
HAL Id: hal-03417003
https://hal.science/hal-03417003v1

Submitted on 5 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SQL query extensions for imprecise questions
Marie Le Guilly, Jean-Marc Petit, Vasile-Marian Scuturici

To cite this version:
Marie Le Guilly, Jean-Marc Petit, Vasile-Marian Scuturici. SQL query extensions for imprecise
questions. Data and Knowledge Engineering, 2021, pp.101944. �10.1016/j.datak.2021.101944�. �hal-
03417003�

https://hal.science/hal-03417003v1
https://hal.archives-ouvertes.fr

SQL query extensions for imprecise questions

Marie Le Guilly∗, Jean-Marc Petit, Vasile-Marian Scuturici

Univ Lyon, INSA Lyon, LIRIS (UMR 5205 CNRS), Villeurbanne, France

Abstract

Within the big data tsunami, relational databases and SQL remain inescapable
in most cases for accessing data. If SQL is easy-to-use and has proved its
robustness over the years, it is not always easy to formulate SQL queries
as it is more and more frequent to have databases with hundreds of tables
and/or attributes. Identifying the pertinent conditions to select the desired
data, or even the relevant attributes, is not trivial, especially when the user
only has an imprecise question in mind, and is not sure of how to translate
its conditions directly into SQL.To make it easier to write SQL queries when
the initial question is imprecise, we propose SQL query extensions: given a
query, it suggests several possible additional selection clauses, to complete
the Where clause of the query, as a form of SQL query semantic autocomple-
tion. This is helpful for both understanding the initial query’s results, and
refining the query to reach the desired tuples. The process is iterative, as a
query constructed using an extension can also be completed. It is also adapt-
able, as the number of extensions to compute is flexible. A prototype has
been implemented in a SQL editor on top of a database management system,
and two types of evaluation are proposed. A first one looks at the scaling
of the system with a large number of tuples. Then a user study examines
two questions: does the extension tool speed up the writing of SQL queries?
And is it easily adopted by users? A thorough experiment was conducted
on a group of 70 computer science students divided in two groups (one with
the extension tool and the other one without) to answer those questions. In
the end, the results showed a faster answering time for students that could

∗Corresponding author
Email addresses: marie.le-guilly@insa-lyon.fr (Marie Le Guilly),

jean-marc.petit@insa-lyon.fr (Jean-Marc Petit), marian.scuturici@insa-lyon.fr
(Vasile-Marian Scuturici)

Preprint submitted to Data & Knowledge Engineering June 22, 2021

use the extensions: 32 minutes on average to complete the test for the group
with extensions, against 48 minutes for the others.

Keywords: query extensions, imprecise questions, SQL

1. Introduction

SQL and relational databases are still widely used to store and access
datasets in most commercial data management systems. Indeed, data sci-
entists often use SQL to fetch and explore data. Many companies, as well
as many scientific applications, such as chemical research, pharmaceutical
applications, and astronomy research, rely on the declarative nature of SQL
to explore these massive datasets, to find insights or to select subsets to feed
into their models.

SQL views and basic SQL keywords are often enough to write the major-
ity of SQL queries. However, depending on the dataset, several difficulties
might arise. The data analyst might not initially know exactly how to for-
mulate her final SQL query, as the conditions to specify might not be directly
clear or translatable into SQL. Indeed, the analyst might first think of the
necessary conditions in term of adjectives, such as low, bigger than average,
surprisingly high, etc, that are at first impossible to translate into exact nu-
merical conditions. To do so, the analyst will have to start with a general
query, and to try and refine it until reaching the desired output. This it-
erative process can be tiresome and require many iterations, as the analyst
can be overwhelmed with the initial results, and not know what direction to
take. Indeed, the initial query might be too general and return many tuples.
The analyst has to find a way to understand it, in order to to be able, af-
terwards, to eventually modify the query. Once a first query is written, the
analyst compares the results it returned against her expectations: if they are
not reached, the original query needs to be revised. This modification step
can be hard, as the analyst has to understand how the given results differ
from the expected one. And once the source of the difference is identified,
the problem is to find how to modify the initial query to correct it. One
solution to reduce the query’s output size is to add more selection predicates
to the query, to filter some tuples out. Data analysts often adopt a trial and
error approach: they try different combinations of attributes and thresholds
for a selection predicate, and adapt and modify it according to the result
they obtain. The question of queries returning too many tuples has already

2

been addressed in other research papers, offering various solutions. The in-
teractive query refinement solution exposed in [1] addresses the too many
tuples problem by transforming the selection predicates of a query with re-
spect to a cardinality objective. The STOP AFTER SQL operator proposed
in [2] is also a solution to this problem. Finally, top-k approaches are also
available [3]. In this paper, we propose an SQL-based solution that can be
directly integrated in databases management systems, to help users specify
their imprecise questions, by suggesting precise selection conditions, to spec-
ify the initial query and ultimately identify a relevant result set. The idea is
to help the user by summarizing those tuples with several SQL queries, so
that she understands better the dataset she is facing. Summarizing data is
often done using visualizations, which can be very helpful to understand a
dataset. However, they can be hard to do depending on the data type and
size, and refining an SQL query based on it can require some work, especially
as not all DBMS offer integrated visualization tools. Indeed, going from an
image to SQL is not always trivial. This is why we propose to summarize
the initial query with several ”smaller” (in terms of result size) SQL queries.
Moreover, the final objective is to diminish the size of the query’s answer set,
which requires to add more selection predicates. However, there is a huge
number of possibilities for these new predicates, that only increases with the
size of the database. Therefore, we propose to summarize the initial query
with SQL query extensions, that can then be used to drill down the data
and deep into it, as they present some possible combinations of additional
selection predicates. This way, a user can start by writing a query that con-
tains all the knowledge she has about the data she is looking for: if she does
not know anything, she can start with a query returning all attributes from
all tables. The extension can then help her to refine her query until she
reaches her data of interest. More specifically, given an initial SQL query
Q, we propose to a data analyst a list of SQL queries, that addresses two
sides of the problem. First, the queries are extension of Q: the beginning of
each query is the same, and equal to Q. Then each query has its own set of
additional selection predicates, so that each query returns a smaller subset
of tuples. Moreover, the extension’s results form a partition of Q’s results:
each extension summarize part of Q, helping the user in understanding what
lies into the initial bigger result set.

Example 1.1. Assume that Alice, a data analyst, has access to the database
of a company, which contains several tables, among which the Finance and

3

HR tables (with a join attribute EmpID). She is asked to find the gender
of employees with a low income: this is typically an imprecise question. Not
knowing how to translate the notion of “low” into SQL, and only knowing the
existence of a salary attribute in the database, she starts with the following
query:

Select *

From Finance , HR

Where Finance.EmpID = HR.EmpID

She hoped to be able to refine this first query query by looking at the results
it returned. However the tuples, presented in table 1 are too many for her
to assess what a good threshold would be to get only low salaries. With the
solution proposed in this paper, Alice could get help from the three following
extensions of her initial query:

Select *

From Finance , HR

Where Finance.EmpID = HR.EmpID

and commission ≥ 6200

Extension 1 (4 tuples)

Select *

From Finance , HR

Where Finance.EmpID = HR.EmpID

and commission < 6200

and sex = ’F’

Extension 2 (4 tuples)

Select *

From Finance , HR

Where Finance.EmpID = HR.EmpID

and commission < 6200

and sex 6= ’F’

Extension 3 (2 tuples)

These extensions contain several pieces of information that can be valu-
able for Alice. First, they summarize the tuples that were returned by her
first query, as they are divided into three queries, and described by the ad-
ditional selection predicates of these extensions of Q. It gives her directly a
selection condition based on the commission attribute, which is part of an

4

EmpID LastName Gender Salary Commission
e10 SPEN F 41160 1300
e20 THOMP M 41250 7400
e30 KWAN F 39850 5200
e40 SMITH F 40525 1400
e50 GEYER M 40175 1100
e60 STERN M 39560 6200
e70 PULASKI F 40120 800
e80 FREY M 40625 6600
e90 HENDER F 39450 6700
e100 SPEN M 41560 900

Table 1: Result set of query Q

employee’s income. It shows Alice an attributes she had not considered at
first, but that is relevant for her question. Moreover she now has a numeri-
cal threshold to start from. Finally, the gender selection predicate can also
draw her attention to a discrimination she had not considered. Therefore,
those extensions are a way to highlight information and patterns that could
be pertinent for Alice, and to help her find numerical threshold that can be
hard to come up with. This example gives a nice overview of what are query
extensions, and what it could be used for. Considering the problem of queries
returning too many tuples, we propose the following problem statement:

Problem statement Because the extensions should summarize and re-
fine the considered query at the same time, we propose the following problem
statement: given a query Q, and a number of extensions n, return n exten-
sions of Q such that:

1. The results of the extensions are a partition of those of Q.

2. Each extension consists in query Q and one or several additional pred-
icate.

3. Each predicate is on one attribute from the Select clause of Q : if the
user wants to consider all of them, he can just use a * in the select

clause, or on the opposite restrict the number of considered attributes
by only selecting the ones she is interested in.

Based on such a definition, the problem is then to be able to compute
such extensions, so that they can help the user refine her initial query to
select the tuples of interest, when the question is imprecise.

5

It is thus necessary to propose a solution to address this question, and
to evaluate how well it is answered. The contributions of this paper are
therefore as follows:

• A formal definition of the set of query extensions for a given query

• Given a database, a query and the number of desired extensions, an al-
gorithm to compute such extensions that does not require any laborious
user input;

• Visualizations to assist the extension selection;

• An implementation of the algorithm with the design of a web appli-
cation that can be used by users to test the query extension solution
[19];

• Experimentations on the scaling of our algorithms so that extensions
can be obtained in a reasonable amount of time.

• User experimentations to validate whether or not extensions are helpful
to answer imprecise queries on a relational database.

Paper organization Section 2 introduces the preliminaries and the def-
initions of SQL query extensions. Section 3 exposes a solution to compute
such extensions. Then section 4 presents the implementation, and experi-
mentations that were conducted to evaluate the solution. Finally section 5
summarizes the related work, before concluding in section 6.

2. SQL queries and their extensions

2.1. Preliminaries

Let us start by introducing the basic notations to be used throughout this
paper. We assume the reader is familiar with databases notations (see [4] for
details). Let D be a set of constant and U a set of attributes. We consider
a database d = {r1, r2, ..., rn} over a database schema R = {R1, R2, ...Rn},
where ri is a relation over a relation schema Ri and Ri ⊆ U , i ∈ 1..n. We
consider SQL without any restriction. We will switch between both languages
when clear from context. A query Q is defined on a database schema R and
ans(Q, d) is the result of the evaluation of Q against d. In the sequel, to define
the extension of any query Q, we will use two operators: πX the projection

6

defined as usual with X ⊆ U , and σF the selection, where F is a conjunction
of atomic formulas of the form AθB or Aθv, with A,B ∈ U , v ∈ D and θ a
binary operator in operation in the set {<,>,≤,≥,=, 6=}.

2.2. Query extensions

Let’s consider an initial query Q, for which query extensions have to be
defined. The first characteristics of these extensions is that they aim at
refining the initial query Q. Hence, an extension Qext of Q should diminish
the size of the result set. We therefore propose the following definition:

Definition 1. An extension Qext of Q is defined by:

Qext = σc1∧...∧cn(Q)

where ci is an atomic formula, for every i ∈ 1..n

The following property therefore follows:

Property 1. If Qext is an extension of a query Q then:

ans(Qext, d) ⊆ ans(Q, d).

The second objective of these extensions is to summarize the result of
the initial query Q: as one extension will only contain part of the result
of Q, it is necessary to propose a set of different extensions, to make sure
all of ans(Q, d) is contained in one of the extensions. Therefore, we define
the notion of a k-extensions set, containing k extensions of a query Q as a
partition of ans(Q, d). More formally, using the definition of a partition:

Definition 2. A k-extensions set of Q over d, denoted by CQ, is defined as:
Cq = {Q1, Q2, ..., Qk} such that:

• Qi is an extension of Q, for all i ∈ 1..k

• ans(Qi, d) ∩ ans(Qj, d) = ∅, , for all i, j ∈ 1..k, i 6= j

•
k⋃

i=1

ans(Qi, d) = ans(Q, d)

It follows that :

7

• The union of the results of extensions in the set of size k is equal to the
set of tuples from the initial query: this way, the initial query is fully
represented in the extensions.

• Each extension returns tuples that are not returned by any of the other
extensions: this way the options offered to the user are very different
from one another, giving us a wide variety of options to choose from.

An example of a 3-extensions set is given in example 1.1. Being able
to parameter the number of extensions for the considered query give more
freedom to the user, who can explore with different size of extensions sets,
and eventually use her domain knowledge to fix the most appropriate size.
We will therefore see in the following section how such sets can be computed,
in order to provide useful extensions to users.

3. Computation of k-extensions

3.1. General approach

Based on definition 2, it clearly appears that an extension set is a partition
of the results of the initial query, where each subset has to be described by a
set of selection predicates. Given a query, there exists many different possible
partitionings: as a result, it is necessary to decide which one to choose to
present to the user, so that it is as useful as possible, taking into account
the exploratory context. Given definition 2, there is a first indication of
which possible partition to select: as the number of subset k to compute
is given in the definition, it therefore removes a vast number of candidate
partition. However, it still leaves many possible partitions: the definitions
itself is therefore not enough, it is necessary to design a strategy to compute
an extension set, that is a coherent as possible with the intended usage of
such extensions: in this setting, the solution used to compute the extensions
has therefore a huge impact on the result presented to the user, and is a key
element of the data exploration strategy proposed to assist the user in query
writing.

In addition to deciding which partition of the results to use, it is also
important to keep in mind that for each subset option through partitioning,
it will be necessary to define the selection predicates returning such a subset
of tuples. Given an initial query Q and the number k of extensions, we have
to:

8

• First, divide ans(Q, d) in k disjoint subsets: this is not trivial, and
requires to define the division strategy. This first part is related to
partioning, as well as to clustering in machine learning [5].

• Then, for each subset, find a query returning all of its tuples, that is
an extensions of Q with respect to definition 1. It should be as short as
possible to reduce the user’s effort, and to help him easily understand
the description of the tuples contained in the considered extension. It
should also be as informative as possible, explaining how the considered
extension is different from the others. This problem is very similar to
query reverse engineering [6] or redescription mining [7].

3.2. Partitioning of the initial set of tuples

3.2.1. Using clustering

Let’s first consider the partitioning of the initial set of tuples ans(Q, d):
the partitions should have a sense for the user, and return tuples that are
meaningful with respect to the exploration process. As a result, we propose
to identify tuples that make sense together, and that identify regions of
ans(Q, d) that share some common characteristics. These regions are more
likely to be of interest because they are more likely to correspond to the
need of the user, who is usually not looking for sets or random tuples. In
addition, these common characteristics are likely to help the formulation of
the selection predicates for the extensions, as they can rely on these common
characteristics of the tuples.

As a consequence, we propose to divide ans(Q, d) by grouping together
similar tuples. More specifically, we propose to divide the initial set of tuples
using a clustering algorithm (see [8] for an overview), as it corresponds to
all of our requirements: The clustering algorithm will group close or similar
tuples together; Clusters are pairwise distinct, so the sets will not overlap;
and the clusters cover ans(Q, d). Regardless of the initial query Q, the answer
set of the query will always be a unique table, that can then directly be sent
to the clustering algorithm, along with k, which directly corresponds to the
number of clusters to be produced.

3.2.2. Challenges of clustering

Clustering is one solution to address the considered problems, but it yields
intrinsic challenges that we ought to address. The main issues is that be-
cause we propose a general approach that should be applied to many different

9

databases and queries, the data to cluster is initially unknown: it is therefore
necessary to take some precautions. First, it is important to normalize the
data to cluster, to avoid the features with higher values to take more im-
portance than the other. To this end, the data is standardized feature-wise,
meaning it is centered around the mean and scaled to the variance.

We also have to make the assumption that the number of features stays
reasonable: indeed, clustering can then be less significant, due to the curse
of dimensionality [9]. Finally, most clustering algorithms require to be able
to define the distance between two tuples, which can be more or less easy
depending on the feature’s types. From all of this, it is clear that clustering
has to be manipulated carefully: in our setting, it however provides an effi-
cient solution to group together similar tuples, that are more likely to have
interest for the user.

It is also necessary to choose the specific clustering algorithm. Given
the input dataset, a clustering algorithm groups together tuples that are
close to one another, which requires to have some sort of distance between
tuples. If this is straightforward for numerical values, with for example the
well-known euclidean distance, a database is likely to contain different data-
types: therefore our solutions requires a clustering algorithm that is able to
handle mixed datatypes.

Additionally, one key element in choosing the clustering algorithm is that
the number of clusters to be produced in known: in our extension setting,
we consider this parameter to be given by the user with respect to her explo-
ration requirements: this therefore allows her to explore different extensions
possibilities with different values for this parameter.

Considering all these parameters, we propose to compute the k sets of
tuples using the k-means clustering algorithm [10], that can take the number
of clusters to produce as an input: this solution was also used in [11] to
propose visual data exploration of query results. Moreover, to handle both
numerical and categorical attributes, we propose to use its variant k-modes
[12].

Moreover, as the user might not always know the size of the extensions
set she desires, we offer to automatically try different ones: she can there-
fore specify a lower and upper bound (by default for k = 2 to k = 10), so
that different values of k can be tested, and therefore several extensions sets
proposed. As among all the computed ones, some extensions sets might be
more pertinent than other, they are ranked according the clustering quality,
based on the well-known clustering score of the silhouette coefficient [13]:

10

let’s consider a tuple i assigned to cluster Ci. Then we define:

• a(i) = 1
|Ci|−1

∑
j∈Ci,i 6=j d(i, j)

• b(i) = mink 6=i
1
|Ck|

∑
j∈Ck

d(i, j)

The silhouette score for i is then defined as:

s(i) = b(i)−a(i)
max{a(i),b(i)}

Considering all the tuples that have been clustered, the silhouette coeffi-
cient is defined as:

Ssil = 1
K

∑K
k=1

1
|Ck|

∑
i∈Ck

s(i)

Where d(i, j) represents the distance between two tuples i and j.

Intuitively, it is the average of how close the points in the same cluster
are, and how far they are from he others cluster: the better the clustering,
the more separated the clusters.

All these elements allow us to obtain clusters, even though it should be
kept in mind that for some datasets, the clustering tendency can be limited.
However, our main objective is not to provide a clustering tool, but to give
suggestions to a user who does not know how to refine her query : as a result,
even though the data returned by an extension might be scattered and not
so clustered, it is still a possible indication of how to refine at this point
of the process. Moreover, because we use kmean as a clustering algorithm,
we will obtained the imposed number of clusters, even though the cluster
tendancy. Finally, the silhouette coefficient is therefore also a way to assess
the quality of clustering, allowing the user to modify some parameters if it
does not appear satisfying to her.

3.2.3. Preparation for extensions construction

After the clustering, each tuple can be assigned to a single cluster, that
can be added as an additional attribute to ans(Q, d). This cluster column
acts as a form of tuple labeling, indicating which tuples are likely to form an
interesting subset, because they share some common characteristics. Com-
pared to other existing labeling techniques, this clustering-based approach
has several advantages. First, it drastically simplifies the role of the user,

11

EmpID LastName Sex Salary Commission Cluster
e10 SPEN F 41160 1300 2
e20 THOMP M 41250 7400 1
e30 KWAN F 39850 5200 2
e40 SMITH F 40525 1400 2
e50 GEYER M 40175 1100 3
e60 STERN M 39560 6200 1
e70 PULASKI F 40120 800 2
e80 FREY M 40625 6600 1
e90 HENDER F 39450 6700 1
e100 SPEN M 41560 900 3

Table 2: Tuples from table 1 labelled by clustering (k = 3)

who does not have to endure the boring task of manual labeling. Addition-
ally, this solution goes beyong the simple binary labeling that is usually used:
instead of just considering a tuple as interesting or not, it says whether or
not it is interesting to consider it with other tuples or not. This way, instead
of evaluating individually the relevance of a tuple, this allows to consider
groups of tuples that might be relevant for a given task, together. In prac-
tice, a new attribute, called cluster, is added to the schema of the query to
keep track of the cluster corresponding to each tuple.

Example 3.1. Table 2 presents tuples from table 1, with the additional
attribute cluster that is the cluster tuples have been assigned to, for a 3-
extensions set.

3.3. Construction of extensions for each subset of tuples

3.3.1. Using a binary decision tree

The second part of the process aims at finding, for each cluster, a set
of selection predicates that can describe it. Once again, in an exploration
setting, there are some specific considerations to take into account: there
is a trade-off to find between the accuracy of the clusters description, and
the utility of the extensions. Indeed, they should be concise enough, so that
the user can understand the data they describe quickly, and as informative
as possible, in order to underline what separated a specific cluster from the
others.

12

Taking this constraints into consideration, we propose to use a decision
tree to construct the query extensions, using the tuples as a classification
dataset, and the cluster column as the class to predict. The general idea
is to learn what distinguishes a cluster from another: the decision tree will
identify relevant attributes and discriminating values to describe concisely
a cluster with respect to the other ones. Each leaf of the tree can then be
considered as an extension, by using the selection conditions that lead to it
from the root of the tree.

Using decision trees to generate SQL queries is a technique that has al-
ready been exploited [14]. To be able to reach the objectives defined for
our SQL extensions, we follow the same path but with binary decision trees
(BDT) [15], which is a tree splitting at each node on exactly two opposite
conditions.

One specificity of our approach is the fixed number of extensions to be
computed: we need exactly k extensions. For the clustering, this meant
computing k clusters: however, the decision tree might produce more leaves
than classes. If we want to produce exactly k extensions, two solutions are
considered, wand we let the user decide which strategy she wants to use:

• As they are k classes, it is possible, for each class, to consider all the
leaves of the tree that corresponds to it: the different conjunction of
selection conditions leading to each leaf can then be disjoined, to give
only one selection predicate for the considered class. In this case, the
produced extensions might be longer and less easy to understand di-
rectly because of disjunctions and conjunctions, but maybe also more
informative.

• The other possibility is to limit the growth of the tree, to only allow it
to have k leaves: by considering each leaf as an extension, k extensions
are therefore obtained. In this case the extensions might be shorter and
easier to understand, but also less discriminating. This second solution
requires to be able to produce a decision tree with a constrained number
of leaves, meaning we have to adapt the decision tree algorithm so that
it is constructed taking the constraint into account. We address this
problem in the next section.

It should be noted that the choice between the two strategies is up to the
user, and has an important influence on the decision tree. If it is allowed

13

Figure 1: Construction of a binary decision tree given a fixed number of leaves

to fully grow, it is more likely to overfit the data, but also to produce more
detailed extensions with more selection clauses that can be valuable. On
the opposite, the tree with a constrained number of leaves is less prone to
overfitting the data, and will have more concise, but maybe less informative
selection predicates. It is therefore all about balance, and it is important
to underline that the tree is here only a way to go from the partitioning of
clustering to SQL selection predicates: the best strategy is therefore the one
most suited to the user’s need, with respect to the understandability and
utility of extensions for the considered SQL task.

3.3.2. Obtaining a constrained BDT with k leaves from a given data partition

Constrained generation of BDT given a specific number of leaves has been
studied in [16]. In our case, we just need to explore levelwise the search space
(breadth-first search) and stop as soon as the number of leaves exceeds k.
To do so, we rely on the following property of BDT: if N is the number of
classes to classify, the depth of the BDT is bounded between dlog2(N)e and
N − 1. Both bounds are attainable: the first one with a full binary tree and
the second one with a right deep tree. For the query extensions, it requires
to stop somewhere in-between.

To reach exactly the k leaves constraint, the construction of the tree starts
as usual, level by level. At each new level, there are then three possible
scenarios:

• The total number of leaves in the tree is inferior to k: then the con-
struction of the tree can continue.

14

Commission ≥ 6200?

Extension 1 Gender=”F”?

Extension 2 Extension 3

yes no

yes no

Figure 2: Binary decision tree from Table 1

• The total number of leaves in the tree is equal to k: then it is perfect,
the process should stop there.

• The total number of leaves in the tree is greater than k: it means the
last level has added to many leaves, and some should be removed.

To figure out how to deal with the last scenario, and how to remove leaves
from the tree, let’s consider figure 1: assume the number of leaves in the BDT
is less than k at level i − 1, and greater than k at level i. The process to
remove the unnecessary leaves works as follows: while the number of leaves
remains greater than k, replace two leaves at level i from the same parent by
turning this parent into a leaf at level i− 1 (using a majority vote to assign
a class to this new leaf). As two leaves are replaced by one, this process
removes the leaves one by one, until the total number of leaves in the tree is
equal to k. To chose which node to remove, we use the impurity of the node,
in order to first remove the nodes that are not discriminant (high impurity).

Example 3.2. From the clustering in table 2, the binary decision tree of
figure 2 can be obtained. In this running example, the decision tree leaves
match exactly with the clusters.

The example points out that the clustering and the binary decision tree
may coincide. However, this is not always true since some tuples may fall
into the wrong cluster or some clusters could be lost by the binary decision
tree because, as previously explained, we do not grow a full tree and limit
the number of leaves. It is possible to obtain a correspondence between
clustering and decision tree by using our alternative strategy, which allows
to make disjunctions and therefore to fully grow the tree.

15

3.3.3. Obtaining SQL statements from a BDT with k leaves

Once the binary tree has been constructed, each leaf can be reached
through a unique decision path. The decision path from the root of the
tree to a specific leaf can be written as the conjunction of each decision
encountered along the road. It is therefore straightforward to go from a
decision tree to a SQL query. After exploring all the path in the tree, each
conjunction can be directly injected in the where clause of a SQL query, and
gives a new extension.

Example 3.3. From the decision tree on figure 2, every extension from ex-
ample 1.1 can be obtained easily.

3.4. Algorithm proposal

In order to combine all the steps described previously, and to specify
how the k-extensions set of a given query is to be computed, algorithm 1
is proposed hereafter. It takes a query Q and a database d as an input.
In addition, it also takes a lower and upper bound for the size of the ex-
tensions, and allows to select the strategy for the decision tree: by default
(when treestrategy = false), the extensions only contain conjunctions, and
the number of leaves in the tree is therefore limited. All the parameters for
the algorithm allow for a good adaptability to the user’s need, in order to be
able to select the most appropriate extension.

The algorithm works as follows:

• The algorithm is centered around function Extend, that computes an
extension set for a given query on a database, given the number of
extensions to compute and the selected strategy for the tree:

– Line 12, we compute the result of the initial query. Clearly, if the
size of the result is expected to be large, the online computation
of extensions might take some time, and sampling could speed it
up. Details on scaling and sampling are discussed in section 4.

– Line 13, the clustering transforms the dataset wd into a labelled
dataset lwd in which each tuple is labelled with the cluster it was
assigned to. The quality of the clustering is evaluated line 14.

– The decision tree is then built from lines 15 to 21, depending on
the selected strategy. The conditions are extracted from the tree.

16

– The conditions are sorted by length. They are then turned into
extensions, and stored.

– Finally, the considered k − extensions set is returned along with
the corresponding clustering quality.

• The main algorithm (lines 2-10) computes the extensions sets for the
different values of k. The different extensions sets are ordered according
to the quality of their clustering.

Thanks to the parameters of the algorithm, the user can have more in-
fluence on the extensions. However, the default parameters are already a
good start for a novice user. This flexibility makes the extensions useful for
different user profiles and different kind of data selection tasks.

The conditions from definition 2 are satisfied by the proposed algorithm
as stated in the following property.

Property 2. Let d a database over R, Q a query over R, and k an inte-
ger. extension(Q, d, k) is a k-extensions set of Q, i.e for {Q1, Q2, ...Qk} in
Extend(Q, d, k), and for all i, j ∈ 1..k, i 6= j:

Qi is an extension of Q (1)

ans(Qi, d) ∩ ans(Qj, d) = ∅ (2)

k⋃
i=1

ans(Qi, d) = ans(Q, d) (3)

Proof. (1) By construction, and with respect to definition 1, Qi is an exten-
sion of Q

(2) and (3) By definition, a decision tree builds a partition. Properties 2
and 3 directly follow from the definition of a partition.

4. Implementation and Experimentations

4.1. Algorithm implementation

Algorithm 1 was implemented in Python 3. For sake of simplification,
the implementation is for now limited to numerical attributes. The kmean
algorithm is taken from the scikit-learn [17] library, as well as the decision
tree based on the CART algorithm [18].

17

Algorithm 1: Query extensions sets configuration procedure

1 procedure Extension

(Q, d, kmin = 2, kmax = 10, tree strategy = false);
Input : A query Q over R,

d a database over R,
kmin the lower bound of query extensions set,
kmax the upper bound of query extensions set,
tree strategy the strategy for the decision tree (true if it is

different from default one)
Output: ext list a list of k extensions sets of Q, with sizes from kmin

to kmax

2 ext list = [] // the final list of extensions sets

3 scores = [] // list of clustering quality for each extensions

set

4 for i = kmin; i ≤ kmax; i+ + do
5 Sc, quality = Extend(Q, d, i, tree strategy)
6 ext list.append(Sc)
7 scores.append(quality)

8 end
9 ext list = sort(ext list, scores); // sort the extensions sets by

silhouette score

10 return ext list ;

11 Function Extend(Q, d, k, tree strategy = false):
12 wd = ans(Q, d) // wd: working data

13 lwd = kmeans(wd, tree depth) // lwd: labelled wd

14 quality = silhouette(wd, tree depth) // silhouette:

clustering quality

15 if tree strategy then // allow any depth for the tree

16 tree = DecisionTree(lwd)
17 conditions = getDisjunctionConjunction(tree) // get one

extension per cluster

18 else
19 tree = DecisionTree(lwd, k)
20 conditions = getConjunction(tree) // get one extension

per leaf

21 end
22 Sc = {}
23 conditions = sort(conditions); // (sort by length)
24 foreach c in conditions do
25 Sc = Sc ∪ σc(Q)
26 end
27 return Sc, quality ;

18

Figure 3: SQL query extension prototype

4.2. SQL Editor Prototype

We also implemented a web interface, presented on figure 3, that was
presented as a demonstration in [19] (demonstration available online1. It
allows to connect to any available database stored with MySQL or Oracle,
and provides all the basic functionalities of a SQL editor: seeing the schema,
querying the database, browsing the results. But it also provides extensions-
related functionalities, the first one being proposing a set of extensions for
a user defined input query. In addition, visualizations are available to assist
the user in choosing an interesting extension. The first is a scatterplot of the
results of the query being extended, with tuples are grouped by extension.
The data is projected on two dimensions using PCA, and each extension is
presented using a different color. Moreover, the visualization is interactive,
as the user can see the extension corresponding to the datapoints by mov-
ing the mouse over the scatterplot. The purpose of this visualization is to
show in one glance to the user the size and dispersion of an extension, as
well as how separated each extension is with respect to the others. In the

1https://youtu.be/oK8xWGCWj_A

19

specific case of image databases, where tuples are associated with images,
another visualization is possible. The images associated to the results of an
extension can be displayed as a mosaic in ExplIQuE. Finally, extensions can
be configured: number of extensions to compute, methods for decision tree
exploration. The interface allows to connect to any available database, and
provides all the basic functionalities of a SQL editor: seeing the schema,
querying the database, browsing the results.

4.3. Experimentations

Two different types of experimentations were conducted. First, the scal-
ing of the algorithm was studied, to study the response time based on the
database’s size. Then a user study looked at how users benefited from the
extensions when exploring a database, and how well they adapted to the tool.

4.3.1. Scaling experimentations

As the extensions are computed online, one crucial point of the system is
to be able to return the extensions in a reasonable amount of time. As men-
tioned in section 3, the solution to limit the response time of the algorithm is
to sample the tuples before computing the extensions: this allows to obtain a
trade-off between user waiting time and the extension’s precision. The exper-
iments were run using a machine with an Intel Core i7-7600U (2.8 GHz) CPU
and 16GB of memory. To determine what parameters influence the response
time, and the appropriate values for the scaling, we designed an experimenta-
tion to explore the influence of the parameters on the extension’s computing
time. The scaling experimentations were conducted on a database with data
from the Large Synoptic Survey Telescope (https://www.lsst.org/) con-
taining 500 000 tuples over 25 attributes. It only contains one table, as the
number of tables only influences the evaluation of the initial query, but not
the extension process per se. The influence of three parameters was studied,
with respect to the extension’s computation time: number of tuples, number
of attributes, and number of extensions to compute on figure. These param-
eters were studied two by two, to study every aspect of their influence, and
are presented on figure 4a, 4b and 4c.

From figure 4a, it follows that the number of attributes barely influences
the computation time. The number of extensions does seem to slightly in-
crease it, which is also visible on figure 4b, but it is negligible compared to
the influence of the number of tuples: on figure 4c, it is obvious that it is the
most influential parameter. It is also clear that for a high number of tuples,

20

the time necessary to produce the extensions is not acceptable for an online
system, as users will not accept to wait more than a few seconds to obtain
their results. This confirms the necessity of sampling, in order to provide the
extensions in a reasonable amount of time.

Using these results, it appears that up to 50 000 tuples, the extensions
are computed in less than 20 seconds. But to determine a good sampling
ratio, the quality of the extensions should also be taken into account: even
if they are computed quickly, they should still be a good representation of
the extensions obtained when taking all the tuples into account: to this end,
a second round of experimentation was conducted, to evaluate the impact
of sampling over the extension’s results. First, the extensions for the query
returning the entire database (500 000 tuples) were computed.

Then, for the same number of tuples, the extensions were computed, but
over a sample of the initial query’s result, using different sampling sizes (100,
1000, 5000, 10 000, 25 000, 50 000). Finally, the obtained extensions were
compared to the ones obtained without sampling, by comparing how they
partition the initial tuples, using the adjusted rand index [20]. In addition,
two sampling strategies were compared: random sampling, and systematic
sampling (see [21]). The results of these experimentations are presented on
figure 4d. Systematic sampling requires slightly more tuples to reach the
same behavior as random sampling. However, both samplings rapidly reach
good results in comparison to the full data extensions, as with a sampling of
1000 tuples, the adjusted rand index is already above 0.8 (1 meaning results
identical to non sampled dataset). With 10 000 tuples, the score reaches 0.98
with random sampling, and the computation time with respect to figure 4c is
around 5 seconds. These results show that sampling can considerably speed
up the extension computation while keeping a very acceptable quality. Those
results were confirmed on several other databases not presented in this paper,
showing that sampling provides an excellent trade-off between computation
time and extension’s quality.

It should also be noted that in order to speed up more the extensions
computation, it is possible to store the results obtained for one query, in
order to reuse it later to avoid recomputing extensions that had already been
obtained before. As a result, for each query, it is possible to look in the query
log to make sure its extensions are not already saved in the system. Finally,
as the most expensive part of the process is the clustering, that requires to
compute distances between each pair of tuples, we also propose to save the
distance matrices, so that they can be directly reused in other extensions

21

computations. Using these two methods, even when an extensions set takes
some time to compute, it will only happen once, and it will also speed up
extensions computation for following similar queries.

(a) Extensions computation time vs
number of attributes and extensions (10
000 tuples)

(b) Extensions computation time vs
number of extensions and tuples (20 at-
tributes)

(c) Extensions computation time vs
number of tuples and attributes (10 ex-
tensions)

(d) Comparison of extensions quality
against the sampling size

Figure 4: Experimental results for the scaling of extensions computation

4.3.2. User experimentations

The objectives of this experimentation was to see the benefits such a tool
could bring if integrated in a DBMS. It was decided to explore two different
categories of measures : In terms of writing time, is it faster to reach a desired

22

set of tuples using extension ? And how well is the extension tool accepted
by users ?

Organization. An SQL competition was organized, with a group of 70 com-
puter science students (last year bachelor students and master students),
using a version of the interface anterior to the one presented in figure 3: it
did not include the visualizations. All students had at least basic knowledge
in SQL and data management. They were initially only told that they would
have to address several SQL-related challenges.

Prior to the experiment, participants were randomly divided into two
groups. The division was however balanced in terms of number of students
from each level (bachelor, first year and second year master students). The
experiment required to evaluate SQL queries on a database. For this, the first
group (referred to as group EXT from now on) had access to the extension
tool, while the other (referred to as group NoEXT from now on) had a tool
that was designed to be similar to the one of group EXT, but without the
extension possibility. This disposition was chosen to be able to compare the
results of the two groups, i.e to see the difference between groups with and
without extension, while working under similar conditions (softwares with
similar functionalities in terms of classic querying tools). Each group was
asked the same ten questions on a database (see appendix)

Design of the test. To test the extensions interface, we had to design impre-
cise questions, to put the students in the situation for which the extensions
were designed. The design of these questions was delicate, to find the right
level of difficulty. When conceiving the questions, our purpose was to propose
a fair situation for groups EXT and NoEXT. For this reason, we eliminated
several types of questions : questions that were trivial with extension, but
very difficult to do without it, and questions for which extension has no in-
terest: queries with empty result sets, dates comparison, specific operators
from DBMS... All questions exposed a scenario, and then asked to find out
the SQL query to solve it. The questions were separated into two categories
. The first three were classic SQL queries, that are directly and easily trans-
formable into SQL queries, on which the extension tool was not useful. They
were used to verify that each participant really had basic SQL skills, and
that groups EXT and NoEXT had similar results, and were therefore well
balanced. The other questions (number 4 to 10) were the imprecise ones:
their conversion into an SQL query was not straightforward. Their specifi-
cation was less strict, as selection conditions were not specified in terms of

23

numbers, but using adjectives such as higher, bigger, lower, above average,
low, etc.

Test setup. To guide participants, we indicated the approximate number of
tuples the query was supposed to return. For some questions, we proposed
data visualizations and asked participants to formulate queries that would
return a part of these visualizations. The objective was to transform a visual
pattern into a query, so they had to identify the pertinent conditions to char-
acterize the given pattern. This part of the experimentation then inspired
the additional functionalities for the interface. Participants had one hour to
answer the 10 questions. They use the tool to write queries and evaluate
them on the database, and once they thought they had the right query, had
to submit it online. They were not told whether their answer was right or
not, as in real-life where only the data analyst can know if she obtained the
data she wanted. During the hour of experimentation, we were able to mon-
itor the time each participant spent on each question. After the experiment,
we also checked whether the answers they submitted were correct or not.
Moreover, we were able to say, for each question, if participants from group
EXT had used extension or not. At the same time, group EXT had to adapt
to the extension tool, and they did not receive any specific training on how
to use the tool before the test. They did not get any additional time, and
had to use the hour to both answer the questions and master the extensions.
This was done to avoid influencing them on their use of the extension tool,
and to see how they would adapt to this new functionality.

Threats to validity. There exists several threats to the validity of our exper-
iments. The main threats are related to the selection of the participants and
their distribution into two groups. Indeed, if the distribution is not random,
especially in case regarding their SQL’s knowledge level, the obtained results
could be affected by the students characteristics. To prevent this, we ran-
domly assigned students from each level (bachelor or master) into the two
groups. Additionally, another related threat is the number of participants:
we had to make sure to enroll enough students in order to obtain representa-
tive results. Moreover, there might be a bias due to the fact that participants
knew that they were in a experiment, which might influence their behavior:
for example, they might change how they look for an answer to exploit the
experiment’s setting. to limit this threat, we reproduced conditions similar
to the examinations students are used to, and fixed a limited answering time

24

Figure 5: Boxplot of answering time per question, for groups EXT and NoEXT, only for
correct answers

so that they would use the most efficient way for them to answer questions.
Finally, it can argued that one limit of our experiment is the representative-
ness of our test sample, as our experiments was done with students. Because
of their various SQL levels, we had diversity in our sample, with students
with various backgrounds, and representative of our target for query exten-
sions. But additional experiments with other diverse participants could be
interesting to strengthen the representativity of the presented results.

Results. To analyze the impact of query extension on the time necessary to
answer the questions, the first result that is interesting to look at is how much
time each group spent on average answering each question: those results are
presented on figure 5. Only correct answers were taken into account on this
figure, as participants who provided a wrong answer might have spent a
lot of time on a question looking for the answer without finding it, or on
the contrary given up quickly if they did not know how to find the answer.
There are several interesting points to notice figure 5. For questions 1 to
3, the results of the two groups are similar, which was the initial objective.
When extension was not necessary, the performance of both groups were

25

equivalent. Question 4 was still easy for both group, as could be expected as
the visualization was here to help . Even though the use of extensions could
have helped on this question, it does not seem to have made a difference,
as the average answering time is very similar for both groups. This means
that a good and efficient visualization, when efficient, can also be useful.
For questions 5 to 10, the difference between the two groups is much more
important and it is clear that group EXT performed considerably faster than
group NoEXT. This is a strong argument to support the fact that SQL query
extension can indeed make the SQL query writing faster. The difference is
stronger for questions 7 and 8, which seem to have been the most difficult
questions for participants. Finally, the results of group EXT are much more
packed than for group NoEXT: participants who had access to extension
had a way to help them if they were stuck on a question, contrary to group
NoEXT participants who had to search by themselves until they identified the
answer. This is flagrant once again for question 7, where someone spent more
than 25 minutes looking for the answer. To summarize, when evaluated in
similar conditions, the group with access to extension performed faster than
the group with only classic SQL tools.

In the future, it would be interesting to develop other experiments, for
example on real databases, by enrolling domain experts that have a good
understanding of the data but might need help when confronted to imprecise
queries.

As mentioned previously, it was also possible to say whether a participant
had used extension for a given question or not. In total, 70% of participants
used query extension at least once, while the others completed the test with-
out using it. We analyzed the way participants had used the extensions: on
figure 6, interesting patterns can be observed. The main observation to do
is that once participants have used query extension for a question, they are
very likely to use it again in the next question. This is indicated by the
continuous blue lines on this figure. This is a really important result, as
it showed that once a user has understood the utility of extension, she will
use it again. This observation is particularly true for participants number
1 to 13, which in addition did not make many mistakes. Participants 14 to
19 also used extensions a lot after their first use, but made more mistakes:
when looking at their answering time, it seems that they did not have much
time to complete the last questions, and might have been in a rush and did
not give correct answers. Finally, participants 20 to 24 seem to have tested
extension, but preferred to finish the test without using it.

26

Figure 6: Type of answer per question, for participants who used query extension during
the test

To summarize, we demonstrated that the group with the extension tool
answered imprecise questions faster than the one without: on average, group
EXT completed the test in 32 minutes, against 48 minutes for group NoEXT.
This is not only because the tool allows to write faster, but mostly because it
identifies conditions that take much more time to find manually, and helped
students that were confronted to queries returning many tuples. We saw that
the tool is well accepted, and showed that the use of extensions was not a
single isolated try by participants, but that a first use encouraged them to
use it again.

5. Related work

As far as we know, SQL query extension is a new problem that has not
been studied yet. Nevertheless, related contributions exists such as [22],

27

that proposes a context aware autocompletion tool for SQL. Even though
it suggests completions in various SQL clauses, the completions offered rely
mostly on the schema and on the database’s log, and does not look at the
data itself contrary to our approach that relies on the database’s content.
Also related to the notion of imprecise queries is vague queries, introduced
in [23]: these are queries in natural language, that can be both vague in terms
of attributes to selection, or projections conditions. The author propose a
solution to answer such queries, using metrics to also retrieve closely related
results. In comparison, they do not allow a direct SQL translation, and
expend the possible results instead of refining them as exposed in this paper.

In addition several active research fields are closely related to this paper.
Query inference and example tuples Many approaches try to infer query

based on example tuples, manually labelled by the user, usually as positive
(if it should appear in the result set of the query) or negative. Among those
we can cite [24] that suggest a set of queries returning such example tuples,
or [25], where the objective is to infer the join query returning the expected
result. Those approach are similar to ours in the sense that their purpose is to
help query formulation. However, the labeling done by the user is a additional
task she has to do in addition to the usual ones. In comparison, we only ask
an input query from the user, which is something she has to do anyway in
order to get results in the database. The clustering phase of our solution is in
charge of the labeling, which means many more tuples can be labeled as it is
automatic. Other approaches also exist to avoid manual tuple labeling, such
as [26], that learns queries to help users in data exploration, using genetic
programming algorithms. Some approaches from natural language processing
are another alternative to interact with databases, such as in [27], or like [28]
that highlights part of a natural language query to explain the non answers
in the translated SQL query.

Interactive data exploration Many recent works concern interactive data
exploration in database, with techniques helping users understand and dis-
cover their data using machine learning. Some examples of such works are
exposed in [29]. Many of those approaches rely on manually labelled tuples
: we can cite the AIDE framework offers [30] that learns what tuples are
of relevance for the user and which are not. The machine learning phase is
essentially based on decision trees and SVM. Thereafter, this process was im-
proved in [31], by using even more machine learning. This second paper uses
the same framework, but completes it by identifying underlying user habits
based on their labeling. Those habits are turned into attributes used in a

28

clustering. This way, similar users are identified, which is used for speeding
the process by using previous data exploration by similar users to give even
more relevant tuples. We can see here many similar features with our query
extension proposal. However once again those approaches require more work
from the user.

Faceted search The goal of extensions is to guide the user to various parts
of her initial data, by describing it using a set of various attributes, that
highlight different aspects of the dataset. In that sense, this is related to
faceted search and exploration [32], that allow a user to explore and narrow
her results with facets conditions that work as restrictions on attribute val-
ues. With extensions, we propose different possible restrictions with several
combinations of attributes and values. FleXplorer [33] proposes a framework
for faceted search, that can be used for relational databases. An other so-
lution,YMALDB [34], offers to explore databases by recomanding “you may
also like” results, that where not part of the user’s initial query. Theses ad-
ditional items are computed by identifying interesting sets of attributes and
values (facets).

Redescription mining One part of our proposed solutions aims at describ-
ing a set of tuples,mainly using a decision tree. This related to redescription
mining [7], that unifies considerations of conceptual clustering, constructive
induction, and logical formula discovery. Nevertheless, they do not consider
at all SQL queries as we do, and are interested in enumerating all possible
redescriptions verifying some conditions, with enumeration techniques quite
different from our proposition. Decision trees in databases have also been
studied in various forms: in [14] they are used to reformulate in query for
data exploration. We can also mention works on integrating decision trees
into databases as objects that can be stored and queried, such as in [35] or
[36]. Also related to our solution are predictive cluster trees that combine
those two method into one [37].

Reverse query engineering Finding a query returning a given set of tuple
is also closely related to reverse query engineering [6, 38] that considers the
following problem: given a tuple set T in a database d, find a query Q
such that ans(Q, d) = T . Many theoretical results exist with respect to
the language permitted to express Q, conjunctive queries and variants. This
is what we do with the decision tree used to formulate a query returning
the tuples from a cluster. However, in our context, some simplification is
permitted since part of the query is known.

Machine learning and relational databases There is a part of research

29

trying to bridge the gap between machine learning and database. [39] argues
that bringing databases and machine learning algorithms closer might only
be beneficial in terms of performance. More concrete applications of this has
actually been done, such as in [40] where an entire machine learning library
has been adapted so that it is compatible with a storage of data in a DBMS
instead of a data structure in main memory. Moreover, they also adapted
the algorithms in order to make use of native SQL operators. There is also
[41] which is a SQL extension for data mining.

6. Conclusion

In this paper, we proposed to address the problem of extending SQL
queries to answer imprecise questions. Without any intervention required
for the user, the query can be extended automatically with the number of
extensions asked by the data analyst. The extensions summarize the initial
dataset, and helps the user to understand how her data is organized. More-
over, they can be used to refine the query and reach regions of interest. The
approach is based on classical machine learning algorithms, adapted to fit
into the definition of the extensions we have proposed. A SQL editor proto-
type has been developed with a web interface providing various functionali-
ties. Experimentation on scaling were performed, showing how sampling can
speed up the computation time while keeping a satisfying quality. In addi-
tion, user experimentation was conducted with 70 participants: participants
with access to extensions performed faster and adapted very well to tool. In
the current context where more and more data is being stored and analyzed,
such a tool can be useful, and could be integrated to data exploration solu-
tions to improve them and give an help integrated to the querying language
itself. Moreover, the solution is iterative and allows the user to modify an
extension and to continue until she reaches what she was looking for. The
extension tool is also a way to integrate knowledge on data, usually provided
by data mining systems and tools, without leaving the context of DBMS.
Many extensions of this work can be envisioned. It could be interesting to
look at other SQL clauses to adapt the notion of extension to them, such
as group by for example, to be able to automatically suggest grouping con-
ditions. Finally, this work is also a contribution to bridge the gap between
database techniques and machine learning techniques.

30

Appendix A. Experimentation Scenario

You’re a new member of a post office, in charge of packages. When
you’re not at the front desk taking care of customers, you have access to data
recorded about the packages sent from your post office. For simplification,
we will focus on the packages leaving the post office to other destinations.
Here is how the database was created :

CREATE TABLE C i t i e s (
c i t y ID DECIMAL,
d i s t anc e DECIMAL,
PRIMARY KEY (c i ty ID)

)
CREATE TABLE Packages (

package ID DECIMAL,
d e s t i n a t i o n DECIMAL,
l ength DECIMAL,
width DECIMAL,
he ight DECIMAL,
weight DECIMAL,
p r i c e DECIMAL,
PRIMARY KEY (i d c o l i s)
FOREIGN KEY (d e s t i n a t i o n)

r e f e r e n c e s V i l l e s (i d v i l l e)
)

Table Packages has one entry per package that left your post office. From
the destination of a package, you can see how far it was sent, by joining tables
Packages (11000 tuples) and Cities (30 tuples) on attributes destination and
city ID.

Questions are ordered from easiest to hardest :you should therefore an-
swer them in the given order. First three questions are simple, while the
others are voluntary more complex, and finding the required SQL query in
questions 4 to 10 required more exploration.

Questions

Question 1 This first question is here so that you can get familiar with
the data and the tools at your disposal. Please test the two tools (SQL

31

software and online form for answers) with the following query, that is a join
between the two tables (Expected result size: 10 999 tuples):

S e l e c t ∗
From Packages , C i t i e s
Where Packages . d e s t i n a t i o n = C i t i e s . c i t y ID

Question 2 Maximum size limit authorized for a package is 9000 grams.
However, some exceed this limit without being detected. Give the query to
obtain the ID of packages whose weight exceed this limit. (Expected result
size: 73 tuples)

Question 3 What query can you write to obtain the average length of
packages sent less than 100 kilometers from your post office ? (Expected
result size: 1 tuple)

Question 4 A little bit interested by data analysis, a colleague of yours
had, with a spreadsheet, visualized some curves from the database. By plot-
ting packages prices against their height, he/she had noticed a group of pack-
ages very distinct and well separated from the others, which is presented on
figure A.7, and circled in red. Can you find the query that returns all pack-
ages belonging to this group ?(Expected result size: 33 tuples)

Figure A.7: Visualization for question 4

Question 5 According to some colleagues who’ve been working here for
years, heaviest packages are the ones going to very distant destinations. The

32

intuition behind this is that sending a package far away is expansive, so cus-
tomers put many things in one package to compensate. Can you identify
packages that do not comply with this, i.e that are not heavy but are sent
far away ? (Expected result size: 13 tuples)

Question 6 Once at the regional sorting center, packages go through a
machine that automatically sorts them according to their destination. How-
ever, this machine is sometimes defective. Indeed, when a package is less
than 480g, the machine does not always detect it, and an operator has to
take it and process it manually. This phenomenon is marginal, but more
likely to happen if in addition to its light weight, the packages is small re-
garding its length and width. On all packages registered in your database,
12 have caused a problem. Which query can identify those 12 packages ?

Question 7 Some packages are sent to a city that is very close to your
post office, less than 10km away. Moreover, some are very light (less than
550g), and you wonder why people pay the post office to transport them
while they would quite easily do it themselves. One of your colleagues has
an hypothesis : maybe those packages are cumbersome and therefore hard to
transport. Can you identify packages validating this hypothesis ? (Expected
result size: 8 tuples)

Question 8 A customer arrives at the post office, because he needs the
ID of a package he had send, but isn’t able to find. In order to help him, he
gives you a few informations: the package was light, less than 450g and its
dimensions (mainly length and width) were surprisingly big in regard to its
weight. Can you give the query returning such a package ? (Expected result
size: 1 tuple)

Question 9 When working at the front desk, one of your colleagues made
a mistakes on four on the packages he registered. Luckily, he remembers their
length was above 140cm, and he therefore applied a special tarification, as
those kind of packages are more complicated to deliver due to their size. But
he applied the wrong tarification, and those packages have therefore an ab-
normally elevated price. Can you identify those packages ? (Expected result
size: 4)

Question 10 At question 2, you showed that 73 packages are above the

33

weight limit. But your colleagues in charge of putting packages in the trucks
say that a third of packages are really heavy, and require two employees to be
lifted, in order to avoid back pains. Can you modify the query for question
2 in order to identify those packages ? (Expected result size : 3073 tuples)

References

[1] C. Mishra, N. Koudas, Interactive query refinement, in: Proceedings of
the 12th International Conference on Extending Database Technology:
Advances in Database Technology, ACM, 2009, pp. 862–873.

[2] M. J. Carey, D. Kossmann, On saying enough already! in sql, in: ACM
SIGMOD Record, Vol. 26, ACM, 1997, pp. 219–230.

[3] R. Fagin, A. Lotem, M. Naor, Optimal aggregation algorithms for mid-
dleware, Journal of computer and system sciences 66 (4) (2003) 614–656.

[4] M. Levene, G. Loizou, A Guided Tour of Relational Databases and
Beyond, Springer-Verlag, London, UK, UK, 1999.

[5] A. K. Jain, Data clustering: 50 years beyond k-means, in: Joint Eu-
ropean Conference on Machine Learning and Knowledge Discovery in
Databases, Springer, 2008, pp. 3–4.

[6] Q. T. Tran, C.-Y. Chan, S. Parthasarathy, Query reverse engineering,
The VLDB Journal 23 (5) (2014) 721–746. doi:10.1007/s00778-013-0349-
3.
URL http://dx.doi.org/10.1007/s00778-013-0349-3

[7] L. Parida, N. Ramakrishnan, Redescription mining: Structure theory
and algorithms, in: AAAI, Vol. 5, 2005, pp. 837–844.

[8] J. Han, Data Mining: Concepts and Techniques, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2005.

[9] J. H. Friedman, On bias, variance, 0/1loss, and the curse-of-
dimensionality, Data mining and knowledge discovery 1 (1) (1997) 55–
77.

[10] S. Lloyd, Least squares quantization in pcm, IEEE Trans. Inf. Theor.
28 (2) (2006) 129–137. doi:10.1109/TIT.1982.1056489.
URL http://dx.doi.org/10.1109/TIT.1982.1056489

34

[11] T. Sellam, M. Kersten, Cluster-driven navigation of the query space,
IEEE Transactions on Knowledge and Data Engineering 28 (5) (2016)
1118–1131.

[12] Z. Huang, Extensions to the k-means algorithm for clustering large data
sets with categorical values, Data mining and knowledge discovery 2 (3)
(1998) 283–304.

[13] P. J. Rousseeuw, Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis, Journal of computational and applied
mathematics 20 (1987) 53–65.

[14] J. Cumin, J.-M. Petit, V.-M. Scuturici, S. Surdu, Data exploration with
sql using machine learning techniques, in: International Conference on
Extending Database Technology-EDBT, 2017.

[15] L. Breiman, J. Friedman, C. J. Stone, R. A. Olshen, Classification and
regression trees, CRC press, 1984.

[16] C.-C. Wu, Y.-L. Chen, Y.-H. Liu, X.-Y. Yang, Decision tree induction
with a constrained number of leaf nodes, Applied Intelligence 45 (3)
(2016) 673–685.

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay,
Scikit-learn: Machine learning in Python, Journal of Machine Learning
Research 12 (2011) 2825–2830.

[18] L. Breiman, J. Friedman, R. Olshen, C. Stone, Classification and Re-
gression Trees, Wadsworth and Brooks, Monterey, CA, 1984.

[19] M. Le Guilly, J.-M. Petit, V.-M. Scuturici, I. Ilyas, Explique: Interactive
databases exploration with sql, in: 28th ACM International Conference
on Information and Knowledge Management(CIKM ’19), ACM, New
York, NY, USA, 2019. doi:10.1145/3357384.335784.

[20] W. M. Rand, Objective criteria for the evaluation of clustering methods,
Journal of the American Statistical association 66 (336) (1971) 846–850.

35

[21] W. G. Cochran, Relative accuracy of systematic and stratified random
samples for a certain class of populations, The Annals of Mathematical
Statistics (1946) 164–177.

[22] N. Khoussainova, Y. Kwon, M. Balazinska, D. Suciu, Snipsuggest:
Context-aware autocompletion for sql, Proceedings of the VLDB En-
dowment 4 (1) (2010) 22–33.

[23] A. Motro, Vague: a user interface to relational databases that permits
vague queries, ACM Transactions on Information Systems 6 (3) (1988)
187214. doi:10.1145/45945.48027.

[24] Y. Shen, K. Chakrabarti, S. Chaudhuri, B. Ding, L. Novik, Dis-
covering queries based on example tuples, in: Proceedings of the
2014 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’14, ACM, New York, NY, USA, 2014, pp. 493–504.
doi:10.1145/2588555.2593664.
URL http://doi.acm.org/10.1145/2588555.2593664

[25] A. Bonifati, R. Ciucanu, S. Staworko, Interactive join query in-
ference with jim, Proc. VLDB Endow. 7 (13) (2014) 1541–1544.
doi:10.14778/2733004.2733025.
URL http://dx.doi.org/10.14778/2733004.2733025

[26] D. M. L. Martins, G. Vossen, F. B. de Lima Neto, Learning database
queries via intelligent semiotic machines, in: Computational Intelligence
(LA-CCI), 2017 IEEE Latin American Conference on, IEEE, 2017, pp.
1–6.

[27] P. Utama, N. Weir, F. Basik, C. Binnig, U. Cetintemel, B. Hättasch,
A. Ilkhechi, S. Ramaswamy, A. Usta, An end-to-end neural natural lan-
guage interface for databases, arXiv preprint arXiv:1804.00401 (2018).

[28] D. Deutch, N. Frost, A. Gilad, T. Haimovich, Nlprovenans: natural
language provenance for non-answers, Proceedings of the VLDB En-
dowment 11 (12) (2018) 1986–1989.

[29] O. Papaemmanouil, Y. Diao, K. Dimitriadou, L. Peng, Interactive data
exploration via machine learning models., IEEE Data Eng. Bull. 39 (4)
(2016) 38–49.

36

[30] K. Dimitriadou, O. Papaemmanouil, Y. Diao, AIDE: an active learning-
based approach for interactive data exploration, IEEE Trans. Knowl.
Data Eng. 28 (11) (2016) 2842–2856. doi:10.1109/TKDE.2016.2599168.
URL http://dx.doi.org/10.1109/TKDE.2016.2599168

[31] O. Papaemmanouil, Y. Diao, K. Dimitriadou, L. Peng, Interactive data
exploration via machine learning models, IEEE Data Eng. Bull. 39 (4)
(2016) 38–49.
URL http://sites.computer.org/debull/A16dec/p38.pdf

[32] A. Kashyap, V. Hristidis, M. Petropoulos, Facetor: cost-driven explo-
ration of faceted query results, in: Proceedings of the 19th ACM inter-
national conference on Information and knowledge management, ACM,
2010, pp. 719–728.

[33] Y. Tzitzikas, N. Armenatzoglou, P. Papadakos, Flexplorer: A framework
for providing faceted and dynamic taxonomy-based information explo-
ration, in: Database and Expert Systems Application, 2008. DEXA’08.
19th International Workshop on, IEEE, 2008, pp. 392–396.

[34] M. Drosou, E. Pitoura, Ymaldb: exploring relational databases via
result-driven recommendations, The VLDB JournalThe International
Journal on Very Large Data Bases 22 (6) (2013) 849–874.

[35] É. Fromont, H. Blockeel, J. Struyf, Integrating decision tree learning into
inductive databases, in: International Workshop on Knowledge Discov-
ery in Inductive Databases, Springer, 2006, pp. 81–96.

[36] N. U. Rehman, M. H. Scholl, Enabling decision tree classification in
database systems through pre-computation, in: British National Con-
ference on Databases, Springer, 2010, pp. 118–121.

[37] B. Liu, Y. Xia, P. S. Yu, Clustering through decision tree construction,
in: Proceedings of the ninth international conference on Information and
knowledge management, ACM, 2000, pp. 20–29.

[38] M. Zhang, H. Elmeleegy, C. M. Procopiuc, D. Srivastava, Reverse en-
gineering complex join queries, in: Proceedings of the 2013 ACM SIG-
MOD International Conference on Management of Data, ACM, 2013,
pp. 809–820.

37

[39] S. Chaudhuri, Data mining and database systems: Where is the inter-
section?, Data Engineering Bulletin 21 (1998).

[40] B. Zou, X. Ma, B. Kemme, G. Newton, D. Precup, Data Mining Using
Relational Database Management Systems, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2006, pp. 657–667. doi:10.1007/11731139 75.
URL http://dx.doi.org/10.1007/11731139_75

[41] H. Wang, C. Zaniolo, C. R. Luo, Atlas: A small but complete sql ex-
tension for data mining and data streams, in: Proceedings of the 29th
international conference on Very large data bases-Volume 29, VLDB
Endowment, 2003, pp. 1113–1116.

38

