
HAL Id: hal-03417343
https://hal.science/hal-03417343v1

Submitted on 1 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

To Pin or Not to Pin: Asserting the Scalability of
QEMU Parallel Implementation

M. Badaroux, Saverio Miroddi, Frédéric Pétrot

To cite this version:
M. Badaroux, Saverio Miroddi, Frédéric Pétrot. To Pin or Not to Pin: Asserting the Scalability of
QEMU Parallel Implementation. 24th Euromicro Conference on Digital System Design (Euromicro
DSD/SEAA 2021), Sep 2021, Palermo, Italy. pp.238-245, �10.1109/DSD53832.2021.00045�. �hal-
03417343�

https://hal.science/hal-03417343v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


To Pin or Not to Pin: Asserting the Scalability of
QEMU Parallel Implementation

Marie Badaroux
Univ. Grenoble Alpes, CNRS,

Grenoble INP†, TIMA
Grenoble, France

marie.badaroux@univ-grenoble-alpes.fr

Saverio Miroddi
Open Source and Research Program

Ticketsolve
Berlin, Germany

smiroddi@ticketsolve.com

Frédéric Pétrot
Univ. Grenoble Alpes, CNRS,

Grenoble INP†, TIMA
Grenoble, France

frederic.petrot@univ-grenoble-alpes.fr

Abstract—Due to its speed in cross-executing sequential code,
dynamic binary translation is the unchallenged technology for full
system-level simulation. Among the translators, QEMU has become
the de facto solution. It introduced parallel host execution of the
target cores a few years ago for the ARM instruction set architecture
and this support is now also available, among others, for RISC-V.
Given the popularity of these instruction sets in multi and many-core
systems, assessing the scalability of their parallel implementation
makes sense. In this paper, we use a subset of the PARSEC benchmark
to measure the execution time of QEMU’s parallel implementation,
to which we added the ability to pin a target processor to a host core
or hardware thread. We report the results of a wealth of experiments
we performed on a 16-core/32-thread x86-64 SMP machine. They
show that the support of parallelism in QEMU scales well, and that,
somewhat counter intuitively, pinning does not improve performance.

I. Introduction
The momentum around the RISC-V [1] has led many academic

and industrial groups into designing systems based around this
instruction set architecture. Among them, quite a few are designing
and implementing multi and manycore platforms (e.g. [2, 3, 4]),
some being actually industrialized1.
Instruction set simulation is the primary tool for validating

instruction set architecture (ISA) choices, retargeted compilers,
operating systems (OS) ports and pre-silicon validation of hard-
ware/software systems. It also plays a major role in guiding system-
level design space exploration. Booting an OS on a platform and
running significant applications requires a full system simulator
that is both fast and faithful. Classical instruction per instruction
interpretation is too slow, while native simulation [5, 6, 7] or
static binary translation are ruled out by the necessity of handling
self modifying code as used when, e.g., loading dynamic libraries
(let alone run jited code like java or .NET bytecodes) [8]. This
leaves us with cross-ISA dynamic binary translation (DBT) as
solution.
QEMU [9] might not be the fastest DBT engine today [10], but

it has unparalleled stability, support for many targets and hosts
CPUs, is open-sourced, and has a large and very active community
supported by the industry. It has become the reference for many
users and developers, which makes it the de facto standard for
cross-ISA emulation. In particular, the support for the RISC-V ISA
was quickly added, and so did the support for parallel execution
of multicore RISC-V target systems on multicore hosts. QEMU
vanilla does not provide the ability to pin emulated processors on

†Institute of Engineering Univ. Grenoble Alpes
1https://github.com/riscv/riscv-cores-list#socs lists current silicon products.

harts, a feature we added so as to evaluate the benefit it could
provide.
In this paper, we report the work we did to experimentally

evaluate the scalability of the QEMU dynamic binary translator
emulating the RISC-V and ARM architectures on a x86-64 host
with 16-core/32-hart2, with and without pinning. To that aim,
we use the subset of the PARSEC benchmark [11] that can be
cross-compiled without too much pain and that is stable enough
to work consistently on the emulator.
The paper is organized as follows. We first give in Section II

some insights on how parallel emulation is handled in QEMU
and present works related to ours. Section III presents our
implementation of pinning in the emulator, and how we map
the emulated CPUs on the host architecture. Section IV details the
strategy we have been using to conduct our simulations. Section V
relates the experiments we made and provides an analysis of the
results, and we finally wrap-up in Section VI.

II. Background and related work
When it comes to running parallel workloads on a multi or

manycore platform, having a simulator able to take benefit from
the parallel nature of the host is a must. Even parallelized, many
simulators, usually in their quest for evaluating performance
accurately, incur too many synchronizations to be scalable. This
means that processor simulation should progress until an actual
synchronization is needed by the application, to ensure maximum
lookahead while guaranteeing correctness.
Work on QEMU parallelization was initiated by [12] and [13].

The approach they propose is conceptually intuitive: it consists of
emulating the target CPU’s (also called vCPU) atomic instructions
using the host CPU’s atomic instructions. Said so, this seems
relatively straightforward, however slight semantic differences
between the target and the host memory models lead to generating
complex code snippets that are also difficult to ensure correct [14].
But this is only the tip of the iceberg, and many complicated
technical details have to be solved, among which parallel target
code generation and caching, choice of the next emulated processor
to execute, interprocessor communication, etc. These efforts where
not upstreamed in QEMU, and rapidly became unusable given
the pace at which its code evolves. The idea was taken over
by [15] and [16] that ended up in a solution accepted by the
community. It was given the name mttcg, for multi-thread tiny code
generator. The primary host was x86-64, and the first target was,

2Hardware threads.

https://github.com/riscv/riscv-cores-list#socs


without surprise either, the ARM ISA. Since then, the approach
has been ported to a handful of hosts and targets, enhanced and
generalized [17], and fully integrated into QEMU. A great care
has been taken to minimize locking [18], and whenever possible,
shared structures are accessed using atomic operations. To avoid
useless re-translations, a single code generation buffer is shared
by all vCPUs, however code generation itself takes place in a
local buffer to avoid locking the translation cache.
These papers generally focus, and rightly so, on the specific

points that they aim at improving, but without providing detailed
simulation results. Among those, the most relevant one is [17],
first because it reflects the current implementation of QEMU, and
second because the authors used the PARSEC benchmarks to
experiment. They use Aarch64 as target, and report results for
user emulation, not for full system emulation, the target of this
work.
The RISC-V ISA defines 9 atomic operations and the load-

reserved and store-conditional instructions, for 32-bit and 64-bit. In
addition, two bits can be used to accommodate release consistency
in these 11 instructions. A fence instruction is also available for
memory ordering.
Our goal in this work is to evaluate how the emulation of

such a complex ISA scales. Additionally, we add support for
pinning vCPUs to host CPUs in QEMU, which to the best of our
knowledge was never reported in the literature.

III. Pinning in QEMU

Pinning might improve simulation speed, as by assigning a
vCPU to a CPU we prevent migrations and thus cache trashing.
To devise a pinning strategy, we must study how QEMU handles
parallelism and how the host machine provides parallelism:
• QEMU allows to specify the number of vCPUs and a target
non-uniform memory access (NUMA) architecture. However,
although the NUMA description allows the target operating sys-
tem to gain insight on the topology, using typically hwloc [19],
it does not influence performance-wise the execution. QEMU
mttcg creates as many software threads as vCPUs. QEMU also
create threads for emulated I/Os handling peripherals, and for
a few other bookkeeping tasks,

• All server hosts today are multicore, NUMA, and generally
also support simultaneous multithreading [20] (SMT), two harts
being the norm on x86-64 architectures. Modern operating
systems have the ability to enable and disable, at run time, the
support for harts, leaving only cores to execute on. A program
either sees all CPUs, or half of them, and does not know if
they are cores or harts. From an identification perspective, it is
possible to know which CPU(s) belong to a core, which cores
belong to a socket, and which sockets belong to a NUMA node.
As our focus is on processor simulation scalability, we will

have very few I/O devices in the system, and these will be seldom
active, so we do not dedicate them a processor.
We assign the vCPUs in such a way that they first share a core,

then the cores of a socket, and only then we move to the next
socket until all sockets of a node are used, and then we move
to the next node. When all nodes are exhausted, if there are still
vCPUs to assign, we start again at the first hart of the first core
of the first socket of the first node. For example, on the machine
whose topology is given Figure 1, we would assign the first vCPU

Fig. 1. Mid-end host server: Dell PowerEdge R910 (lstopo picture).

on PU#0, the second one on PU#16, the 9th one on PU#1, and so
on, back to PU#0 for the 33rd.
The rationale behind this approach is that the closer the vCPUs

on the host, the better the sharing of the resources. Indeed,
the current servers predominantly only share their last level
cache in a socket, the other levels being private to a core, as
illustrated Figure 1 (all caches are 8-way set associative). We
also experimented without harts, in the hope that although cache
sharing is postponed at socket level, not sharing a core could be
beneficial. For the same server, the assignment would be simply
sequential modulo 16. The implementation is done classically by
setting a single bit in a variable of type cpu_set_t to indicate
the CPU to use, and passing it to pthread_setaffinity_np to
perform the assignment.
To isolate vCPUs from other threads, including kernel ones, we

use the Linux kernel option isolcpus, which specifies physical
CPUs to be excluded from scheduling. This avoids any thread
from executing on the same CPU where a QEMU vCPU thread is
running, with the intended outcome of avoiding context switches.
While this strategy is intuitive, it makes comparisons with standard
setups possible but not exact. With the natural choice of isolating
Cores 1 to 15 (which allows kernel scheduling only on Core 0), it is
possible to run a number of threads that is a power of 2 only until
half of the number of CPUs; after that, only integral multiples of
nc − 1 are possible.

IV. Methodology

Our goal is to measure the scalability of the emulator with
presumably scalable non-synthetic workloads. To that aim, we
use the PARSEC benchmark with the “simlarge” inputs for all
programs, using Linux implementation of the POSIX thread library
as support to parallelism. We are aware that scalability issues in
the PARSEC programs have been pointed out [21]. However, for
lack of a better benchmark, we will use it.



The programs are cross-compiled on the host. Some of them are
not meant to be cross-compiled, so they fail and we ignore them,
some others fail at run-time, due to either initialization or later
memory allocation problems, we also skip them. This is why our
plots contain a subset of the benchmark, namely blackscholes,
bodytrack, cholesky, ferret, fft, fluidanimate, freqmine,
lu_cb, lu_ncb, ocean_cp, radix, swaptions, water_nsquared
and water_spatial. Some of these programs have additional
restrictions. Five of them cannot be executed if the number of
threads is not a power of 2: fft, fluidanimate, ocean_cp, radix
and swaptions. Furthermore, swaptions cannot be executed when
the number of threads is higher than the swaptions parameter
value. We also cross-compiled Linux 5.9.6 and OpenSBI 0.8,
configured with up to 128 processors, as run-time for the guest.
For each program we measure the wall clock time for the full

execution, Tfull , and the execution of the region-of-interest (ROI),
Troi , as defined by the PARSEC benchmark. The sequential nature
of the initializations and of some others parts might have a non
negligible influence on the actual scalability of the programs, as
Amdahl’s law teaches us [22].
Figure 2.(a) presents a high level view of the typical structure of

the programs included in the PARSEC benchmark: 1) sequential
allocation and initialization of data structures, parsing of files, etc,
2) activation of the ROI timer, 3) start the compute threads. They
execute more or less independently, as there are generally some
(number heavily depends on the program) variables that need to be
accessed concurrently, and thus protected by locks, 4) synchronize
all threads at a barrier, 5) iterate to point 3 or deactivate ROI
timer and perform something similar to points 1, 2, 3 and 4, and,
when done, continue and gather results, 6) deactivation of ROI
timer, 7) housekeeping and exit.

Start of ROI

End of ROI

Barrier Executed by VCPUsWait for execution VCPU

Legend:

P
ar

al
le

l t
hr

ea
ds

TROI Tfull

Loop

(a) (b)

Memory

Fig. 2. (a) Parallel programs structure and (b) Target architecture organization

We measure Tfull and Troi in the programs running on
the target using the clock_gettime system call using the real-
time clock CLOCK_REALTIME. Eventually this system call ends up
accessing RISC-V status register instret which, under QEMU’s
hood, reads the x86-64 time stamp counter using rdtsc. On our
host machine the CPUs honor the constant_tsc and nonstop_tsc
flags, which although not perfect make these measurements
reproducible and trustworthy.
Figure 2.(b) gives QEMU’s view of the target architecture. Each

emulated processor can potentially access the whole memory,

with synchronization taking place only on instructions performing
atomic operations and fences.
The measures are done on a R910/0P658H Dell PowerEdge

server. It contains 4 Nehalem-EX 7520 Intel Xeon Processors,
each integrating 4 cores with 2 harts, for a total of 16 cores/32
harts, as detailed in [23] (Figure 1). We are sole users of the
machine during the experiments. Arguably this machine is not
really representative of today’s state of the art in terms of servers.
However, we are doing fair comparisons since all workloads are
run on the same machine, and we believe the overall scalability
trends are representative of what could be observed on more up
to date servers.
Given what we presented above, we have 6 main parameters:

• number of CPUs of the host machine: 16 or 32,
• number nc of vCPUs. We run simulations for 1, 2, 4, 8, 16,
24, 32, 48, 64, 96, and 128 vCPUs,

• number nt of threads that the programs fork during execution:
between 1 and 128 included. Several programs need the number
of threads to be an integral power of 2, which explains what
could be seen as missing values in our plots,

• PARSEC thread affinity. The PARSEC hooks library adds
support for thread affinity. When used, the threads are assigned
to CPUs (to QEMU vCPUs in our case),

• pinning QEMU vCPUs to physical CPUs. When pinning, we
assign the vCPUs the CPUs as detailed in Section III,

• strictly separating the physical CPUs allocation between QEMU
vCPU threads and the rest, presented in Section III too.
In addition, we noted that the Linux timer rate heavily impacts

the boot time of the vCPUs. As in QEMU the timer is synchronized
with the host real-time clock, the slower the boot the higher
the number of timer interrupts. So we opted for a value of
100 Hz, classical for server workloads. Furthermore, we force
the frequency of the physical cores to be 1862 MHz to get
comparable results, and we ensure only the base Linux kernel, an
ssh connection and QEMU are running on the machines while
doing the experimentations. Finally, we measure 10 executions of
each program for a given set of parameters and give as "wall-clock
time" the mean.

V. Performance Results

We report in this section the measured execution times. The
vertical line in the plots marks the number of host processors.
We have chosen to plot wall-clock times rather than speedups
for two reasons. First, a practical reason: several programs have
a similar scaling behavior, and it would have been difficult to
present results that would feature many overlaps. Second, because
it gives an order of magnitude of the programs’ run-times on
QEMU, which is a meaningful information in itself. We have
split the presentation in four parts. First, we run natively the 14
programs on our R910 machine. All programs were run with the
number of threads nt ∈ {1, 2, 4, 8, 16, 24, 32, 48, 64, 96, 128}.
Second, we launch QEMU without vCPUs pinning. We have done
lots of variations around this configuration: with nc = 128, with
nc = nt, i.e. there is one vCPU per thread, thus no inactive
vCPUs, and with or without SMT activated on the R910 machine.
Third, we do the same experiments but with vCPUs pinning and,
additionally, with CPUs isolation. Finally, we analyse our results.



24 8 16 24 32 48 64 96 128
Number of threads nt

100

101

W
al

l-C
lo

ck
 T

im
e 

(s
)

water nsquared
barnes
radix
ocean cp
freqmine
water spatial
swaptions
fft
lu ncb
lu cb
ferret
fludanimate
bodytrack
blackscholes
cholesky

Fig. 3. Full execution time in x86 without thread affinity

24 8 16 24 32 48 64 96 128
Number of threads nt

100

101

W
al

l-C
lo

ck
 T

im
e 

(s
)

water nsquared
barnes
radix
ocean cp
ferret
freqmine
water spatial
swaptions
fft
lu cb
lu ncb
fludanimate
bodytrack
blackscholes
cholesky

Fig. 4. Full execution time in x86 with thread affinity

24 8 16 24 32 48 64 96 128
Number of threads nt

100

101

W
al

l-C
lo

ck
 T

im
e 

(s
)

ferret PARSEC affinity
ferret
bodytrack PARSEC affinity
bodytrack
blackscholes
blackscholes PARSEC affinity
cholesky
cholesky PARSEC affinity

Fig. 5. Comparison full execution time in x86

24 8 16 24 32 48 64 96 128
Number of threads nt

100

101

102

103

W
al

l-C
lo

ck
 T

im
e 

(s
)

lu ncb
lu cb
radix
swaptions
ocean cp
fft
bodytrack
ferret
freqmine
fludanimate
blackscholes
water spatial
cholesky
water nsquared

Fig. 6. Full execution time in QEMU RISC-V nc = nt without
pinning

24 8 16 24 32 48 64 96 128
Number of threads nt

101

102

Ti
m

e 
(s

)

bodytrack FULL
bodytrack ROI
ferret FULL
ferret ROI
blackscholes FULL
blackscholes ROI
cholesky FULL
cholesky ROI

Fig. 7. Comparison full and ROI execution time in QEMU RISC-V
nc = nt without pinning

24 8 16 24 32 48 64 96 128
Number of threads nt

101

102

W
al

l-C
lo

ck
 T

im
e 

(s
)

bodytrack nc = 128
bodytrack nc = nt
ferret nc = nt
ferret nc = 128
blackscholes nc = 128
blackscholes nc = nt
cholesky nc = 128
cholesky nc = nt

Fig. 8. Comparison full execution time in QEMU RISC-V without
pinning with nc = nt and nc = 128



A. x86-64 native execution

Figures 3 and 4 report Tfull without and with the PARSEC
thread affinity. On both figures, Tfull decreases as the number
of threads increases and then stays almost constant beyond 32
threads. Figure 5 compares the curves with and without PARSEC
thread affinity of four programs. The behaviour is the same for
our program subset but for the sake of clarity, we represent only
four of them. Cholesky is the fastest program and its execution
takes less than one second with a number of threads less than
64, so its behaviour is different from the others in the figures.
One can see that the thread affinity does not modify the execution
time a lot. Some programs are less stable than others but we
notice that for the majority of the programs, the execution with
and without the PARSEC thread affinity is more or less the same.
We will not take this parameter into account for the experiments
that follow.

B. QEMU RISC-V without vCPUs pinning

Figure 6 reports Tfull without vCPUs pinning and with nc = nt.
It is visible that the programs benefit very well from the parallel
execution of QEMU. Indeed Tfull decreases constantly when the
number of threads increases up to 32, and increases again as the
number of threads goes beyond 32 (the number of host hardware
CPUs).
Figure 7 shows the comparison between Tfull and Troi . Here

again, for the sake of clarity, we compare only four programs.
According to [21], blackscholes exhibits the better scalability
for the ROI among the PARSEC, as the previous figure confirms.
For the majority of the programs, Tfull is similar to Troi , which
means that the parallel section for our benchmark subset represents
an important part of the global execution time.
Figure 8 compares Tfull with nc = nt and nc = 128. The idea

behind the experiment is to investigate whether inactive vCPUs
in QEMU induce an important overhead or not. For a number
of threads less than 96, we observe that for some programs, the
execution time with nc = 128 is a little bit higher than with
nc = nt. But overall there is no significant difference in wall-
clock time so we can conclude that unused vCPUs in QEMU do
not slow down simulation significantly.
Figure 9 compares Tfull with nc = nt without pinning for the

host machine with SMT enabled, providing 32 harts, or disabled,
providing 16 cores. Figure 9 shows that between 1 and 16 threads,
the four programs are faster when SMT is disabled, with a maximal
gain of 28% on average at 16. Beyond 16 threads, the two curves
SMT enabled/disabled tend to get closer to each other with a
slight gain without SMT.
After all, for all configurations of the 14 programs that we

used, QEMU for RISC-V scales well.

C. QEMU RISC-V with vCPUs pinning

We now plot the same measures with vCPUs pinning as detailed
in Section III. That is to say, assuming vCPUs pinning, Figure 10
reports Tfull for nc = nt, Figure 11 shows the comparison
between Tfull and Troi , Figure 12 compares Tfull with nc = nt

and nc = 128 and Figure 13 compares Tfull with nc = nt with
SMT enabled or disabled. We draw the same conclusions than
previously: the programs benefit from the parallel execution of
QEMU and QEMU scalability is good.

D. Isolating physical CPUs for QEMU vCPU threads
For this test, we have isolated the physical Cores 1-15 (PU

1-15 and 17-31), leaving Core 0 (PU 0 and 16) to the kernel. The
rationale for leaving a whole Core to the kernel is twofold:
• allow some level of multithreading to the kernel processes, in
order to avoid (or at least mitigate) bottlenecks,

• prevent the kernel from competing with QEMU vCPU threads
for execution units.
Having one Core less available prevents tests that require a number
of threads equal to a power of 2 to run: fft, fluidanimate,
ocean_cp, radix, swaptions.
The analysis of the comparison with the non-pinned setup can

be divided in three sections:
• from 1 to 15 threads: virtually no difference for all programs
except for lu_ncb which shows an improvement of 7% for 15
threads compared to non-pinned setup.

• from 60 and upwards: differences in both directions, mostly
regressions.

• for 30 threads: a non-negligible improvement for 4 programs
compared to non-pinned setup in the range of 4 to 16%, with
some regressions.
The comparison between non-pinned, previous pinned and the

isolcpus pinned setups for 32 threads is presented Figure 15. For
the isolcpus pinned setup, we were only able to run the programs
with 30 threads as the Core 0 is dedicated to kernel threads. We
see that for cholesky, freqmine, lu_cb and lu_ncb, the execution
time is smaller when using pinning with isolcpus. For the rest of
the programs, there is either no improvement or a performance
degradation.
Within the limits exposed above and the experimentation

performed, pinning and isolating CPUs for a number of threads
not greater than the harts yields a non-negligible improvement
for some programs.

E. QEMU performance for a large number of vCPUs
A significant difference found between the x86 and emulated

performance is the steep increase in execution time above 32
threads. In order to investigate this phenomenon, we’ve monitored
with the Linux Perf tool [24] the number of cpu cycles spent for a
single execution of lu_ncb’s ROI section, on a recompiled QEMU
with the optimizations disabled. This benchmark was chosen for
the high ratio between the execution time with 128 vCPUs versus
16, and because it runs long enough to isolate the ROI section.
The result showed that the vast majority of the time (approxi-

mately 70% of the profiled cycles) was spent in the Linux futex
syscall, used by QEMU’s global mutex. The code generator’s
interrupt handling function requires a lock on this mutex, causing
resource starvation on setups with a large number of vCPUs.
This also explains why the Linux kernel interrupt frequency was
correlated to the boot time.

F. Is Pinning Helpful?
Figure 14 shows the curves of Tfull for 4 programs without

and with vCPUs pinning when nc = nt. Except for Cholesky
which is not stable when nt is high, the curves without and
with pinning are really close. We made the same observation for
the rest of our programs. Much to our surprise, the execution
times are similar and pinning vCPUs does not seem to have a



24 8 16 24 32 48 64 96 128
Number of threads nt

101

102

W
al

l-C
lo

ck
 T

im
e 

(s
)

bodytrack with SMT
ferret with SMT
bodytrack no SMT
ferret no SMT
blackscholes with SMT
cholesky with SMT
blackscholes no SMT
cholesky no SMT

Fig. 9. Comparison of full execution time in QEMU RISC-V
without pinning with nc = nt for the host machine with and
without SMT

24 8 16 24 32 48 64 96 128
Number of threads nt

100

101

102

103

W
al

l-C
lo

ck
 T

im
e 

(s
)

lu ncb
lu cb
radix
swaptions
ocean cp
fft
bodytrack
ferret
freqmine
fludanimate
blackscholes
water spatial
cholesky
water nsquared

Fig. 10. Full execution time in QEMU RISC-V nc = nt with
pinning

24 8 16 24 32 48 64 96 128
Number of threads nt

101

102

Ti
m

e 
(s

)

bodytrack FULL
bodytrack ROI
ferret FULL
ferret ROI
blackscholes FULL
blackscholes ROI
cholesky FULL
cholesky ROI

Fig. 11. Comparison of full and ROI execution time in QEMU
RISC-V nc = nt with pinning

24 8 16 24 32 48 64 96 128
Number of threads nt

101

102

W
al

l-C
lo

ck
 T

im
e 

(s
)

bodytrack nc = 128
bodytrack nc = nt
ferret nc = nt
ferret nc = 128
blackscholes nc = nt
blackscholes nc = 128
cholesky nc = 128
cholesky nc = nt

Fig. 12. Comparison of full execution time in QEMU RISC-V
with pinning with nc = nt and nc = 128

24 8 16 24 32 48 64 96 128
Number of threads nt

101

102

W
al

l-C
lo

ck
 T

im
e 

(s
)

bodytrack with SMT
ferret with SMT
bodytrack no SMT
ferret no SMT
blackscholes with SMT
cholesky with SMT
blackscholes no SMT
cholesky no SMT

Fig. 13. Comparison of full execution time in QEMU RISC-V
with pinning with nc = nt for the host machine with and without
SMT

24 8 16 24 32 48 64 96 128
Number of threads nt

101

102

W
al

l-C
lo

ck
 T

im
e 

(s
)

bodytrack pinning
bodytrack no pinning
ferret pinning
ferret no pinning
blackscholes pinning
blackscholes no pinning
cholesky no pinning
cholesky pinning

Fig. 14. Comparison of full execution time in QEMU RISC-V
nc = nt without pinning and with pinning



black body chol ferret freq lu cb lu ncb w nsq w spat
0

10

20

30

40

50
W

a
ll-

C
lo

ck
 T

im
e
 (

s)

no pinning

pinning

pinning with isolcpus

Fig. 15. Comparison of the full execution times for 32 threads without pinning,
with pinning and with isolcpus pinning

TABLE I
Perf for QEMU RISC-V without and with vCPUs pinning

CPU migrations L1-dcache-load-misses (106)
nt no pinning pinning no pinning pinning
1 1 014 1 155 79 469 81 340
2 884 799 82 478 97 332
4 2 706 705 86 350 102 624
8 7 930 84 687 95 995 114 283
16 23 692 91 564 114 800 135 526
24 29 404 96 639 60 700 64 071
32 1 965 662 1 345 667 168 547 164 196
48 8 411 897 260 084 96 999 91 701
64 17 141 497 722 055 258 957 254 168
96 62 427 446 689 736 500 362 465 388
128 324 423 980 2 958 824 2 089 470 2 347 334

positive impact on Tfull for our programs. We now conduct an
analysis to understand why pinning does not improve performance
using Linux Perf, which reports statistics based on the processors’
performance counters. In addition, to make sure that what we
observe are not artefacts due to QEMU RISC-V implementation,
we also experimented with the ARM ISA.

1) Perf: As we saw previously, nc = nt and nc = 128 have
the same behaviour so we focus here on the experiments with
nc = nt. We recorded the result of Perf applied to QEMU as
a whole for the 14 programs each run 10 times. Table I shows
the evolution of the number of thread migrations and L1 cache
misses in QEMU with and without vCPUs pinning. Remember
that peripherals and a few other tasks are threads in QEMU, this
explains that migrations exist even though the vCPUs are pinned.

In both cases, the number of migrations increases with the
number of threads nt. When nt is not a power of 2, only 9
programs can be run that is why the values of the metrics can
be lower than others. Overall, the number of CPU migrations is
smaller when using QEMU RISC-V with vCPUs pinning (more
than 100 times smaller with nt = 128) so pinning vCPUs has
an impact on the CPU migrations. When we have nt ≥ 32, the
pinning drastically reduces the number of CPU migrations. The
order of magnitude the L1-dcache-load-misses metric are similar,
which can explain why the execution times remain more or less
the same without and with vCPUs pinning.

2) ARM: To see if the behaviour of the programs with and with-
out pinning is only specific to RISC-V or is generalized to other

architectures, we experimented with the ARM implementation of
QEMU, with nc = nt and without thread affinity. QEMU ARM
with machine virt limits the number of cores so we were able to
run it up to only 96 vCPUs. As in RISC-V, each program is run
10 times. Additionally, we were able to run the program barnes
in ARM unlike in RISC-V. We decided to put it as information
in our QEMU ARM graphs.
Figures 16 and 17 report Tfull on the benchmark subset for

QEMU ARM nc = nt without and with vCPUs pinning. As
with QEMU RISC-V, Tfull decreases constantly as the number
of threads is between 1 and 32 and begins increasing beyond 32
threads.
Figure 18 shows the comparison between QEMU ARM without

and with vCPUs pinning. One can see that there is no big
difference, the behaviour is the same without and with pinning. We
can do the same observation than in RISC-V: pinning vCPUs does
not improve the execution time of our program subset. Table II
presents the results of Perf.

TABLE II
Perf for QEMU ARM without and with vCPUs pinning

CPU migrations L1-dcache-load-misses (106)
nt no pinning pinning no pinning pinning
1 253 300 254 493 263 479
2 630 112 251 762 321 809
4 2 131 76 282 065 371 609
8 8 579 726 329 442 417 983
16 84 640 438 471 450 250 565 866
24 341 051 33 784 495 140 508 461
32 26 675 217 5 189 901 1 046 410 975 366
48 354 436 238 3 027 408 1 165 892 913 236
64 744 645 854 7 170 919 1 911 263 1 589 535
96 919 101 918 4 913 936 1 809 297 1 454 464

When comparing the number of CPU migrations for QEMU
ARM without vs with vCPUs pinning, we again notice that overall,
we have much less migrations with pinning, but as in RISC-V,
this doesn’t lead to significantly lower L1-dcache-load-misses.

3) Analysis: The metrics given by Perf show an improvement
when pinning vCPUs. The number of CPU migrations is reduced
but the number of L1-dcache-load-misses is close without and
with vCPUs pinning. In the end, the execution times of our
program subset without and with pinning remain similar and for
some programs it even appears to be a little slower when pinning
vCPUs. According to [25], CPU-bound applications, such as the
PARSEC ones, do not improve the performance when pinning
virtual machines. The current Linux scheduler attaches a thread to
a CPU as long as it does not degrade performance as estimated at
run time. The CPU affinity is thus based on the actual workloads,
and recent works have shown that pinning benefits only certain
applications [26].

VI. Conclusion
Simulation is often useful during the design, implementation

and even use of processor centric systems. The wide adoption
of the RISC-V ISA and its use in current and future multi and
manycore systems makes the evaluation of QEMU, the most stable
and used parallel processor emulator, a lively topic.
In this work, we have simulated shared-memory target systems

with up to 128 processors on a 16-core/32-thread host, using
Linux SMP and the PARSEC benchmark. As the result of this
comprehensive experimental study, we observed that QEMU



24 8 16 24 32 48 64 96
Number of threads nt

101

102

103

W
a
ll-

C
lo

ck
 T

im
e
 (

s)

water nsquared

lu ncb

lu cb

barnes

swaptions

radix

water spatial

ocean cp

fft

bodytrack

freqmine

ferret

fludanimate

blackscholes

cholesky

Fig. 16. Full execution time in QEMU ARM nc = nt without
pinning

24 8 16 24 32 48 64 96
Number of threads nt

101

102

103

W
a
ll-

C
lo

ck
 T

im
e
 (

s)

water nsquared

lu ncb

lu cb

barnes

swaptions

radix

water spatial

ocean cp

fft

freqmine

bodytrack

ferret

fludanimate

blackscholes

cholesky

Fig. 17. Full execution time in QEMU ARM nc = nt with
pinning

24 8 16 24 32 48 64 96
Number of threads nt

101

102

W
a
ll-

C
lo

ck
 T

im
e
 (

s)

bodytrack no pinning

bodytrack pinning

ferret no pinning

ferret pinning

blackscholes no pinning

blackscholes pinning

cholesky pinning

cholesky no pinning

Fig. 18. Comparison of full execution time in QEMU ARM

scalability is rather good, which makes it suitable for supporting
the software development of, in particular, new RISC-V based
platforms. We added in QEMU the ability to pin vCPUs to host
processors, and much to our disappointment, forcing the affinity
did not improve performances.

Acknowledgment
We would like to thank the partners of the ANR Rakes project

and acknowledge the financial support of the French Agence
Nationale de la Recherche (ANR-18-CE25-0017, https://anr.fr/
Project-ANR-18-CE25-0017).

References
[1] A. Waterman et al. The RISC-V Instruction Set Manual, Volume I: Base

User-Level ISA. Tech. rep. UC Berkeley, May 2011.
[2] S. Davidson et al. “The Celerity open-source 511-core RISC-V tiered

accelerator fabric: Fast architectures and design methodologies for fast
chips”. In: IEEE Micro 38.2 (2018), pp. 30–41.

[3] A. Kurth et al. “HERO: An open-source research platform for HW/SW
exploration of heterogeneous manycore systems”. In: Proceedings of the
2nd Workshop on AutotuniNg and aDaptivity AppRoaches for Energy
efficient HPC Systems. 2018, pp. 1–6.

[4] E. Flamand et al. “GAP-8: A RISC-V SoC for AI at the Edge of the
IoT”. In: 2018 IEEE 29th International Conference on Application-specific
Systems, Architectures and Processors (ASAP). IEEE. 2018, pp. 1–4.

[5] H. Shen, M.-M. Hamayun, and F. Pétrot. “Native simulation of MPSoC
using hardware-assisted virtualization”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 31.7 (2012), pp. 1074–
1087.

[6] L. Díaz et al. “VIPPE, parallel simulation and performance analysis of
multi-core embedded systems on multi-core platforms”. In: Design of
Circuits and Integrated Systems. 2014, pp. 1–7.

[7] A. Nicolas and P. Sanchez. “Parallel native-simulation for multi-processing
embedded systems”. In: 2015 Euromicro Conference on Digital System
Design. 2015, pp. 543–546.

[8] F. Pétrot et al. “On MPSoC Software Execution at the Transaction Level”.
In: IEEE Design & Test of Computers 28.3 (2010), pp. 2–11.

[9] F. Bellard. “QEMU, a fast and portable dynamic translator.” In: USENIX
Annual Technical Conference, FREENIX Track. 2005, pp. 41–46.

[10] T. Spink, H. Wagstaff, and B. Franke. “A Retargetable System-Level
DBT Hypervisor”. In: 2019 USENIX Annual Technical Conference. 2019,
pp. 505–520.

[11] C. Bienia et al. “The PARSEC benchmark suite: Characterization and
architectural implications”. In: Proceedings of the 17th international
conference on Parallel architectures and compilation techniques. 2008,
pp. 72–81.

[12] Z. Wang et al. “COREMU: a scalable and portable parallel full-system
emulator”. In: Proceedings of the 16th ACM symposium on Principles and
practice of parallel programming. 2011, pp. 213–222.

[13] J.-H. Ding et al. “PQEMU: A parallel system emulator based on QEMU”.
In: 1st International QEMU Users’ Forum. 2011, pp. 35–38.

[14] M. Kristien et al. “Fast and correct load-link/store-conditional instruction
handling in DBT systems”. In: CASES’20: Proceedings of the International
Conference on Compilers, Architectures and Synthesis for Embedded
Systems. 2020.

[15] G. Delbergue et al. “QBox: an industrial solution for virtual platform
simulation using QEMU and SystemC TLM-2.0”. In: 8th European
Congress on Embedded Real Time Software and Systems. 2016.

[16] A. Rigo, A. Spyridakis, and D. Raho. “Atomic instruction translation
towards a multi-threaded QEMU”. In: 30th European Conference on
Modelling and Simulation. 2016, pp. 1–9.

[17] E. G. Cota et al. “Cross-ISA machine emulation for multicores”. In: 2017
IEEE/ACM International Symposium on Code Generation and Optimization.
2017, pp. 210–220.

[18] A. Bennée. Multi-thread tiny code generator. https://github.com/qemu/
qemu/blob/master/docs/devel/multi-thread-tcg.rst. 2020.

[19] F. Broquedis et al. “hwloc: A generic framework for managing hardware
affinities in HPC applications”. In: 18th Euromicro Conference on Parallel,
Distributed and Network-based Processing. IEEE. 2010, pp. 180–186.

[20] D. M. Tullsen, S. J. Eggers, and H. M. Levy. “Simultaneous multithreading:
Maximizing on-chip parallelism”. In: Proceedings of the 22nd annual
international Symposium on Computer Architecture. 1995, pp. 392–403.

[21] G. Southern and J. Renau. “Deconstructing PARSEC scalability”. In: Proc.
of the Annual Workshop on Duplicating, Deconstructing, and Debunking.
2015.

[22] G. Amdahl. “Validity of the single processor approach to achieving large
scale computing capabilities”. In: (Apr. 1967), pp. 483–485.

[23] P. Gepner et al. “Evaluating new architectural features of the Intel (r) Xeon
(r) 7500 Processor for hpc workloads”. In: Computer Science 12 (2011),
pp. 5–17.

[24] A. C. De Melo. “The new linux “perf” tools”. In: Linux Kongress. Vol. 18.
http://vger.kernel.org/~acme/perf/lk2010-perf-acme.pdf. 2010.

[25] D. Ghatrehsamani et al. “The Art of CPU-Pinning: Evaluating and Im-
proving the Performance of Virtualization and Containerization Platforms”.
In: 49th International Conference on Parallel Processing. 2020, pp. 1–11.

[26] A. Podzimek et al. “Analyzing the impact of cpu pinning and partial cpu
loads on performance and energy efficiency”. In: 2015 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing. IEEE.
2015, pp. 1–10.

https://anr.fr/Project-ANR-18-CE25-0017
https://anr.fr/Project-ANR-18-CE25-0017
https://github.com/qemu/qemu/blob/master/docs/devel/multi-thread-tcg.rst
https://github.com/qemu/qemu/blob/master/docs/devel/multi-thread-tcg.rst
http://vger.kernel.org/~acme/perf/lk2010-perf-acme.pdf

