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We consider the controllability of an abstract parabolic system by using switching controls. More precisely, we show that under general hypotheses, if a parabolic system is null-controllable for any positive time with N controls, then it is also null-controllable with the property that at each time, only one of these controls is active. The main difference with previous results in the literature is that we can handle the case where the main operator of the system is not self-adjoint. We give several examples to illustrate our result: coupled heat equations with terms of orders 0 and 1, the Oseen system or the Boussinesq system.

where z is the state of the system and uj are controls. We are interested by the problem proposed in [START_REF] Zuazua | Switching control[END_REF] where the idea is to control z by using "switching" controls so that only one control uj is active at the same time. We consider here parabolic systems in the sense defined below. Our aim is to generalize the results already obtained in [START_REF] Zuazua | Switching control[END_REF] and in [START_REF] Chaves-Silva | Switching controls for analytic semigroups and applications to parabolic systems[END_REF]. In [START_REF] Chaves-Silva | Switching controls for analytic semigroups and applications to parabolic systems[END_REF], the authors manage to prove the null-controllability of the system (1.1) with switching controls in the case where A is a self-adjoint operator in a Hilbert space and if (1.1) is null-controllable for all T > 0 without the switching conditions on the controls. They also obtain this result in the case where the state space is finite-dimensional and they conclude with a result for non self-adjoint operator in a Hilbert space but with conditions on A that can be quite restrictive (see the discussion after Theorem 5.1 in [START_REF] Chaves-Silva | Switching controls for analytic semigroups and applications to parabolic systems[END_REF]). Here, we show a more general result with less restrictive conditions on A and we give at the end of this article several examples showing that we can handle many important situations. We also state a corresponding result for the approximate controllability with switching controls.

We assume that, in (1.1), A : D(A) → H is an unbounded operator in a Hilbert space H, and Bj, j = 1, . . . , N are control operators satisfying Bj ∈ L(Uj, D((A * ) k ) ) for some k 0, where Uj is a Hilbert space. Here and in what follows, we identify H with its dual and for a Hilbert space V ⊂ H such that V is dense in H, V stands for the dual space of V with respect to the pivot space H.

In what follows, we assume that -A is the infinitesimal generator of an analytic semigroup e -tA t 0

.

(H1)

This implies that the spectrum σ(A) of A is contained in a sector of C (see, for instance, [3, Theorem 2.11, p.112]). We assume moreover that σ(A) is only composed by eigenvalues (λj) with finite algebraic multiplicity. (H2)

We recall that one can define the algebraic multiplicity of λj by using a projection operator

P(λj) = 1 2πı Γ (λI -A) -1 dλ, (1.2) 
where Γ is a positively oriented simple closed curve enclosing λj but not other point of σ(A) (see [17, pp. 180-181]). Then, the algebraic multiplicity of λj is the dimension of Im P(λj). There exists n ∈ N * such that Im P(λj) = Ker(λjI -A) n and an element of Im P(λj) is called a root vector of A. We denote by mj the smallest n satisfying the above equality (the index of λj). We have similar definitions for A * and we assume that The root vectors of A are complete in H.

(H3)

Our main result is Theorem 1.1. Assume (H1), (H2), and (H3). If (1.1) is null-controllable in any time T > 0, then it is null-controllable in any time T > 0 with the following constraint on the controls (u k ) k=1,...,N :

N j=1 k =j u k (t) U k = 0 a.e. t ∈ (0, T ). (1.
3)

The condition (1.3) means that at most one control u k is active (non null) at the same time. In the case

N = 2, (1.1) writes z + Az = B1u1 + B2u2 in (0, T ), z(0) = z 0 , (1.4) 
and the condition (1.3) reduces to the condition

u1(t) U 1 u2(t) U 2 = 0 a.e. t ∈ (0, T ). (1.5) Remark 1.2.
To be more precise in the statement of Theorem 1.1, let us define for r = k + α, k ∈ N, α ∈ [0, 1], the spaces:

Hr def = D(A k+1 ), D(A k ) 1-α , H-r def = D((A * ) k+1 ), D((A * ) k ) 1-α , (1.6) 
where [•, •]• denotes the interpolation space obtained with the complex interpolation methods. Then, there exists γ 0 such that Bj ∈ L(Uj, H-γ) (j = 1, . . . , N ).

(1.7)

From standard result on parabolic systems, if uj ∈ L 2 (0, T ; Ui) and if z 0 ∈ [H1-γ, H-γ] 1/2 , then the solution z of (1.1) satisfies

z ∈ H 1 (0, T ; H-γ) ∩ L 2 (0, T ; H1-γ) ∩ C 0 ([0, T ]; [H1-γ, H-γ] 1/2 ) (1.8)
and Theorem 1.1 states that if (1.1) is null-controllable for any time T > 0 in [H1-γ, H-γ] 1/2 with controls in L 2 (0, T ; Uj) then for any z 0 ∈ [H1-γ, H-γ] 1/2 , there exist uj ∈ L 2 (0, T ; Uj) satisfying (1.3) and such that z(T ) = 0. Note that, using the parabolic regularity, if z 0 is in a larger space H -γ , with γ > γ, then taking uj ≡ 0 in (0, ε) we have z(ε) ∈ [H1-γ, H-γ] 1/2 and we deduce the null-controllability with switching controls.

Remark 1.3. With respect to the literature, we generalize here the results obtained in [START_REF] Zuazua | Switching control[END_REF] and in [START_REF] Chaves-Silva | Switching controls for analytic semigroups and applications to parabolic systems[END_REF]. In [START_REF] Chaves-Silva | Switching controls for analytic semigroups and applications to parabolic systems[END_REF], the authors assume that the operator A is self-adjoint or that H is of finite dimension. They have also obtained an extension in the case of a parabolic system (Theorem 5.1 in [START_REF] Chaves-Silva | Switching controls for analytic semigroups and applications to parabolic systems[END_REF]) but they need an hypothesis on the semigroup e -tA * t 0 and they explain that this hypothesis is difficult to check in practice with some examples. Here we have more general hypotheses on A and there is a typical situation where (H1), (H2) and (H3) hold: if A can be decomposed as A = A0 + A1 with A0 a self-adjoint operator in H with compact resolvent, D(A1) ⊂ D(A α 0 ) for some α ∈ [0, 1) and the eigenvalues µj of A0 satisfy for some 1 p < ∞ and for some J 1, With a similar proof as Theorem 1.1, one can also obtain the following result:

∞ j=J 1 |µj| p < ∞, (1.9 
Theorem 1.4. Assume (H1), (H2) and (H3). If (1.1) is approximately controllable for some time T > 0, then it is approximately controllable in time T > 0 with the constraint (1.3).

Remark 1.5. We can make the above statement more precise, using Remark 1.2. If (1.1) is approximately controllable for some time T > 0, and if Bj satisfies (1.7), then for any z 0 , z 1 ∈ [H1-γ, H-γ] 1/2 and for any ε > 0, there exist uj ∈ L 2 (0, T ; Ui) satisfying (1.3) so that the solution z of (1.1) (satisfying

(1.8)) verifies z(T ) -z 1 [H 1-γ ,H -γ ] 1/2 ε.
The outline of this article is as follows: in the next section, we show Theorem 1.1 and give the main ideas to adapt the proof to Theorem 1.4. Then in Section 3, we present some examples to illustrate this result.

Proof of the main result

The proof of Theorem 1.1 follows the same scheme as in [START_REF] Zuazua | Switching control[END_REF] and in [START_REF] Chaves-Silva | Switching controls for analytic semigroups and applications to parabolic systems[END_REF]. The new part of this proof corresponds to Lemma 2.2. We only repeat all the proof for sake of clarity. To simplify, we only show Theorem 1.1 for N = 2. The details of the proof for N > 2 can be found in [START_REF] Chaves-Silva | Switching controls for analytic semigroups and applications to parabolic systems[END_REF]. Finally, we can also assume that Bj ∈ L(Uj, H) (the case of "bounded" control operators). Indeed, taking µ0 > -inf

j 1
Re λj, one can apply (µ0 + A) -k to (1.4) and we obtain the control system

z + A z = B1u1 + B2u2 in (0, T ), z(0) = z 0 , (2.1) 
where

z def = (µ0 + A) -k z, z 0 def = (µ0 + A) -k z 0 , Bj def = (µ0 + A) -k Bj ∈ L(Uj, H).
If there exist controls uj satisfying (1.5) and such that z(T ) = 0 then it implies Theorem 1.1. First, we consider the adjoint system of (1.1) 

ϕ + A * ϕ = 0 in (0, T ), ϕ(0) = ϕ 0 , (2.2) that is ϕ(t) = e -tA * ϕ 0 (t 0). Since (1.
e -τ A * ϕ 0 H C(τ ) τ 0 B * 1 e -tA * ϕ 0 2 U 1 + B * 2 e -tA * ϕ 0 2 U 2 dt 1/2 ϕ 0 ∈ H . (2.3)
Following the proof of [START_REF] Chaves-Silva | Switching controls for analytic semigroups and applications to parabolic systems[END_REF], we introduce the function

α(t) = 1 + 1 2 sin(ωt), (2.4) 
with ω ∈ R that will be fixed further. As explained in [START_REF] Chaves-Silva | Switching controls for analytic semigroups and applications to parabolic systems[END_REF], where the authors introduce such a function, many other choices are possible for α. We fix T > 0 and we define the following function

ϕ 0 X def = T 0 max B * 1 e -tA * ϕ 0 2 U 1 , α(t) B * 2 e -tA * ϕ 0 2 U 2 dt 1/2 (2.5)
and due to the bounds of α, we deduce from (2.3) that

e -T A * ϕ 0 H C ϕ 0 X ϕ 0 ∈ H . (2.6)
Using that e -tA * t 0 is an analytic semigroup, the above relation implies that • X is a norm. We consider the closure of H with respect to this norm:

X def = Clos • X H. (2.7)
Remark 2.1. Note that from (2.6), we can extend the application ϕ 0 → e -T A * ϕ 0 into a bounded map of L(X , H). Using (2.3), for any τ ∈ (0, T ), we can also extend the application ϕ 0 → e -τ A * ϕ 0 into a bounded map of L(X , H). For j = 1, 2, we can also extend ϕ 0 → t → B * j e -tA * ϕ 0 into a bounded map of L(X , L 2 (0, T ; Uj)).

We can now define

J(ϕ 0 ) def = 1 2 ϕ 0 2 X + z 0 , e -T A * ϕ 0 H (ϕ 0 ∈ X ).
The function J is convex, continuous and coercive: there exists a minimizer φ 0 ∈ X of J. First, if φ 0 = 0, then let us consider ϕ 0 ∈ H. For any ε > 0,

J(εϕ 0 ) = 1 2 ε 2 ϕ 0 2 X + ε z 0 , e -T A * ϕ 0 H 0 = J(φ 0 )
and similarly,

1 2 ε 2 ϕ 0 2 X -ε z 0 , e -T A * ϕ 0 H 0.
Dividing by ε and taking ε → 0 in the two above relations, we deduce that e -T A z 0 , ϕ 0 = 0 for any ϕ 0 ∈ H and thus e -T A z 0 = 0. In particular, the controls u1 = 0 and u2 = 0 in (0, T ) lead the system to rest and satisfy the switching condition. Second, assume φ 0 = 0. Then, Lemma 2.2 states that there exists ω such that the set

I0 def = t ∈ (0, T ) ; B * 1 e -tA * φ 0 2 U 1 = α(t) B * 2 e -tA * φ 0 2 U 2 (2.8)
is of Lebesgue measure equal to 0. We then define

I1 def = t ∈ (0, T ) ; B * 1 e -(T -t)A * φ 0 2 U 1 > α(T -t) B * 2 e -(T -t)A * φ 0 2 U 2 , and 
I2 def = t ∈ (0, T ) ; B * 1 e -(T -t)A * φ 0 2 U 1 < α(T -t) B * 2 e -(T -t)A * φ 0 2 U 2 .
We also define

j(t, ϕ 0 ) def = max B * 1 e -(T -t)A * ϕ 0 2 U 1 , α(T -t) B * 2 e -(T -t)A * ϕ 0 2 U 2
and we note that the differentiate of j(t, •) at the point φ 0 in the direction ϕ 0 satisfies

D φ 0 j(t, ϕ 0 ) =    2 B * 1 e -(T -t)A * φ 0 , B * 1 e -(T -t)A * ϕ 0 U 1 if t ∈ I1, 2α(T -t) B * 2 e -(T -t)A * φ 0 , B * 2 e -(T -t)A * ϕ 0 U 2 if t ∈ I2.
By considering all the possibilities for the maximum, one can show (see the appendix A of [START_REF] Chaves-Silva | Switching controls for analytic semigroups and applications to parabolic systems[END_REF] for more details) the existence of C > 0 such that

1 h j(t, φ 0 + hϕ 0 ) -j(t, φ 0 ) C B * 1 e -(T -t)A * φ 0 2 U 1 + B * 2 e -(T -t)A * φ 0 2 U 2 + B * 1 e -(T -t)A * ϕ 0 2 U 1 + B * 2 e -(T -t)A * ϕ 0 2 U 2 (h ∈ (0, 1)).
Using the Lebesgue theorem and the fact that |I0| = 0, we deduce that

D φ 0 J(ϕ 0 ) = I 1 B * 1 e -(T -t)A * φ 0 , B * 1 e -(T -t)A * ϕ 0 U 1 dt + I 2 α(T -t) B * 2 e -(T -t)A * φ 0 , B * 2 e -(T -t)A * ϕ 0 U 2 dt + z 0 , e -T A * ϕ 0 H . (2.9) Setting u1(t) def = 1I 1 (t)B * 1 e -(T -t)A * φ 0 , u2(t) def = 1I 2 (t)α(T -t)B * 2 e -(T -t)A * φ 0 (2.10)
and taking ϕ 0 ∈ H, we deduce that

D φ 0 J = e -T A z 0 + T 0 e -(T -t)A (B1u1(t) + B2u2(t)) dt.
Using that φ 0 is a minimizer we deduce that the solution z of (1.4) with u1 and u2 defined by (2.10) satisfies z(T ) = 0 whereas u1 and u2 satisfy (1.5). This ends the proof of Theorem 1.1, provided we can prove that the set I0 defined by (2.8) is of Lebesgue measure equal to 0. This is the new part of this proof since it is done without assuming that H is finite dimensional or that A is self-adjoint.

Lemma 2.2. Assume that ω / ∈ Im (λ k -λ k ) , 1 2 Im (λ k -λ k ) for all (k, k ) ∈ (N * ) 2 such that Re(λ k ) = Re(λ k ) . (2.11) 
If φ 0 = 0 then |I0| = 0.

Before proving the above result, let us recall a result proved in [START_REF] Chaves-Silva | Switching controls for analytic semigroups and applications to parabolic systems[END_REF] (that we have slightly adapted): Proof. Lemma 2.5 in [START_REF] Chaves-Silva | Switching controls for analytic semigroups and applications to parabolic systems[END_REF] shows this result if pj are polynomials of degree 0. To prove Lemma 2.3, we consider

d def = N max j=1
deg pj that is 0 if the pj are not all null. Then by taking the limit of the above sum divided by t d , Lemma 2.5 in [START_REF] Chaves-Silva | Switching controls for analytic semigroups and applications to parabolic systems[END_REF] yields that all the monomials of pj of degree d are 0 which leads to a contradiction.

We can now prove Lemma 2.2.

Proof of Lemma 2.2. Assume that |I0| = 0.

(2.12)

From (2.12), there exists n ∈ N * such that

I0 ∩ T n , T = 0. (2.13)
On the other hand, using Remark 2.1, e -T n A * φ 0 ∈ H. This fact and (2.13) allow us to reduce the proof of Lemma 2.2 to the case φ 0 ∈ H. Using (2.12) and the analyticity of the semigroup, we deduce that

B * 1 e -tA * φ 0 2 U 1 = α(t) B * 2 e -tA * φ 0 2 U 2 (t 0). (2.14)
From the eigenvalues of A, we can define an increasing sequence (σj) of R such that

{σj, j ∈ N * } = {Re λ k , k ∈ N * } .
Let us define

Σ1 def = λ k ; Re λ k = σ1 , K1 def = {k ∈ N * ; Re λ k = σ1} .
From (H1) and (H2) there exists a positively oriented simple closed curve Γ1 enclosing Σ1 but not other point of σ(A * ). Then, we consider the projection operator (see [START_REF] Kato | Perturbation theory for linear operators[END_REF]Theorem 6.17, p.178])

P * 1 def = 1 2πı Γ 1 (λI -A * ) -1 dλ (2.15)
and we define

H+ def = P * 1 (H) , H- def = (I -P * 1 ) (H) . We have that H+ = k∈K 1 Ker A * -λ k I m k ⊂ D(A * ),
where m k is the index of λ k . We also define

A * + ∈ L(H+), A * + z def = Az (z ∈ H+), D(A * -) def = H-∩ D(A * ), A * -z def = Az (z ∈ D(A * -)).
Then, from Theorem 6.17 in [17, p.178], the spectra of A * + and of A * -are respectively Σ1 and σ(A) \ Σ1. In particular, there exists ε > 0 such that

inf {Re λ, λ ∈ σ(A * -)} > σ1 + ε. (2.16)
Then, we set φ+(t)

def = P * 1 e -tA * φ 0 e σ 1 t = e -tA * + P * 1 φ 0 e σ 1 t , (2.17) φ-(t) def = (I -P * 1 ) e -tA * φ 0 e σ 1 t = e -tA * -(I -P * 1 ) φ 0 e σ 1 t . (2.

18)

Using that A * -is the infinitesimal generator of an analytic semigroup and (2.16) (see, for instance, [3, Proposition 2.9, p. 120], we deduce that for some constant C > 0,

B * 1 φ-(t) U 1 + B * 2 φ-(t) U 2 C φ 0 H e -εt (t 0). (2.19)
Moreover, there exists φ k, ∈ H+ ⊂ D(A * ), k ∈ K1 and ∈ {0, . . . , m k } such that

φ+(t) = k∈K 1 e ı Im λ k t m k =0 t φ k, . (2.20) 
Thus, we deduce from (2.14) that

B * 1 φ+(t) 2 U 1 -α(t) B * 2 φ+(t) 2 U 2 → 0 if t → ∞, (2.21) 
and using (2.4), we can develop the above expression as in [START_REF] Chaves-Silva | Switching controls for analytic semigroups and applications to parabolic systems[END_REF]:

B * 1 φ+(t) 2 U 1 -α(t) B * 2 φ+(t) 2 U 2 = k,k ∈K 1 e ı(Im λ k -Im λ k )t m k =0 m k =0 t + (B * 1 φ k, , B * 1 φ k , ) U 1 -(B * 2 φ k, , B * 2 φ k , ) U 2 - 1 4ı k,k ∈K 1 e ı(Im λ k -Im λ k +ω)t m k =0 m k =0 t + (B * 2 φ k, , B * 2 φ k , ) U 2 + 1 4ı k,k ∈K 1 e ı(Im λ k -Im λ k -ω)t m k =0 m k =0 t + (B * 2 φ k, , B * 2 φ k , ) U 2 .
This implies that B * 1 φ+(t)

2 U 1 -α(t) B * 2 φ+(t)
2 U 2 has the form N j=1 pj(t)e iµ j t of Lemma 2.3. From this lemma, we deduce that all the polynomials pj = 0 and in particular the ones associated with µj = 0 and µj = ω. From (2.11), these polynomials are respectively

k∈K 1 m k =0 t B * 1 φ k, 2 U 1 - m k =0 t B * 2 φ k, 2 U 2 = 0 and - 1 4ı k∈K 1 m k =0 t B * 2 φ k, 2 U 2 = 0
and we deduce that

∀k ∈ K1, ∀ ∈ {0, . . . , m k }, B * 1 φ k, = 0 and B * 2 φ k, = 0.
The above relation combined with (2.17) and (2.20) implies that

B * 1 e -tA * P * 1 φ 0 = 0 and B * 2 e -tA * P * 1 φ 0 = 0 (t 0).
Thus, P * 1 φ 0 X = 0 and we deduce that P * 1 φ 0 = 0. Thus φ 0 ∈ (Im P1) ⊥ , where

P1 = 1 2πı Γ 1 (λI -A) -1 dλ.
In particular,

φ 0 ∈   k∈K 1 Ker (A -λ k I) m k   ⊥ .
By induction, we deduce that φ 0 is orthogonal to all the root vectors of A. Using (H3), we deduce that φ 0 = 0.

Let us finish this section by giving some ideas to adapt the above proof in order to show Theorem 1.4. The arguments are classical and thus we skip the details. We only consider the case N = 2 and the case of Bj ∈ L(Ui, H), the other cases can be done similarly (note that we would need in particular to replace the space H by the space [H1-γ, H-γ] 1/2 , see Remark 1.2 and Remark 1.5). Assume z 0 , z 1 ∈ H and assume ε > 0. We want to obtain u1 ∈ L 2 (0, T ; U1), u2 ∈ L 2 (0, T ; U2) satisfying (1.5) such that the solution of (1.4) (with initial condition z 0 ) verifies

z(T ) -z 1 H ε.
Then we replace the functional J of the proof of Theorem 1.1 by

Jε(ϕ 0 ) def = 1 2 ϕ 0 2 X + z 0 , e -T A * ϕ 0 H -z 1 , ϕ 0 H + ε ϕ 0 H (ϕ 0 ∈ H).
Then we have that Jε is convex, continuous in H. Moreover, one can show that lim inf [START_REF] Fabre | Approximate controllability of the semilinear heat equation[END_REF]). Consequently, there exists a minimizer φ 0 ∈ H of Jε and the rest of the proof is the same as the proof of Theorem 1.1.

ϕ 0 H →∞ Jε(ϕ 0 ) ϕ 0 H ε so that Jε is coercive in H (see, for instance,

Examples

Here, we present some examples of application of Theorem 1.1. We focus in the case where A is not selfadjoint, and we refer the reader to [START_REF] Chaves-Silva | Switching controls for analytic semigroups and applications to parabolic systems[END_REF] for several interesting examples in the self-adjoint case.

Coupled heat equations

Assume Ω is a bounded open set of R d , with regular boundary. Let us consider m 2 and a nonempty open subset ω of Ω. We consider the following coupled system of heat equations:

         ∂tyj -dj∆yj + m k=1 (a j,k • ∇y k + b j,k y k ) = 1ωuj in (0, T ) × Ω, yj = 0 on (0, T ) × ∂Ω, yj(0, •) = y 0 j in Ω. (3.1)
Here dj ∈ R * + , a j,k ∈ R d , b j,k ∈ R (j, k ∈ {1, . . . , m}). Using the Carleman estimates for the heat equation (see, [START_REF] Fursikov | Controllability of evolution equations[END_REF] or [START_REF] Fernández | Global Carleman inequalities for parabolic systems and applications to controllability[END_REF]), it is well-known that the above system is null-controllable in L 2 (Ω) m with controls uj ∈ L 2 (0, T ; L 2 (ω)) (1 j m). In the literature, there are lot of works devoted to the possibility to decrease the number of controls while keeping the null-controllability property. One can refer for instance to [START_REF] Ammar-Khodja | Recent results on the controllability of linear coupled parabolic problems: a survey[END_REF] for a survey of results until 2011.

Applying Theorem 1.1, we deduce here the following result: Proof. We set

H def = L 2 (Ω) m , D(A) def = H 2 (Ω) ∩ H 1 0 (Ω) m , A = A0 + A1, where D(A0) def = D(A), D(A1) def = H 1 0 (Ω) m = D(A 1/2 0 ), A0y def = (-dj∆yj) j=1,...,m , A1y def = m k=1 [a j,k • ∇y k + b j,k y k ] j=1,...,m . 
We also set Ui where (e1, . . . , em) is the canonical basis of R m . To check (H1), (H2) and (H3), we use Remark 1.3 since the eigenvalues µj of A0 satisfy (1.9) from some 1 p < ∞ (by using Weyl formula, see, for instance, [2, Section 1.6] ).

The Oseen system

Assume Ω is a bounded open set of R d , with regular boundary. Assume Γ is a nonempty open subset of ∂Ω.

Let us consider the controllability of the Oseen system:

         ∂ty -ν∆y + ∇p + y S • ∇ y + (y • ∇) y S = 0 in (0, T ) × Ω, div y = 0 in (0, T ) × Ω, y = u1Γ on (0, T ) × ∂Ω, y(0, •) = y 0 in Ω. (3.2)
Here ν > 0 is the viscosity of the fluid and y S ∈ W 1,∞ (Ω). Usually, for physical motivation, one has d = 2, 3 and y S is a stationary state. Note moreover that for the controllability of (3.2), one can take y S ∈ L ∞ (Ω) (see [START_REF] Fernández-Cara | Local exact controllability of the Navier-Stokes system[END_REF]), but to simplify the presentation we take y S more regular. In the above system, the control u is located at the boundary ; in the case of distributed controls, there are several works devoted to the controllability of the Stokes or the Navier-Stokes system. Let us quote for instance [START_REF] Fernández-Cara | Local exact controllability of the Navier-Stokes system[END_REF][START_REF] Coron | Global exact controllability of the 2D Navier-Stokes equations on a manifold without boundary[END_REF][START_REF] Yu | On exact controllability for the Navier-Stokes equations[END_REF]. Some of these studies are devoted to the case of controls with some vanishing components: see, for instance, [START_REF] Fernández-Cara | Some controllability results for the N -dimensional Navier-Stokes and Boussinesq systems with N -1 scalar controls[END_REF], [START_REF] Coron | Null controllability of the N -dimensional Stokes system with N -1 scalar controls[END_REF] and [START_REF] Carreño | Insensitizing controls with one vanishing component for the Navier-Stokes system[END_REF]. Let us also quote [START_REF] Coron | Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components[END_REF] where the authors obtain the local null controllability of the Navier-Stokes system in dimension 3 with a control having two vanishing components. Their method is quite different to the previous works and is based on results of Gromov.

Let us define

H def = y ∈ L 2 (Ω) d ; div y = 0, y • n = 0 on ∂Ω .
We denote by P : L 2 (Ω) d → H the orthogonal projection (the Leray projector). Due to the incompressibility condition, the controls have to satisfy the condition Γ u • n dγ = 0 in (0, T ). such that the solution y of (3.2) satisfies P y(T, •) = 0. In particular, taking u ≡ 0 in (T, ∞), we deduce that the solution y of (3.2) satisfies y ≡ 0 in (T, ∞).

Remark 3.3. As in [START_REF] Chaves-Silva | Switching controls for analytic semigroups and applications to parabolic systems[END_REF], instead of using the canonical basis of R d to decompose u, we could use an orthonormal basis (τ1(x), . . . , τ d-1 (x), n(x)), x ∈ Γ, where n the normal to ∂Ω (so that τj(x) is a tangential vector of ∂Ω at the point x). The proof below would be exactly the same and we would obtain a controllability result for which at each instant of time, the control is either tangential or normal.

Proof of Corollary 3.2. We consider the following operators To check (H1), (H2) and (H3), we use Remark 1.3 since the eigenvalues µj of A0 satisfy (1.9) from some 1 p < ∞ (see [START_REF] Métivier | Valeurs propres d'opérateurs définis par la restriction de systèmes variationnels à des sous-espaces[END_REF]).
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Lemma 2 . 3 .

 23 Assume (µj) N j=1 is family of N distinct real numbers and (pj) N j=1 a family of N polynomial functions. Then lim t→∞ N j=1 pj(t)e iµ j t = 0 =⇒ ∀j ∈ {1, . . . , N }, pj = 0.

Corollary 3 . 1 .

 31 Assume y 0 = y 0 j j=1,...,m ∈ L 2 (Ω) m . Then for any T > 0, there exist uj ∈ L 2 (0, T ;L 2 (ω)), j = 1, . . . , m with m j=1 k =j u k (t, •) L 2 (ω) = 0 a.e. t ∈ (0, T )such that the solution y of (3.1) satisfies y(T, •) = 0.

def = L 2

 2 (ω), Bjuj def = 1ωujej (j = 1, . . . , m),

(3. 3 )Corollary 3 . 2 .

 332 Applying Theorem 1.1, we deduce here the following result: Assume y 0 ∈ H. Then for any T > 0, there exists u ∈ L 2 (0, T ; L 2 (Γ)) d satisfying (3.3) andd j=1 k =j u k (t, •) L 2 (Γ) = 0 a.e. t ∈ (0, T )

D=

  (A) def = y ∈ H 2 (Ω) ∩ H 1 0 (Ω) d ; div y = 0 , A def = A0 + A1, S • ∇ y + (y • ∇) y S .To introduce the control operator, we writeUi def = ui ∈ L 2 (Γ) ; Γ uini dγ = 0 ,and we consider the Dirichlet operators Di : Ui → H defined by w def Diui is the solution of     λ0w -ν∆w + ∇π + y S • ∇ w + (w • ∇) y S = 0 in Ω, div w = 0 in Ω, w = uiei1Γ on ∂Ω,(3.4)for some λ0 > 0 large enough. Then we define Bi : Ui → D(A * ) by Bi def = (λ0I -A)P Di. Following[START_REF] Raymond | Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions[END_REF], one can write (3.2) under the form P )Djuj in (0, T ).(3.6)

The Boussinesq system

Assume Ω is a bounded open set of R 3 , with regular boundary. Assume ω is a nonempty open subset of Ω. Let us consider the controllability of the Boussinesq system:

where (e1, e2, e3) is the canonical basis of R 3 . Here ν > 0 is the viscosity of the fluid and θ S ∈ W 3,∞ (Ω). In [START_REF] Carreño | Local controllability of the N -dimensional Boussinesq system with N -1 scalar controls in an arbitrary control domain[END_REF], the author obtained that the above system is null-controllable for any T > 0. We keep the same notation for H as in the previous section. Applying Theorem 1.1, we deduce here the following result:

such that the solution (y, θ) of (3.7) satisfies (y, θ)(T, •) = 0.

The proof is similar to the proofs in the previous sections and we skip it.