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Abstract We develop a methodology for classifying defects based on their morphology
and induced mechanical response. The proposed approach is fairly general and relies on
morphological operators (Angulo & Meyer, 2009) and spherical harmonic decomposition as
a way to characterize the geometry of the pores, and on the Grassman distance evaluated
on FFT-based computations (Willot, 2015), for the predicted elastic response. We imple-
ment and detail our approach on a set of trapped gas pores observed in X-ray tomography
of welded joints, that significantly alter the mechanical reliability of these materials (La-
court et al, 2020). The space of morphological and mechanical responses is first partitioned
into clusters using the “k-medoids” criterion and associated distance functions. Second,
we use multiple-layer perceptron neural networks to associate a defect and correspond-
ing morphological representation to its mechanical response. It is found that the method
provides accurate mechanical predictions if the training data contains a sufficient num-
ber of defects representing each mechanical class. To do so, we supplement the original
set of defects by data augmentation techniques. Artificially-generated pore shapes are ob-
tained using the spherical harmonic decomposition and a singular value decomposition
performed on the pores signed distance transform. We discuss possible applications of the
present method, and how medoids and their associated mechanical response may be used
to provide a natural basis for reduced-order models and hyper-reduction techniques, in
which the mechanical effects of defects and structures are decorrelated (Ryckelynck et al,
2020).
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1 Introduction

Our ability to design and produce materials with desired properties has dramatically im-
proved, and commonly integrates sensors, control, simulation data and computerized pre-
dictions (see reviews in [5, 6, 7]). These techniques combine material imaging [8] and
digital-twins frameworks [9] for manufacturing and evaluating material properties. In me-
chanics, numerous applications concern control, defects and anomaly detection [10] or
fatigue-design of materials [11, 12]. Machine learning algorithms, notably, have been pro-
posed in the aeronautical field [13], fabrication process [14] or pipelines applications [15],
and have been combined with numerical computations to study defects in ball bearings [16].
Simulation-driven machine learning methods based on existing mechanical models are es-
pecially attractive as they avoid the explicit parametrization of defects being modeled.
Assessing and certifying the mechanical properties of structures containing defects nev-
ertheless requires advanced micro-mechanical models, as well as non-destructive imaging
techniques such as X-ray tomography [17] or ultrasonic measurements [18].

This is due to the recognition that composites (or, for that matter, porous) microstruc-
tures, often exhibit widely-varying effective responses, as demonstrated by homogenization
theories [19, 20] and in optimal-design problems [21]. A broad range of mechanical prop-
erties may be achieved by tailoring the inner geometrical arrangement of microstructures,
as surveyed in e.g. [22, 23, 24]. Aside for a few rigorous results obtained for particular
geometries, e.g. the Eshelby [25] or Vigdergauz [26] inclusions, the effect of the shapes of
pores on the overall mechanical response is difficult to quantify even for linearly-elastic
media, and usually involves sophisticated mathematical tools. In plane strain, the presence
of corners [27], up to the limiting case of a crack tip [28], bottlenecks [29, 30], and high-
aspect ratios are known to be mechanically-determining factors, as highlighted by studies
based on conformal mappings [31] or radon transforms techniques [32].

Although these rigorous and (semi-)analytical results are useful as guides, they are
restricted to linear media under plane strain or stress, with notable exceptions [33, 34].
They do not allow one to explore the links between morphology and mechanical response,
important in industrial problems. The latter often involve inverse-design problems within
a given class of microstructures or morphologies, that results from manufacturing con-
straints [35, 36]. In energetic granular materials, for instance, particles shape and size de-
pend on crystallography and may be controlled by surface treatment, to some extent [37].
Furthermore, the overall material response alone, characterized by an effective stiffness
tensor, is insufficient for determining the full mechanical response. The local response,
sensitive to the internal microstructure arrangement of a given material system, must be
accounted for. Damage localization, which leads to brittle or ductile fracture in composite
materials, is driven by the local stress state in the microstructure, which is itself a complex
result of the load distribution within the material.

Lately, shape statistics based on morphological operators have been devised [1, 38]
and so-called shape spaces [39] have gained attraction as a versatile method for quantify-
ing shapes, seen as points in a high-dimensional metric space representing Fourier-based
expansions. On a sphere, the Laplace-Beltrami eigenfunctions have an explicit form in
terms of spherical harmonics [40, 41], which can then be used to represent continuous
shapes [42], seen as deformation of the sphere, or as mapping between a sphere and an
arbitrary shape. This decomposition is especially useful for modeling data on a regular
grid (i.e. on images), in computer graphics [43], medical image analysis [44] or material
science [45]. In the context of mechanics, sophisticated image analysis approaches based
on machine-learning methods have already been employed to detect, and more generally
classify, “critical” defects as exemplified in several industrial problems [15, 14]. Other ap-
proaches have sought to infer the mechanical response of materials using temperature
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Fig. 1 Views in three dimensions of three non-spherical defects, segmented from the tomography image
of welded joints.

fields [46]. These methods can be supplemented by transfer learning [47] and shape explo-
rations techniques to determine mechanically-relevant criteria for assessing the effect or
criticality of defects.

The purpose of the present work is twofold. First, a methology is developed to explore
and classify defects based on shapes and mechanical response, using morphological trans-
forms, spherical harmonics, and the Grassmann distance. To illustrate our approach, a set
of defects previously observed in tomography images of welded joins is analyzed to serve
as a model problem. Second, use is made of machine learning methods to compare and
correlate the resulting classifications. The adequacy of the method for detecting critical
defects, and other possible applications, are discussed, as well as future works, such as
those exploring the dependency of our results on the choosen metrics.

The present article is organized as follows. Sec. (2) presents the set of defects used as
the basis for the present study, whereas Sec. (3) deals with the various distances used for
clustering, including full-field mechanical computations. Our main results, which concern
the mechanicaly-based clustering of shapes, are given in Sec. (4). These results are com-
pared to those obtained after data augmentation of the initial set of defect in Sec. (5). We
conclude in Sec. (6).

2 Data set of defects and goal of the present work

The present work is based on a data set of defects obtained in L. Lacourt’s PhD thesis [48].
These defects have been extracted from a segmented X-ray tomography image of welded
joints, see [3]. The data set consists in 1288 defects in total, each containing between 500
and 100, 000 voxels. Smaller defects present in the original image have been discarded in
the present study. Slightly more than half of the defects are close to spheres, whereas
the rest of them display various convex and non-convex shapes (Fig. 1), see [49]. After
segmentation, each defect is embedded in a bounding box in 3D, with edges aligned with
the axis (e1, e2, e3) of a Cartesian coordinates system. The shape has been rotated so that
its first ans second principal axis are aligned with e1 and e2. A reflection with respect to the
plane (e1, e2) is carried out so that the highest absolute coordinate along e3 is positive.
Finally, a homothety is performed so that the dimension of the shape along axis e1 is
1/4 that of the embedding box. For all shapes, the embedding box is a cube containing
L3 = 803 voxels. Accordingly, the shapes have varying volume fractions, but the same
diameter with respect to their bounding box, . This is so that cracks or pores with very
high aspect ratios can be discretized with similar resolution.

The effects of such defects on the mechanical response of a structure can be efficiently
estimated using the two-scales hyper-reduction method proposed in [3] for fatigue. In
this method, schematized in Fig. (2), the effect of the overall structure and of defects
are dissociated, whereas interactions between the two are taken into account by the far-
field [50, 51]. In practice, a reduced basis is computed for the structure without defect
and another one for the defect. A “global reduced basis” is then computed by transferring
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Fig. 2 Schematic view of the hyper-reduction method. The structure and defects are treated separately.
Orange: fusion zone; grey: base metal. Areas in white are not meshed. In the classical method [3],
numerical computations are performed for each new defect (rectangle a). In the proposed approach, the
pre-computed mechanical response of a nearest defect is used (rectangle b).

both reduced basis on the real mesh containing the defect and concatenating them. Using
this reduced basis, a “hyper-reduced” simulation is performed on a reduced domain of
integration (Fig. 2, orange and grey regions). As such, numerical computations are carried
out on a sane structure without pores, and on isolated defects, rather than on the entire
structure containing defects. Generally speaking, the method is most efficient when dealing
with complex and time-consuming constitutive-laws. Speed-up as high as 102 and 103 have
been obtained in fatigue in mechanics, for elastoplastic behavior, and about 10 in linear-
elastic cases [4].

While the hyper-reduced method improves on standard finite element techniques, com-
puting the reduced basis of defects can be time-consuming. This point needs to be ad-
dressed in industrial applications where the effect of defects must be quantified in near
real-time. Often, the pores shape is random, but follows a certain probability distribution
that needs to be estimated. The mechanical responses of shapes close to one another need
not be computed twice, in general. However, as noted in Sec. (1), while different shapes may
yield similar mechanical response, small difference such as the presence of corners, could
induce different mechanical responses. The goal of this work is to investigate whether one
may pick an appropriate reduced basis for a defect by learning the mechanical responses
of a set of other defects, and how they relate to their shapes. To do this, the mechanical
computations for the fields around a defect (rectangle a, Fig. 2) are replaced by statistical
learning, making use of pre-computed mechanical fields used as training data (rectangle b,
Fig. 2). The full scheme in Fig. (2) will not be implemented in the present work. Instead
we focus on the task in rectangle (b) of the same graph, and consider linear elasticity as
a proof of concept for our approach.

3 Mechanical and morphological distances

In the following, we make use of a Fourier-based scheme with rotated discrete Green oper-
ator [2] to carry out mechanical computations. The method uses periodic boundary condi-
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(a) (b)

Fig. 3 2D cut of two longitudinal and shear strain components εyy (a) and εyz (b) for the middle
defect in Fig. (1), with axis ey and ez vertical and normal to the figure. Macroscopic strain loading:
Eyy = 〈εyy〉 = 1% (color scale in percent).

tions, relevant for quasi-isolated defects and has been found to be efficient when compared
to finite element, both in terms of memory computations, accuracy and CPU time [52].
For each defect, six FFT computations with prescribed overall strain ε are carried out,
corresponding to the six independent strain loadings, in our case Ei = 〈εi〉, (i = xx, xy,
xz, yy, yz, zz) with Ej = 0 (j 6= i). Accordingly, the data consists in a fourth-order ten-
sorial field, denoted localization tensor in homogenization theories, which has both minor
and major symmetry. Figure (3) shows as an example two strain components obtained
under uniaxial extension. The fluctuation of the strain field inside the pore depends on
the choice of the Green operator and has no physical meaning, except for the mean of the
strain in the pore. Accordingly, the strain field inside the pore is replaced by its mean in
all mechanical computations.

In the rest of this study, use is made of the Grassman distance [53, 54] schematized
in Fig. (4), for evaluating the dissimilarity between mechanical responses. Consider two
matrices V1, V2 ∈ RN ×RN representing the full-field mechanical response of two defects,
where N = 6 is the number of applied macroscopic loadings and N = 6L3 are the number
of strain components in all voxels for a given loading. The Grassman distance between V1
and V2 is given by:

dg(V1, V2) = ‖Θ‖F =

√∑
i

θ2i , (1)

where ‖ · ‖F is the Frobenius distance and Θ is a diagonal matrix with eigenvalues θi
obtained from the singular value decomposition:

V t1 · V2 = W1 · cos (Θ) ·W t
2 , W t

1 ·W1 = W t
2 ·W2 = I, (2)

and I is the identity, and W1, W2 ∈ RN × RN are orthogonal matrices. Distance (1)
measures the dissimilarity between two defects by considering the subspaces (Grassman
manifolds) generated by the set of strain responses for each loading to the two defects [55].
The distance is appropriate for mechanical responses with the same number of applied
loadings. In the more general case of time-varying loadings, with different number of time
steps for each defect, the Schubert distance [56] may be used instead.

The Grassmann distance involves a singular value decomposition performed on matrix
V t1 ·V2 (see Eq. 2) of size N×N . These computations become time-consuming when a large
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Fig. 4 Schematic representation of the Grassmann distance for the mechanical clustering.

(a) (b)

Fig. 5 Histograms of the Grassmann distances for defects 1 − 400 (a) and corresponding point-cloud
representation (b). The distance is estimated using the volume of the surrounding box Ω, the faces ∂Ω
of the surrounding box or computed using the entire domain.

number of objects (more than 1, 200 here) must be compared to one another. To improve
on the computation of the Grassmann distances, we define a subdomain Ω of size (L/2)3,
included in the bounding box, and containing all defects. We define two alternative pseudo-
Grassmann distances, computed as in (1) with the data for V1 and V2 restricted to either
Ω or its boundary ∂Ω. The computations of the pseudo-Grassmann distances in Ω and ∂Ω
is much more efficient as the bounding box Ω has a volume eight times smaller compared
to the entire domain. Histograms for the (pseudo-)Grassmannn distances between 400
defects are represented in Fig. (5a). The distribution of distances for the pseudo-Grassmann
distance computed using ∂Ω is strongly different from that of the Grassmann distance,
indicating that the former can not be substituted to the latter. However, this is not so for
the pseudo-Grassmann distance computed on the entire subdomain Ω which is close to
the results obtained for the Grassmann distance, see Fig. (5b). Accordingly, in the rest of
this study, the Grassman distance is evalued on the subdomain Ω only.

The shape of defects is quantified by two means, a morphological and spectral decom-
position. Consider first the morphological transform based on the signed distance function:

f(x) =

{
d(x, ∂P) if x ∈ Pc,
−d(x, ∂P) if x ∈ P,

(3)
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(a) (b)

Fig. 6 Two shapes and their reconstruction with spherical harmonics (right). a) A cube. b) The middle
defect in Fig. (1).

for a pore P, with boundary ∂P . This distance is obtained by propagating a distance
function with quasi-Euclidean metric, and leads to spherical iso-lines far from the defect.
The signed distance fields for two defects P1, P2 is vectorized into two arrays denoted F1

and F2 ∈ RL
3

and we denote “morphological distance” the distance:

dm(P1,P2) = ‖F1 − F2‖2, (4)

where ‖ · ‖2 is the Euclidean distance.

We also define a distance based on the spectral decomposition for the Laplace-Baltrami
expansion [45, 57]. This expansion can be conveniently written in terms of spherical har-
monics in the case of the sphere [58]. The latter form a basis for square-integrable functions
on the unit sphere and this decomposition can accordingly be used to characterize star-
shaped defects. We briefly recall how this spectral decomposition is estimated on digital
images (the reader is refered to [58] for a detailed discussion). The decomposition reads,
in spherical coordinates (θ, φ):

xk(θ, φ) =
∑

0≤`, |m|≤`

cmk`Y
m
` (θ, φ), Ym` (θ, φ) =

√
2`+ (`−m)!

4π(`−m)!
Pm` cos(θ)e

imφ, (5)

where P are Legendre polynomials and xk are the coordinates (k = 1, 2, 3) of points along
the surface of the defect. In practice, a set of 25× 25 pixels are picked along the surface of
the object, distributed uniformly along all directions from the center, providing values for
the xk(θ, φ). The center is the minimial of the signed distance function. The double sum
in (5) is truncated to |m| ≤ ` ≤ `max = 10 and a least-square optimization procedure is
used to determine the coefficients cmk`. The latter are used to define the distance:

dsh(P1,P2) =

√∑
k`,m

‖cmk,`(P1)− cmk,`(P2)‖2. (6)

Conversely, Eq. (5) can be used to reconstruct a shape, for a given set of values cm` . Two
shapes and their associated reconstitution are shown in Fig. (6). The difference between
the two are a consequence of the truncation of the spectral decomposition, and of the
way interpolation points on the surface are chosen, i.e. uniformly distributed along all
directions on the sphere rather than uniformly-distributed on the surface of the object.
This reconstruction is imperfect and only captures some of the features of each shape.
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Fig. 7 Clustering provided by the k-medoids algorithm using the Grassmann, morphological and spher-
ical harmonics distances. Medoids on right.
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(a) (b)

Fig. 8 a) Amount of information recovered by the multi-dimensional scaling vs. number of dimensions,
for the Grassman-based distance (see Fig. 7). b) Intra-clusters distance vs. number of clusters.

Fig. 9 Confusion matrix showing the number of shapes in Grassmann-based clusters with respect to
clusters based on the morphological distance (left) and the spherical harmonics distance (right)

4 Clustering analysis

In this section, we consider the k-medoids clustering algorithm, which provides us with a
set of classes as well as a most-central point (the “medoid”) in each class, that is present
in the data set. The classification algorithm, which minimizes distances to the medoids, is
based on the matrix of distances between points, and does not require the coordinates of
each point [59]. Additionaly, since the medoid is present in the data set, its pre-computed
reduced basis can be used in hyper-reduced methods for taking into account defects that
belong to a known mechanical class.

We split the data set into two groups, a training set of 936 defects and a testing set
containing 508 defects. The training set corresponds to the data collected on two-third of
the welded joint and has been obtained on two tomography images. The test data cor-
responds to the rest of the welded joint, and has been obtained by a third tomography.
Accordingly, the data in the two sets are not randomly drawn from a collection of defects,
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Fig. 10 Classifier methodology.

but instead are obtained from different sources, as would be expected in industrial appli-
cations. Our results are shown in Fig. (7) for the Grassman distance as well as the two
shape distances. The points cloud representation in three dimensions is obtained by mul-
tidimensional scaling [60]. Partly-overlapping clusters on this representation may actually
be separated when additional dimensions are considered. In this view with reduced dimen-
sion, the data form a continuous cloud of points. The medoids (right) exhibit spherical,
oblate and non-convex shapes. The amount of information contained in the multidimen-
sional scaling is plotted as a function of the dimension in Fig. (8a) in the case of the
Grassman distance, showing a strong decrease of the amount of unknown information up
to d ≈ 8 and a slower decrease after that. The effect of the number of clusters is shown in
Fig. (8b), which represents the intra-clusters distance, i.e. the sum of the distances of each
shape to its medoid. This distance decreases with the number of clusters. The “typical”
number of clusters corresponding to this decrease is about 5, at which point the curve
displays an elbow.

Shape clustering as determined by the k-mdeoids analysis can not be used directly to
assign a defect to its mechanical cluster, as shown in Fig. (9). This figure represents the
confusion matrix that summarizes the number of shapes that belong to a given mechanical
cluster and to a cluster based on either the morphological of spherical harmonics distance.
Cluster labels are the same as in Fig. (7). The color scale indicates a concentration of shapes
from a geometrical cluster into a specific mechanical cluster. Assigning a mechanical cluster
to a shape based on its morphological or spherical-harmonics cluster would result in 74%
and 87% erroneous labeling, respectively. Instead, we consider a classifier based on a dense
neural networks (Fig. 10). The input to the network are the distances to the medoids based
on the morphological distance. The network is trained to predict the label of the cluster
corresponding to the Grassmann distance. It contains three hidden layers of 15 neurons
each and is optimized on the log-loss function:

L = −
M∑
i=1

yji log(pji ), (7)

where M is the number of classes, yji is a binary indicator equal to 1 if class label i is the

correct classification for observation j, and 0 otherwise, and pji is the predicted probability
of the observation j being of class i. The activation function is a rectified linear function.
The training data is split into two different sets: a standard training set to fit parameters,
representing 90% of the initial set, and a validation set representing the remaining 10%
of the initial set of data. The validation set provides a stop criterion. Loss and accuracy
curves, computed using (7), are shown in Fig. (11).
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Fig. 11 Loss function and accuracy vs. number of epochs for the training of the neural network, with
(b, d) and without (a, c) data augmentation, and using the morphological (a, b) and spherical harmonics
(b, d) distances.

Fig. (12) shows the confusion matrix representing the predicted and true labels, that
summarizes the assignement by the network of a mechanical cluster for the various shapes,
either in the training or test sets. The percentage of misclassified shapes by cluster is
given on the right column. To quantify these results, we define an error on the training set
etr = Mtr/Ntr as the ratio of correct label predictions Mtr divided by the total number
of predictions Ntr in the training set. We consider likewise a similarly-defined error ete
for the testing set. We also introduce a second error criterion e′tr, equal to the mean
of the proportion of misclassified shapes in each (non-empty) mechanical cluster for the
training data, and likewise e′te for the testing set. These various errors highlight sub-
optimal performances of etr = 13%, e′tr = 10% for the training data, as well as ete = 18%
and e′te = 26% for the testing set. Higher errors etr = 16%, e′tr = 19%, ete = 29% and
e′te = 34% are observed when using spherical harmonics instead of the morphological
distance (Fig. 12, rows 3 and 4). These results may be attributed to the small number of
defects in some classes, as will be investigated in the next section.

5 Data augmentation

To improve on the results presented in Sec. (5), we focus on data augmentation. Both
the morphological and spherical harmonics distances are defined as Euclidean distances of
vectors in multi-dimensional spaces. As explored in [1], these types of representations can
be used for data interpolation as well. Let us consider the linear interpolations (0 ≤ s ≤ 1):

F (s) = sF (P1) + (1− s)F (P2), cmk`(s) = s cmk`(P1) + (1− s)cmk`(P2), (8)
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a)

b)

c)

d)

Fig. 12 Left column: confusion matrices for the training (rows a, c) and testing sets (rows b, d)
between Grassmann clustering (true label) and the label predicted by the dense neural network using
the signed (rows a, b) and spherical harmonics distances (rows c, d). Right: percentage of misclassified
shapes in each cluster.
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Fig. 13 Interpolation between two shapes. a) Morphological distance. b) Spherical harmonics distance.

(a) (b)

Fig. 14 a) Shapes in the three first singular components space. b) Examples of shapes in the three
first singular components space.

with respect to two shapes P1 and P2, where F and cmk` are defined in Eqs. (3), (4)
(6) and (5). The vectors F (s) and cmk`(s) provide continuous interpolations between the
two shapes, as illustrated in Fig. (13). An alternative approach consists in using a sin-
gular value decomposition on the matrix containing as columns the spherical harmonics
decomposition cmk`(Pi) for all defects Pi. Considering as an example the first three singu-
lar values, a new shape may be represented as a point in a three-dimensional space. By
paving this space with a set of points, one generates new defects that interpolate between
the shapes corresponding to the three singular values. The set of points representing shapes
in the coordinates system corresponding to the first three singular values is represented in
Fig. (14a). Fig. (14b) shows random shapes generated in this space.

We now generate 3, 128 artificial shapes with the above data augmentation techniques.
The linear interpolation method in Eq. (8) is used preferentially on set of shapes that
belong to mechanical clusters with few shapes. We then classify the shapes according to
the k-medoids method, as described in Sec. (4). Results corresponding to the mechanical,
morphological and spherical harmonics clustering are shown in Fig. (15). The points cloud
are much more dense and homoegneous as compared to the same results obtained without
data augmentation (Fig. 7) and suggest the latent space is better represented. Despite
this, mechanical clusters can not be predicted using either the morphological or spherical
harmonics clustering (Fig. 16): their respective errors read ete = 77% and ete = 67%.

Again, use is made of a classifier based on a dense neural network that is trained
to predict the mechanical cluster using distances to the medoids. Fig. (17) shows the
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Fig. 15 Clustering provided by the k-medoids algorithm using the Grassmann, morphological and
spherical harmonics distances, after data augmentation. Medoids on right.
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(a) (b)

Fig. 16 Confusion matrices showing the number of shapes in the clustering based on the Grassmann
distance and that based on either the morphological (a) and spherical harmonics (b) distance, after
data augmentation.

No data augmentation Data augmentation
etr(%) e′tr(%) etr(%) e′tr(%)

Morphological distance 13 10 6 5
Morphological distance 18 26 6 19

Spherical harmonics 16 19 8 8
Spherical harmonics 29 34 9 27

Table 1 Percentage of wrongly-assigned labels, averaged over all shapes, or over mechanical clus-
ters, for the training data, with either the morphological or spherical harmonics distances, using data
augmentation.

confusion matrix obtained for the training and testing sets, when either the morphological
or spherical harmonics distances are considered. The proportion of misclassified shapes
by cluster is shown on the right. In the case of the morphological distance, the errors
for the training set read etr = 6%, e′tr = 5% and ete = 6%, e′te = 19% for the testing
set, When spherical harmonics are considered, errors are slighly higher. They read etr =
8%, e′tr = 8% for the training data and ete = 9%, e′te = 27% for the testing set (see
Tab. 1 for a summary of the various errors. In any case, these errors are significantly
lower than that obtained without data augmentation (Fig. 12), highlighting the benefits
of data augmentation. Furthermore, the errors of the neural network consist most often
in predicting a label which is a neighbor of the correct mechanical cluster, with similar
mechanical response. This materializes into a band-diagonal structure for the confusion
matrices.

In any case, these errors are significantly lower than that obtained without data aug-
mentation (Fig. 12), highlighting the benefits of data augmentation. Furthermore, the
errors of the neural network consist most often in predicting a label which is a neighbor
of the correct mechanical cluster, with similar mechanical response. This materializes into
a band-diagonal structure for the confusion matrices.
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Fig. 17 Left column: confusion matrices for the training (rows 1, 3) and testing sets (rows 2, 4)
showing the true Grassmann clustering label vs. the label predicted by the neural network using the
morphological (rows 1, 2) and spherical-harmonics distance (rows 3, 4). Right: percentage of misclassified
shapes in each cluster after data augmentation.
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6 Concluding remarks

In the present work, data-analysis and clustering methods have been proposed for clas-
sifying the mechanical properties of porous defects. Although the approach is restricted
to linear elasticity, it is fairly general and can be adapted to nonlinear or time-dependant
mechanical responses. While we use conventional clustering and data analysis tools, the
methods rely on distances defined in the space of the defects mechanical responses (i.e.
a 3D tensorial field) and on geometrical distances based on a morphological transform
and a spectral decomposition. Such distances allow us to explore a wide space of defects,
and perform data augmentation, without the need for explicit parametrization of shapes.
Our methodology is detailed on a set of defects observed in welded joints. It is found that
reliable results on clustering require a large number of shapes in each mechanical class.
Furthermore, a simple neural network was able to link mechanical and geometrical clusters
with a satisfying accuracy, within the space of defects close to that observed in welded
joints. Nevertheless, the method applies to arbitrary shape, and may be extended to other
types of defects. These results should be useful in particular for a refined two-scale hyper
reduction method, as outlined in the introduction, where mechanical properties of defects
may be selected on the fly, without solving balance equations.

Possible improvements and future works include hierarchical clustering, extension of
the spherical harmonics decomposition to non-star shaped defects, and data augmentation
with shape extrapolation, instead of interpolation. In particular, the spherical harmon-
ics decomposition provides a natural basis for data augmentation as well as mechanical
clustering.
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Mécanique, vol. 348, no. 10-11, pp. 911–935, 2020.

5. P. Osterrieder, L. Budde, and T. Friedli, “The smart factory as a key construct of
industry 4.0: A systematic literature review,” International Journal of Production
Economics, vol. 221, p. 107476, 2020.

6. A. Kusiak, “Smart manufacturing,” International Journal of Production Research,
vol. 56, no. 1-2, pp. 508–517, 2018.
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