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Global climate changes have serious consequences on natural ecosystems and
cause diverse environmental abiotic stressors that negatively affect plant growth and
development. Trees are dependent on their symbiosis with mycorrhizal fungi, as the
hyphal network significantly improves the uptake of water and essential mineral nutrients
by colonized roots. A number of recent studies has enhanced our knowledge on
the functions of mycorrhizal associations between fungi and plant roots. Moreover, a
series of timely studies have investigated the impact and benefit of root symbioses on
the adaptation of plants to climate change-associated stressors. Trees in temperate
and boreal forests are increasingly exposed to adverse environmental conditions, thus
affecting their durable growth. In this mini-review, we focus our attention on the role
mycorrhizal symbioses play in attenuating abiotic stressors imposed on trees facing
climatic changes, such as high temperatures, drought, salinity, and flooding.

Keywords: mycorrhizal symbioses, trees, climate change, environmental abiotic stress, high temperature,
drought, salinity, flooding

INTRODUCTION

Plant growth and development are dependent on intimate interspecific interactions and
co-adaptation between plant species and soil microorganisms, and will be increasingly affected
by environmental and climatic changes (van der Putten, 2012; Steidinger et al., 2019; Suz et al.,
2021; Van Nuland et al., 2021). Trees, requiring sustained growth in fluctuating environmental
conditions, are particularly vulnerable to increasing stress. Functional plant-microbe interactions
are determinant drivers for plant adaptation to environmental stressors, among them severe and
frequent climate-caused factors (Gehring et al., 2017; Lau et al., 2017). Such increasing abiotic
stress conditions include high temperature waves associated with increasing solar radiation (Teskey
et al., 2015), intensifying periods of drought (Cook et al., 2018), high levels of salinity (Corwin,
2021), and unpredictable events of flooding (Alfieri et al., 2017; Tabari, 2020; Figure 1A). Often,
these conditions are tightly connected to poor soils with nutrient shortages. In temperate and
boreal forest ecosystems, belowground beneficial interactions with plant roots are dominated by
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FIGURE 1 | Mycorrhizal fungi alleviate climate change-linked abiotic stress affecting tree growth in temperate and boreal forests. (A) Trees are affected by increasing
abiotic stress linked to climate change such as high temperatures, drought, salt stress, and flooding. (B) However, tree-associated mycorrhizal (ECM,
ectomycorrhizal and AM, arbuscular mycorrhizal) fungi improve plant water and mineral nutrition (among them potassium K+) and help to adapt to stressful
environmental conditions (among them elevated sodium Na+ in saline conditions).

mycorrhizal symbioses. Trees are dependent on mycorrhizal
fungi because they rely on the hyphal network, extending the
root area of exploration beyond the rhizosphere, to increase the
acquisition of essential macro- and microelements and water by
colonized roots (Smith and Read, 2010; Becquer et al., 2019; Xu
and Zwiazek, 2020).

Aside from the well described contribution to plant nutrition
(Garcia et al., 2016, 2020), these root-associated beneficial
symbionts are expected to improve the ability of their host trees
to adapt to the stressor associated with climate change (Classen
et al., 2015; van der Linde et al., 2018). Ectomycorrhizal (ECM)
and arbuscular mycorrhizal (AM) fungi are widely associated
with trees in natural forests and plantations (Figure 1B). ECM
fungi, interacting with 60% of all trees (Steidinger et al., 2019)
form a fungal sheath around fine roots, thus protecting the plant
root and mediating direct interactions with the soil. AM fungi are
more present in tropical environments than temperate and boreal
forests, but do interact with several tree species, such as poplars
(Fang et al., 2020), alders (Kilpeläinen et al., 2019), eucalyptus
(Adjoud et al., 1996), or olive trees (Calvo-Polanco et al., 2016).

Herewith, we summarize recent reports on the role
mycorrhizal symbioses play in tree growth and survival
under increasingly prevalent climate change-driven abiotic stress
conditions in temperate and boreal forests. In particular, we focus
on publications, mainly from last few years, concerning those
stressors that pose the most significant and increasing threat,
namely high temperatures, drought, salinity, and flooding.

PLANT TOLERANCE TO ABIOTIC
STRESS MEDIATED BY MYCORRHIZAL
INTERACTIONS

Global climate change is primarily described by quantification of
CO2 rise causing increase of mean temperatures. Other abiotic
stresses, such as drought, salt stress or flooding, are tightly linked
and affect plants and associated microorganisms (Figure 1).
Whether CO2 rise will affect mycorrhizal tree symbioses in an
indirect way by more carbon uptake (Godbold et al., 1997),
other consequential stressors deteriorating plant growth might be
alleviated by beneficial microbial root associations.

Increasing Temperatures
Frequency and intensity of high temperatures are increasing
due to global warming. It can result in irreversible damages
for many tree species, altering their growth and production,
and sometimes leading to mortality (Teskey et al., 2015).
To date, minimal research has explicitly explored the role of
mycorrhizal fungi in heat stress alleviation in trees. Indeed, most
studies have focused primarily on how increasing temperatures
affect tree and fungal populations individually (Deslippe et al.,
2011; Morgado et al., 2015; Treseder et al., 2016). However,
the impacts of climate change on tree, fungal, and ecosystem
health are connected and interdependent, and mycorrhizal fungi
can also be directly affected by increasing soil temperatures
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(Kipfer et al., 2010; Gavito and Azcón–Aguilar, 2012). Higher
temperatures can lower a tree’s photosynthetic activity, thereby
limiting its growth and reducing carbon allocation to its ECM
symbionts (Fernandez et al., 2017). Recently, Song et al. (2015)
examined fungal partner changes in reaction to heat stress
in two tree species, Douglas fir (Pseudotsuga menziesii) and
ponderosa pine (Pinus ponderosae), and found that defoliation
of the former resulted in stress signaling and resource sharing
to the latter. In response to defoliation from heat and insect
stress, photosynthetic carbon from P. menziesii was transferred
to P. ponderosae plants via shared mycorrhizal networks (Song
et al., 2015). Mueller et al. (2019) investigated growth-promoting
effects of mature tree mortality on seedlings of pinyon pines
and revealed increases in plant growth after mature trees died,
and saw no significant loss of seedling establishment. One
reason for this could be the inoculum of ECM symbionts
provided by the older trees that the seedlings can utilize for
acquiring the newly available resources. This indicates the
importance of ECM communities in promoting the success
of further generations, even as tree life expectancy may be
cut short, as well as their role in promoting growth of other
species following mortality. On the other hand, this ecosystem
service depends on the presence of compatible species, and
mortality from increasing temperatures simultaneous with heat-
induced fungal community shifts, may threaten this resilience.
Indeed, Fernandez et al. (2017) reported fungal taxonomic
changes as a result of warming temperatures. An increased
reliance on Ascomycetes and fungi that provided optimum
benefits as photosynthesis capacity decreased was observed
(Fernandez et al., 2017).

From these observations, it seems imperative that more
research is conducted to understand how the positive effects
conferred by mycorrhizal fungi will help host trees tackle
the upcoming climatic variability. In particular: (i) identifying
how ECM fungal communities will evolve, (ii) determining
which tree-fungus combinations will be better adapted, and
(iii) characterizing the underlying molecular mechanisms in
both plant and fungi that prevent deleterious effects triggered
by rising soil and ambient temperatures, could be promising
ways to explore. Indeed, plant and ecosystem health are
facing the pressure of changing global temperatures and
will continue to do so to a greater extent in coming
years. The respective success of each plant and microbial
populations is integral in the success of the other, and
further research into how ECM and AM fungi alleviate plant
stress to climate change could shed light on how these
interdependencies may provide ecosystem resilience through
temperature increases.

Drought
Drought stress, partly linked to high temperatures, is one
of the major abiotic stressors caused by climate change, and
contributes to forest decline at a global level (Choat et al., 2012).
Soil water deficiencies diminish plant physiological processes,
including photosynthesis, enzyme structure, nutrient uptake and
transport, and hormone balancing. This results in the triggering
of other stressors such as nutritional, osmotic and oxidative

stress. At the belowground level, roots have developed a variety of
strategies to avoid and tolerate drought conditions, including root
biomass adjustments, anatomical alterations and physiological
acclimation, and interaction with mycorrhizal fungi.

Different mechanisms have been suggested for the
improvement of plant drought tolerance by mycorrhizas.
The most obvious direct mechanism to cope with water
shortage is the increase of the absorbing surface in the soil
through the development and ramification of an extraradical
mycelium (Bogeat-Triboulot et al., 2004; Ruth et al., 2011;
Zhang et al., 2018). Mycorrhizal fungi improve soil aggregate
stability thanks to the structure of the hyphal network
which, as part of the soil matrix, directly contributes to the
formation and maintenance of soil water-macroaggregates
(Ji et al., 2019), providing a better infiltration and storage
of water. In the case of AM fungi, another well-identified
mechanism that improves soil aggregate stability by carbon
sequestration is the release of the glycoprotein glomalin by
the fungus acting as soil-superglue (Kumar Singh et al., 2020;
Cheng H. Q. et al., 2021).

Mycorrhizal colonization also has the ability to modify the
root architecture to both enhance soil aggregate stability and
increase the water and nutrient absorbing surface area, especially
under drought conditions. For example, several studies in
trifoliate orange suggested that mycorrhizal trees possess greater
root hair growth to tolerate drought stress (Wu et al., 2016; Zou
et al., 2017; Liu et al., 2018; Zhang et al., 2019). ECM fungi
are reported to trigger structural changes in the root system of
poplar trees by inducing lateral root formation (Felten et al.,
2009; Wu et al., 2012). Finally, the modulation of root water
transport under drought conditions in mycorrhizal plants has
been commonly attributed to the aquaporin-mediated transport,
as mycorrhizal colonization has been often shown to affect plant
aquaporin gene expression (Calvo-Polanco et al., 2016, 2019;
He et al., 2020).

In addition to the increased water uptake, mycorrhizal
symbioses can indirectly improve nutrient acquisition under
drought (Lehto and Zwiazek, 2011; Ouledali et al., 2018; Behrooz
et al., 2019; Boutasknit et al., 2020). This is not only due to
the increased absorption area of mycorrhizal roots, but also
to factors such as the improved secretion of phosphatase to
the soil, either directly by the extraradical hyphae as described
for Rhizophagus clarus (Sato et al., 2019), or by stimulating
the exudation of root phosphatase as observed in mycorrhizal
citrus trees (Cheng H. Q. et al., 2021). These mechanisms
could stimulate the decomposition and acquisition of organic
orthophosphate and might thus partially alleviate the plant
responses to drought stress.

Finally, mycorrhizal symbiosis also triggers numerous
biochemical and physiological modifications in the plants that
enhance plant drought tolerance. For example, some reports exist
about the enhanced production of enzymatic (He et al., 2020;
Huang et al., 2020) and non-enzymatic (Essahibi et al., 2018)
antioxidants in mycorrhizal trees such as carob, trifoliate orange
and apple trees under drought conditions. These enzymes and
compounds may decrease the oxidative damage in the structure
of carbohydrates, lipids, proteins, and DNA that result from
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prolonged drought exposure. It has also been suggested that
mycorrhizal symbiosis has the potential to lower the osmotic
damage through the accumulation of soluble sugars and proline
(Yin et al., 2018; Behrooz et al., 2019; Boutasknit et al., 2020;
Huang et al., 2020; Wang et al., 2021). Similarly, the water-use
efficiency is in most cases improved in colonized plants, as
observed in AM poplar and in ECM pine and oak trees exposed
to drought (Li L. et al., 2021; Li M. et al., 2021; Li Y. et al., 2021).
This could be related to a better modulation of stomata closure
and abscisic acid concentration and signaling (Wang et al., 2017;
Ouledali et al., 2018; Chen et al., 2020).

Salt Stress
Climate change-associated salinity stress causes land degradation,
decreased crop yields, and afforestation, thus severely impacting
the global economy (Leisner, 2020; Zandalinas et al., 2021). In
addition, due to deep changes in environmental conditions and
the expansion of irrigated land (>20% worldwide), the negative
impact of salinity is considerably increasing and will continue
to do so (Yuan et al., 2016). Excessive sodium (Na+) in soil
competes for potassium (K+) uptake by plant roots due to
ion similarity (Liang et al., 2018; Wu, 2018). Moreover, within
the cytoplasm, Na+ has toxic effects on cellular functions and
enzyme activation. Several endangered tree species (Bothe et al.,
2010) evolved adaptations (Kijowska-Oberc et al., 2020), such as
the exclusion or accumulation of the excess of Na+ within the
different plant tissues (Ottow et al., 2005; Thiem et al., 2018), the
control of transpiration (Negrão et al., 2017), or the increase of
vessel frequencies (Janz et al., 2012).

Although many plant species have evolved salt tolerance
mechanisms, interaction with soil microorganisms, and
particularly mycorrhizal fungi, can greatly improve plant
growth and development under saline conditions (Weissenhorn,
2002; Yi et al., 2008; Yang et al., 2014; Hrynkiewicz et al.,
2015; Zwiazek et al., 2019; Klinsukon et al., 2021). Improved
water (Lee et al., 2010) and nutrient (Li et al., 2012) uptake,
as well as the exclusion of Na+ from roots and, consequently,
shoots by mycorrhizal fungi are mechanisms that have been
proposed to contribute to salt stress tolerance in colonized trees
(Guerrero-Galán et al., 2019).

Improved acquisition of K+ as an essential macroelement by
AM and ECM fungi (Garcia and Zimmermann, 2014; Frank
and Garcia, 2021) helps maintain a desirable K+/Na+ ratio.
By contrast, the mobilization of Na+ and chloride (Cl−) by
plant roots was attenuated by the presence of mycorrhizal
fungi, particularly under salt stress (Giri et al., 2007; Calvo-
Polanco et al., 2008; Hrynkiewicz et al., 2015; Garcia et al.,
2017; Hashem et al., 2018; Abdelhamid et al., 2019). To
elude the translocation of excessive Na+ in photosynthetic
organs, plants have adopted mechanisms to store Na+ in
intraradical mycelium or in root cell vacuoles (Acosta-Motos
et al., 2020). Moreover, defense mechanisms using antioxidant
enzymes in plants might be improved by AM symbiosis
lifting up their activities to mitigate salt stress, like catalase,
peroxidase, glutathione reductase, superoxide dismutase, and
ascorbate peroxidase. Ait-El-Mokhtar et al. (2019) demonstrated
this mechanism when Phoenix dactylifera L. was colonized

by AM fungi in salt stress conditions. Improvement of
physiological plant parameters by AM and ECM symbioses
has been shown by several studies in recent years, however,
mechanisms have been discussed mainly for AM symbioses
in non-woody plants (Porcel et al., 2012; Evelin et al., 2019).
In trees, Behmanesh et al. (2019) reported that pistachio
seedlings (Pistacia vera L.) inoculated by Rhizophagus irregularis
(formerly Glomus intraradices) and Glomus mosseae displayed
improved vegetative growth, chlorophyll contents, and less
deposition of Na+ in shoots as compared to non-inoculated
seedlings. Similar findings were reported by Frosi et al.
(2018), when Cenostigma pyramidale was inoculated with AM
fungi Acaulospora longula and Claroideoglomus etunicatum.
Increases in shoot dry weight and chlorophyll contents, and
less accumulation of Na+ and Cl− in photosynthetic organs
were reported. Salt tolerance of almond rootstocks was increased
by the AM fungi R. intraradices and Funneliformis mosseae
through the improvement of diverse physiological parameters
like chlorophyll, soluble sugars and proline content, osmotic
parameters, and increased activity of antioxidant enzymes
(Shahvali et al., 2020).

Likewise, several studies have shown improved salt tolerance
in ECM trees as in white spruce in association with Hebeloma
crustuliniforme (Muhsin and Zwiazek, 2002). When Coccoloba
uvifera L., inoculated by Scleroderma bermudense, was grown
in up to 500 mM of salt, the plants exhibited improved growth,
water uptake, and shoot phosphorus and K+ concentrations,
while the upward movement of Na+ and Cl− ions was
limited in comparison to non-inoculated plants (Bandou
et al., 2006). Improved ECM-driven uptake of essential
nutrients along with water was observed in poplar roots
colonized by Paxillus involutus under saline conditions
(Luo et al., 2011). Involvement of aquaporin-mediated
water transport was shown in jack pine in association with
Suillus tomentosus (Lee et al., 2010). A recent study revealing
improved growth of Alnus glutinosa when inoculated by
the ECM strain P. involutus OW-5 under saline conditions,
showed proline accumulation in plant tissues that acts as an
endogenous osmotic regulator to tolerate salt stress effects
(Thiem et al., 2020).

Altogether, mechanisms behind plant salt tolerance in AM and
ECM symbiosis are rather complex, including several direct and
indirect effects, and need further studies.

Flooding
Extreme precipitation and floods are expected to intensify due
to climate change (Alfieri et al., 2017; Tabari, 2020), with
consequences in the structure, function and production of forest
ecosystems, and their interactions with soil microorganisms
(Barnes et al., 2018). The adaptation of plants to flooding is
dependent on the accumulation of ethylene within the plant
tissues (Reynoso et al., 2019). In the most tolerant species,
plants display extensive morphological modifications, such as
the formation of aerenchyma (Sou et al., 2021) and adventitious
roots, the reduction of the endodermis (Calvo-Polanco et al.,
2012; Voesenek and Bailey-Serres, 2015), and the formation of
hypertrophied lenticels (Fougnies et al., 2007).
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In addition to these plant adaptations, the associated
microbiome is crucial. The tolerance of mycorrhizal fungal
species to flooding varies according to their host tree species and
the severity and length of the stress (Lodge, 1989; Yang et al.,
2016; Barnes et al., 2018; Johnson, 2018). In general, AM fungi
are believed to be more present in waterlogged environments
than ECM fungi, as they have been shown to survive anaerobic
conditions due to the presence of well-developed aerenchyma
in the roots (Wang et al., 2010). However, recent studies have
determined that ECM also display a certain degree of resilience
dependent on the species (Cho et al., 2021). Differences between
hydrophobic and hydrophilic ECM fungi have been observed
(Barnes et al., 2018), and several fungal species recovered after
long periods of waterlogged field conditions (Thomas, 2021),
as was shown for Thelephora terrestris, Laccaria laccata, and
H. crustuliniforme (Stenström, 1991).

The few studies on AM trees under flood conditions are
related to improving growth and development (e.g., citrus, peach,
or trifoliate orange trees) by acting on the phosphorus and
nitrogen acquisition (Neto et al., 2006; Fougnies et al., 2007; Wu
et al., 2012; Zou et al., 2014; Zheng et al., 2020) and on the
expression of aquaporins (Cheng X. F. et al., 2021). Even that it
is commonly known that ethylene accumulation within the plant
tissues is one of the main responses of plants to waterlogged
conditions, this information on mycorrhizal trees is largely
lacking. Only one study reported for mycorrhizal tomato plants
showed that AM fungi reduced root ethylene concentrations,
while improving their water status through the action of fungal
and tomato aquaporins and the regulation of ACC synthase and
oxidase genes (Calvo-Polanco et al., 2014).

In conclusion, there is immense potential to improve our
knowledge on how mycorrhizal fungi help trees to cope with
flooding events, and their effect in the main mechanism of
ethylene regulation for the initial sensing of flood, that involves
the oxygen-dependent degradation of group VII Ethylene
Response Factor transcription factors and Plant Cysteine Oxidase
enzymes (van Dongen and Licausi, 2015). This information
will contribute to the development of new technologies and
management procedures to overcome flood stress in agricultural
and forestry settings.

CONCLUSION

Overall, mycorrhizal fungi have the potential to conserve
and restore temperate and boreal forest ecosystems and to
maintain sustainable forestry crops under stress due to global
changes (Bothe et al., 2010; Field et al., 2020; Li et al.,
2020). Numerous studies have shown improved tolerance of
mycorrhizal trees to numerous abiotic stresses, such as high
temperatures, drought, high salinity, and flooding (Figure 1).
In general, the identified mechanisms are similar to those ones
found in non-woody plants. However, we need to consider
that most of these experiments have been performed with tree
seedlings grown in pots under controlled conditions, so further
research is required to unravel the underlying mechanisms in
natural environments and in mature trees. The influence of
natural soil microbiome interactions on complex ecosystem

functioning linked to conditions of climate change has been
recently analyzed taking growth and foliar development of a
tree species (Populus angustifolia) as a model (Van Nuland
et al., 2021). Moreover, microbiome manipulation experiments
in forest conditions (e.g., adding inoculum of adapted species
isolated from not stressed forest environments) could be feasible
and bring further insight.

One of the most outstanding particularities of large trees is that
they possess a root system that penetrates several meters into the
ground. Although mycorrhizas have been commonly described to
be mostly concentrated in the top layer of the soil, some reports
show that they are also present several meters underground (de
Araujo Pereira et al., 2018; Robin et al., 2019). With this respect,
further research is required to unravel other relevant roles of
mycorrhizas in deeper soil horizons and in large trees, probably
more related with ecosystem services, such as carbon storage, that
may also help trees to cope with environmental stresses.

Clear evidence exists to consider local beneficial mycorrhizal
fungi as an environmentally friendly tool with a high potential
to protect trees, from both forest and sustainable agricultural
systems, against environmental stressors that will only increase in
intensity and frequency due to global climate change. Although
our review is focused on the negative effects of climate change
on trees, it is worth mentioning that the mycorrhizal fungi
decline occurring nowadays might be also linked to climate
change (Bennett and Classen, 2020). However, it is unclear if
mycorrhizal populations are directly affected by climate change-
derived stresses or if, by contrast, they are negatively affected
by a lower performance of trees exposed to stresses (Sapsford
et al., 2017). Thus, further research is required to decipher the
links between trees and mycorrhizal fungi under stress conditions
in a climate change scenario in order to design good strategies
aimed at supporting the health of both partners, trees and
mycorrhizal fungi.
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