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Introduction

Image segmentation is one of the most fundamental building blocks in the field of computer vision and pattern recognition [START_REF] Long | Fully convolutional networks for semantic segmentation[END_REF][START_REF] Noh | Learning deconvolution network for semantic segmentation[END_REF][START_REF] Pang | Towards bridging semantic gap to improve semantic segmentation[END_REF][START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF]. From a graph theory perspective, image segmentation corresponds to the simultaneous partitioning and labeling of all pixels in the image [START_REF] Bai | Deep watershed transform for instance segmentation[END_REF]. Learning the global structure of the image is in particular mandatory to maintain the connection between pixels on the boundaries of the regions. Such borders are of superior [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF]. (c) Resulting segmentation [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF]. A leakage position leads to a confusion between regions. (d) Boundary prediction with our topological correction method. (e) Final segmentation. importance in the case of dense image segmentation and multiple instances [START_REF] Porzi | Improving panoptic segmentation at all scales[END_REF]: (i) objects share the information of contours, and (ii) erroneous or incomplete borders are detrimental for instance retrieval. In biomedical images, correctly delineated instances (membranes, vessels) are essential to provide accurate structure qualification in order to count the right number of instances for the medical usage [START_REF] Bailoni | Proposal-free volumetric instance segmentation from latent single-instance masks[END_REF][START_REF] Cerrone | End-to-end learned random walker for seeded image segmentation[END_REF][START_REF] Funke | Large scale image segmentation with structured loss based deep learning for connectome reconstruction[END_REF][START_REF] Wolf | The semantic mutex watershed for efficient bottom-up semantic instance segmentation[END_REF][START_REF] Wolf | The mutex watershed and its objective: Efficient, parameter-free graph partitioning[END_REF].

Contemporary deep image segmentation methods can efficiently extract and combine deep features to achieve satisfactory per-pixel level accuracy [START_REF] Minaee | Image segmentation using deep learning: A survey[END_REF]. However, they are prone to fail in recovering thin connections, finer details of structures, accurate location of borders [START_REF] Cheng | Boundary IoU: Improving object-centric image segmentation evaluation[END_REF], and subsequently the correct topology of images. The issue of broken pixels in the borders does not significantly influence the correctness of detected pixels but might cause catastrophic results, according to the number of instances (see Fig. 1(b) and 1(c)). While a significant amount of literature has focused on boundary refinement [START_REF] Liu | Richer convolutional features for edge detection[END_REF][START_REF] Xie | Holistically-nested edge detection[END_REF][START_REF] Zhou | Deepstrip: High-resolution boundary refinement[END_REF], often supported by semantic information [START_REF] Acuna | Devil is in the edges: Learning semantic boundaries from noisy annotations[END_REF][START_REF] Borse | InverseForm: A loss function for structured boundary-aware segmentation[END_REF][START_REF] Yu | Simultaneous edge alignment and learning[END_REF][START_REF] Zhao | Multi-class part parsing with joint boundary-semantic awareness[END_REF], few papers are dedicated to broken pixel restoration. To tackle such an issue, [START_REF] Mosinska | Beyond the pixel-wise loss for topology-aware delineation[END_REF] considers the continuity of selected features as a loss function to connect pixels. However, this approach does not guarantee to get the correct topology of the detected objects. Topology preservation and broken pixel refinement in the boundary of the detected instances is alternatively addressed with the persistent homology framework [START_REF] Hu | Topology-preserving deep image segmentation[END_REF], again in a supervised way. However, their method is sensitive to noise, all the broken pixels have not been fully located and the training procedure is slow. It requires prior knowledge on the number of instances, impossible in object counting challenges.

In order to better localize the broken pixels while maintaining the close properties of the objects, we propose a seeded deep-based segmentation approach where the object boundaries can be extracted during training and eventually encourage the network to focus on boundary structures. We do not make any assumption on the class, shape, and number of objects. The seeded approach alleviates this common limitation. The overview of our method is illustrated in Fig. 2. Intuitively speaking, we treat the boundary prediction of the network as a terrain function from which we extract all landscape ridges. We respectively consider each seeded pixel inside or outside (deduced automatically from the ground truth) as the foreground or background of its region. One common region-based boundary extraction strategy consists in relying on graph-cut methods [START_REF] Boykov | Interactive graph cuts for optimal boundary & region segmentation of objects in nd images[END_REF][START_REF] Rother | GrabCut" interactive foreground extraction using iterated graph cuts[END_REF]. However, they have a limitation that produces short-cutting segmentation that cuts across the interior of an object due to the boundary term's bias. Lately, a new distance metric, the Minimum Barrier Distance (MBD) [START_REF] Strand | The minimum barrier distance[END_REF][START_REF] Zhang | Minimum barrier salient object detection at 80 fps[END_REF], has shown to exhibit a rather limited sensitivity to noise, blur, and seed positions. It has been successfully applied to salient object detection and object segmentation [START_REF] Krzysztof | Efficient algorithm for finding the exact minimum barrier distance[END_REF][START_REF] Ôn | A minimum barrier distance for multivariate images with applications[END_REF][START_REF] Tu | Real-time salient object detection with a minimum spanning tree[END_REF][START_REF] Zhang | Minimum barrier salient object detection at 80 fps[END_REF]. In this paper, we leverage the MBD information for identifying the boundary of the regions.

To alleviate current limitations, we introduce the Boundary-Aware loss function (BALoss), computed from the extracted boundaries, that penalizes the topologically-wrong pixels in the initial boundary prediction image. In our implementation, the BALoss is coupled with the binary cross-entropy loss to further refine the boundary details. The uniqueness of our BALoss is that it allows propagating the boundary information for regulating the network behavior while keeping a similar network structure. To the best of our knowledge, our method is the first one that addresses the boundary localization of instances for learning the structure of the image. We test our loss function on biomedical image (Electron Microscopy) datasets, which are highly challenging with the high level of noise and the multiplicity of interconnected objects. Training with the BALoss, the network performance is significantly improved, especially on the region boundaries (see Fig. 1(d) and 1(e)).

Our contributions in this paper are two-fold: (i) We propose a new Boundary-Aware loss function that comes along with a new seeded approach to correctly localize the boundaries of regions. (ii) We prove that our loss function can be adapted in deep segmentation networks and systematically improve the results of the network, with low sensitivity.

Related work

Image segmentation. Recently, various CNN-based segmentation methods have been proposed and achieved high pixel-level accuracy [START_REF] Bertasius | Semantic segmentation with boundary neural fields[END_REF][START_REF] Bertasius | Convolutional random walk networks for semantic image segmentation[END_REF][START_REF] Ding | Boundary-aware feature propagation for scene segmentation[END_REF][START_REF] He | Mask R-CNN[END_REF][START_REF] Ke | Adaptive affinity fields for semantic segmentation[END_REF][START_REF] Long | Fully convolutional networks for semantic segmentation[END_REF][START_REF] Takikawa | Gated-scnn: Gated shape cnns for semantic segmentation[END_REF]. In the application of biomedical images, U-Net-based frameworks [START_REF] Lou | DC-UNet: Rethinking the U-Net architecture with dual channel efficient CNN for medical image segmentation[END_REF][START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF][START_REF] Zhou | Unet++: A nested u-net architecture for medical image segmentation[END_REF] consist of a contracting path and an expansive path to integrate multi-level features to improve the accuracy of localization yet without guarantee on topology preservation. Moreover, to increase the quality of detected segmentation, the current research is mainly focusing on processing boundaries as separated information, E.g., [START_REF] Li | Improving semantic segmentation via decoupled body and edge supervision[END_REF][START_REF] Takikawa | Gated-scnn: Gated shape cnns for semantic segmentation[END_REF][START_REF] Yuan | Segfix: Model-agnostic boundary refinement for segmentation[END_REF][START_REF] Zhen | Joint semantic segmentation and boundary detection using iterative pyramid contexts[END_REF] proposed a joint task framework combining both semantic segmentation and semantic boundary detection. [START_REF] Tang | Look closer to segment better: Boundary patch refinement for instance segmentation[END_REF] extracted and refined boundaries of instances by using a series of small boundary patches with higher image resolution. In [START_REF] Karimi | Reducing the Hausdorff distance in medical image segmentation with convolutional neural networks[END_REF][START_REF] Kervadec | Boundary loss for highly unbalanced segmentation[END_REF][START_REF] Wang | Active boundary loss for semantic segmentation[END_REF], a boundary loss is proposed to measure the difference between the segmented and the ground truth boundaries. Though additional border pixels can boost the performance of segmentation results, those methods do not provide any information of the pixels that are required to refine and maintain the topological properties of objects [START_REF] Hu | Topology-preserving deep image segmentation[END_REF].

Pixel-connectivity-preserving segmentation. Conditional Random Field (CRF) and Markov Random Field (MRF) are straightforward formalisms that involve neighboring pixel relationships in the training procedure [START_REF] Nowozin | Global connectivity potentials for random field models[END_REF][START_REF] Martin | Generalized connectivity constraints for spatio-temporal 3d reconstruction[END_REF][START_REF] Wegner | A higher-order crf model for road network extraction[END_REF][START_REF] Zeng | Topology cuts: A novel min-cut/max-flow algorithm for topology preserving segmentation in N-D images[END_REF]. Specific functions can be formulated in order to preserve pixel connections or to include high-order cues (lines, object proposals, [START_REF] Maire | Object detection and segmentation from joint embedding of parts and pixels[END_REF]). In [START_REF] Kampffmeyer | Connnet: A long-range relation-aware pixel-connectivity network for salient segmentation[END_REF][START_REF] Yang | Biconnet: An edge-preserved connectivity-based approach for salient object detection[END_REF], the ConnNet proposed to learn and predict the pixel-pair connectivity to group or connect pixels. The MALIS and MALA methods [START_REF] Funke | Large scale image segmentation with structured loss based deep learning for connectome reconstruction[END_REF][START_REF] Turaga | Maximin affinity learning of image segmentation[END_REF] focus on the affinity prediction based on maximin edges (it is a local comparison) so that it will ensure sufficiently low maximin edges to obtain a good segmentation after threshold whereas our method is to compute distance based on dynamics (which is global information). Furthermore, the MALIS is computed on small patches due to the limited speed of the network and noise level of the image, while our method can be applied to full-size images, which simplifies the procedure. Moreover, the Mosin [START_REF] Mosinska | Beyond the pixel-wise loss for topology-aware delineation[END_REF] and IterNet [START_REF] Li | Iternet: Retinal image segmentation utilizing structural redundancy in vessel networks[END_REF] proposed to use a multiple-iterations framework to gradually improve the pixel connections in each iteration. Yet, these methods do not have a strong guarantee to achieve closed contours for images.

Topology-preserving segmentation. However, pixel-wise loss or pixel connectivity alone is not sufficient to capture the whole topological structure in the image [START_REF] Hu | Topology-preserving deep image segmentation[END_REF]. To maintain the topological correctness of objects, [START_REF] Hofer | Deep learning with topological signatures[END_REF] proposed to integrate topological signatures to deep neural networks and to learn a task-optimal representation during training. [START_REF] Hu | Topology-preserving deep image segmentation[END_REF][START_REF] Hu | Topologyaware segmentation using discrete morse theory[END_REF] designed topology-preserving losses based on persistent homology, which is differentiable and can be applied to any end-to-end deep neural networks in segmentation tasks. Still, training a neural network with these two losses does not solve the issues of border pixel localization, sensitivity to image noise, and slow training speed.

Seeded image segmentation. Another strategy that maintains the topology properties while partitioning the image is seeded image segmentation [START_REF] Cerrone | End-to-end learned random walker for seeded image segmentation[END_REF][START_REF] Lei | Adaptive morphological reconstruction for seeded image segmentation[END_REF][START_REF] Kemal | A seeded image segmentation framework unifying graph cuts and random walker which yields a algorithm[END_REF][START_REF] Zhang | A diffusion approach to seeded image segmentation[END_REF]. This method is first used in the classical version of the watershed algorithm [START_REF] Beucher | The morphological approach to segmentation: The watershed transformation[END_REF]. In [START_REF] Boykov | Interactive graph cuts for optimal boundary & region segmentation of objects in nd images[END_REF][START_REF] Grady | Random walks for image segmentation[END_REF][START_REF] Rother | GrabCut" interactive foreground extraction using iterated graph cuts[END_REF], several multi-labeling image segmentation methods have been proposed to partition the image by using a random walker and graph-cut algorithms. However, these methods penalize segmented boundary length, thereby leading to a shrinkage bias problem. [START_REF] Price | Geodesic graph cut for interactive image segmentation[END_REF] proposed alternatively to combine the long-range information from the geodesic distance with edge information in a graph-cut optimization framework. Still, this method only used low-level features that do not correctly capture object boundaries. [START_REF] Wolf | Learned watershed: End-to-end learning of seeded segmentation[END_REF] proposed a learned watershed algorithm that trains the altitude function together with subsequent region assignment decisions in a reinforcement learning [START_REF] Wiering | Reinforcement Learning, volume 12 of Adaptation, Learning, and Optimization[END_REF] style. This strategy is however greedy in terms of training data and computing time. In this paper, we keep the idea of seeded graph-cut based segmentation and push the work further by using a differentiable loss function that can propagate the properties through the whole training process. We rely on the Minimum Barrier Distance for that purpose.

Background

This section recalls the definition of the Minimum Barrier Distance (MBD) [START_REF] Strand | The minimum barrier distance[END_REF], which is the cornerstone of our paper. An image is associated with a graph in which vertices represent pixels on the image. Let π = ..., π i , π i+1 ... denote the path of pixels on the graph. Also, the set of paths going from the vertex x to the vertex x is denoted by Π(x , x). The barrier strength τ of a path π in the given gray-level image u is defined as the dynamic distance between the highest and lowest pixel values along the path:

τ u (π) = max p i ∈π u(p i ) -min p i ∈π u(p i ). (1) 
The Minimum Barrier Distance d MB between two vertices x and x in u is then defined as the minimum of the barrier strengths of all the paths between two given vertices:

d MB u (x , x) = min π∈Π(x , x) τ u (π). (2) 
It is common to derive a distance map from the MBD. Given a minimum barrier strength function and a set X of seed points, a distance map S MBD from every point x of the image u to the set X of seed points can be computed by:

S MBD u (x , X) = min x∈X d MB u (x , x). (3) 
In the next section, we propose to use this distance to recover the object boundaries in the image, as a basis to compute our Boundary-Aware loss (BALoss) function.

Proposed method 4.1 Overview of the method

Our method is a seeded two-step approach (Fig. 2), in which the object boundaries can be extracted during training and eventually encourage the network to focus in boundary struc- 

MBD-cut

The boundaries of the regions are extracted using the MBD-cut. This preserves the topology of the image and measures the quality of the segmentation. MBD distance has a low sensitivity to noise, blur, and seed positions [START_REF] Strand | The minimum barrier distance[END_REF][START_REF] Zhang | Minimum barrier salient object detection at 80 fps[END_REF]. In our approach, we push the idea of seeded graph-cut based segmentation further by using the high-level features computed from a convolutional neural network. We denote the likelihood prediction map as u, and the ground truth label image as S. We respectively consider the seed point x i inside the region S i as the foreground seed and all the seeds x j of the neighbor connected components S j as the background seeds. We respectively compute the MBD distance map from the background/foreground seeds by using the front propagation approach [START_REF] Huang | Water flow driven salient object detection at 180 fps[END_REF] (see Eq. 3). The idea behind is that we consider the seed pixels as sources of water, the water can flow from source pixels to other pixels with a different priority which is determined by the MBD cost. We use the priority queue to keep track of the order of pixels to propagate the distance value to every pixel in the image (lower cost means earlier flow). The algorithm stops when all pixels in the image were scrutinized. The complexity of our front propagation algorithm is O(n log n), where n is the number of pixels in the image. Our method is efficiently computed, so that we can get the MBD distance map immediately from the set of the foreground and background seed points. The background/ foreground MBD distance maps are illustrated in Fig. 3(b) and 3(c). After computing these maps, we are able to label the pixels as background or foreground based on their distances to the seed set. We also recover the boundary of the region C i (pink contour in Fig. 3(d)). The segmented boundary is pivotal in computing the Boundary-Aware loss function.

Training using the Boundary-Aware loss

Most CNN-based segmentation networks use the binary cross-entropy (BCE) as a loss function. It is defined as a measure of the difference between two probability distributions for a given random variable or set of events [START_REF] Jadon | A survey of loss functions for semantic segmentation[END_REF]. BCE is known to be adapted to measure boundary shifts [START_REF] Borse | InverseForm: A loss function for structured boundary-aware segmentation[END_REF][START_REF] Kokkinos | Pushing the boundaries of boundary detection using deep learning[END_REF]. Here, we present a new BAL function to enhance segmentation results and detail how to implement it. The BAL function is computed from the values of the binary extracted contour C i of the region S i using the MBD-cut. The total loss is the sum of the BALoss for every region:

L BAL (u, GT ) = ∑ i∈N BCE(u o C i , GT o C i ), (4) 
where u represents the likelihood prediction map, GT is the boundary ground truth image, and o is the Hadamard product. Our loss function measures the segmentation quality for each region. We target to check if there are leakage positions on the boundaries, thereby ensuring the topological structure in the image. A high value of the Boundary-Aware loss corresponds to many broken connections. When the loss function L BAL is zero, the prediction image is exactly the same as the ground truth image. The pixel-wise binary cross-entropy remains crucial to maintain the global information of every pixel in the image.

L total = L BCE (u, GT ) + α L BAL (u, GT ), (5) 
where α tunes the trade-off between both losses. 

Experiments

Our evaluation of the BAL performance is two-fold: an ablation study to assess its relevance and a comparison with current state-of-the-art segmentation methods. Datasets. In our experiments, we use three highly challenging neuron Electron Microscopy Images: ISBI12 [START_REF] Arganda-Carreras | Crowdsourcing the creation of image segmentation algorithms for connectomics[END_REF], ISBI13 [START_REF] Arganda-Carreras | 3D segmentation of neurites in EM images challenge[END_REF], and CREMI [START_REF] Cremi | Miccai challenge on circuit reconstruction from electron microscopy images[END_REF]. The ISBI12 EM Segmentation Challenge [START_REF] Arganda-Carreras | Crowdsourcing the creation of image segmentation algorithms for connectomics[END_REF] is a neuron segmentation challenge that contains 30 images which have size 512×512, ISBI13 [START_REF] Arganda-Carreras | 3D segmentation of neurites in EM images challenge[END_REF] consists of 100 images with larger size 1024×1024. For the CREMI dataset [START_REF] Cremi | Miccai challenge on circuit reconstruction from electron microscopy images[END_REF], we test on volume A which has 125 slices with size 1250×1250.

Setting. We use a 3-fold cross-validation. To train the neural network, Adam [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF] optimization algorithm is used with a learning rate of 10 -4 , and an early-stop mechanism to stop the training when the validation loss is no longer decreasing during 15 epochs. α (Eq. 5) is set to a value of 0.1. We noted a limited sensitivity.

Evaluation metrics. The final goal of the work is to perform (dense) instance segmentation of cells, enabling to count them accurately for instances. The partition-based measures for instance segmentation provide a clear insight into the performance of the target applications. The creators of these three datasets suggest to use of the Variation of Information (VOI), Adapted Rand Index (ARI), and CREMI-score to facilitate the comparison with existing and future approaches. In detail, ARI is the maximal F-score of the foreground-restricted Rand index (a measure of similarity between two clusters). This version of the Rand index excludes the zero component of the original labels (background pixels of the ground truth). VOI is a measure of the distance between two clusters, closely related to mutual information. VOI is used to measure split and merge errors of the segmentation results. CREMI-score is the geometric mean of Adapted Rand Error (ARAND) and VOI scores, where ARAND = 1-ARI.

Ablation study

We show the impact of our BALoss, based on the improvement of the likelihood map predicted with a standard U-Net on the CREMI dataset [START_REF] Cremi | Miccai challenge on circuit reconstruction from electron microscopy images[END_REF]. We respectively predict the likelihood maps with and without the BALoss from the same pre-trained weights, then compute the difference between both. The impacts of the BALoss are illustrated in Fig. 4. We can see that the improvements concentrate mostly on the boundaries of regions. Since it is clear that our BALoss function penalizes the broken connection on the boundaries, the quality of boundaries increases in every training epoch. Further, the positive results are demonstrated in Tab. 1. It shows that BALoss can encourage to refine the boundary of regions, which leads to a significant improvement of the evaluation scores (ARI and VOI scores). 

Comparison with state-of-the-art methods

We compare our method with various open-sources state-of-the-art segmentation models (MALIS [START_REF] Turaga | Maximin affinity learning of image segmentation[END_REF], MALA [START_REF] Funke | Large scale image segmentation with structured loss based deep learning for connectome reconstruction[END_REF], U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF], DC U-Net [START_REF] Lou | DC-UNet: Rethinking the U-Net architecture with dual channel efficient CNN for medical image segmentation[END_REF], Mosin [START_REF] Mosinska | Beyond the pixel-wise loss for topology-aware delineation[END_REF], Iternet [START_REF] Li | Iternet: Retinal image segmentation utilizing structural redundancy in vessel networks[END_REF] and different loss functions ( Dice [START_REF] Sudre | Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations[END_REF], Lovasz Softmax [START_REF] Berman | The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks[END_REF], Boundary Loss [START_REF] Kervadec | Boundary loss for highly unbalanced segmentation[END_REF] and Topoloss [START_REF] Hu | Topology-preserving deep image segmentation[END_REF]). Tab.1 shows the quantitative results for three different neuron image datasets, ISBI12, ISBI13, and CREMI. Our first observation is, our BALoss outperforms the current stateof-the-art models for maintaining the topology-correctness in segmentation tasks (the first block in the table). Our method (U-Net + BAL) outperforms the best score of these models, improving +0.0172 (compared to Mosin [START_REF] Mosinska | Beyond the pixel-wise loss for topology-aware delineation[END_REF] in CREMI), +0.0522 (compared to Mosin [START_REF] Mosinska | Beyond the pixel-wise loss for topology-aware delineation[END_REF] in ISBI2012) and +0.0898 (compared to Iternet [START_REF] Li | Iternet: Retinal image segmentation utilizing structural redundancy in vessel networks[END_REF] in ISBI2013) in CREMIscore. According to MALIS and MALA results, it is worth noting that the high noise levels usually exist in biomedical images, the maximum affinity models for predicting every pair of pixels required to be highly tuned. Comparatively, our method correctly localizes pixels of the weak edges and enforces the network to correct pixels in the boundary (due to the implicit denoting which occurs during the training procedure). Nonetheless, the complexity of the affinity matrix between pixels is expensive O(n 2 ) where our method is in O(nlog(n)). We also test the semantic segmentation method Segfix (which achieves state-of-the-art in natural images application), however, it is not designed to recover thin connections, finer details of structures such as the location of boundaries (membranes and tiny neurons). Our second observation is that BALoss has a better performance compared to existing loss functions for topology-preserving purposes (the second block in the table This confirms that the BALoss can potentially be applied in different neural network architectures. Based on these observations, the common conclusion that can be drawn for the three datasets is that our BALoss function improves the segmentation results in the matter of the two topological correctness metrics (∼5% in average for ARI and ∼15% in average for VOI). It is noteworthy that, especially for the ISBI12 dataset, our loss function significantly enhances the segmentation results. To conclude, our BALoss function is able to detect the leakage positions and refine boundaries, thereby improving segmentation results. Fig. 5 shows qualitative results with and without the BAL function. We can see that our method combined with U-Net is able to enhance the broken connections and leads to more correct regions than with U-Net only. In particular, our BALoss successfully retrieves more regions all over the images in each iteration. Our method exhibits more consistency in terms of structure and topology and it is able to close contour regions in the image, hence improving the segmentation results. More results are shown in the supplementary material. We also investigate the relationships between ARI index and threshold values for likelihood images. For each image, we binarize the corresponding likelihood map with nine different values from 0.1 to 0.9 and compute the ARI index with different thresholds between the prediction and the ground truth images (Fig. 6). We note that our methods get the better area under the curve (AUC) compare to other methods. This is an advantage since the "best" threshold remains unknown and is image-dependent.
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Figure 1 :

 1 Figure 1: Importance of broken connection restoration for image segmentation and the topological correction of our method. (a) Neuron image. (b) U-Net boundary prediction [48]. (c) Resulting segmentation [48]. A leakage position leads to a confusion between regions. (d) Boundary prediction with our topological correction method. (e) Final segmentation.

Figure 2 :

 2 Figure 2: Overview of our approach. A set of seed points (red points) are placed from the ground truth. A boundary prediction image is the output of the CNN network (step A). Leakage positions are highlighted inside the red squares. We locate the boundaries of regions by using the MBD cut algorithm (blue lines), then compute the BALoss function (step B).tures. To train the neural network, we are using the combination of the binary cross-entropy (BCE) and the BALoss. First, a convolutional neural network (CNN) predicts a boundary likelihood map from the original image. Secondly, the BALoss is computed from the extracted boundaries of regions by using the MBD-cut with a seed node provided inside each connected component of the label ground truth image. These seeds are the points that have the maximum Euclidean distance value w.r.t the boundary of each connected component. We respectively consider the inside/outside seeds of the region as foreground/background seeds, then compute a foreground/background distance map on the prediction image thanks to the MBD distance. Through comparing the values on these two distance maps, the boundaries of the regions are identified and the BALoss is derived by computing the pixel-wise error between the extracted boundaries and the ground truth image. The advantage of our BALoss function is that it helps the network to focus on important broken missing pixels on each region, thus preserving the topological structure of the image, without any class information.

Figure 3 :

 3 Figure 3: (a) Prediction image from CNN network (green/red points are foreground/background seeds). (b) Background MBD distance map from the seed of neighbor regions. (c) Foreground MBD distance map and the MBD cut (pink contour). (d) The density map represents the values of the prediction image. Z-axis represents the value of pixels the prediction image. Leakage position is shown inside the highlight square.

Figure 4 :

 4 Figure 4: Positive impact of our Boundary-Aware loss function. Regions in the red squares demonstrate the closing action on the boundaries of the regions. The magnitude of the improvement is illustrated as from blue to red color.

Figure 5 :

 5 Figure 5: Qualitative results of our proposed method compared to a standard U-Net. (a) The original image. (b), (c) The segmentation results of U-Net and U-Net + BAL. Regions in the red squares demonstrate the closing action on the boundaries of the regions. (d), (e) The recall maps of U-Net and U-Net + BAL. The scale from bad to good segmentation is illustrated as from red to blue color.

Table 1 :

 1 Quantitative results for different models on ISBI 13, ISBI 12 and CREMI datasets. Best scores are underlined while performance improvements brought by BAL are in bold.

		Method	ARI ↑	VOI ↓	CREMI score ↓
		MALIS [56]	0.6136 (±0.0185)	2.6983 (±0.1474)	1.0210 (±0.1033)
		MALA [17]	0.7663 (±0.0093)	2.4138 (±0.0843)	0.7510 (±0.0684)
		Mosin [40]	0.9185 (±0.0125)	0.6278 (±0.0434)	0.2262 (±0.0406)
	CREMI dataset	Iternet [33] Segfix [66] U-Net + Dice [52] U-Net + Lovasz [6] U-Net + BL [28] U-Net + Topoloss [21]	0.9240 (±0.0390) 0.7416 (±0.0098) 0.8929 (±0.0094) 0.8935 (±0.0065) 0.8466 (±0.0285) 0.9257 (±0.0012)	0.7147 (±0.0208) 1.9595 (±0.1122) 0.4904 (±0.0650) 0.4569 (±0.0175) 0.5279 (±0.0543) 0.8021 (±0.0168)	0.2330 (±0.0339) 0.7115 (±0.0854) 0.2291 (±0.0582) 0.2205 (±0.0159) 0.2845 (±0.0484) 0.2441 (±0.0156)
		DC U-Net [37]	0.9184 (±0.0212)	0.7215 (±0.0621)	0.2426 (±0.0591)
		DC U-Net + BAL	0.9321 (±0.0026)	0.6647 (±0.0552)	0.2124 (±0.0515)
		U-Net + wBCE [48]	0.9246 (±0.0023)	0.7562 (±0.0238)	0.2388 (±0.0221)
		U-Net + BAL	0.9366 (±0.0064)	0.6893 (±0.0102)	0.2090 (±0.0105)
		MALIS [56]	0.6399 (±0.0178)	2.385 (±0.119)	0.9267 (±0.0872)
		MALA [17]	0.6239 (±0.0954)	3.0663 (±0.3966)	1.0738 (±0.3850)
		Mosin [40]	0.7833 (±0.0128)	1.1332 (±0.0799)	0.4955 (±0.0643)
	ISBI12 dataset	Iternet [33] Segfix [66] U-Net + Dice [52] U-Net + Lovasz [6] U-Net + BL [28] U-Net + Topoloss [21]	0.751 (±0.0379) 0.7461 (±0.0217) 0.7804 (±0.0348) 0.7961 (±0.0088) 0.7621 (±0.0336) 0.7944 (±0.0246)	1.4614 (±0.1332) 1.5555 (±0.0747) 1.1325 (±0.0897) 1.3239 (±0.0640) 1.4576 (±0.2064) 1.1438 (±0.1860)	0.6032 (±0.1144) 0.6284 (±0.0652) 0.4986 (±0.0804) 0.5195 (±0.0523) 0.5888 (±0.1649) 0.4849 (±0.1505)
		DC U-Net [37]	0.7518 (±0.0404)	1.3736 (±0.2432)	0.5839 (±0.1913)
		DC U-Net +BAL	0.7983 (±0.0312)	1.0101 (±0.0567)	0.4514 (±0.0552)
		U-Net+ wBCE [48]	0.7203 (±0.0417)	1.5644 (±0.0423)	0.6615 (±0.0720)
		U-Net + BAL	0.8138 (±0.0191)	1.0557 (±0.0257)	0.4433 (±0.0290)
		MALIS [56]	0.5355 (±0.0187)	3.5324 (±0.0995)	1.2809 (±0.0848)
		MALA [17]	0.7713 (± 0.046)	3.4541 (±0.5073)	0.8887 (±0.4223)
		Mosin [40]	0.7504 (±0.0403)	1.5018 (±0.1379)	0.6122 (±0.1200)
	ISBI13 dataset	Iternet [33] Segfix [66] U-Net + Dice [52] U-Net + Lovasz [6] U-Net + BL [28] U-Net + Topoloss [21]	0.8686 (±0.0014) 0.7995 (±0.0356) 0.8078 (±0.0268) 0.7993 (±0.0184) 0.6805 (±0.1048) 0.8864 (±0.0265)	1.5856 (±0.1412) 2.4555 (±0.1452) 1.2030 (±0.1436) 1.3103 (±0.0953) 1.6832 (±0.4705) 1.4623 (±0.0493)	0.4564 (±0.1226) 0.7016 (±0.1454) 0.4808 (±0.1205) 0.5128 (±0.0799) 0.7333 (±0.3688) 0.4076 (±0.0584)
		DC U-Net [37]	0.7336 (±0.0137)	2.0900 (±0.1748)	0.7462 (±0.1314)
		DC U-Net + BAL	0.8061 (±0.0096)	1.5523 (±0.2235)	0.5486 (±0.1808)
		U-Net + wBCE [48]	0.8919 (±0.0164)	1.4270 (±0.1284)	0.3927 (±0.1169)
		U-Net + BAL	0.9023 (±0.0237)	1.3761 (±0.0753)	0.3666 (±0.0754)

  ). The U-Net + BAL has the highest performance in CREMI-score, boosting up +0.0115 (compared to ARI w.r.t segmentation thresholds. Our method achieves better the results across all threshold values. U-Net + Lovasz[START_REF] Berman | The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks[END_REF] in CREMI), +0.0416 (compared to U-Net + Topoloss[START_REF] Hu | Topology-preserving deep image segmentation[END_REF] in ISBI2012) and +0.0410 (compared to U-Net + Topoloss[START_REF] Hu | Topology-preserving deep image segmentation[END_REF] in ISBI2013). BALoss is model-agnostic for any neural networks (the third block in the table). By applying BALoss into U-Net and DC U-Net, the CREMI-score increases +0.0298 and +0.0302 in CREMI, +0.2182 and +0.1325 in ISBI2012, +0.0261 and +0.1987 in ISBI2013, in original U-Net and DC U-Net respectively.
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Conclusions

In this paper, we propose a new Boundary-Aware loss function embedded into a seeded approach for the purpose of image segmentation. Our loss function, based on the Minimum Barrier Distance cut algorithm is able to locate the object boundaries in the image and integrate the boundary information into the neural network. Moreover, our loss function focuses on penalizing the broken connections for each connected component, thereby recovering the closed contours in the image. Furthermore, the loss can be adapted in deep segmentation networks and systematically improve the results of the networks. Trained with the new loss function, our framework outperforms state-of-the-art methods in a matter of Variation of Information and Adapted Rand Index, with very limited parameter sensitivity.
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