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1 Université de Paris, UMR-S 1266 INSERM, Institute of Psychiatry and Neuroscience of Paris, Paris, France, 2 Laboratory of
Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and
Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], La Plata, Buenos
Aires, Argentina, 3 Department of Internal Medicine, Section of Endocrinology and Metabolism, Leiden University Medical
Center, Leiden, Netherlands, 4 Institut de génétique et de biologie moléculaire et cellulaire (IGBMC), UMR7104 CNRS/U1258
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France, 6 Université de Lille, Faculté des Sciences et Technologies, Villeneuve d’Ascq, France, 7 Marrow Adiposity and Bone
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Using preproghrelin-deficient mice (Ghrl-/-), we previously observed that preproghrelin
modulates pulsatile growth hormone (GH) secretion in post-pubertal male mice. However,
the role of ghrelin and its derived peptides in the regulation of growth parameters or
feeding in females is unknown. We measured pulsatile GH secretion, growth, metabolic
parameters and feeding behavior in adult Ghrl-/- and Ghrl+/+ male and female mice. We
also assessed GH release from pituitary explants and hypothalamic growth hormone-
releasing hormone (GHRH) expression and immunoreactivity. Body weight and body fat
mass, linear growth, spontaneous food intake and food intake following a 48-h fast, GH
pituitary contents and GH release from pituitary explants ex vivo, fasting glucose and
glucose tolerance were not different among adultGhrl-/- andGhrl+/+male or female mice.
In vivo, pulsatile GH secretion was decreased, while approximate entropy, that quantified
orderliness of secretion, was increased in adult Ghrl-/- females only, defining more
irregular GH pattern. The number of neurons immunoreactive for GHRH visualized in
the hypothalamic arcuate nucleus was increased in adult Ghrl-/- females, as compared to
Ghrl+/+ females, whereas the expression of GHRH was not different amongst groups.
Thus, these results point to sex-specific effects of preproghrelin gene deletion on pulsatile
GH secretion, but not feeding, growth or metabolic parameters, in adult mice.

Keywords: ghrelin, growth hormone, food intake, sexual dimorphism, pulsatility
INTRODUCTION

The ghrelin gene (GHRL) encodes proghrelinprohormone,which in turngives rise to acylated andnon-
acylated ghrelin as well as obestatin, which are mainly secreted from cells of the stomach (1). The most
studied proghrelin-derived product is the 28-residue acylated peptide ghrelin that acts via the growth
hormone secretagogue receptor (GHSR). Ghrelin administration in humans and rodents induces a
n.org October 2021 | Volume 12 | Article 7545221
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plethoraof effects (2, 3) including stimulationofGHsecretion (2, 4).
In rodents, this effect is principally mediated through GHRH
neurons of the hypothalamic arcuate nucleus (ArcN) (5). Also,
ghrelin treatment rapidly increases food intake (6), glycaemia (7–9),
glucocorticoid secretion (10) and affects cognitive behaviors (11).
Strikingly, the notion that endogenous ghrelin plays a leading
physiological role has been challenged by studies showing that
genetically-modifiedmice lacking ghrelin displayminor alterations
(12). Inparticular, adultGhrl-/-mice fedona regular diet show food
intake, body weight, body size and body composition
indistinguishable from those observed in wild-type littermates
(13–17). Also, mice lacking the enzyme ghrelin-O-acyl-
transferase (GOAT), which n-acetylates ghrelin, and mice with
ablation of proghrelin-expressing cells show no food intake, body
growth nor body weight alterations (18–22). Despite that ghrelin
system is believed to play a major role under energy deficit
conditions, such as fasting, when plasma ghrelin levels increase,
fasted Ghrl-/-mice show no alterations in plasma parameters (e.g.,
glucose, insulin, leptin) nor in compensatory hyperphagia when
refed (23–25). Still, young Ghrl-/- male mice show reduced
amplitude of GH secretory pulses (26). Moreover, some studies
found that Ghrl-/- mice fed on a high-fat diet (HFD) show lower
bodyweight and fatmass (24, 27, 28). Interestingly,GHSR-deficient
(Ghsr-/-)miceusually showmore robust alterations, as compared to
Ghrl-/- mice, which has been attributed to the fact that the latter
retain ligand-independent effects ofGHSRand/or signalingofother
proghrelin-derived peptides (25, 29).

The vast majority of the research investigating Ghrl-/- mice
has been conducted in males. Specifically, some of the above
referred studies did not include females at all (24, 25, 30). Other
studies merely assessed body weight or food intake whereas the
assessment of plasma hormone levels was exclusively performed
in males (17, 23). Notably, several studies suggest a modulatory
role of sex on ghrelin actions (31–34), but sex differences in
Ghrl-/- mice, and specifically on GH secretion, have not been
investigated thoroughly. In GHSR-deficient mice, only females
fed on standard chow diet had lower body weight and adiposity,
as compared to wild-type littermates (35). Furthermore, Ghsr-/-
female but not male mice fed on a HFD exhibited reduced taste
responsiveness to linoleic acid compared to wild-type littermates
(36). Finally, adult Ghsr-/- female but not male mice had reduced
pulsatile GH secretion (37). We thus questioned a possible role of
ghrelin gene in regulating GH secretion and its physiological
consequences in female mice during adulthood, when the
changes in pulsatile GH secretion and pattern associated with
the rapid linear growth and pubertal maturation has ended (38,
39). Specifically, we investigated if ghrelin gene deletion induces
sex-specific dimorphic effects on GH secretion, feeding behavior
or body and metabolic parameters in adult 20-40-week-old mice.
MATERIALS AND METHODS

Animals
Ghrl-/- mice were originally obtained from Dr Tomasetto
(IGBMC, France) and backcrossed on a C57BL/6J genetic
background (26). Heterozygous mice were raised at the
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Institute of Psychiatry and Neuroscience of Paris (INSERM
UMR-S 1266) and bred to obtain Ghrl-/- mice and wild-type
littermates (Ghrl+/+ mice). Offspring were genotyped as
previously described (26) and housed in a room under
controlled illumination (7:00 to 19:00) and temperature (22–
24°C). Mice had free access to chow diet (3% fat, 16% protein,
60% carbohydrate, 4% fibers, 2.79 kcal/g, Safe A04, France) and
water, except when indicated. Experiments were conducted in
20-40-week-old male and random cycling female mice.

Assessment of Body Weight, Body Length
and Body Composition
A cohort of anesthetized mice (6 Ghrl+/+ and 7 Ghrl-/- males; 8
Ghrl+/+ and 7 Ghrl-/- females) was used to assess naso-anal
distance. Another cohort of mice (4-7 Ghrl+/+ and 4-6 Ghrl-/-
males; 4-9 Ghrl+/+ and 4-6 Ghrl-/- females) was dissected to
weigh pituitary gland, liver, heart, spleen, pancreas, testis/ovaries,
kidneys, adrenals and fat depots (mesenteric, inguinal, perirenal,
perigonadal, interscapular brown adipose tissue).

Repeated Blood Sampling for GH Assay
Ultradian GH secretion was assessed as previously described (26,
40). Briefly, mice (5 Ghrl+/+ and 8 Ghrl-/- males; 8 Ghrl+/+ and
6 Ghrl-/- females) were acclimated to handling and blood
sampling collection to minimize stress. Then, sequential tail-tip
whole venous blood samples (2 ml/sample) were collected every
10-min over a 6-h-sampling period (9:00 to 15:00) (See
Supplementary File for details).

Assessment of Pulsatile GH Secretion
GH concentration time series were analyzed using an automated
deconvolution method following established parameters (41).
Measures include the number of pulses (over the 6-h sampling
period) and mean pulse mass (i.e., mean of the summed pulses)
as well as basal (i.e., non-pulsatile), pulsatile (i.e., sum of
individual GH pulses) and total GH secretion (i.e., sum of
basal plus pulsatile). The orderliness of GH secretion was
calculated by Jack-Knife Approximate Entropy (JkApEn) as
described earlier (42, 43) (See Supplementary File for details).

GH Pituitary Content and GH Release
From Pituitary Explants
Two different cohorts of mice were used to assess total GH
pituitary contents (12 Ghrl+/+ and 7 Ghrl-/- males; 5 Ghrl+/+
and 5 Ghrl-/- females) and basal and GHRH-stimulated GH
release from perifused pituitary explants (4 Ghrl+/+ and 4
Ghrl-/- males; 4 Ghrl+/+ and 4 Ghrl-/- females) as previously
described (26) (See Supplementary File for details). Samples
were frozen at -20°C until GH determination.

GH Enzyme Immuno-Assay
GH concentrations in whole blood, pituitary contents and media
were determined using an in-house mouse GH ELISA (40). (See
Supplementary File for details). The assay sensitivity was 0.038
ng/mL, and intra- and inter-assay coefficients of variations were
3.2% and less than 8.75%, respectively.
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https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Hassouna et al. Preproghrelin, GH Pulsatility in Mice
Assessment of Spontaneous Food Intake
Mice (8 Ghrl+/+ and 6 Ghrl-/- males; 7 Ghrl+/+ and 8 Ghrl-/-
females) were individually housed in automated feeding stations
equipped with high precisions sensors (LabMaster System, TSE
Systems, Germany) to record spontaneous food intake and meal
patterns as previously reported (44) (See Supplementary File
for details).

Fasting-Refeeding Protocol
As described before (25), individually housed mice (5 Ghrl+/+
and 5 Ghrl-/-males; 7 Ghrl+/+ and 6 Ghrl-/- females) were fasted
at 10:00 and refed 48-h later. Body weight and food intake was
daily monitored at 10:00 for four days after refeeding. Food
intake was calculated by subtracting the weight of the remaining
food at 10:00 to the weight of the initial food. Importantly, mice
fully tolerated a 48-h fasting period (25, 45).

Assessment of Blood Glucose and
Glucose Tolerance Test
Blood glucose was measured with a glucometer (GlucoFix
Premium, Menarini Diagnostics) at 10:00 and at 18:00 in fed
conditions as well as at 10:00 following a 24-h fast (8 Ghrl+/+
and 6 Ghrl-/- males; 8 Ghrl+/+ and 8 Ghrl-/- females). After
fasting, glucose was measured before and 15-, 30-, 60- and 120-
min after glucose intraperitoneal injection (2 g/kg body weight).

GHRH Immunostaining and Quantification
Brains of perfused mice (3Ghrl+/+ and 5 Ghrl-/-males; 5 Ghrl+/+
and 8 Ghrl-/- females) were post-fixed, frozen and coronally cut at
40 µm into four equal series. Chromogenic immunohistochemistry
against GHRH was performed as described before (46),
using a previously validated rabbit anti-GHRH antibody (47)
(immunoserum L0851, 1:10000) for 48-h at 4°C. Then, sections
were sequentially incubatedwith a biotinylated anti-rabbit antibody
and the avidin-biotin-peroxidase complex. A visible black/purple
signal was developed with a diaminobenzidine/nickel solution (See
SupplementaryFile for details).Quantificationswere performed in
the ArcN between bregma -1.58 and -2.06 mm, using the
anatomical limits, according to the Paxinos mouse brain atlas
(48). Total GHRH-immunoreactive cells were quantified,
and data were expressed as positive cells (GHRH+) per section.
Blind quantitative analysis was performed independently by
two observers.

Real-Time Quantitative PCR Measurement
Hypothalami were quickly dissected, frozen in liquid nitrogen
and stored at -80°C. The mRNAs were extracted with Trizol
reagent and cDNAs were obtained from the reverse transcription
of total RNA (ThermoFisher, Waltham, MA, USA). The mRNA
levels of Ghrh and Ghsr were quantified relative to the
housekeeping genes Ppia and Gapdh. Relative quantification
(RQ) was calculated relative to the Ghrl+/+ males (See
Supplementary File for details).

Statistical Analysis
Data are expressed as mean ± SEM, and statistical analyses were
performed using Statview software (SAS institute) or GraphPad
Frontiers in Endocrinology | www.frontiersin.org 3
Prism (GraphPad Software). Differences across sex and genotype
were identified by 2-way ANOVA, followed by multiple
comparisons, using Bonferroni post-hoc analysis. Differences
were considered significant when p<0.05.
RESULTS

Body Weight, Organ Weights, Body Fat
Partitioning, Metabolic Parameters,
Locomotor Activity, Spontaneous Food
Intake and Fasting-Induced Food Intake
Are Unaltered in Adult Ghrl-/- Mice
As shown in Table 1, body weight, naso-anal distance and organ
weights were not different in adult Ghrl-/- as compared to
Ghrl+/+ males and females, respectively. Moreover, fed
morning, fed evening and 24-h fasted blood glucose levels as
well as glucose tolerance were not different in adult Ghrl-/- as
compared to Ghrl+/+ males and females. Spontaneous diurnal
and nocturnal food intake, fasting-induced food intake
(Figure 1) and home cage ambulatory activity (not shown)
were not different in adult Ghrl-/- as compared to Ghrl+/+
males and females. In addition, meal number, mean meal size
and mean meal duration in ad libitum fed mice were not different
amongst genotypes (not shown). Finally, parameters of bones
architecture measured by micro-CT were not different in adult
Ghrl-/- as compared to Ghrl+/+ males and females (not shown),
although a tendency toward reduction of bone volume fraction
was observed (volume of mineral bone per unit volume of the
sample, BV/TV; ANOVA, genotype effect: p=0.0894, sex effect:
p<0.0001, sex x genotype effect: p=0.9014) in 80-week-old
mice only.

The Ultradian Pattern of GH Secretion Is
Altered in Adult Ghrl-/- Females, but Not in
Ghrl-/- Males
GH pituitary contents were not different in adult Ghrl-/-, as
compared to Ghrl+/+ males and females (Table 1). As reported
before (37), we observed a sexually dimorphic GH secretion
pattern. Indeed, mean pulse mass was higher in males than in
females (p<0.05 in both Ghrl+/+ and Ghrl-/-mice, post-hoc test),
whereas basal GH secretion and JkApEn values were lower in
males than in females (p<0.05 in both Ghrl+/+ and Ghrl-/- mice
for basal GH, p<0.01 in Ghrl+/+ mice and p<0.0001 in Ghrl-/-
mice for JkApEn, post-hoc test) (Figure 2). An increase in the
number of GH pulses in females as compared to males was
observed in Ghrl-/- mice only (p<0.01, post-hoc test).
Furthermore, we observed that the regularity of GH secretion
was decreased in Ghrl-/- female mice when compared to Ghrl+/+
female mice (Figure 2). More precisely, pulsatile GH secretion
and mean pulse mass were reduced by 43% and 56% respectively
in Ghrl-/- females as compared to Ghrl+/+ females (p<0.05 and
p<0.01 for pulsatile GH and mean pulse mass, respectively, post-
hoc test) while total and basal GH secretion were not
significantly affected by ghrelin deletion. The maximal pulse
amplitude was also reduced by 50% in Ghrl-/- compared to
October 2021 | Volume 12 | Article 754522
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Ghrl+/+ females (26 ± 4 versus 13 ± 3 ng/mL, p<0.05, post-hoc
test). In contrast, JkApEn values increased by 27% in Ghrl-/-
females as compared to Ghrl+/+ females (p<0.01, post-hoc test).
In males, we did not find genotype differences for any of the GH
secretion parameters, however, the inter-individual variability of
pulsatile GH, maximal pulse amplitude and mean pulse mass was
higher than in females (see representative GH profiles).

In Vitro Release of GH Is Unaltered in
Pituitary Explants From Adult Male and
Female Ghrl-/- and Ghrl+/+ Mice
To test if the alteration of the ultradian GH pattern in adult
Ghrl-/- females was due to modifications at the pituitary level, we
Frontiers in Endocrinology | www.frontiersin.org 4
assessed basal and stimulated GH secretion from pituitary gland
explants (Figure 3A). As reported earlier (26), basal and GHRH-
induced GH release were significantly higher in males than in
females (ANOVA, sex effect: p<0.0001). However, basal GH
release or GH release stimulated by GHRH or KCl was not
different in pituitary explants from Ghrl+/+ and Ghrl-/- mice in
either sex.

The Number of GHRH+ Neurons Increased
in ArcN of Adult Female, but Not Male,
Ghrl-/- Mice
The hypophysiotropic GHRH neurons of the ArcN control the
pulsatile pattern of GH secretion (39) and are sexually dimorphic (47).
A

B

C

D

FIGURE 1 | Spontaneous food intake and food intake in a fast-refeeding protocol in male and female Ghrl-/- mice. Feeding parameters in adult male and female
Ghrl+/+ and Ghrl-/- mice showing spontaneous food intake (A) and cumulative food intake (B) measured every hour over 3 days as well as diurnal, nocturnal and
24-h food intake averaged over 3 days (C). Daily food intake and 4-days cumulative food intake during re-feeding (D) in mice fasted for 48-h and then allowed free
access to food. Light and dark phases are denoted by white and grey rectangles on the x-axis. Data represent mean ± SEM. Number of mice in panels (A–C) males
(n=8 Ghrl+/+ males and 7 Ghrl-/-), females (n=8 Ghrl+/+ and 8 Ghrl-/-). Number of mice in panel D: males (n=5 Ghrl+/+ males and 5 Ghrl-/-), females (n=7 Ghrl+/+
and 6 Ghrl-/-).
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Thus, we estimated the sex and genotype effects on GHRH
immunoreactive signal in the ArcN. Our analysis measuring
the visualized GHRH+ cells in the ArcN revealed a significant
interaction between sex and genotype (ANOVA, sex effect:
p=0.7901, genotype effect: p=0.1185, sex x genotype interaction:
p=0.0145) (Figures 3B, C). The number of visualized GHRH+
neurons increased in Ghrl-/- females, as compared to Ghrl+/+
females (p<0.05, post-hoc test), whereas the number of GHRH+
neurons of Ghrl-/- and Ghrl+/+ males was not different. In the
hypothalamus, no genotype differences were found in the mRNA
levels ofGhrh (1.00 ± 0.14 inGhrl+/+males, 1.18 ± 0.14 inGhrl-/-
males, 0.74 ± 0.10 in Ghrl+/+ females, 0.82 ± 0.19 in Ghrl-/-
females) (ANOVA, sex effect: p=0.0599, genotype effect:
p=0.3961, sex x genotype interaction: p=0.7589), or Ghsr (1.00 ±
0.08 in Ghrl+/+males, 0.92 ± 0.10 in Ghrl-/-males, 0.83 ± 0.07 in
Ghrl+/+ females, 0.69 ± 0.02 in Ghrl-/- females) (ANOVA, sex
effect: p=0.0149, genotype effect: p=0.1482, sex x genotype
interaction: p=0.6274; with p<0.05 only for Ghrl-/- females vs.
Ghrl+/+ males, post-hoc test).
DISCUSSION

As compared to wild-type littermates, Ghrl-/- mice of both sexes
lack major alterations in body growth, metabolic parameters or
feeding behavior at adulthood. Adult Ghrl-/- females display,
however, decreased amplitude of GH secretion and increased
irregularity of secretion accompanied by increased immunoreactive
signal for GHRH in the ArcN without change in the pituitary GH
content or GH secretion from pituitary explants.
Frontiers in Endocrinology | www.frontiersin.org 5
Ghrl Deletion Affects Pulsatile GH
Secretion and Regularity of Ultradian
GH Pattern in Adult Female, but Not
Male, Mice
Among the proghrelin-derived peptides, ghrelin seems to play
the most powerful control on GH secretion. Indeed, ghrelin
treatment potently increases GH secretion in humans and
rodents. However, the role of endogenous ghrelin on GH
secretion has been more difficult to demonstrate. Endogenous
ghrelin seems to regulate the amplitude of GH secretion in
healthy men since ghrelin levels and GH pulse amplitude
strongly correlate (49). Pharmacological blockage of GHSR in
male rats decreased the amplitude of GH release but did not
affect the pattern of GH secretion (50). Also, no correlation was
found between acyl ghrelin or total ghrelin and GH plasma peaks
in freely behaving male rats (1, 51). In male rats, we previously
showed that ghrelin displays an ultradian pattern of secretion
through the light and dark periods with pulses occurring with a
frequency similar to GH (1). In mice, however, due to the small
volume of blood and the absence of ghrelin assays with sufficient
sensitivity, determining the ultradian pattern of ghrelin secretion
and a possible sexual dimorphic pattern of secretion are
challenging. To our knowledge, few studies have investigated
the link between endogenous ghrelin and GH secretion in
women or female rodents. Transgenic female, not male, rats
with reduced hypothalamic GHSR expression display reduced
pulsatile GH secretion (52). In contrast to adult males, adult
Ghsr-/- female mice showed a reduction of total, basal and
pulsatile GH secretion (37). Furthermore, Ghrl-/- and Goat-/-
male mice lack alterations of pulsatile GH secretion at adulthood,
TABLE 1 | Growth and body parameters, body fat partitioning and metabolic parameters in male and female Ghrl-/- mice.

Males Females Anova

Growth parameters Ghrl+/+ (n=6-12) Ghrl-/- (n=7-15) Ghrl+/+ (n=5-8) Ghrl-/- (n=5-7) Sex Genotype Sex x Genotype
Naso-anal distance (cm) 9.33 ± 0.08 10.19 ± 0.10 8.80 ± 0.22 8.93 ± 0.06 P=0.0608 p=0.0952 p=0.6642
GH (mg/mg proteins) 0.225 ± 0.021 0.278 ± 0.048 0.246 ± 0.045 0.245 ± 0.060 P=0.8819 p=0.5364 p=0.5129
Body parameters and fat partitioning Ghrl+/+ (n=4-7) Ghrl-/- (n=4-6) Ghrl+/+ (n=4-9) Ghrl-/- (n=4-6) Sex Genotype Sex x Genotype
Body weight (g) 33.1 ± 2.0 33.9 ± 1.4 25.2 ± 0.9 23.8 ± 0.7 P<0.0001 p=0.8415 p=0.4342
Pituitary gland (mg) 1.3 ± 0.3 0.9 ± 0.1 1.7 ± 0.2 2.5 ± 1.3 P=0.0994 p=0.7151 p=0.3061
Liver (mg) 1303.4 ± 80.3 1264.0 ± 93.3 1090.9 ± 83.8 996.5 ± 31.2 P=0.0066 p=0.4157 p=0.7367
Heart (mg) 167.9 ± 6.4 166.7 ± 8.1 130.8 ± 4.2 130.5 ± 5.6 P<0.0001 p=0.9043 p=0.9404
Spleen (mg) 97.8 ± 7.8 95.2 ± 5.1 82.6 ± 7.5 79.7 ± 4.9 P=0.0403 p=0.7005 p=0.9835
Pancreas (mg) 410.6 ± 29.5 388.2 ± 32.9 402.4 ± 43.0 359.5 ± 43.9 P=0.6486 p=0.4205 p=0.7989
Testis/ovary (mg) 98.8 ± 6.8 98.8 ± 4.2 78.0 ± 7.6 79.8 ± 3.8 – p=0.8834 –

Kidneys (mg) 450.6 ± 27.3 401.8 ± 12.6 389.4 ± 42.2 295.9 ± 17.5 P=0.0169 p=0.0387 p=0.4972
Adrenals (mg) 4.1 ± 0.5 3.2 ± 0.4 6.4 ± 0.4 6.3 ± 0.3 P<0.001 p=0.2499 p=0.3760
Mesenteric AT (mg) 420.7 ± 49.9 529.0 ± 88.7 286.8 ± 51.2 184.7 ± 44.5 P=0.0007 p=0.9597 p=0.0977
Inguinal AT (mg) 85.6 ± 17.0 68.5 ± 11.7 40.2 ± 5.4 34.2 ± 3.5 P=0.001 p=0.2908 p=0.6116
Perigonadal AT (mg) 815.9 ± 236.8 1137.2 ± 236.3 522.7 ± 41.0 446 ± 74.9 – p=0.4591 –

Perirenal AT (mg) 446.4 ± 125.4 502.3 ± 79.7 186.4 ± 16.3 163.8 ± 13.7 P=0.0004 p=0.8221 p=0.5967
Scapular Brown AT (mg) 211.6 ± 33.6 264.0 ± 38.4 140.1 ± 16.1 143.2 ± 20.7 P=0.0018 p=0.3224 p=0.3775
Glucose parameters Ghrl+/+ (n=8) Ghrl-/- (n=6) Ghrl+/+ (n=8) Ghrl-/- (n=8) Sex Genotype Sex x Genotype
Fed morning glucose (mg/dL) 150 ± 6 138 ± 8 142 ± 4 139 ± 7 P=0.6350 p=0.2451 p=0.5073
Fed evening glucose (mg/dL) 138 ± 6 137 ± 4 134 ± 11 123 ± 13 P=0.3910 p=0.5751 p=0.6499
24h fasted glucose (mg/dL) 89 ± 3 86 ± 6 95 ± 4 94 ± 4 P=0.1070 p=0.5957 p=0.8293
AUC Glucose (GTT) 37543 ± 1862 34825 ± 3323 34592 ± 6525 30270 ± 2243 P=0.3657 p=0.3958 p=0.8455
October 2021
 | Volume 12
Growth parameters, mass of organs (pituitary gland, liver, heart, spleen, pancreas, testis/ovary, kidney, adrenals), fat mass deposits (mesenteric, inguinal, perigonadal, perirenal and
scapular brown adipose tissue), blood glucose parameters (Fed 10.00, Fed 18.00, 24h Fasted and AUC during glucose tolerance) were measured in adult Ghrl+/+ and Ghrl-/- male and
female mice. Numbers of mice are indicated in parenthesis. Data represent mean± SEM. AT, Adipose Tissue; AUC, Area Under the Curve; GTT, Glucose Tolerance Test.
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although some transitory modifications are seen in young 7-8-
week-old males, a period of rapid growth rate (26, 53), suggesting
that ghrelin-gene derived peptides regulate pulsatile GH
secretion in an age-dependent manner.

Here, we observed that adult Ghrl-/- males lack significant
alterations in GH secretion whereas adult Ghrl-/- females display
a reduction of pulsatile GH secretion, maximal pulse amplitude
Frontiers in Endocrinology | www.frontiersin.org 6
and regularity of GH secretory pattern (i.e., higher ApEn values).
ApEn is considered a barometer of GH negative feedback
mechanism on GH release. As observed in all species
investigated so far (39), we confirmed that females show higher
ApEn values and reduced pulsatile GH secretion as compared to
males. The increased ApEn values in Ghrl-/- females are in line
with the reduced pulsatile GH secretion, whereas the unchanged
A

B

FIGURE 2 | Analyses of ultradian GH secretion in male and female Ghrl-/- mice. Representative individual plasma GH secretory profiles in 36-week-old male and
female Ghrl+/+ and Ghrl-/- mice (A). Deconvolution analyses and regularity parameters in adult Ghrl+/+ and Ghrl-/- male and female mice showing total GH
secretion, basal GH secretion, pulsatile GH secretion, number of pulses, mean pulse mass and JkApEn values (B). Asterisks indicate the location of secretory peaks.
Data represent mean ± SEM. Number of mice: males (n=5 Ghrl+/+ males and 8 Ghrl-/-), females (n=8 Ghrl+/+ and 6 Ghrl-/-). *p < 0.05, **p < 0.01 Ghrl-/- versus
Ghrl+/+ mice of the same sex. #p < 0.05, ##p < 0.01, ###p < 0.0001 females versus males of the same genotype.
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ApEn values in Ghrl-/- males point to unchanged pulsatile GH
secretion, as observed herein. Of note, the higher interindividual
variability observed in males for several parameters of GH
secretion may have prevented from unmasking statistical
genotype differences in this sex. In any case, our data
demonstrate a significant effect of endogenous proghrelin-
derived peptides on GH secretion in adult female mice. Since
both Ghsr-/- females and Ghrl-/- females show a reduction of the
pulsatile GH secretion, it seems reasonable to hypothesize that
endogenous ghrelin-evoked GHSR signaling increases GH
secretion in adult female mice mainly. It is important to
highlight that stress is known to reduce plasma GH levels (54).
The blood sampling procedure used in the current study induces
only a modest rise in plasma corticosterone levels that are within
the physiological range of endogenous diurnal variations (53).
Furthermore, Ghrl-/- mice displayed similar plasma
Frontiers in Endocrinology | www.frontiersin.org 7
corticosterone levels than Ghrl+/+ mice in non-stressed
conditions and in response to restrain-stress (unpublished
observations). Thus, it seems unlikely that differential
responses to the experimental blood sampling procedure may
have contributed to reduce GH secretion in Ghrl-/- females.

Neuroendocrine Basis by Which Ghrl
Deletion Affects GH Pulse Amplitude and
Regularity of Ultradian GH Pattern in
Female Mice
Ghrelin-induced GH secretion involves pituitary and
hypothalamic mechanisms (39). In vitro, ghrelin acts on
somatotropic cells of the pituitary to release GH (55). Also,
ghrelin enhances GHRH-induced GH release and impairs
somatostatin-mediated inhibition of GH release. Notably,
ghrelin treatment does not induce GH secretion in male mice
A

B

C

FIGURE 3 | GH release from pituitary explants and GHRH immunoreactivity in the hypothalamus of male and female Ghrl-/- mice. Basal GH release, 10-7 M GHRH-
induced GH release and 25 mM KCl induced GH release measured in adult male and female Ghrl+/+ and Ghrl-/- mice. Note that the Y-axes scales are different for
males and females (A). Photomicrographs of GHRH immunoreactivity staining (B) and GHRH positive cells (C) in the hypothalamus of 36-week-old male and female
Ghrl+/+ and Ghrl-/- mice. Data represent mean ± SEM. Number of mice in panel (A) males (n=4 Ghrl+/+ males and 4 Ghrl-/-), females (n=4 Ghrl+/+ and 4 Ghrl-/-).
Number of mice in panel (C) males (n=3 Ghrl+/+ males and 5 Ghrl-/-), females (n=5 Ghrl+/+ and 8 Ghrl-/-) *p < 0.05 Ghrl-/- versus Ghrl+/+ mice of the same sex,
&&p < 0.01, &&&p <0 .0001 KCl versus base and GHRH.
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lacking GHSR exclusively in somatotropic cells (56). Ghrelin also
indirectly acts at the pituitary by stimulating GHRH neurons and
inhibiting somatostatin neurons via multiple mechanisms. For
instance, ghrelin directly excites GHRH neurons, and also
indirectly increases GHRH neuron excitability by decreasing
their inhibitory GABA inputs (57). Here, we found that Ghrl-/-
and Ghrl+/+ females show similar pituitary GH contents as well
as a similar basal, KCl-induced and GHRH-induced secretion of
GH in vitro. Conversely, a higher number of GHRH+ neurons
was visualized in the ArcN of Ghrl-/- females, as compared to
Ghrl+/+ females, and no changes in the GHRH levels in the
median eminence (not shown) nor in the hypothalamic levels of
Ghrh mRNA. Thus, hypothalamic, rather than pituitary
dysfunctions are more likely associated to the reduction of the
pulsatile GH secretion in Ghrl-/- females. Transgenic female rats
with reduced GHSR expression in hypothalamic tyrosine
hydroxylase-expressing neurons show reduced GH secretion
and lower number of GHRH neurons (58), also suggesting
hypothalamic basis for altered GH secretion induced by a
deficit of ghrelin action in female rodents. Importantly, the
GHRH neurons are poorly visualized in naive rodents because
the GHRH peptide is rapidly transported to the neuron terminals
for release (59). Thus, the above referred study in rats used
colchicine treatment to estimate the number of GHRH neurons.
Here, however, the GHRH immunolabeling was performed in
brain sections of naive mice undermining our capacity to
estimate the number of GHSR neurons in each experimental
group. Since Ghrl-/- females display a reduction of pulsatile GH
secretion, it seems reasonable to hypothesize that GHRH
neurons were more easily visualized in Ghrl-/- females because
GHRH secretion was reduced. Such hypothesis could be further
tested by assessing plasmaGHlevels inGhrl+/+ andGhrl-/- females
following somatostatin withdrawal, which triggers GHRH-
dependent GH secretion in vivo (60). In this regard, it is possible
that somatostatin neurons, which control the timing of GH
secretory pulses and whose release activity is also under the
control of ghrelin (4), are differentially affected in Ghrl-/- females
and contribute to modulate GH secretion. Of note, expression of
somatostatin receptor 2 on GHRH neurons displays sexual
dimorphism in mice, suggesting that somatostatin interacts with
GHRH neurons to control sexual dimorphic GH responses (47).
Further studies are required to precisely determine the
hypothalamic dysfunctions affecting the GH secretion in Ghrl-/-
females. Also, the reason why alterations of GH secretion only take
place in females remain uncertain. Of note, the ghrelin system
displays important dimorphic responses (34). Indeed, studies in
women showed that estradiol potentiates ghrelin-stimulated
pulsatile GH secretion and GHRH/ghrelin synergy (61–63). In
mice, femaleswere alsomore sensitive to theGH-releasing effects of
ghrelin treatment than males (34). Strikingly, we found that Ghsr
mRNA levels in the hypothalamus were not different among
genotypes, although Ghsr mRNA levels tended to be lower in
Ghrl-/- than Ghrl+/+ females. Previously, Ghsr mRNA levels
were found similar in the ArcN of 8-week-old male and female
rats (64) and slightly lower in the hypothalamus of 6-month-old
female rats, as compared to males (65).
Frontiers in Endocrinology | www.frontiersin.org 8
Ghrl Deletion in Mice Does Not
Significantly Affect Food Intake, Growth or
Metabolism at Adulthood
As previously reported (12, 23, 25), we confirmed that adult
Ghrl-/- mice – male and female - lack alterations of spontaneous
food intake, meal pattern or fast-refeeding hyperphagia. Also,
adult Ghrl-/-mice show nomajor growth or metabolic deficits, as
previously shown (26), despite adult Ghrl-/- females show
alterations of their GH secretion pattern. Notably, previous
studies also showed that young Ghrl-/- males display
alterations in ultradian GH secretion patterns that are not
associated with changes in growth or metabolic parameters
(26). Similarly, young Goat-/- mice show reduced GH pulse
amplitude but unaltered body weight or body growth, although
an increase in plasma insulin-like growth factor I levels has been
proposed to compensate the alterations in GH secretion in these
mice (53). Thus, the lack of proghrelin-derived peptides seems to
induce some sexually dimorphic alterations in the GH axis that
are insufficient to affect eating behaviors, body growth and
metabolism at adulthood. Still, altered GH secretion during
adulthood could contribute to specific phenotypes associated
with ageing or pathophysiological conditions. Indeed, we
observed a tendency to reduced volume of mineralized bone
and significant reductions in the mass of soleus muscle in older
80-week-old Ghrl-/-mice that may be linked to ghrelin since this
hormone plays a protective effect on bones structure in older
mice (66) and both acyl and des-acyl ghrelin enhance muscle
anabolism (67) and prevent skeletal muscle atrophy (68).

The Absence of Evident Dysfunctions in
Adult Mice Lacking Ghrl Gene Must Be
Interpreted With Caution
The study of mice with genetic modifications of different
elements of the ghrelin system, such as proghrelin, GOAT or
GHSR, has been instrumental to reveal some aspects of their
physiological role. For instance, the observation that Goat-/-
mice, in contrast to WT mice, suffer severe hypoglycemia and
become moribund in a starvation protocol indicates that ghrelin
plays essential functions under energy deficit (21). In this regard,
it is interesting to stress that Ghrl-/- mice exhibit less evident
alteration than mice lacking GHSR [as review in (12)]. For
instance, GHSR-deficient mice, but not Ghrl-/- mice, show
reduced hyperphagia after fasting (25). GHSR-deficient mice
show some alterations, as compared to Ghrl-/- mice, even under
ad libitum feeding conditions. In contrast to Ghrl-/- mice, adult
Ghsr-/- mice fed on a regular chow displayed reduced body
weight and linear growth, regardless of the sex (37).
Furthermore, meal frequency was reduced in Ghsr-/- male
mice (37). The exact molecular mechanisms underlying such
distinct phenotypes in Ghsr-/- mice, as compared to Ghrl-/-
mice, are uncertain. On one hand, GHSR acts via several ligand-
independent mechanisms that include its capacity to induce
constitutive intracellular signaling or its ability to cross-talk
with other receptors (69). Also, the deletion of Ghrl gene not
only eliminates ghrelin but also obestatin and des-acyl-ghrelin,
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which seem to impair the effect of ghrelin. For instance, obestatin
treatment antagonizes ghrelin-induced GH secretion in rats (70),
although these observations were not confirmed by others (71, 72).
Des-acyl ghrelin appears to block some of the effects of ghrelin via
either GHSR-dependent or GHSR-independent mechanisms (12,
73, 74). Finally, the liver-expressedantimicrobial peptide 2 (LEAP2)
was recently recognized as another endogenous peptide ligand for
GHSR (75). LEAP2, which is released by endocrine cells of the liver
and the intestinal tract, abrogates ghrelin-evoked and constitutive
GHSRactivities (75, 76).Notably, LEAP2displays a binding affinity
toGHSR similar to ghrelin, but its level in plasma is ~10-fold higher
than ghrelin level in ad libitum fed conditions (69). Thus, LEAP2
may play a more important role than ghrelin on GHSR under the
tested conditions, masking some of the consequences of Ghrl
gene deletion.

In conclusion, present data suggest that ghrelin plays a more
prominent role in the regulation of pulsatile GH secretion in
adult female than male mice. The mechanism of the sex-specific
effect of preproghrelin deletion on GH pulsatility still needs to be
refined. The physiological implications of the altered GH
pulsatility in preproghrelin deleted mice would also need to be
clarified since it is not associated with major growth, feeding or
metabolic phenotypes.
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