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Abstract

This paper deals with the numerical modelling of the pul-

sating heat pipe (PHP) and is based on the film evapo-

ration/condensation model recently applied to the single

bubble PHP (Das et al., 2010). The described numerical

code can treat the PHP of arbitrary number of bubbles and

branches. Several phenomena that occur inside the PHP are

taken into account: coalescence of liquid plugs, film junction

or rupture, etc. The model reproduces some of the exper-

imentally observed regimes of functioning of the PHP like

chaotic or intermittent oscillations of large amplitude. Some

results on the PHP heat transfer are discussed.
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1 Introduction

The pulsating (or oscillating) heat pipe (PHP) is a long

capillary tube bent into many branches and partially filled

with a two-phase, usually single component, working fluid

[1]. The tube is simple, a wick structure is not required. The

fluid spontaneously forms multiple vapor bubbles separated

by liquid plugs inside the tube. Evaporation of liquid in the

hot (evaporator) sections and subsequent condensation in the

cold (condenser) sections creates oscillations of the bubble-

plug structure. These oscillations are very important because

they lead to a substantial increase of the heat transfer rate in

comparison with other types of heat pipes [2]. In addition to

the latent heat transfer characteristic for them, the sensible

heat transfer is important in PHP. While sweeping a section

belonging to evaporator, a liquid plug accumulates the heat,

which is then transferred to the condenser section when the

plug penetrates there.

Because of their simplicity and high performance, PHPs

are often considered as highly promising. Their industrial

application is however limited because their functioning is

non-stationary and thus difficult to be controlled. During the

last decade, researchers have extensively studied PHPs [3].

Tong et al. [4], Miyazki and Arikawa [5], Khandekar et

al. [6], Xu et al. [7], Gi et al. [8] and Inoue et al. [9] have

carried out flow visualization studies with several working

fluids. These experiments confirmed the existence of self-

sustained thermally driven oscillations in PHPs. Several ex-

perimental groups [10–14] performed experiments with dif-

ferent tube diameters, configurations, orientations and filling

ratios and studied the thermal performance of PHPs in dif-

ferent conditions. However, the functioning of PHPs is not

completely understood. A complicated interplay of different

hydrodynamic and phase-exchange phenomena needs to be

accounted for. The experimental studies of the background

physical phenomena that cause the instability or are respon-

sible for the PHP behavior are only a few [14, 15].

There are several modeling approaches available in the

literature. Shafii et al. [16] initiated the modeling approaches

for multi-branch PHPs. The evaporation-condensation mass

exchange was accounted for with the temperature difference

terms ∝ (Twall −Ti) where Twall was either Te or Tc depending

on the bubble location. The problem was solved numerically

with the explicit Euler scheme. Periodical (nearly sinusoidal)

oscillations appeared after a transient. Their amplitude was

small: the displacement amplitude did not exceed the evapo-

rator size. It was concluded that the heat is transferred mainly

via the sensible heat transfer; the latent heat transfer was an

order of value smaller. The same model has been used later

by another team [17].

It is well known from the analysis of the conventional

heat pipes that in reality, most of evaporation in the evapo-

rator occurs through the liquid films that might cover only

a part of the heated surface. Dobson [18, 19] introduced a

lumped meniscus model where the films are considered to

be of constant thickness δ f but of varying length. Apart

from the film introduction, the model was similar to [16].

Single bubble PHP with an open end was considered. The

oscillations were unstable and consisted of a nearly period-

ical pattern which began with a strong displacement during

which the meniscus penetrated into the evaporator. This ini-

tiated high frequency declining to zero oscillations around

an average position situated in the condenser. Das et al. [15]

attempted to reproduce the results of Dobson with his model

for the same parameters. They obtained only small ampli-

tude periodical oscillations during which the meniscus never

penetrated into the evaporator. They attributed the disagree-

ment to the poor stability of the numerical algorithm (explicit

Euler) used by Dobson. The 4th order Runge-Kutta method,



well known to be stable, was used in [15]. A rigorous an-

alytic analysis of a simplified version of the model, where

the evaporation-condensation dynamics is modeled with the

(Twall − Ti) term, has been also carried out by Das et al.

An analytic expression giving the condition, under which

the self-sustained oscillations appear, was obtained. It was

shown that such a model leads necessarily to small ampli-

tude oscillations.

A 2D model of the single-bubble PHP was considered

by Zhang and Faghri [20]. A conceptual difference with the

previous approaches concerned the vapor equation of state.

Instead of the ideal gas model, the vapor was considered to

be at saturation temperature Tsat corresponding to its pres-

sure P. Small amplitude periodic nearly harmonic oscilla-

tions were obtained. Holley and Faghri [21] applied the same

assumption to the PHP with spatially varying diameter.

Das et al. introduced the film evaporation-condensation

model. The film is introduced similarly to [18,19]. The vapor

mass exchange is assumed to be limited by the heat conduc-

tion in the film like in the work [20]. This leads to the mass

exchange rate λl [Twall −Tsat(P)]/(δ f hlv) where Tsat(P) is the

gas-liquid interface temperature. This approach is different

from all previous approaches because a strong temperature

gradient is assumed to exist in the vapor so that the temper-

ature T of its bulk is allowed to be different from Tsat(P).
The validity of this assumption is checked in [15] a pos-

teriori. The simulations have shown that most of the time

T > Tsat(P). The same form of the mass exchange term

has been used recently by Senjaya et al. [22]. They how-

ever did not use the variable films. The film evaporation-

condensation model was validated against the single branch

experiment [15]. It reproduces oscillations the amplitude of

which might be larger than the size of evaporator. The pur-

pose of the present article is to apply it to the multi-bubble

PHP. The closed loop PHP will be considered. The model is

however can be applied also to the unlooped PHP.

2 Problem statement
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Fig. 1. (Color online) (a) Sketch of the closed loop PHP with the

default gravity direction. Evaporator is to the left. (b,c) Topological

transformations of the tube. (b) Unlooping. (c) Unbending and pro-

jection to the x axis. The splitting of the x axis to branches is shown.

Like in [16, 17], the PHP meandering tube is projected

to a straight axis x so that it consists of periodic sequence

of different domains corresponding to the PHP sections (Fig.

1). One PHP spatial “period” of the length Lp = 2La +Lc +
Le is assumed to contain the sections in the following order:

evaporator, adiabatic, condenser, adiabatic. The point x = 0

is assumed to coincide with the beginning of an evaporator.

The PHP branch is a half of a period (Lb = 0.5Lp) beginning

in the middle of a condenser or an evaporator. Lt = NpLp is

the total PHP length. Each bubble is identified by the index i.

The neighboring from the right side liquid plug is denoted by

the same index. The total number M of bubbles may change

in time.

Unlike [16], the axis and the periodical pattern of sec-

tions on it are continued to infinity in both directions. At

t = 0, the bubbles are positioned at the axis and may move at

t > 0 along the infinite axis x as far as needed. This means

that the x value itself does not have any significance; only the

relative positions are meaningful; they are determined with

the remainder operator defined as y mod z = y− z int(y/z)≥
0 where int(z) means the integer part of z, i.e. the largest

integer smaller than z. E. g. x belongs to evaporator if

x mod Lp ≤ Le. Since the PHP loop is closed, each point x is

equivalent to the point Lt +x. Such an approach is convenient

because it simplifies the management of any kind of bubble

motion, in particular their unidirectional circulation. Within

such a description, the coordinate X l
i of the left meniscus of

the bubble i is always smaller than that of its right meniscus

X r
i and the bubble order does not change during their motion.

Note that the coordinate X r
M of the left end of the last liquid

plug is larger than that of its right end X l
1.

The constant temperatures Te and Tc are imposed at the

inner walls of the evaporator and condenser.

2.1 Film dynamics in evaporators
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Fig. 2. (Color online) Vapor bubble i that extends over Ne,i evapo-

rators and the liquid films inside it.

According to the film evaporation/condensation model

[15], the film length may vary because of two reasons:

(i) evaporation or condensation and (ii) film deposition

(Landau-Levich phenomenon) or film “eating up” during re-

ceding or advancing of the liquid meniscus, respectively. We

generalize this model here to the case of multiple branches.

The liquid film is assumed to always cover the inner walls



of the tube (i.e. to be continuous) in the condenser and adi-

abatic sections when the whole bubbles or their parts are lo-

cated inside them. The film may be partially or completely

evaporated in the evaporator. The films are assumed to have

a homogeneous thickness δ f in all the sections.

Let us consider the i-th bubble that may extend over sev-

eral PHP bends or, equivalently, evaporators (Fig. 2). A

number Ne,i of pairs of films per bubble (left+right each) co-

incides with the number int(X r
i /Lp)− int[(X l

i − Le)/Lp] of

evaporators to which at least a part of the bubble belongs if

the latter quantity is nonzero. In the opposite case, Ne,i = 1 to

describe the continuous film in the adiabatic and condenser

sections. The evaporators are counted left-to-right by the in-

dex k = 1 . . .Ne,i. The (non-negative) lengths of the left and

right films of the bubble in the k-th evaporator are denoted

L
l,k
f ,i and L

r,k
f ,i, respectively. When the film in the evaporator is

not continuous, their dynamics is described by the equations

(cf. Eq. (26) of [15])

L̇
l,k
f ,i =



















0 if L
l,k
f ,i = 0, Ẋ l

i > 0 and

X l
i ∈ k-th evaporator,

−ṁ
l,k
f e,i/(ρlπdδ f ) if X l

i /∈ k-th evaporator,

−ṁ
l,k
f e,i/(ρlπdδ f )− Ẋ l

i otherwise,

(1)

L̇
r,k
f ,i =



















0 if L
r,k
f ,i = 0, Ẋ r

i < 0 and

X r
i ∈ k-th evaporator,

−ṁ
r,k
f e,i/(ρlπdδ f ) if X r

i /∈ k-th evaporator,

−ṁ
r,k
f e,i/(ρlπdδ f )+ Ẋ r

i otherwise,

(2)

where dot means the time derivative. Evidently, the condi-

tion “X s
i ∈ k-th evaporator” may be satisfied only for k = 1 if

s = l and for k = Ne,i if s = r. The mass evaporation rate at

k-th evaporator ṁ
s,k
f e,i from the film s ∈ {r, l} is defined by the

interfacial heat balance equation

hlvṁ
s,k
f e,i =UπdL

s,k
f ,i[Te −Tsat(Pi)]. (3)

As discussed in the Introduction, the heat transfer coefficient

is defined by the expression

U = γλl/δ f , (4)

where γ . 1 is a coefficient accounting for the spatial varia-

tion of the film thickness that exists in reality. The meaning

of Eqs. (1, 2) is simple: the film length may decrease due

to evaporation or due to the meniscus advancing in the direc-

tion of the film edge (“eating up” of the liquid film). The film

length increases when the film is left during the receding mo-

tion of the meniscus (Landau-Levich film deposition). It is

assumed that the triple contact line (i.e. film edge) is pinned

and does not recede in the absence of evaporation.

The coordinates of the left and right film edges in each

of Ne,i evaporators (X
l,k
f ,i and X

r,k
f ,i , respectively) may coincide

with one of the ends of the evaporator or with a position of a

meniscus if the corresponding film length is zero. Provided

X l
i ,X

r
i ,L

l,k
f ,i,L

r,k
f ,i are known, X

l,k
f ,i and X

r,k
f ,i can be determined

from the following reasoning.

When no part of the bubble situates in evaporators,

Ne,i = 1 and the film is continuous as mentioned above. This

is equivalent to a junction of the left and right films at a point

(denoted X1
j ) that needs to be chosen. This choice is of im-

portance because in the simulation it defines the point of the

film rupture that may occur. Therefore X1
j =X

l,1
f ,i =X

r,1
f ,i is as-

sumed to coincide with the left or right meniscus (i.e with X l
i

or X r
i ), correspondingly to the direction of the bubble motion

so that the evolution of the film edges exhibits no discon-

tinuity when the Landau-Levich film begins to be deposed

according to (1, 2).

When at least a part of the bubble situates in evaporators,

one applies the following expressions to each of them (k =
1 . . .Ne,i):

X
l,k
f ,i =

{

X l
i if X l

i ∈ k-th evaporator

X
l,k
e,i otherwise

}

+L
l,k
f ,i, (5)

X
r,k
f ,i =

{

X r
i if X r

i ∈ k-th evaporator

X
r,k
e,i otherwise

}

−L
r,k
f ,i. (6)

Here

X
l,k
e,i = Lp

[

int

(

X l
i −Le

Lp

)

+ k

]

(7)

is the left edge of the k-th evaporator and X
r,k
e,i = X

l,k
e,i +Le is

its right edge.

At some occasion, Eqs. (5, 6) may result in X
l,k
f ,i ≥ X

r,k
f ,i

(i.e in a small film overlap allowed in the numerical calcu-

lation where the time steps are discrete). This signifies an

appearance of a continuous liquid film. The point X k
j (where

the film will disrupt should the film rupture occur) needs to

be defined. It is assumed to coincide with the point of film

junction where the film is thinner there and likely to be evap-

orated quicker than elsewhere. Once X k
j is defined, X

r,k
f ,i and

X
l,k
f ,i are reassigned to X k

j . Next, L
r,k
f ,i and L

l,k
f ,i are recalculated

with Eqs. (5, 6).

2.2 Remaining vapor bubble governing equations

Condensation occurs to the film that surrounds a bubble

portion Lc,i located in the condenser. Similarly to the evapo-

ration description, the film condensation rate m f c,i is defined

by the expression

hlvṁ f c,i =UπdLc,i[Tsat(Pi)−Tc]. (8)

Although much weaker than at the film interface, the

mass exchange occurs at the remaining meniscus part (its

portion of the size Lm ≪ d adjacent to the tube wall) and

exists even if the film is evaporated completely. The heat



balance on the meniscus depends on whether the meniscus

s ∈ {r, l} situates inside the evaporator or the condenser,

hlvṁs
me,i = UmπdLs

me,i[Te −Tsat(Pi)], (9)

hlvṁs
mc,i = UmπdLs

mc,i[Tsat(Pi)−Tc], (10)

where Um <U and

Ls
me,i =

{

Lm if X s
i ∈ evaporator,

0 otherwise,
(11)

Ls
mc,i =

{

Lm if X s
i ∈ condenser,

0 otherwise,
. (12)

(13)

The total bubble mass change rate ṁi can be expressed as

ṁi = ∑
s=r,l

[

Ne,i

∑
k=1

ṁ
s,k
f e,i + ṁs

me,i − ṁs
mc,i

]

− ṁ f c,i. (14)

The energy equation of the i-th bubble is [16, 23]

micvvṪi = ṁiRvTi +Qsens
i −PiS(Ẋ

r
i − Ẋ l

i ), (15)

where the sensible heat exchange with the dry evaporator

walls is described by the expressions

Qsens
i =UvπdLsens

i (Te −Ti), (16)

where Uv = 2λv/d (it is assumed that the boundary layer in

the vapor is the tube radius) and

Lsens
i =

Ne,i

∑
k=1

(X r,k
f ,i −X

l,k
f ,i ). (17)

The vapor equation of state is approximated with the ideal

gas equation

Pi =
miRvTi

S(X r
i −X l

i )
. (18)

Note that the ideal gas assumption is used [16, 23] while de-

riving (15).

2.3 Liquid plug governing equations

The i-th liquid plug, i.e. that to the right of the i-th bub-

ble, has the mass

ml,i = ρlS(X
l
i+1 −X r

i ), (19)

where the index i+ 1 denotes the bubble to the right of the

i-th bubble. The velocity Vi of the plug’s center of mass is

Vi = 0.5(Ẋ l
i+1 + Ẋ r

i ). (20)

It obeys the momentum equation

d(Viml,i)

dt
= (Pi −Pi+1)S−Fi sign(Vi)+Gi, (21)

where Gi is the gravity term discussed below. The viscous

friction force Fi is defined by the expression corresponding

to the single phase friction [18]

Fi =
1

2
Kdρlπ(X

l
i+1 −X r

i )V
2
i (22)

K =







16 Re < 1

16/Re 1 ≤ Re < 1180

0.078Re−0.25 Re ≥ 1180

,

Re = |Vi|d/ν. (23)

As in the previous modelling approaches, an additional con-

tribution of the bends to Fi is neglected.

The liquid is assumed to be incompressible. This im-

plies that the liquid plug volume may vary because of only

two reasons: (i) phase change at its menisci and (ii) liquid

film deposition or, on the contrary, “eating up”. The velocity

of the plug ends relative to its center of mass is thus non-zero

and is defined by the change in the plug volume. This condi-

tion leads to the following condition of liquid mass balance

in the plug:

ṁl,i = ṁl
me,i+1 − ṁl

mc,i+1 + ṁr
me,i − ṁr

mc,i +πdδ f ρl
[{

0 if X l
i+1 ∈ evaporator, Ẋ l

i+1 > 0, and L
l,1
f ,i+1 = 0,

Ẋ l
i+1 otherwise.

}

−
{

0 if X r
i ∈ evaporator, Ẋ r

i < 0 and L
r,Ne,i

f ,i = 0,

Ẋ r
i otherwise,

}]

(24)

The upper options in both braces correspond to the menis-

cus advancement over the dry evaporator, and the lower op-

tions, to the film deposition or “eating up”. The equations for

Ẋ l
i , Ẋ

r
i need to be obtained from (19, 20, 24). It is evident that

Ẋ l
i+1 ≈ Ẋ r

i ≈Vi within quite small terms of the order δ f /d and

ρv/ρl that describe the liquid volume variation. For this rea-

son, Vi can be used in the conditional clauses of (24) instead

of Ẋ l
i+1, Ẋ

r
i . The set of equations (19, 20, 24) becomes linear

and can be solved straightforwardly for Ẋ l
i , Ẋ

r
i . We do not

however write their explicit expressions here because they

are cumbersome.

The liquid volume variation was neglected in previous

works. It is introduced here to provide the conservation of

the total fluid mass in the PHP. A small error that arises when

the conservation is violated accumulates and may become

important at large simulation times.



2.3.1 Gravity term

The gravity sign is constant along each PHP branch but

alters between branches, see Fig. 1c. The default gravity di-

rection coincides with the x axis direction within the branch

number n = 0 that starts at x = 0.5Le. The gravity sign corre-

sponding to the branch number n is thus (−1)n. The branch

number at a given x is

nb(x) = int

(

x− 0.5Le

Lb

)

. (25)

The branch numbers of the liquid plug left and right ends are

therefore nl
i = nb(X

r
i ) and nr

i = nb(X
l
i+1), respectively. The

gravity force reads

Gi = ρlSg

{

(−1)nr
i

[(

X l
i+1 −

1

2
Le

)

mod Lb −
1

2
Lb

]

−

(−1)nl
i

[(

X r
i −

1

2
Le

)

mod Lb −
1

2
Lb

]

}

. (26)

It is evident that for nl
i = nr

i (i.e. when the entire plug belongs

to one branch),

Gi = ml,ig(−1)nl
i . (27)

The inclination angle θ of the PHP with respect to the vertical

direction can be simulated by replacing g by gsinθ. θ = π
can be used to describe the opposite (condenser on the top)

PHP position.

2.3.2 Heat diffusion in liquid

The temperature distribution in the liquid plug Tl,i =
Tl,i(x, t) where x ∈ (X r

i ,X
l
i+1) is governed by the heat dif-

fusion equation [16],

∂Tl,i

∂t
= D

∂2Tl,i

∂x2
+D

4Nu

d2
(Twall −Tl,i). (28)

The last term accounts for the heat transfer with the tube wall

[16]. The Nusselt number depends on the plug velocity and

length. The expressions for Nu for different ranges of Re

are taken from [24]. Twall is Te or Tc depending on where

x situates. The last term is absent at all if x belongs to the

adiabatic section.

The boundary conditions for eq. (28) are given at the

menisci:

Tl,i(X
r
i ) = Tsat(Pi), (29)

Tl,i(X
l
i+1) = Tsat(Pi+1). (30)

Note that all previous equations of the model are independent

of Tl because Te and Tc are imposed and independent of the

heat load. Eq. (28) can thus be solved after the calculation

of the PHP dynamics. In our numerical code it is however

solved together with all other equations so that the boundary

conditions where Te and Tc depend on the heat load could be

easily implemented in the future.

2.4 Heat exchange rates

The instantaneous sensible heat power taken by the i-th

bubble-plug pair from the evaporator is calculated with the

following expression:

Qsens
e,i = 2πλl

∫
Nu(Te −Tl,i)dx+Qsens

i , (31)

where the integration is performed over the portion of the

liquid plug located in the evaporator. The heat power given

to the condenser is calculated accordingly,

Qsens
c,i = 2πλl

∫
Nu(Tl,i −Tc)dx, (32)

where the integration is performed over the portion of the

liquid plug located in the condenser. The instantaneous la-

tent heat power taken by the i-th bubble-plug pair from the

evaporator is

Qlat
e,i = hlv ∑

s=r,l

Ne,i

∑
k=1

ṁ
s,k
f e,i. (33)

That given to condenser is

Qlat
c,i = hlvṁ f c,i. (34)

The instantaneous heat power is a sum of the corre-

sponding terms over all bubbles of the PHP,

Qk
s =

M

∑
i

Qk
s,i, (35)

where k ∈ {sens, lat} and s ∈ {e,c}. The total heat power

reads

Qs = Qlat
s +Qsens

s . (36)

In the stationary regime, the condition

〈Qc〉= 〈Qe〉, (37)

where the angle brackets mean time average should be valid

for long enough averaging times: the amount of heat taken

from the evaporator should be equal to that given to the con-

denser.



2.5 Bubble-plug events

There are several kinds of events that can change the

bubble-plug morphology. They cause a change of the equa-

tions to be solved on the next time step. One of such events,

the film junction, was described in sec. 2.1. It changed equa-

tions but conserved their number. In this section, we rather

discuss the events that change the number of both differential

equations and unknowns.

First, it is the vapor bubble recondensation. It occurs

when a moving liquid plug overtakes another plug. The va-

por pressure grows and fast condensation occurs. A bubble

located between two plugs completely disappears and a new

long plug forms. Its mass is a sum of the masses of the par-

ent plugs and its velocity is determined from the momentum

conservation. On the next time step, the number of bubble-

plug pairs drops by one and the number of equations reduces

accordingly.

Another event met very often is a change in the number

of liquid films. Such an event occurs when a bubble pen-

etrates into extra evaporator or, on the contrary, withdraws

from it. Ne,i number then changes which means that the num-

ber of differential equations (1,2) changes too.

Other yet non implemented events include the vapor

bubble creation by boiling or the complete liquid plug evap-

oration.

3 Numerical implementation

The spatial integration of eq. (28) is performed at each

time step and needs to be discussed first.

3.1 Spatial integration of the heat diffusion equation

The i-th plug is divided to Nl,i + 2 finite elements ∆xk
i .

All (except of two ending) elements are of the same length;

two ending elements are half-length. The element length

varies slightly from plug to plug to keep the total number

of elements integer. The node points X k
i are in the cen-

ters of the internal Nl,i elements. The node temperatures

are denoted T k
l,i. The temperature values at X0

i = X r
i and

X
Nl,i+1

i = X l
i+1 are given by the boundary conditions (29), so

that there are Nl,i unknown temperatures per plug. The finite

volume method [25] is used and eq. (28) is integrated over

each element. This results in the following discrete analog

of equation (28) written for k = 1 . . .Nl,i,

∂Tl,i

∂t

∣

∣

∣

∣

k

=
2D

∆xk
i

(

T k+1
l,i −T k

l,i

∆xk+1
i +∆xk

i

+
T k

l,i −T k−1
l,i

∆xk
i +∆xk−1

i

)

+D
4Nu

d2

(

Twall −T k
l,i

)

. (38)

3.2 Data structure

The code is object oriented and is written with C++.

All variables are dynamically allocated. The code can thus

deal with a PHP with arbitrary PHP geometry and time vary-

ing number of plugs, bubbles, and liquid films. The code

makes use of the Microsoft Foundation Class (MFC) library

to take advantage of the serialization (saving and restoring

to/from data files) of the objects of the unknown in advance

size. Each vapor bubble or liquid plug is implemented as a

C++ object and encapsulates a number of scalar and vector

“member” variables proper to each of them. The i-th bub-

ble scalar members include Ti,mi,Pi,X
l
i ,X

r
i ,Ne,i,Q

lat
c,i ,Q

lat
e,i , a

unique bubble identification number, and a pointer to the

neighboring (from the right) liquid plug. The pointer is sim-

ply a computer memory address where the target object is

located. The pointer may have null value to indicate the plug

absence, which is useful to simulate the last bubble in the

unlooped PHP. In the present article, only the closed loop

PHP is considered so that each bubble has a plug. The vec-

tor member variables of the bubble include the liquid film

lengths and edge coordinates. They are allocated dynami-

cally and so that their length Ne,i may vary. The scalar plug

variables include Vi,ml,i,Nl,i,Q
sens
c,i ,Qsens

e,i , and a pointer to its

(left neighbor) bubble. The vector members of a plug are
~∆xi, ~Xi, and ~Tl,i.

����������	

i+1 

����������	

i 

����������	

i-1 

Fig. 3. Computer representation of the instantaneous state of the

PHP as a doubly connected list. Each its node (an oval) contains the

state of a bubble-plug pair and two pointers (circles) to the previous

and to the next nodes.

In the remaining part of this section, the term PHP is

used to denote the instantaneous state of all its bubbles and

plugs. PHP is implemented as a doubly connected list (Fig.

3). The doubly connected list is an array, the i-th node of

which contains the data (of a bubble and its plug) and the

pointers to both previous and next nodes. Note that in this

case i is an identifier of the node rather than its sequen-

tial number. The previous and the next nodes are denoted

as i − 1 and i+ 1 respectively just for the sake of illustra-

tion. The double connectivity allows fast access to these vari-

ables. Unlike the conventional (e.g. FORTRAN) arrays, such

data structures can contain objects of different and variable

length. This is convenient for several reasons. One of them

is that the objects corresponding to plugs may contain the

vectors of different and time-variable sizes Nl,i. The lists are

convenient for another reason. Unlike the standard arrays,

the list nodes are not necessarily written continuously into

the computer memory. Therefore, it is very easy to suppress

or, on the contrary, add a node somewhere in the middle of

the PHP (which corresponds to the bubble recondensation or

nucleation, respectively) without modifying the whole PHP

in the computer memory. It is easy to understand from Fig.

3. Consider the suppression of the i-th node. It consists in

redirection of the upper in Fig. 3 pointer of the node i+ 1 to

the node i− 1 and of the lower pointer of the node i− 1 to

the node i+1. The variables of the plug i−1 are changed to

account for the plug coalescence as described in sec. 2.5 and



their numerical meshes used for liquid temperature calcula-

tion are merged. The i-th node can then be deallocated (i.e.

the memory occupied by it is liberated). These changes do

not concern other nodes so they are not modified at all. The

standard array implementation would require the change of

indices and a complete rewriting of the whole PHP into the

computer memory, which would slow down the execution

because the corresponding amount of information is quite

large. For the closed loop PHP, the list is looped, i.e. a

pointer belonging to the last node points to the first node and

vice-versa.

The PHP states at different time moments are recorded

as another list. As previously, the standard array cannot be

used because the memory amount required for each PHP

state may be different and is unknown in advance. This “PHP

list” needs to be only simply connected, which means that

each node contains the PHP and a (single) pointer to the next

node. This pointer allows the sequential access to the PHP

states, e.g. for plotting. The PHP list may also be saved to a

data file of a specific .php format that can than be read by

the postprocessing utility described below.

3.3 General algorithm

 

PHP initialization 

t→t+∆t 

Numerical solution of the 
differential equations; 
various events are 
detected 

If detected, process the 
event (plug coalescence, 
film creation/destruction, 

etc.) 

PHP saving if requested 

Fig. 4. General scheme of the C++ program.

The set of ordinary differential equations consists of eqs.

(1, 2, 14, 15, 21, 24, 20, 38), which totals to ∑M
i (2Ne,i +

Nl,i + 5) equations. Unlike previous works [16, 17, 22],

they are written in the conventional differential form so that

their numerical integration can be performed with any nu-

merical method (and not only explicit Euler method used

in [16, 17, 22]). The 4th order Runge-Kutta method (Fig.

4) is used here. It is renowned for its numerical stability and

is thus better than the explicit method that can cause oscil-

lations of numerical origin. The evaluation of the right-hand

sides of the equations may lead to a detection of an event that

changes the number of equations (see sec. 2.5). If detected,

the event is processed as discussed in sec. 3.2. The number

of equations and the equations themselves are updated and

the time step is recalculated.

3.4 Data postprocessing

The number of PHP variables is large and changes in

time. The data analysis is impossible without clear under-

standing of the position of each meniscus and film edge with

respect to the PHP sections at each time moment. In the

absence of a suitable commercial software, a specific data

postprocessing “PHP Viewer” utility had to be developed.

PHP Viewer possesses a conventional Microsoft Windows

graphic user interface (Fig. 5). The name of the .php file

is displayed close to the application name at the top of the

screen above the menu. Some auxiliary information (the se-

quential number of the PHP record and the corresponding

time) is shown in the status bar at the bottom of the screen.

The evaporator (left) and condenser (right) locations are rep-

resented with rectangles, the width of which is to scale with

respect to the PHP (see Fig. 1). The condenser and evap-

orator temperatures are displayed above them. The time of

the current record is shown in between. The topology of the

PHP bends is shown schematically with black connectors.

The tube diameter is not to scale. The liquid temperature in

the plugs is represented with a color. There are menu items

usual for any video player. They allow controlling the ani-

mation speed and the navigation inside the data file (stepping

record by record, jumping to a record with a given number,

etc.).

Tl scale bar 

vapor bubble 

liquid films inside bubbles 

Fig. 5. (Color online) The screen of the PHP Viewer version 1.6 in

the liquid temperature visualization mode. The liquid films partially

cover the internal tube walls inside the vapor bubbles. The tempera-

ture is indicated with coloring of the liquid plugs.

4 Results and discussion

The simulation runs were performed for the numerical

parameters shown in Tab. 1. The initial temperature of the

fluid was chosen to be homogeneous and equal to 0.5(Te +
Tc). The equidistant bubbles are distributed along the PHP.

The menisci are initially at rest.

It is well known [6] that there are many different regimes

of PHP functioning. The present modelling shows some of



PHP parameters

Fluid water

Np 5

d 5 mm

Le 10 cm

Lc 10 cm

La 5 cm

Constants

γ 0.47

Lm 0.2 mm

Um/U 0.3

∆t 10−4 s

Table 1. Parameters used for the numerical simulation.

them, in particular the regime of chaotic oscillations (Fig. 6).

Its early stage is illustrated in Fig. 6a. Since the number of

bubbles can only be reduced during the PHP evolution, their

large number (usually 9) is chosen initially. Fig. 6a shows

that the positions of some menisci join each other at t < 0.2
s. This corresponds to the bubble recondensation that occurs

inside the condenser. The bubbles keep disappearing until

only one per evaporator remains. The liquid gathers in the

condenser under the action of gravity (cf. Fig. 1a). The film

that remains in the evaporator does not, however, evaporate

instantly (see the upper dotted line in Fig. 6a). This may

cause an instability of the system, i.e. the development of

oscillations. Their amplitude grows during a short transient

before attaining the developed oscillation regime. The am-

plitude in this regime depends on the parameters (see below)

and may be large. During large oscillations, the menisci pen-

etrate both into the condenser and the evaporator. The films

persist in the evaporator; the film length oscillates (see the

dotted lines). The liquid volume change is almost invisible

so that both ends of each liquid plug oscillate synchronously.

A portion of the x axis corresponding to three plugs is shown

in Fig. 6. They seem to oscillate quite independently. Even

the amplitude of their oscillations may be different: compare

the lower and upper plugs in Fig. 6b. The long-time PHP

evolution (Fig. 6b) shows that the oscillations are indeed

chaotic: no periodic repetition can be mentioned. This is a

dynamic chaos well known to occur in the complex systems.

The regimes of oscillations are convenient to be pre-

sented at the heat transfer curve (Fig. 7). The oscillation exist

when the temperature difference ∆T = Te−Tc falls within an

certain interval. Within this interval, one may distinguish the

chaotic regime discussed above and the intermittent regime.

The latter is characterized by a sequence of intervals during

which the system oscillates strongly and the periods of weak

motion. Generally the amplitude is very small near the lower

oscillation threshold. Below the threshold, the oscillations

decline to an equilibrium state where the vapor exists only

in the evaporator and adiabatic sections and the condenser

sections are completely filled by the liquid. The pressure

inside the bubbles becomes equal to the saturation pressure

corresponding to Te, i.e. Te = Tsat(Pi) for every i. This state

is attained via condensation/evaporation, during which the

mass of the vapor in each bubble relaxes to that required by

the vapor equation of state. The films in evaporator may ex-
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Fig. 6. (Color online) Examples of the chaotic oscillation regime

within the linear PHP representation schematized in Fig. 1c. Evapo-

rator (E) and condenser (C) sections are shown with the background

bars; adiabatic sections are in between. PHP is shown partially with

evolution of only several menisci. (a) Short time evolution. The bub-

ble recondensation occurs at an early stage. The evolution of only

two film edges is shown by dotted lines. (b) Long time evolution for

Te = 45◦ C, Tc = 25◦ C, φ = 0.55, δ f = 40 µm.

ist but their lengths do not vary any more (cf. Eq. (3), the

r.h.s. of which vanishes). At lower volume fractions, the

liquid plugs do not fill completely the condenser sections so

that the above equilibrium state cannot be attained: the heat

exchange always exists. The stability of such a configuration

is yet to be studied.

When ∆T is larger than the upper oscillation threshold,

the initial perturbation eventually declines. However the sce-

nario is different from the low ∆T case. During the initial

transient, the oscillations develop. Their amplitude becomes

large like in the chaotic regime; the bubbles are compressed

strongly between the plugs which have different inertia and

thus move with different velocities. At some point one of

the bubbles is compressed so strongly that it recondenses.

This leads to a creation of a liquid plug with yet larger iner-

tia, which causes the bubble recondensation in chain that in
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Fig. 7. (Color online) Heat transfer curve and PHP regimes for Tc =
25◦ C, φ = 0.55, δ f = 40 µm.

most cases ends up in a creation of a single plug and a single

bubble and the motion stops.

It is likely that the introduction of boiling will cause an

instability of the final equilibrium state of the bubble recon-

densation regime. Indeed, in the final single bubble state the

liquid situates necessarily in the evaporator and the boiling

should occur and cause a restart of the oscillations.

The oscillation regime depends strongly on the chosen

value of the film thickness δ f . The influence of δ f was stud-

ied for the following set of the fixed parameters: Te = 35◦ C,

Tc = 25◦ C, φ= 0.55. It turns out that the δ f decrease leads to

the same sequence of regimes as ∆T growth. At δ f > 90 µm

the self sustained oscillations are nonexistent. The δ f de-

crease leads to an appearance of the intermittent oscillations.

Their amplitude grows as δ f decreases until the bubble re-

condensation appears and causes the oscillation disruption at

δ f ≈ 5 µm. This shows the importance of the δ f choice.

The heat transfer rate varies chaotically (Fig. 8a) during

the oscillations accordingly to the dynamics of the menisci.

During the developed oscillations, the equality (37) is sat-

isfied within few per cent. The sensible heat exchange part

may however be different in the condenser and in the evap-

orator (Fig. 8b). It is comprehensible since the condenser

is occupied by the liquid most of the time. Accordingly, a

part of the sensible heat exchange in the condenser is larger

than in the evaporator. The part of the sensible heat exchange

increases with the amplitude of the oscillations because the

liquid sweeps more often hot and cold walls. The averaged

in time Q value is shown in Fig. 7 as a function of ∆T . One

can see that quite efficient heat exchange can be achieved

even without boiling that is likely to lead to the continua-

tion of the curve into the “bubble recondensation” region as

discussed above.

The temperature inside the liquid is inhomogeneous, see

Fig. 5b. One can see the thermal boundary layers that form

near the menisci inside the liquid plugs. They appear because

the pressure (and thus the gas-liquid interface temperature

Tsat) changes quickly during the oscillations; Tsat is some-

times 40-50 K larger than Te. The analysis shows that the
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Fig. 8. (Color online) Examples of the PHP heat exchange rate evo-

lution in condenser and evaporator for the same parameters as Fig.

6b. (a) Total heat exchange. The time average 〈Q〉 is shown with a

horizontal line. (b) Part of the sensible heat exchange. The average

values are 0.18 for evaporator and 0.29 for condenser.

vapor pressures can also attain high values. The vapor tem-

perature rises strongly due to this compression and can be

essentially higher than Te (Fig. 9). This has been already

observed in the single-bubble modelling [15]. During the

developed oscillations, the vapor is overheated: its tempera-

ture exceeds Tsat by 10-20 K on average. This shows that the

hypothesis [20,21] about the vapor at saturation temperature

is hardly consistent.

The thickness of the boundary layers is different in dif-

ferent liquid plugs. It is defined by the value
√

Dτ where τ
is an average period of the oscillations of a plug that grows

with its mass.

5 Conclusions

A new model for PHP with arbitrary number of branches

and arbitrary time-varying number of bubbles has been pre-

sented above. It is more complex than the previous models

and is capable of describing the chaotic self-sustained oscil-

lations of large amplitude. It is shown to reproduce correctly

some features of experimental models like intermittent oscil-
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Fig. 9. (Color online) Typical evolution of temperatures obtained for

a bubble from Fig. 6b. The evolution of the left and right ends of this

bubble correspond to the third and the second curves from the top of

Fig. 6b, respectively. The horizontal dashed lines correspond to Tc

and Te.

lation regime. Some analysis of the flow in the PHP and the

heat transfer has been performed. An oscillation threshold

occurs at small temperature difference. Another threshold,

that occurs at a large temperature difference would probably

be yet larger if the boiling were taken into consideration. The

boiling thus needs to be implemented.

More studies need to be performed even for the present

formulation of the model. In particular, the influence of the

initial conditions (initial values of M,Ti,X
s
i , etc.) might be of

importance because the system is chaotic.

To perform more realistic modelling, more information

is required on the phenomena that occur during the PHP

functioning. In particular, it is a priori evident that a strong

viscous dissipation occurs in the liquid films and near the

contact lines (i.e. film edges). This effect leads to an ad-

ditional pressure drop across each meniscus. The available

in the literature information on this phenomenon is scarce.

The effect of the PHP bends on the pressure drop should be

accounted for. The film thickness is an important parame-

ter, which was imposed here to be constant and is taken to

be micrometric like in previous works [18, 19]. However it

depends on the plug velocity and possibly on the evapora-

tion/condensation rate and should thus vary with time. Third,

the vapor compression has not been yet assessed experimen-

tally. It is not clear if the liquid plug return force is caused

entirely by the evaporation/condensation effect (assumed in

the models where the vapor was always at saturation temper-

ature) or also by the vapor compression like in the present

approach.
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Nomenclature

cvv vapor specific heat at constant volume [J/(kg·K)]

D liquid heat diffusivity [m2/s]

d tube diameter [m]

F viscous friction force [N]

G gravity force [N]

g gravity acceleration [m2/s]

hlv latent heat [J/kg]

K friction coefficient

L length [m]

M total number of bubbles or plugs

m mass (of vapor by default) [kg]

N total number

n sequential branch number

Nu liquid Nusselt number

P vapor pressure [Pa]

Q heat exchange rate [W]

Rv vapor gas constant [J/(kg·K)]

Re liquid Reynolds number

S tube section area [m2]

T temperature (Ti: of vapor) [K]

t time [s]

U heat transfer coefficient (of film transfer if no in-

dices) [W/(K·m2)]

V velocity (Vi: of liquid plug) [m/s]

X absolute position at the x axis [m]

Greek symbols

∆ difference

δ f liquid film thickness [m]

γ coefficient in Eq. 4

λ heat conductivity [W/(m·K)]

ν liquid kinematic viscosity [m2/s]

φ volume fraction of liquid in PHP

ρ density [kg/m3]

Superscripts

k index

l left

lat latent

r right

s r or l

sens sensible

Subscripts

a adiabatic

b branch

c condenser

e evaporator

f liquid film

i bubble or plug identifier

j film junction

l liquid

m meniscus

p PHP spatial period

s e or c



sat at saturation

t total

v vapor

wall internal tube wall
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