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III-V semiconductor lasers integrated on Si-based photonic platforms are eagerly awaited by the industry for mass-scale
applications, from interconnect to on-chip sensing. The current understanding is that only quantum dot lasers can
reasonably operate at the high dislocation densities generated by the III-V-on-Si heteroepitaxy, which induces high
non-radiative carrier recombination rates. Here we propose a strategy based on a type-II band alignment to fabricate
quantum well lasers highly tolerant to dislocations. A mid-IR GaInSb/InAs interband cascade laser grown on Si exhibits
performances similar to those of its counterpart grown on the native GaSb substrate, in spite of a dislocation density in
the 108 cm−2 range. Over 3800 h of continuous-wave operation data have been collected, giving an extrapolated mean
time to failure exceeding 312,000 h. This validates the proposed strategy and opens the way to new integrated laser
development. ©2021Optical Society of America under the terms of theOSAOpen Access Publishing Agreement

https://doi.org/10.1364/OPTICA.438272

1. INTRODUCTION

Integration of semiconductor lasers onto Si substrates has attracted
considerable attention to combine the many possible photonic
functions with the advantages of well-established silicon tech-
nology. Different strategies have thus been investigated in view of
integrating semiconductor lasers onto Si substrates. An attractive
approach to address this problem consists of using lasers based on
quasi-direct-bandgap group-IV materials such as highly doped-Ge
[1] or GeSn [2,3], but despite important efforts, adequate laser
performances are still confined to low temperature or to optical
pumping, and their integration remains a great challenge. Up
to now, highly efficient and robust direct bandgap III-V semi-
conductors have remained the most promising materials for the
integration of coherent light sources onto silicon substrates. For
20 years, the integration of III-V semiconductors on Si has thus
been intensively investigated to develop on-chip light sources in
silicon photonics with high yield and cost reduction. The most
mature technologies are based on heterogeneous integration such
as wafer bonding [4,5], regrowth on bonded templates [6], or
transfer printing [7]. Heterogeneous integration can be a viable
solution, but the high cost of the native substrate and the complex
processing must be first addressed before a transfer to industrial
production. On the other hand, direct epitaxial integration is the
most promising approach to provide high volume capability [8],
but it is still challenging because of the formation of defects inher-
ent to the III-V heteroepitaxy on Si, namely, threading dislocations
(TDs) and antiphase boundaries (APBs). The propagation of APBs

related to the growth of polar III-Vs on on-axis non-polar Si sub-
strates can be suppressed through careful growth strategies leading
to their annihilation [9–14]. The high density of TDs, arising from
the large lattice mismatch between III-V semiconductors (besides
GaP) and Si, remains thus the main obstacle to the demonstration
of high performance and reliable devices. Nevertheless, rapid per-
formance and reliability improvement of lasers directly grown on
Si was recently obtained with InAs/GaAs quantum dot (QD) lasers
grown on silicon [15,16]. Extrapolated lifetimes ranging from
1000 up to 30,000,000 h were estimated for TD density of 5× 108

down to 7× 106 cm−2, respectively, due to complex buffer layers
[17,18] between the Si substrate and the laser structure. These
results show that QD lasers [19,20] are sensitive to TDs at densities
larger than 107 cm−2. As for conventional quantum well (QW)
lasers, they are even more sensitive [21,22] with lifetimes around
200 h [23,24] for TD density of 5× 107 cm−2.

2. CONCEPT FOR ACTIVE REGIONS HIGHLY
TOLERANT TO DISLOCATIONS

The drastic degradation of the threshold current and laser lifetime
with the TD density is associated with non-radiative trap levels
created by the TDs, which are typically represented as discrete
energy levels within the energy bandgap. In such a configuration,
these defect-related traps act as recombination channels that
drastically reduce the carrier population available for radiative
recombination and thus degrade the overall laser performances.
The determination of the position of the trap levels related to
defects in general and dislocations in particular is a challenge.
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In the absence of experimental data, we have located the trap levels
at mid-gap, where they operate as the most efficient non-radiative
centers. This configuration is commonly used in the literature to
represent the dislocation-related non-radiative recombination
centers in III-V lasers grown on Si [22,25,26]. Figure 1(a) illus-
trates schematically the band diagram of a type-I QW and the
various competing carrier recombination paths in the presence
of dislocations. The non-radiative process promotes the motion
and generation of dislocations through recombination-enhanced
defect reaction (REDR) and limits the device lifetime [25,26].
The superior tolerance to TDs of QD over QW lasers is related
to the carrier localization within the QDs, which reduces their
interaction with the defects located in the layers surrounding the
QDs [22,26]. Still, long-lived QD lasers require low TD densities
to drastically reduce non-radiative recombination in the whole
structure.

From this observation, two important points must be addressed
when designing the active region to overcome the performance
sensitivity of interband QW lasers to TDs. First, non-radiative
recombination in the layers around the QWs should be elimi-
nated/mitigated. This can be achieved by inserting carrier blocking
layers on both sides of the QWs to prevent the electrons (holes)
from escaping to the p-side (n-side) of the structure. Second, the
radiative recombination path should not cross the non-radiative
trap levels, which can be achieved by engineering the band align-
ment of the QW/barrier pair. For instance, QWs employing a
type-II/III heterostructure, where the electrons and holes are
confined in adjacent materials, allow independent tuning of the
conduction and valence band edges through careful materials

selection, which, in turn, makes it possible to adjust the relative
positions of the radiative transition and trap levels. Figure 1(b)
illustrates a type-II structure that satisfies this strategy. In this con-
figuration, non-radiative recombination through the trap levels has
little efficiency, and the active region becomes highly tolerant to
defects.

The requirements necessary to realize such a design are met,
for example, in the active region of the Sb-based type-II QW
interband cascade laser (ICL) [27]. These lasers have become
the most efficient interband optical source for the MIR spectral
range (spanning the 3–6µm wavelength range). ICLs operating in
continuous wave (CW) at temperatures higher than 100◦C [28]
are now commercially available but only on expensive and small
sized GaSb and InAs substrates [29,30], which prevents their wide
use in diverse commercial applications such as trace gas analysis or
control of industrial processing [31]. Figure 1(c) represents typical
energy band profiles for one period of an ICL active region. The
interband radiative transition occurs in a “W” type-II QW [32]
composed of a GaInSb hole QW sandwiched between two InAs
electron QWs. The “W” QW is surrounded by hole and electron
injectors composed of a series of alternating and graded thickness
GaSb/AlSb and InAs/AlSb layers, respectively. These layers provide
injection of the carriers into the active QW. Also, these materials
prevent the electron (hole) from escaping in the hole (electron)
injector and thus act as blocking layers, suppressing non-radiative
recombination around the QWs. Then, to stack QWs, this con-
figuration requires electrons in the valence band tunnel to the
conduction band through a semi-metallic interface (SMIF) to be
injected in the next active region.

Fig. 1. (a) Representation of the recombination processes in a type-I QW active region and (b) in a type-II QW active region with electron and hole
blocking parts. Injected carriers may relax via non-radiative recombination through defect centers introduced by TDs or radiative recombination within the
QW. In (a), carrier can recombine non-radiatively, while in (b), non-radiative recombinations are suppressed. (c) Type-II QW ICL with band diagram crite-
ria represented in (b).
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3. GROWTH AND STRUCTURAL
CHARACTERIZATIONS OF ICL ON SILICON
SUBSTRATE

In this work, a type-II ICL structure was directly grown by solid
source molecular beam epitaxy (SS-MBE) on an on-axis Si (001)
substrate. The ∼12% lattice mismatch between GaSb and Si
results in a high density of dislocations (∼1013 cm−2) at the inter-
face. First a 1.5 µm thick GaSb-on-Si buffer layer was grown. The
laser structure consisted of seven IC stages designed for emission at
3.5 µm surrounded by a GaSb separate confinement heterostruc-
ture (SCH) and N-type AlSb/InAs superlattice cladding layers
(see Supplement 1 Section 1 for details). The total thickness of
the structure is around 7.9 µm, below the 10 µm thickness where
cracks appear in GaSb-based laser grown on Si [33].

Figure 2 shows cross-sectional transmission electronic micro-
scope (TEM) images of the ICL structure grown on the Si
substrate. The seven active stages are perfectly visible, and Fig. 2(c)
shows the good agreement between the real structure and the
targeted thicknesses. Most of the dislocations generated at the
GaSb/Si interface are confined within the first 500 nm, while some
propagate into the whole structure [Fig. 2(a)]. The density at the
top of the GaSb buffer is in the 8−9.108 cm−2 range, and despite
the AlSb/InAs superlattice cladding, a high density (∼5.108 cm−2)
of TDs is still present in the QW active region [Figs. 2(a) and 2(b)].

The ICL structure was then processed (see Supplement 1
Section 1 for details) into 8 µm wide ridges with both contacts
taken on the epitaxial structure. One contact was formed on top of
the ridge and another one in the AlSb/InAs bottom cladding layer
as illustrated in the Fig. 3. The processed structure without facet
coating was cleaved into devices with various cavity lengths.

4. MEASUREMENTS AND RESULTS

Figure 4(a) shows typical light-current-voltage (L-I-V) curves
measured in CW at 20◦C for cavity lengths of 1, 2, and 3 mm. The
I-V curves exhibit a turn-on voltage of 3 V, which is comparable
to our similar ICLs grown on GaSb processed in the same way

and operating in the same wavelength range (see Supplement 1
Section 2 for details). The I-V curves show a soft turn-on, also
seen on ICLs grown on GaSb and processed using a BCl3 dry
etching chemistry [34]. However, the series resistances are in the
range of 20–30 ohms for 3 to 1 mm cavity lengths, respectively.
We attribute this unexpectedly high value, in comparison to the
1–3 ohms obtained for ICLs grown on GaSb, to the lateral current
path and the poor electrical conductivity of the low-doped upper
part of the AlSb/InAs bottom cladding layer where this contact is
located. This behavior has already been observed when the contact
is taken in the AlSb/InAs cladding layer [34]. The laser threshold
current ranges from 30 to 70 mA, depending on the cavity length.
These values are close to those of our ICLs grown on GaSb sub-
strates. The output power reaches 19 mW per uncoated facet for
the 2–3 mm long cavities. The slope efficiency (per facet) varies
from 0.22 to 0.3 W/A, depending on the cavity length, while the
external differential quantum efficiency (related to the two facets),
defined as

ηd =
q
hν

d P
d I
,

with q the electron charge, h the Planck’s constant, and ν the
frequency of light, ranges between 124% and 170%, values
comparable to ICLs grown on GaSb.

Figure 4(b) presents the evolution of the emission spectra of the
2 mm long ICL under various CW injection currents at 20◦C. At
35 mA, the spectrum exhibits a broad band of spontaneous emis-
sion with a maximum at 3.425µm and a full width half maximum
(FWHM) of 172 nm. Above threshold, laser action starts at the
long-wavelength side of the spontaneous spectrum at 3.436µm.

In addition, the thermal performance was also assessed. The
L-I characteristics at different temperatures displayed in Fig. 5(c)
demonstrate that CW lasing was maintained up to 50◦C. The
threshold current is temperature dependent and increases from
39 to 106 mA between 15◦C and 50◦C. Thus, the characteristic
temperature [Fig. 5(a) inset] that represents the sensitivity of the
threshold current to the device temperature is 43 K between 15◦C

Fig. 2. Cross-sectional TEM images of the ICL directly grown on Si. (a) CCD image of the whole structure revealing the defects. (b) Bright field scan-
ning transmission electronic microscope (STEM) image of the ICL active region. (c) Simulated band diagram (methods) and probability density functions
for an internal electric field of 80 kV/cm of one stage of the ICL active region overlaid on top of the bright field STEM image. The probability densities for
the active electron (hole) are indicated with magenta (yellow) lines, while those for the injector- electron (hole) are indicated with cyan (green) lines.
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Fig. 3. Schematic representation of the processed ICL grown on Si sub-
strate.

and 35◦C and 26 K between 40◦C and 50◦C, which is comparable
to the characteristic temperature of ICLs grown on GaSb. The
emission spectra at different temperatures are plotted in Fig. 5(d).
They reveal multimode operation and a peak emission wavelength
increasing from 3.49µm at 15◦C to 3.53µm at 45◦C.

Thus, despite the high density of dislocations, these ICLs grown
on Si present performances comparable to those of similar devices
grown on GaSb. Nevertheless, the route for a viable commerciali-
zation of III-V lasers directly integrated on Si requires adequate
uniformity of device performances and long operating lifetime.
The L-I curves of 15 as-cleaved devices selected along the radius
of the wafer are presented in Fig. 6(a). The important point is that
all lasers are working, and the histogram of the corresponding
threshold current [inset Fig. 6(a)] shows that it fluctuates between

43 and 47 mA, even if a couple of devices present lower perfor-
mances related to imperfect facet cleavage and device processing
(see Supplement 1 Section 3 for details). Aging of the laser at high
temperature under CW operation demonstrates high long-term
reliability and stability, important parameters for their use in real
life without a thermo-electric cooling system. An ICL grown on Si
was aged at 40◦C under CW operation at a constant applied cur-
rent of 120 mA (∼1.5 times the threshold current) while periodic
L-I measurements around the threshold were also performed to
track changes [inset Fig. 6(a)].

Figure 6(b) shows the aging trends of the laser power and
threshold current. The ICL grown on Si presents an increase of
2.8% of the threshold current and a reduction of output power
of 6.5% after 3800 h operation in CW at 40◦C. The mean time
to failure (MTTF), defined as the time required for doubling the
initial threshold current, is then extrapolated to over 312,000 h
(see Supplement 1 Section 4 for details).

To our knowledge, it is the first report of a lifetime longer than
1000 h for any interband (QW or QD) laser with a density of dislo-
cations above 108 cm−2. Indeed, the QD lasers proposed as the best
solution for the direct growth of lasers on Si suffer a lifetime limited
to∼1000 h at these TD densities [35], and require complex buffer
layers to lower the dislocation density and thus improve their per-
formances.

In this work, the proposed design is insensitive to a TD density
in the range of 108 cm−2 and tackle the main issues concerning
the realization of III-V interband lasers grown on Si, namely, non-
radiative recombination and REDR and approach the long lifetime
obtained on ICL grown on GaSb [36].
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Fig. 4. CW performances of ICL grown on Si. (a) L-I-V characteristics at 20◦C for 8 µm wide ridge and various cavity lengths. (b) Emission spectra for
an 8 µm× 2 mm laser at different injection currents.
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Fig. 5. CW performances of an 8 µm× 2 mm ICL grown on Si at various temperatures. (a) L-I-V characteristics. Inset: semi-logarithmic variation of the
current threshold with temperature. (b) Emission spectra.
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Fig. 6. CW reliability of ICL grown on silicon. (a) L-I characteristics of the 15 8 µm× 2 mm ICLs tested at 20◦C. Inset: histogram of CW threshold
current at 20◦C. (b) Aging data at 40◦C and under 120 mA current injection. Inset: L-I characteristics of the laser around the threshold at different times
of aging.

5. CONCLUSION

In conclusion, a highly defect-tolerant interband QW laser grown
on (001) Si was demonstrated. This unprecedented result has been
achieved due to the design of the active region of a type-II QW
GaSb-based ICL that allowed mitigating non-radiative recom-
bination through dislocation-related trap levels. Despite a TD
density higher than 108 cm−2, CW operation was achieved up to
50◦C with a threshold current around 45 mA and output power
per facet of 20 mW at 20◦C. We expect that these performances
can be further improved through reduction of series resistance and
the use of facet coating. Moreover, the aging test showed very slow
degradation after 3800 h of CW operation at 40◦C, which allowed
to extract a minimum MTTF of 312,000 h in these conditions.
The obtained results open the door for low-cost production of
high-performance MIR lasers on large-sized Si substrates and also
MIR photonic sensors on Si-photonic integrated circuits (PIC)
[37]. Finally, this approach could be adapted to other compound
semiconductor families, such as InP [38], GaAs [39], or ZnSe [40],
where type-II QWs present similarity to our concept. This would
allow covering a large wavelength range with QW lasers highly
tolerant to dislocations.
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