dependence on the
absolute time t .

We can also evaluate the MSD directly from the measure-
ment of successive positions separated by a given time lag �
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[details are given in Appendix C, see Eq. (C4)] as

δx2(�) = 2
kBT

κ
(1 − e−κ�/γ ). (9)

Again, this theoretical result is compared to the experimental
MSD which is given by evaluating the time-averaged MSD of
the entire trajectory. The comparison, also including simula-
tions, shows very good agreement displayed in Fig. 5(b).

This agreement, together with the covariance, depending
only on time difference, confirms that our Brownian trap
implements a strong stationary Ornstein-Uhlenbeck process.
Clearly, our data demonstrate a smooth crossover between the
linear MSD at short time lags associated with a Wiener regime
and the constant MSD at longer time lags that reflects the
confined nature of the diffusion for the Ornstein-Uhlenbeck
process.

IV. TEST OF ERGODICITY

We already stressed in the Introduction the crucial im-
portance of verifying the ergodic hypothesis when the long
trajectory is analyzed through an ensemble of its parts (subtra-
jectories). Ergodicity per se corresponds to the equality taken
in the infinite time limit T → ∞, between the time average
and the ensemble average for a given stochastic process. Since
the ensemble of subtrajectories { j} is built from parts taken
at different times of the initial long trajectory as shown in
Fig. 2, any statistical analysis performed on this ensemble is
based on the ergodic hypothesis. When one is using a specific
rearrangement for a given experiment, ergodicity must be
verified on this ensemble. To illustrate this, we reshape our
long trajectory into an ensemble of 600 subtrajectories xi(t ) of
1-s duration each. Note that we carefully show in Appendix F
that the choice of the length of the subtrajectories (and hence
the size of the ensemble) does not change the validity of the
test.

For a trajectory xi(t ) drawn from the ensemble, ergodicity
is defined as

lim
T →∞

1

T

∫ T

0
xi(t )dt = 〈x j (t )〉{ j}. (10)

Although simple, this definition is, however, hardly operative
in experiments that only yield ensembles of finite-time tra-
jectories. Following the approach proposed in Refs. [15,16],
we prefer resorting to an estimator that can characterize the
ergodic nature of an experiment performed over a finite in-
tegration time. This estimator is grounded on the stationary
nature of the MSD which is, as shown above, independent
of the choice from the initial time and only depends on the
time lag �. In such conditions, ergodicity simply demands the
time-averaged MSD of any ith-trajectory, as defined above,
to be equal, in the long T /� limit, to the ensemble mean
of individual time average taken over the ensemble { j} of
available trajectories:

lim
T /�→∞

δx2
i (�) = 〈

δx2
j (�)

〉
. (11)

Formally, ergodicity demands that the δx2
i (�)/〈δx2

i (�)〉
ratio tends to a Dirac distribution as T /� → ∞. A sufficient

condition for ergodicity is therefore that the normalized vari-
ance of this ratio goes to zero in the limit T /� → ∞:

ε(�) =
〈
δx2

i (�)
2〉− 〈

δx2
i (�)

〉2〈
δx2

i (�)
〉2 . (12)

Therefore, handling finite integration times, this normal-
ized variance ε(�) is a valid estimator to prove the ergodic
nature of a stochastic process experimentally implemented.
One can choose to study ε as a function of the total integrated
time T , with fixed �. We do this in Appendix F. Here, rather,
we show in Fig. 6 the evolution of ε as a function of the time
lag � because this choice reveals different signatures for each
of the two regimes of free and trapped diffusion inside the
optical trap.

One very appealing aspect of ε(�) is that it can be the-
oretically calculated for an Ornstein-Uhlenbeck process, as
we do in Appendix G. This gives the capacity to charac-
terize the ergodicity throughout the spectral range of the
optical trap, therefore both in the long-time trapped and the
short-time free diffusion regimes. These two regimes cor-
respond to different time-lag evolutions of ε(�), as clearly
seen in Fig. 6. Here too, a smooth crossover between the
long time-lag trapped (Ornstein-Uhlenbeck) regime and the
short time-lag free (Wiener limit) regimes is revealed and
measured, with the transition time-lag determined from the
trap stiffness, as discussed in more detail in Appendix G. The
experimental evolution of ε(�) corresponding to the recorded
finite-time trajectories obtained for our trapping experiment
is also shown. The excellent agreement with the theoretical
ε(�) in both the freely diffusing and in the trapped regimes
confirms that our optical trapping process can be considered
ergodic with a high level of confidence. Because ε(�) is
formally a variance, the quality of its estimator on a finite-size
ensemble can be quantified using a χ2 test. We perform this
test in Fig. 6 up to a 3σ level of confidence.

V. CONCLUSION

By implementing Allan variance-based, stationarity, and
ergodic tests together using appropriate estimators, we have
been able to fully characterize, through wide spectral ranges,
the nature of the noise and the ergodicity of the stochastic
regimes at play in an overdamped optical trap. In particular,
our estimators have distinctive features between the high-
and low-frequency range of the trap that we have described
analytically, including the crossover between the two free-
and trapped-diffusion regimes. This led us to discuss clear
differences from the viewpoint of noise and ergodicity assess-
ments between the trapped regime of the Ornstein-Uhlenbeck
process and its Wiener-like limit, notwithstanding that they
are driven by the same Gaussian white thermal noise. In
stochastic thermodynamics, ergodic processes are a very im-
portant subclass of stationary processes. When aiming to
exploit Brownian systems, it is therefore very important to
be able to identify stationarity signatures. The simple and
straightforward methodology proposed in our paper is also
relevant to many recent experiments involving Brownian
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systems coupled to nonthermal, colored, and more complex
noise environments [29,30].
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APPENDIX A: EXPERIMENTAL SETUP

Our experiment consists of trapping in ultrapure water a
single Brownian object in the harmonic potential created at the
waist of a focused laser beam. A schematic view of the setup
is given in Fig. 1. A linearly polarized Gaussian beam (OBIS
Coherent, CW 785 nm, 110 mW) is focused by a water im-
mersion objective (Nikon Plan Apochromat 60×, Numerical
Aperture 1.20) into the sample that consists of a cell made of a
glass slide and a coverslip, separated by a 120-μm-thick and
1-cm-wide spacer. The cell is filled with a colloidal disper-
sion of polystyrene microspheres (ThermoFisher FluoSpheres
polystyrene microspheres, 1-μm diameter ±2%) diluted in
deionized water. We start with a solution of concentration of
1010 beads/mL that we dilute ∼105×. The cell is then taped
to a metallic holder mounted in our optical setup.

The instantaneous position of the trapped single bead is
recorded using an additional low-intensity counterpropagat-
ing laser beam (Thorlabs HL6323MG CW 639 nm, 30 mW,
but here used at low power), focused on the bead using
a second objective (Nikon Plan-fluo Extra Large Working
Distance 60×, Numerical Aperture 0.7). Within the small
trapping volume defined by our setup, the intensity of the
light scattered by the microsphere scales linearly with its dis-
placement x(t ) along the optical axis. This scattered intensity
signal is collected through the trapping objective and sent to
a P.I.N. photodiode (Thorlabs, model Det10A2). The output
signal recorded in V is sent to a low noise amplifier (Stanford
Research, SR560) and then acquired by an analog-to-digital
card (National Instrument, PCI-6251). The signal is filtered
through a 0.3-Hz high-pass filter at 6 dB/oct to remove the
DC component of the output signal and through a 100-kHz
low-pas filter at 6 dB/oct to prevent aliasing. Finally, we
convert the voltage signal into a position in meter following
the approach we presented in Ref. [9].

In our experiment, it is crucial to trap only one bead at a
time. To achieve this, we rely on (i) a low concentration of
beads in the solution and (ii) a direct imaging of the vicinity
of the trap with an interferometric scattering microscopy tech-
nique (not shown in the figure but presented in detail in our
previous work [31]). A second important point is ensured by
the thickness (120 μm) of the cell: The trapping region must
be localized far enough from the walls as to keep fluid parame-
ters constant. The choice of the trapping wavelength (785 nm)

also avoids locally heating the fluid. The data presented in the
paper are taken from ten consecutive measurements of 60 s
each, with an acquisition frequency of 32 768 Hz. The whole
experiment is done in constant conditions, with the same bead
and only a few seconds between each measurement. It is
thermalized with a precision ±1 K at room temperature and
well isolated from spurious noise sources, leading to measure
stable signals over six decades of times with long time-series
of 19 660 800 positions, spanning over 10 min. The concate-
nation of ten measurements leads to ten discontinuities among
the 19 660 800 points. However, the motion being confined,
these discontinuities are of the same order of magnitude than
a regular increment. This together with the small number
of such cuts among a large statistics prevent any statistical
contribution that would modify the results.

APPENDIX B: AUTOCORRELATION OF DISPLACEMENT

We will compute the autocorrelation function (or covari-
ance, since the process has zero mean) of displacements dXt

defined by the Ornstein-Uhlenbeck process dXt = −aXt dt +
bdWt (adopting simple notations κ/γ ≡ a and

√
2kBT/γ ≡

b) as

〈dXt dXs〉 = 〈(−aXt dt + bdWt )(−aXsds + bdWs)〉
= a2〈Xt Xs〉dt2︸ ︷︷ ︸

(1)

− ab〈Xt dtdWs〉︸ ︷︷ ︸
(2)

− ab〈XsdsdWt 〉︸ ︷︷ ︸
(3)

+ b2〈dWt dWs〉︸ ︷︷ ︸
(4)

. (B1)

Using the solution of the Ornstein-Uhlenbeck process,

Xt = X0e−at + be−at
∫ t

0
eat ′

dWt ′ , (B2)

and assuming that all time increments are equal (∀t, s : dt =
ds), we can compute the different terms in (B1) one by one,

(1) = ab2

2
e−a|t−s|dt2, (B3)

since at equilibrium 〈X 2
0 〉 = kBT/κ = b2/2a [see below

Eq. (C3)],

(2) = −ab〈Xt dtdWs〉

= − ab〈X0dWs〉e−at dt − ab2dt
∫ t

0
ea(t1−s)〈dWt1 dWs〉

= − abδ(s − 0)dt2e−at − ab2dt
∫ t

0
ea(t1−s)δ(t1 − s)ds.

If we consider nonzero times, we can ignore the first term. For
the second, we have two cases:

(2) =
{−ab2dt2e−a(t−s) if t � s

0 if t < s,
(B4)

similarly,

(3) =
{

0 if t > s
−ab2dt2e−a(s−t ) if t � s.

(B5)
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FIG. 7. Covariance of displacements for the Ornstein-Uhlenbeck
process. We plot the experimental result (blue open circles), calcu-
lated with dt = 3.0518 × 10−5 s along with simulation result (orange
continuous line) and analytical solution (B9) (black continuous line).
We plot (black dashed and continuous lines) the analytical result for
two different values of the time step dt to highlight the fact that
the deviation from zero of the Ornstein-Uhlenbeck displacements is
strongly dependent on the value of dt , converging rapidly to zero
with increasing acquisition frequency.

We can therefore combine them into (2) + (3) =
−ab2dt2e−a(max(t,s)−min(t,s)), giving

(2) + (3) = −ab2e−a|t−s|dt2. (B6)

For the fourth term, we have simply

(4) = b2δ(t − s)dt, (B7)

that vanishes if t �= s. These four terms added together lead to
the simple expression of the autocorrelation of displacements:

〈dXt dXs〉 = −ab2

2
e−a|t−s|dt2 + b2δ(t − s)dt . (B8)

Putting back physical dimensions with ab2dt2 = 2κkBT
γ 2 dt2 and

β2dt = 2kBT
γ

dt (both in [m2]), we get

〈dXt dXs〉 = −2κkBT

γ 2
e−κ|t−s|/γ dt2 + 2Dδ(t − s)dt . (B9)

Since 〈dWt dWs〉 = dWt dWs for a Wiener process [19], we
can identify the ensemble average 〈dXt dXs〉 with a time aver-
aged covariance dXt dXs that is experimentally measured—see
Eq. (8) in the main text—and displayed in Fig. 5 in the main
text and in Fig. 7 here.

Figure 7 reveals good agreement between the experimental
results, the simulations, and the theoretical result (B9). The
covariance converges toward zero (which is the covariance
of the Wiener increment) for decreasing dt . However, the
nondifferentiability of the stochastic process prevents us from
taking the limit of vanishingly small dt and from observing
the convergence of the short-time Ornstein-Uhlenbeck pro-
cess toward a Wiener-like process.

APPENDIX C: DERIVATION OF THE MEAN SQUARE
DISPLACEMENT

Using the general solution of the Ornstein-Uhlenbeck
stochastic differential equation,

xt = x0e−κt/γ +
√

2De−κt/γ
∫ t

0
eκt ′γ dWt ′ , (C1)

we write the expression of the autocorrelation function,

〈x(t1)x(t2)〉 =
(

〈x2
0〉 − kBT

κ

)
e−κ (t1+t2 )/γ

+ kBT

κ
e−κ|t1−t2|/γ , (C2)

that simplifies into

〈x(t1)x(t2)〉 = kBT

κ
e−κ|t1−t2|/γ (C3)

if 〈x2
0〉 = kBT

κ
,i.e., if the initial distribution is at equilibrium.

The MSD therefore reads

〈δx2(�)〉 ≡ 〈(x(t + �) − x(t ))2〉
= 〈x(t + �)2〉 − 2〈x(t + �)x(t )〉 + 〈x(t )2〉

= kBT

κ
− 2

kBT

κ
e−κ�/γ + kBT

κ
,

that is,

〈δx2(�)〉 = 2
kBT

κ

(
1 − e−κ�/γ

)
. (C4)

Using the same property of the Wiener process used in
Appendix B, one has 〈δx2(�)〉 = δx2(�), allowing us to com-
pare Eq. (C4) to the experimental result given in Eq. (9) in the
main text.

APPENDIX D: BROWNIAN MOTION SIMULATIONS

This Appendix briefly presents the structure of the stochas-
tic algorithm, as well as the detailed scheme used for the
simulations performed in this paper. The general framework
is based on an Itô-Taylor expansion, generalizing to stochastic
differential equations and standard Taylor expansion proce-
dures [22]. First, for an ordinary differential equation

dXt = a[Xt ]dt, (D1)

and for a function f [Xt ], we can use the standard chain rule
and write df [Xt ] = a[Xt ] ∂

∂t f [Xt ]dt . This leads to an integral
form

f [Xt ] = f [X0] +
∫ t

0
a[Xs]

∂ f [Xs]

∂s
ds (D2)

that can be truncated at a specified order to approximate the
process described. In the case of a stochastic process with the
following generic form:

dXt = a[Xt ]dt + b[Xt ]dWt , (D3)

where dWt is the stochastic Wiener increment defined by
〈dWt 〉 = 0, 〈dW 2

t 〉 = dt , we use Itô’s lemma instead of the
standard chain rule.
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We define L0 = at
∂

∂X + 1
2 b2

t
∂2

∂X 2 and L1 = bt
∂

∂X and use the
following notations: at ≡ a[Xt ] (simil. bt ) to keep the notation
light. Then, similarly to Eq. (D2), we obtain

f [Xt ] = f [X0] +
∫ t

0
L0 f [Xs]ds +

∫ t

0
L1 f [Xs]dWs. (D4)

We can apply this to Xt itself before iteratively applying it
to the quantities at and bt inside the integrals. Doing so, we
obtain successive approximations of the process f [Xt ] up to
a specified order. Hence for the process Xt on a time interval
�t , an approximation can be given by

Xt+�t = Xt + at

∫ t+�t

t
ds + bt

∫ t+�t

t
dWs + O(�t1). (D5)

By iterating the same procedure up to higher orders, we obtain
algorithms with better precision for a given time increment
�t . The different terms can be written concisely with the
following integrals:

�t =
∫ t+�t

t
ds,

�W =
∫ t+�t

t
dW,

�Z =
∫ t+�t

t

[∫ S

t
dW

]
dS.

(D6)

With these these definitions, the first-order truncation (D5)
gives rise to the Euler-Maruyama scheme for Yi taken as the
numerical approximation of Xt ,

Yi+1 = Yi + ai�t + bi�Wi, (D7)

and where the Wiener increment can be simulated by �W =
η
√

�t ≡ N (0, 1)
√

�t . Here, the normally distributed ran-
dom number can be produced by various means, often using
built-in functions for random number generation. In our case,
the function used is based on the Box-Muller algorithm.

To evaluate the quality of this algorithm, we rely on the
criterion of weak convergence [23], i.e., convergence of the
means. We say that an algorithm has a weak order of conver-
gence n is there exists a constant C such that for all function
f (Xt ) :

|E f (Xt ) − E f (Yi)| � C�t n. (D8)

In our case, we will use f (Xt ) = X 2
t and compare the resulting

sample variance to its theoretical value. The Euler-Maruyama
algorithm is known to converge with weak order n = 1. We
show in Fig. 8 the results of the weak convergence test, giving
an exponent nmeas = 1.1748.

By the same token, a second-order algorithm can be built
by keeping the following terms. This gives the following
scheme (derived in Ref. [22]):

Yi+1 = Yi + ai�t + bi�Wi + 1
2 bib

′
i

(
�W 2

i − �t
)

× a′
ibi�Z + 1

2

(
aia

′
i + 1

2 b2
i a(2)

i

)
�t2

+ (aib
′
i + 1

2 b2
i b(2)

i

)
(�W �t − �Z )

+ 1
2 bi
(
bib

(2)
i + (b′

i )
2)( 1

3�W 2 − �t
)
. (D9)

FIG. 8. Weak convergence test of both Euler-Maruyama and
second-order algorithms. We plot the errors evaluated as the normal-
ized difference between the measured variance and the theoretical
result derived from equipartition kBT/κ . Namely, eweak = |1 −
E(Y 2

i )/(kBT/κ )| for different values of the time increment �t . We
observe that the slopes of �t1.1748 and �t1.9965 are close to the
expected ones of �t1 and �t2, respectively.

We can now use the fact that the process we are interested in is
defined by at = κXt/γ and bt = √

2D, which brings all first
derivatives of bt and second derivatives of at to zero. With this
simplification, we obtain

Yi+1 = Yi + ai�t + bi�Wi + bia
′
i�Zi + aia

′
i�t2. (D10)

As �Wi is simulated with a random number η, it is shown
in Ref. [22] that �Z can be simulated using two independent
random numbers η and θ and, accordingly,

Yi+1 = Yi + ai�t + bi

√
�tη

+ bia
′
i

1

2

(
η + 1√

3
θ

)
�t3/2 + aia

′
i�t2. (D11)

This is the weak-O(2) scheme that we have implemented in
a PYTHON code to simulate in the main text the ensembles of
Brownian trajectories that are compared to experimental data
and to the analytical results. This efficient algorithm reduces
numerical errors while keeping a reasonable computing cost.

APPENDIX E: ANALYTICAL EXPRESSION OF THE
ALLAN VARIANCE FOR THE ORNSTEIN-UHLENBECK

PROCESS (HARMONIC POTENTIAL)

For the Ornstein-Uhlenbeck process given by Eq. (2), we
have the following (two-sided) PSD, with ω = 2π f :

S(ω) = 2D

ω2 + ω2
0

, (E1)

where D = kBT/γ is the diffusion coefficient and ω0 = κ/γ

corresponds to the trap roll-off frequency. The Allan variance
σ 2(τ ) is linked to the PSD through a sin4 transformation, as
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FIG. 9. Ergodic estimator ε(�) analytically calculated—
-according to Eq. (G16)—for three different stiffnesses (thin
lines). The shift of the plateau and the crossover (roll-off)
time clearly appears as κ increases. The good agreement
between theory and experiment is shown for a stiffness of
1 × κ = 2.9614 ± 0.0673 pN/μm.

we discussed previously in Ref. [10]:

σ 2(τ ) = 4

πτ 2

∫ +∞

−∞
S(ω) sin4

(ωτ

2

)
dω. (E2)

With sin4(x) = (e4ix − 4e2ix + 6 − 4e−2ix + e4ix )/16 and∫ +∞
−∞ (eix + e−ix )dx = 2

∫ +∞
−∞ eixdx by parity, we write

σ 2(τ ) = 4

πτ 2

∫ +∞

−∞

2D

ω2 + ω2
0

1

16

(
2e2iωτ − 8eiωτ + 6

)
dω,

(E3)
giving three complex integrals to compute with a simple pole
in ω = ±iω0:∫ +∞

−∞

2e2iωτ

ω2 + ω2
0

dω = 2iπRes

(
2e2iωτ

ω2 + ω2
0

, iω0

)
= 2π

ω0
e−2ω0τ ,

∫ +∞

−∞

8eiωτ

ω2 + ω2
0

dω = 2iπRes

(
8eiωτ

ω2 + ω2
0

, iω0

)
= 8π

ω0
e−ω0τ ,

∫ +∞

−∞

6

ω2 + ω2
0

dω = 2iπRes

(
6

ω2 + ω2
0

, iω0

)
= 6π

ω0
.

This done, we obtain

σ 2(τ ) = 8D

πτ 2

1

16

(
2π

ω0
e−2ω0τ − 8π

ω0
e−ω0τ + 6π

ω0

)

= kBT

κτ 2

(
4
[
1 − e−κτ/γ

]− [
1 − e−2κτ/γ

])
, (E4)

which corresponds to Eq. (7) in the main text. Two limits are
important to draw: (i) the short-time limit τ � γ /κ , where
we get σ 2(τ ) ≈ 2D/τ corresponding to free Brownian motion
[10,25], and (ii) the long-time limit τ 
 γ /κ where we get a
different behavior σ 2(τ ) ≈ 3kBT/κτ 2.

APPENDIX F: STUDY OF THE ERGODIC ESTIMATOR

We show in Fig. 9 the impact of the trapping stiffness on the
ergodic estimator, clearly displaying how κ modifies the long-
time plateau as well as the crossover (roll-off) time. We also
compare the theory for one specific case with experimental
results and numerical simulations.

FIG. 10. Experimental ergodic estimator ε(�) for different
choices of duration for the subtrajectory arrangements. We plot here
the results for 3000 subtrajectories of 0.2 s (blue), 1200 of 0.5 s (red),
600 of 1 s, 300 of 2 s, and 120 of 5 s. The short-time deviations from
the theoretical curve can be understood as an effect of localization
errors discussed in Appendix H.

In the main text, we look at the ergodic estimator for an
ensemble of 600 subtrajectories of t = 1 s duration (length),
drawn out of our long trajectory. Other choices of duration
are possible and are presented on Fig. 10. We see that the
different choices lead to different curves but, within this range,
all are in a good agreement with the corresponding analytical
result. The only consequence is that for short subtrajectories,
the long-time plateau disappears and, for long trajectories, one
has less ensemble statistics with therefore more fluctuations.
We also note that the short-time limit errors, already attributed
in the main text to tracking errors, are present in every case.
These errors draw a precision limit on ε which is due to
the reduced statistics in the short-time limit, leading to an
increased error term.

The ergodic estimator ε can be represented as a function of
the lag � as in the main text, but can also be represented as a
function of the time T as done in Ref. [16]. The expected sim-
ple dependence ε(T ) ∼ T −1 can clearly be seen in Fig. 11.

FIG. 11. Experimental ergodic estimator ε as a function of the
total time T for different fixed values of the time lag �.
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APPENDIX G: ANALYTICAL EXPRESSION OF THE
ERGODIC ESTIMATOR FOR THE

ORNSTEIN-UHLENBECK PROCESS
(HARMONIC POTENTIAL)

Under the condition of stationarity, the position correlation
function depends only on the time lag �, with

Cx(�) = 〈x(� + t )x(t )〉 = 2kBT

κ
e− κ

γ
�
. (G1)

We note the definition of the ergodic estimator ε [15],

ε(�) = σ 2
(
δx2

i (�)
)

〈
δx2

i (�))
〉2 , (G2)

where σ 2(δx2
i (�)) stands for the variance of a single trajec-

tory time-averaged MSD,

δx2
i (�) = 1

T − �

∫ T −�

0
[xi(t

′ + �) − xi(t
′)]2dt ′, (G3)

and 〈δx2
i (�))〉 stands for the mean of time-averaged MSD

taken over the available ensemble {i} of trajectories:

〈
δx2

i (�)
〉 = 1

T − �

∫ T −�

0

〈
[xi(t

′ + �) − xi(t
′)]2〉dt ′. (G4)

Under the ergodic hypothesis, the time-ensemble averaged
MSD is 〈

δx2
i (�)

〉 = 2kBT

κ

(
1 − e− κ

γ
�
)

(G5)

and the variance is defined as

σ 2
(
δx2

i (�)
) =

〈
δx2

i (�)
2〉− 〈

δx2
i (�)

〉2
. (G6)

The first term can be written as〈
δx2

i (�)
2〉 = 1

(T − �)2

∫ T −�

0
dt1

∫ T −�

0
dt2

× 〈(x(t1 + �) − x(t1))2(x(t2 + �) − x(t2))2
〉
,

(G7)

for which the Wick’s relation yields four terms:

〈x(t1)x(t2)x(t3)x(t4)〉 = 〈x(t1)x(t2)〉〈x(t3)x(t4)〉
+ 〈x(t1)x(t3)〉〈x(t2)x(t4)〉
+ 〈x(t1)x(t4)〉〈x(t2)x(t3)〉. (G8)

The integrand in Eq. (G7) then becomes

〈(x(t1 + �) − x(t1))2(x(t2 + �) − x(t2))2〉
= [〈(x(t1 + �) − x(t1))2〉〈(x(t2 + �) − x(t2))2〉

+ 2〈(x(t1 + �) − x(t1))(x(t2 + �) − x(t2))〉2]. (G9)

With the first term on the left-hand side of Eq. (G9) identified

as the square of the time-ensemble averaged MSD 〈δx2
i (�)〉2

,
the variance of the time-averaged MSD can finally be written
as

σ 2
(
δx2

i (�)
) = 2

(T − �)2

∫ T −�

0
dt1

∫ T −�

0
dt2

FIG. 12. Integration surface for Eq. (G11) on which the two
sectors [t2 > t1] and [t2 < t1] are distinguished. This defines the
appropriate change of variables (t1, t2) ↔ (t1, t ′), with the line t2 =
t1 + t ′ crossing the t2 = 0 axis at −t ′ and the t2 = T − � axis at
T − � − t ′.

×〈(x(t1 + �) − x(t1))(x(t2 + �) − x(t2))〉2

= 2k2
BT 2

(T − �)2κ2

∫ T −�

0
dt1

∫ T −�

0
dt2

× (2e− κ
γ
|t1−t2| − e− κ

γ
|t1−t2+�| − e− κ

γ
|t2−t1+�|)2

,

(G10)

using Eq. (G1).
The integral is calculated through a standard change of

variables t1 = t1, t ′ = t2 − t1 described in Fig. 12 and is
possible since the integrand only depends on the |t1 − t2|
difference. One can formally write

σ 2(δx2
i (�)) = 2k2

BT 2

(T − �)2κ2

∫ T −�

0
dt1

∫ T −�

0
dt2 α2(t ′),

(G11)
with t ′ varying from negative to positive values in the (t1, t2)
plane. For the t ′ > 0 sector,∫ T −�

0
dt ′
∫ T −�−t ′

0
dt1 α2(t ′)

=
∫ T −�

0
dt ′(T − � − t ′) α2(t ′), (G12)

and for the t ′ < 0 sector:∫ 0

−(T −�)
dt ′
∫ T −�

−t ′
dt1 α2(t ′)

=
∫ 0

−(T −�)
dt ′(T − � + t ′) α2(t ′). (G13)

By combining the two two sectors, one gets∫ T −�)

−(T −�)
dt ′(T − � − |t ′|) α2(t ′)

= 2
∫ T −�

0
dt ′(T − � − |t ′|) α2(t ′)

= 2
∫ T −�

0
dt ′(T − � − t ′) α2(t ′) (G14)
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leading to express the ergodic estimator ε as

ε(�) = 4k2
BT 2

κ2(T − �)2
〈
δx2

i (�)
〉2

×
∫ T −�

0
dt ′(T − � − t ′)

(
2e− κt ′

γ − e− κ
γ

(t ′+�)

− e− κ
γ
|�−t ′|)2

. (G15)

To simplify the notations, we define K = kBT
κ

and write the

time-ensemble averaged MSD as 〈δx2
i (�)〉 = 2K (1 − e− κ

γ
�).

The ergodic estimator is then written as ε(�) = I/4K2(1 −
e− κ

γ
�)2 where the variance of the MSD I is calculated

as

I = 4K2

(T − �)2

∫ T −�

0
dt ′(T − � − t ′)

(
2e− κt ′

γ − e− κ
γ

(t ′+�) − e− κ
γ
|�−t ′|

)2
,

split in three terms depending on the sign of the absolute
value:

= 4K2

(T − �)2
T
∫ �

0

(
2e− κt ′

γ − e− κ
γ

(t ′+�) − e− κ
γ

(�−t ′ )
)2

dt ′

− 4K2

(T − �)2

∫ �

0
(t ′ + �)

(
2e− κt ′

γ − e− κ
γ

(t ′+�) − e− κ
γ

(�−t ′ )
)2

dt ′

+ 4K2

(T − �)2

∫ T −�

�

(T − � − t ′)
(

2e− κt ′
γ − e− κ

γ
(t ′+�) − e

κ
γ

(�−t ′ )
)2

dt ′

= V1 + V2 + V3. (G16)

Each term is calculated as

V1 = 4K2

(T − �)2
· γT

2κ

[
5 + 4κ

γ

(
e− 2κ

γ
� − 2e− κ

γ
�
)

− 4e− 2κ
γ

� + 4e− 3κ
γ

� − 4e− κ
γ
� − e− 4κ

γ
�

]
,

V2 = K2

(T − �)2
· γ 2

κ2

[(
4

κ

γ
� − 1

)
+ 12

κ2

γ 2
�2e−2 κ

γ
�
(
1 − 2e

κ
γ
�
)+ 2κ

γ
e− 4κ

γ
�
�
(−4e2 κ

γ
� + 4e

κ
γ
� − 1

)
,

+
(

2κ

γ
� + 1

)(−4e−2 κ
γ
� + 4e−3 κ

γ
� − 4e− κ

γ
� − e−4 κ

γ
� + 4

)+ 2e−2 κ
γ
�

]

V3 = 16K2

(T − �)2

(
cosh

(
κ

γ
�

)
− 1

)2
{

γ

2κ
(T − �)

(
e−2 κ

γ
� − e−2 κ

γ
(T −�))+ γ 2

4κ2

[(
2κ

γ
(T − �) + 1

)
e−2 κ

γ
(T −�)

−
(

2κ

γ
� + 1

)
e−2 κ

γ
�

]}
, (G17)

whose analytical expression is drawn as the theory curve in
Fig. 6 in the main text.

APPENDIX H: TRACKING ERROR ANALYSIS

1. Tracking error on position

In all our experiments, the trajectories are recorded by a
photodiode and the positions are interpreted from the photodi-
ode signal. The errors on the localization of the particle in our
experiments originate from multiple noise sources dominated
by the laser fluctuation and the diode electronic noise. A
white noise can be a good starting approximation to estimate
and describe the localization error. Therefore, each measured
position xi(tk ) for a trajectory i at time tk can be related to the
real position x0

i (tk ) as [10,32]

xi(tk ) = x0
i (tk ) + μi(tk ), (H1)

where μi(tk ) is a random uncorrelated tracking error with
〈μi(tk )〉 = 0 and 〈μi(tk )μ j (tl )〉 = δi jδklσ

2
0 .

2. Tracking error on time-ensemble averaged MSD

We now propagate the position tracking error described by
Eq. (H1) into the measured MSD. We write〈

(xi(t + �) − xi(t ))2
〉

=
〈(

x0
i (t + �) + μi(t + �) − x0

i (t ) − μi(t + �)
)2
〉

=
〈[

(x0
i (t + �) − x0

i (t )) + (μi(t + �) − μi(t ))
]2〉

=
〈(

x0
i (t + �) − x0

i (t )
)2
〉
+ 〈(μi(t + �) − μi(t ))2〉

=
〈(

x0
i (t + �) − x0

i (t )
)2
〉
+ 2σ 2

0 ,

(H2)

showing how the measured MSD can be related to the theo-
retical one as

〈δx2(�)〉exp = 〈δx2(�)〉th + 2σ 2
0 . (H3)
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FIG. 13. Raw experimental and corrected data (top) for the MSD
(middle) for the Allan variance and (bottom) for the ergodic estima-
tor. We see the correction mostly for short time lags. The correction
works well for the MSD and Allan variance, but a deviation remains
on the ergodic estimator. This difference could actually point to a
slight deviation of the localization noise from the white Gaussian
noise we have assumed in our modeling of the localization error.

Since σ 2
0 > 0, the MSD is always overdetermined experi-

mentally, in agreement with our observations; in the log-log
representation of Fig. 5, this error can mainly be seen at short
time lags.

FIG. 14. Evolution of the experimental estimator ε(�)exp de-
scribed by Eq. (H9) and plotted using a fixed MSD error variance
σ 2(εi ) = 9.63 × 10−37m4. This gives a minimal value {ε(�)exp}min

that, compared to the analytical curve (ε(�)th), shows the exclusion
zone limited by �min.

3. Tracking error on Allan variance

From the definition of Allan variance, we can also relate the
experimental Allan variance that includes the tracking errors
to the theoretical Allan variance with

σ 2
exp(�) = 1

2�2
〈(x((n + 2)�) − 2x((n + 1)�) + x(�))2〉

= 1

2�2
〈(x0((n + 2)�) − 2x0((n + 1)�) + x0(�)

+ μi − 2μ j + μk )2〉

= σ 2
th(�) + 1

2�2
〈(μi − 2μ j + μk

)2〉

= σ 2
th(�) + 3σ 2

0

�2
.

(H4)
The difference 3σ 2

0 /�2 between experimental and theoretical
Allan variances is always positive and decays with �2, again a
feature perfectly consistent with our observations—-see Fig. 6
in the main text.

4. Tracking error on the ergodic estimator

To account for the error on the ergodic estimator ε(�), we
first consider Eq. (H3) for the MSD error analysis. For the
single trajectory time-averaged MSD, one has

δx2
i (�)exp = δx2

i (�)th + εi, (H5)

where εi is a random constant with 〈εi〉 = 2σ 2
0 . The experi-

mental ergodic estimator can thus be written as

ε(�)exp =
〈(

δx2
i (�)exp

)2〉
〈
δx2

i (�)exp

〉2 − 1 =
〈(

δx2
i (�)th + εi

)2〉
〈
δx2

i (�)exp

〉2 − 1.

(H6)
We define the ratio

φ(�) =
〈
δx2

i (�)th

〉
〈
δx2

i (�)exp

〉 (H7)

as the ratio between the theoretical and experimental
MSD variance value. With this ratio, the experimental
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ergodic estimator ε(�) can be written as

ε(�)exp = φ2(�)ε(�)th

+ φ2(�)

⎛
⎝2
〈
εiδx2

i (�)th

〉+ 〈ε2
i 〉〈

δx2
i (�)th

〉2 + 1

⎞
⎠− 1.

(H8)

Assuming that the error εi is uncorrelated with the single tra-
jectory time ensemble MSD, 〈εiδx2

i (�)th〉 = 〈εi〉〈δx2
i (�)th〉.

Taking this into account additionally leads to σ 2(εi ) = 〈ε2
i 〉 −

〈εi〉2 and therefore to

ε(�)exp = φ2(�)

⎡
⎣ε(�)th + σ 2(εi )〈

δx2
i (�)th

〉2
⎤
⎦. (H9)

Using Eq. (G5), the ratio

φ(�) = 1

1 + κσ 2
0

kBT (1−e−κ�/γ )

(H10)

can be estimated once the value of the localization error σ 2
0 is

known. As for the variance of εi, Eq. (H5) gives

σ 2(εi ) = σ 2(δx2
i (�)exp) − σ 2(δx2

i (�)th ). (H11)

Since σ 2(δx2
i (�)th ) goes to zero when � → 0, one is left,

at small �, with σ 2(εi ) ∼ σ 2(δx2
i (�)exp). Taking the exper-

imental variance measured on the time-averaged MSD for
the smallest time lag � is therefore a good estimation for
σ 2(εi ). This analysis leads us to approach the real value of the

tracking error on the estimator ε(�) and this way explain the
difference between the experimental data and the theoretical
curve in Figs. 6 and 9.

However, it is seen in Fig. 13 that the correction of the
estimator ε(�) is limited. This is due to the fact that for such
a correction, the estimation of σ 2(εi ) used is assumed to be
constant, while it turns out to depend on �. This dependence
plays particularly when the number of sampling is limited.
From its expression in Eq. (H9), the experimental estimator
ε(�)exp has a minimum that depends on σ 2(εi ). This minimal
value stems from the localization errors but is difficult to
measure experimentally. This difficulty is well seen from the
experimental estimators ε(�) evaluated from different sub-
trajectory samplings involving the different duration choices
displayed in Fig. 10. There, deviations at small � for dif-
ferent numbers of subtrajectory samplings are clearly seen
and yield signatures that look similar to ergodicity breaking.
This similarity implies that when ergodicity is investigated by
looking at the decay of the estimator ε(�) as a function of �,
a lower limit in � must be chosen to ensure that the data are
well above the experimental noise limit. This limit �min is set
where, for a given estimated σ 2(εi ),

ε(�min)th = {ε(�)exp}min, (H12)

as illustrated in Fig. 14. For a given trajectory length, the less
the number of sampling, the larger �min is. Therefore, when
the number of trajectories in an ensemble is limited, it is safer
and better to evaluate the estimator ε(�) as a function of both
� and total trajectory length T at the same time.
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