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I. INTRODUCTION

Over the past few decades, elastography techniques have been developed for the in vivo investigation of the mechanical properties of soft tissues [START_REF] Ophir | Elastography: a quantitative method for imaging the elasticity of biological tissues[END_REF][START_REF] Wells | Medical ultrasound: imaging of soft tissue strain and elasticity[END_REF][START_REF] Venkatesh | Magnetic resonance elastography of liver: Technique, analysis, and clinical applications[END_REF]. This study focuses on quasi-static ultrasound elastography, which produces strain images of biological media under compression. Commonly, only the axial strain (along the acoustic beam) is estimated. However, some authors have shown that other components of strain could also provide useful information about the observed tissue. For instance, shear strain gives information about lesion mobility [START_REF] Xu | Normal and shear strain imaging using 2D deformation tracking on beam steered linear array datasets[END_REF][START_REF] Hendriks | 3-D Single Breath-Hold Shear Strain Estimation for Improved Breast Lesion Detection and Classification in Automated Volumetric Ultrasound Scanners[END_REF]. Various methods can be found in the literature that compute the different components of tissue displacement [START_REF] Friemel | Relative performance of twodimensional speckle-tracking techniques: normalized correlation, nonnormalized correlation and sum-absolute-difference[END_REF][START_REF] Liu | A 2D strain estimator with numerical optimization method for soft-tissue elastography[END_REF][START_REF] Deprez | 3D estimation of soft biological tissue deformation from radio-frequency ultrasound volume acquisitions[END_REF]. Nonetheless, ultrasound images are characterized by anisotropic resolution, which leads to coarser quality of fields for the displacement components orthogonal to the axial direction. This results in strain images highly affected by noise. Yet, accurately estimating all strain components remains crucial for fully analyzing a medium, not only through a more complete visualization of the tissue response, but also through implementation of further computational methods necessary to reconstruct mechanical parameters such as Young's modulus [START_REF] Doyley | Model-based elastography: a survey of approaches to the inverse elasticity problem[END_REF].

Different methods have been introduced to improve displacement estimation, especially of lateral one. Some developments focus in particular on the data used for displacement computation. In [START_REF] Xu | Normal and shear strain imaging using 2D deformation tracking on beam steered linear array datasets[END_REF][START_REF] Techavipoo | Estimation of Displacement Vectors and Strain Tensors in Elastography Using Angular Insonifications[END_REF], for instance, the displacement is determined from estimations performed along multiple insonification angles. In [START_REF] Liebgott | Direct estimation of the lateral strain field using a double oscillating point spread function with a scaling factor estimator[END_REF], Liebgott et al. propose the use of specific radiofrequency (RF) images more adapted to track the tissue lateral displacement than conventional ones. These RF images include lateral oscillations, resulting from a particular beamforming. Other work focuses instead on the estimation method itself to reduce noise in elastograms, notably with the development of regularization-based approaches [START_REF] Konofagou | A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and Poisson's ratios in tissues[END_REF][START_REF] Hu | An H∞ Strategy for Strain Estimation in Ultrasound Elastography Using Biomechanical Modeling Constraint[END_REF][START_REF] Rivaz | Real-Time Regularized Ultrasound Elastography[END_REF][START_REF] Al Mukaddim | Locally optimized correlation-guided Bayesian adaptive regularization for ultrasound strain imaging[END_REF]. Guo et al. [START_REF] Guo | A PDE-based regularization algorithm toward reducing speckle tracking noise: a feasibility study for ultrasound breast elastography[END_REF] recently proposed a partial differential equation (PDE)-based regularization method to smooth the displacement fields using the (quasi) incompressibility property of soft tissues [START_REF] Lubinski | Lateral displacement estimation using tissue incompressibility[END_REF]. This method has shown promising results, especially with an important increase in the contrast-to-noise ratio (CNR) for lateral strain images.

In this paper, we investigate 2D strain tensor imaging and more particularly the improvement in strain images produced by complementing our motion-tracking approach [START_REF] Brusseau | In Vivo Response to Compression of 35 Breast Lesions Observed with a Two-Dimensional Locally Regularized Strain Estimation Method[END_REF] with the PDE-based regularization method [START_REF] Guo | A PDE-based regularization algorithm toward reducing speckle tracking noise: a feasibility study for ultrasound breast elastography[END_REF]. The overall method we have developed works as follows: 1) both axial and lateral displacements are estimated with our motion-tracking technique, 2) the resulting displacement fields are then regularized, and 3) axial, lateral, and shear strain images are computed from the gradient of the estimated displacements. The performance of the method is assessed with phantom and in vivo breast data. Numerical models of the phantom experiments are also provided for a more thorough analysis of the estimated fields. Finally, a quantitative assessment of the method is carried out, with the computation of CNR values.

II. METHOD A. Estimation of the displacement fields

As previously mentioned, a large variety of approaches are available to estimate the displacement fields from RF ultrasound images. The method developed by our group and used in this study is briefly explained here. We refer the reader to the following papers for additional information [START_REF] Brusseau | In Vivo Response to Compression of 35 Breast Lesions Observed with a Two-Dimensional Locally Regularized Strain Estimation Method[END_REF][START_REF] Brusseau | 2-D Locally Regularized Tissue Strain Estimation From Radio-Frequency Ultrasound Images: Theoretical Developments and Results on Experimental Data[END_REF].

The basic principle of the method is the following: let us consider I 1 and I 2 , two RF images acquired during medium deformation. First, I 1 is subdivided into multiple 2D regions of interest (ROIs) of the same dimensions, regularly positioned and overlapping each other. Then, for each one of these ROIs, its deformed replica is identified in I 2 via the maximization of the correlation coefficient (CC). Contrary to most motion-tracking methods, where only a 2D shift is considered, an axial scaling factor α is also introduced to describe the ROI transformation between I 1 and I 2 . This factor allows us to take into account the shape variations that occur in the RF signal due to the medium deformation. Along the lateral direction, however, scaling is ignored because of the coarser image resolution. Finally, the axial strain can be directly deduced from the scaling factor (ε = α -1) without requiring derivative computation. Note that the correlation coefficient provides an indication of the match achieved during parameter estimation, the closer the value to 1, the better is the match. In case of insufficient match (CC < 0.75), the estimates are labeled as untrustworthy and a local regularization is applied to ensure continuity with spatially close estimates characterized by CC ≥ 0.75.

Typically in elastography, sequences of RF images are acquired. With our method, parameters are calculated between consecutive RF images, in order to limit errors due to outof-plane motion. Indeed between two successive frames, it is expected that such motion will be lower than between the first and the last frames of the sequence. The final displacement fields and axial strain maps are then obtained by combining the contribution of all pairs of images. As will be illustrated in the Results section, this method enables to accurately estimate the axial displacement field but the lateral one remains generally too noisy to be used directly for strain computation.

B. Regularization

The second step consists in regularizing the previously estimated displacements using the (quasi) incompressibility property of tissues. Contrary to the regularization described in step 1, whose application is local, the one here is performed unconditionally over the whole image. Let d be a displacement previously estimated in the domain Ω, whose axial and lateral components are ū and v, respectively. Regularized displacement fields u and v are obtained by minimizing an objective function F, as follows: Minimize u,v F (u, v), with :

F (u, v) = Ω (∇ • d) 2 + λ 1 Ω (u -ū) 2 + λ 2 Ω (v -v) 2 (1)
where λ 1 and λ 2 are the weighting coefficients. The first term of the objective function is the incompressibility condition, while the other two are the data fidelity terms. λ 1 and λ 2 , which are both constant and positive, modulate the regularization weight on the fields.

The problem is solved using a similar approach to the one described in [START_REF] Guo | A PDE-based regularization algorithm toward reducing speckle tracking noise: a feasibility study for ultrasound breast elastography[END_REF], where F is minimized via the gradient descent method and the Euler-Lagrange equations. Displacement derivatives are approximated using finite differences and the Neumann boundary condition at ∂Ω, ∇d n = 0, with n the outward normal at the boundary. λ 1 and λ 2 are tuned by visual inspection of the results to improve them in terms of noise reduction and inclusion/lesion detection. Lastly, the convergence criterion is chosen as :

pixels ((u k -u k-1 ) 2 + (v k -v k-1 ) 2 ) < ξ (2) 
with u k and v k the axial and lateral displacements at iteration k, and ξ = 10 -8 , considering that the results remain quasi-unchanged below this threshold. The fields are thus iteratively updated until the convergence criterion or the maximum number of iterations (here N = 50, 000) is reached.

III. RESULTS AND DISCUSSION

An initial assessment of the method was carried out with breast phantoms, two CIRS models 059 (Computerized Imaging Reference Systems, Norfolk, VA, USA), and also with breast tissues in vivo. For each region examined, a typical quasi-static elastography experiment was performed, i.e., the medium was cautiously and continuously compressed and decompressed by the operator using the ultrasound probe while the RF images were acquired. Data were collected with an Ultrasonix ultrasound scanner equipped with an L14-5W/60 transducer. The sampling frequency was 40 MHz. In this paper, three examples of results are presented, with displacement and strain fields obtained during medium compression (cases #1 and #3) and decompression (case #2), for a more complete illustration.

Before detailing the results, a few comments on the choice of the weighting coefficients need to be made. First, it is interesting to note that the values of λ 1 and λ 2 were kept unchanged in all three cases, i.e., 10 and 0.03, respectively. This choice was made for λ 1 to prevent any loss of quality in the axial component of the displacement, and for λ 2 to allow for sufficient modifications in the lateral component. Indeed, large values of λ limit field variations, and with these weights, the regularization will mostly modify the lateral fields.

Two phantom results are first presented: one for a region containing a single inclusion (case #1, Fig. 1a, Fig. 2), and the other, two inclusions one above the other (case #2, Fig. 1b, Fig. 3). In both cases, the inclusions are approximately three times stiffer than the background (information provided by the manufacturer). For these two cases, a numerical model was built with Comsol Multiphysics R [START_REF]Comsol Multiphysics R v. 5.5[END_REF]. The simulations reproduce the configuration of 3D media containing inclusion(s) that are deformed using a transducer, with the applied displacement manually adjusted to obtain values similar to those measured experimentally. Although it is not possible to perfectly model the experiment, these simulations will provide elements to which the experimental results can be compared, such as the range of lateral strain values or shear strain patterns. This should help us to assess and analyze the experimental fields.

Results from case #1 are displayed in Fig. 2, and case #2 in Fig. 3. Although the second case comprises two inclusions spatially close, similar results can be observed. Unlike the axial displacement (a), the lateral one before regularization (d) is noisy, and cannot provide useful information about the phantom lateral strains (m). However, both displacements remain in agreement with the simulations (c,f). After regularization, the lateral displacement (e) is smoother compared with (d). This smoothing is sufficient to significantly enhance the lateral strain (n), resulting in an image where the inclusions are clearly revealed. Moreover, the lateral strain field (n) is consistent with its corresponding simulated field (o), and exhibits the same range of strain values, which was not the case before. Indeed, before regularization, the lateral strain (m) is highly affected by noise, leading to a much wider range of values. Fig. 2. Phantom results -case #1. From top to bottom: axial displacement, lateral displacement, axial strain, shear strain, and lateral strain. From left to right: fields before regularization, after regularization, and simulated. A 8 × 2 median filter was used in (j) and (k). Fig. 3. Phantom results -case #2. From top to bottom: axial displacement, lateral displacement, axial strain, shear strain, and lateral strain. From left to right: fields before regularization, after regularization, and simulated. A 8 × 2 median filter was used in (j) and (k).

By contrast, the regularization has no visible impact on the axial displacement (a,b), and thus on the axial strain (g,h), as expected. In the final axial and lateral strain images (h,n), the inclusions are easily detectable and it is worth noting that these inclusions are less deformed than the surrounding medium, which perfectly reflects a stiffer area. Concerning the shear strain (k), the improvement is weaker than for the lateral strain, and compared with the simulation (l) the field presents some line artefacts along the lateral direction. These artefacts are mainly induced by the differentiation of the lateral displacement field along the axial direction. A 8 × 2 median filter was applied to this field before shear computation, which reduces but not completely annihilates them. Nevertheless, (k) shows similar patterns to (l) and the presence of the inclusions can be detected. Finally, it is important to highlight that, although our method is a 2D approach, the regularized strain fields are consistent with a medium deforming in 3D.

The results obtained with breast tissues are now presented using archived data from a previous breast elastography study, which was approved by the local ethics committee (case #3, Fig. 1c, Fig. 4). Detailed information about this study can be found in [START_REF] Brusseau | In Vivo Response to Compression of 35 Breast Lesions Observed with a Two-Dimensional Locally Regularized Strain Estimation Method[END_REF]. It should be underlined that data acquisition was conducted similarly to that described above. The case selected is one of an invasive ductal carcinoma (IDC). Once again, the regularization effect on the axial displacement (a-b) and strain (e-f) remains limited, while it drastically improves the lateral components (c-d, i-j). In both axial and lateral regularized strain fields, the abnormal area is perfectly distinguishable and appears stiffer than the surrounding tissues, which is in agreement with the observations generally made for IDCs in elastography studies. Further analysis is nonetheless difficult, due to the high complexity of biological media and the lack of information regarding the mechanical properties of the examined tissues, which also prevent any simulations from being performed.

Finally, the CNR is calculated to provide a more quantitative metric to assess the performance of the proposed method. The CNR is widely employed in elastography studies as an indicator of lesion detectability within an image. It is computed as follows :

CN R = 2(s i -sb ) 2 σ 2 i + σ 2 b ( 3 
)
where s and σ denote the mean and the standard deviation of the strain, respectively, within a region inside the inclusion (subscript i) and the background (subscript b). These regions are selected using two circular ROIs of identical size and positioned at the same depth. For each inclusion, two CNRs are computed, one by selecting the background region on the right of the inclusion (Fig. 5a) and the other one on the left (Fig. 5b). The multiplying factor (MF) is also calculated as the ratio of CNRs after and before the regularization. The results are presented in Table I.

We can directly point out that the results support the above visual observations for both phantoms (case #1 and case #2) and in vivo breast tissues (case #3). More precisely, CNR lateral significantly improved with the regularization, Fig. 5. Illustration of the two configurations for ROI selection with the axial strain image, case #1 (Fig. 2g).

with values in the range [0.68 -9.40] vs [0.09 -0.38] before regularization. It is also interesting to note that CNR lateral values after regularization are quite close to CNR axial ones, which confirms that the inclusions/lesion are now as easily detectable in the lateral strain images as they are in the axial ones. A specific comment can be made for the bottom inclusion in case #2, which shows more variations in the results than the other cases. For this inclusion, the multiplying factor is extremely different, 2.16 and 34.86, depending on where the background region is selected. This difference is due to the higher heterogeneity in the strain values for the region selected on the right of the inclusion. Concerning the axial strain, we showed that the regularization process has no visible impact on these fields. For all that, a slight improvement in CNR axial can be observed, with a multiplying factor ranging from 1.04 to 1.15.

IV. CONCLUSION

In this paper, 2D strain tensor imaging was investigated involving the use of a specific regularization method. Results show the strong contribution of this regularization when facing complex and noisy data, especially for the lateral displacement and strain fields. Beyond a more complete analysis of the medium strain, these results are particularly interesting for mechanical parameter reconstruction. These are, however, only preliminary results and future work will focus on a more thorough assessment of the proposed method, but also on the introduction of modifications to still improve the results, especially the shear strain. 

Fig. 1 .

 1 Fig. 1. B-mode images. From left to right: phantom -case #1, phantomcase #2, and in vivo breast tissues -case #3.

Fig. 4 .

 4 Fig.4. Breast tissue results with an abnormal area corresponding to an IDC -case #3. From top to bottom: axial displacement, lateral displacement, axial strain, shear strain, and lateral strain. Fields obtained before (left) and after (right) regularization. A 8 × 2 median filter was used in (g) and (h).

  

  

TABLE I CONTRAST

 I -TO-NOISE RATIOS (CNRS) BEFORE AND AFTER REGULARIZATION, AND THE CORRESPONDING MULTIPLYING FACTORS (MFS) * .

			CNR axial			CNR lateral	
		Before Reg.	After Reg.	MF	Before Reg.	After Reg.	MF
	Case #1 -right	9.38	10.07	1.07	0.35	9.40	26.47
	Case #1 -left	10.51	11.19	1.06	0.35	8.82	24.93
	Case #2 -top right	7.57	7.89	1.04	0.27	5.54	20.32
	Case #2 -top left	7.09	7.81	1.10	0.38	5.84	15.33
	Case #2 -bottom right	2.20	2.30	1.04	0.31	0.68	2.16
	Case #2 -bottom left	3.76	3.98	1.06	0.09	3.25	34.86
	Case #3 -right	4.12	4.73	1.15	0.10	2.17	21.95
	Case #3 -left	5.64	6.10	1.08	0.18	3.01	16.40

This work was performed within the framework of the LABEX CELYA (ANR-10-LABX-0060/ANR-11-IDEX-0007) and LABEX PRIMES (ANR-11-LABX-0063/ANR-11-IDEX-0007). Ultrasound data acquisition was performed using equipment provided by PILoT, INSA-Lyon, France.