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Abstract: The degenerative xanthate addition transfer to alkenes allows the synthesis of a broad range of protected, 
and in some cases enantiopure, α, b, and g-amino acids, including proline and pipecolic, as well as fluorinated 
derivatives and b-lactams. The radical addition furnishes naturally latent mercapto-α-amino acids that are ideally 
equipped for native chemical ligation. Most of the amino acid structures accessible rapidly by this chemistry would 
otherwise require tedious multi-step syntheses. 
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1. Introduction 

a-Amino acids constitute fundamental building blocks for peptides. In addition to the twenty or so proteinogenic 

a-amino acids, numerous unnatural a-amino acids have been prepared and used in the fashioning of modified 

peptides, peptidomimetics, drugs, natural products, ligands for transition metals, and so on.[1] The homologous b- 

and g-amino acids are also of considerable value and have in consequence attracted much attention.[2] Both types 

are found in natural products and drug substances. They are precursors of b- and g-lactams, and b-amino acid 

derived peptidomimetics are metabolically stable and therefore particularly useful in medicinal chemistry. The 

exceptional importance of this family of compounds is reflected by the extensive efforts, spanning many decades, 

devoted to the design and development of broadly applicable methods for their synthesis.[3] In this brief overview, 

the potential of the degenerative radical addition-transfer of xanthates for the synthesis of a-, b-, and g-amino acids 

will be discussed.  

 

2. The degenerative radical addition-transfer of xanthates 

The xanthate transfer is based on the unique ability of xanthates and related derivatives to store reactive radicals 

in a dormant form, thereby enhancing significantly their lifetime in a concentrated medium, while simultaneously 

regulating their absolute and relative concentrations.[4] The mechanism of the xanthate addition, outlined in 

simplified form in Scheme 1, exhibits several features: (a) The reaction of R• with xanthate 3, its precursor, is 

reversible and degenerate. It gives rise to adduct 4, a radical stabilised by three heteroatoms that is too bulky to 

react fast with other radicals and is unable to disproportionate (no b-hydrogens). It can therefore only fragment 

back to R•. The continuous regeneration of starting radical R• increases considerably its effective lifetime, allowing 
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it to react even with unactivated alkene 1 to furnish adduct 2. This new radical is in turn captured reversibly by 

the xanthate to give intermediate 5 (likewise a dormant species). (b) Because the equilibrium generally favours 

adducts 4 and 5, active radicals R• and 2 are reversibly stored in an inactive dormant state most of the time. In 

consequence, their absolute steady state concentration remains extremely low, and undesired radical-radical 

interactions become insignificant. (c) Since radicals R• and 2 are in equilibrium via intermediate 5, it is possible 

to modulate their relative concentration by a suitable choice of partners so as to favour the production of adduct 6 

and avoid the formation of unwanted oligomers 7. 

 

 

Scheme 1. Simplified mechanism for the xanthate addition to an alkene.  

The actual mechanism is subtler and more intricate than the manifold displayed in Scheme 1. The interested reader 

is directed to the articles in reference 5 for a more detailed mechanistic discussion.[5] From a preparative standpoint, 

this process offers numerous advantages, namely: non-toxic and very inexpensive reagents (bulk price 2-5 USD 

per kg); safe and easily scalable procedures; ability to operate in highly concentrated media, and sometimes even 

without a solvent; and, not least, a good compatibility with most functional groups, especially polar functions that 

often require protection with other chemistries. Well over 2000 additions, involving several hundred different 

xanthates, have been described so far. For the synthesis of amino acids, the masked amino acid moiety can be 

attached to either the xanthate or the alkene partner (or indeed both). These two approaches will be discussed in 

the next sections. 
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3. Xanthates bearing the amino acid motif 

The approach where the xanthate group is attached to the amino acid moiety will first be illustrated by two 

cyclisation reactions involving b-lactam chloride 8 and the corresponding xanthate 13 (Scheme 2; the amino acid 

portion is coloured in blue). The two experiments will serve to underscore the difference in the lifetime of the 

intermediate radicals when applying the classical stannane chemistry as compared to the tin-free xanthate transfer.  

Thus, treatment of chloride 8 with tributyltin hydride at a concentration of 0.02 M furnishes the desired bicyclic 

compound 11 as the minor product.[6] At this concentration, intermediate radical 9 is mostly prematurely reduced 

to give uncyclized product 10. By lowering the concentration to 0.003 M, the formation of uncyclized product 10 

is strongly curtailed and the yield of bicyclic b-lactam 11 increases to 50%. Unfortunately, the very high dilution 

encourages the formation of phenylated compound 12, arising by attack of the cyclised radical on the benzene 

solvent.  

 

 

Scheme 2. Two methods for ring formation on a b-lactam. 
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In dramatic contrast, heating a solution of xanthate 13 in refluxing cyclohexane in the presence of a small amount 

of di-lauroyl peroxide (DLP, also sold under lauroyl peroxide, Laurox® or Luperox LP®) furnishes cleanly the 

cyclised product 14 in good yield, even though the concentration is nearly 100-fold greater than that of the stannane 

reaction.[7] The same intermediate radical 9 is implicated, but its reaction with its xanthate precursor 13 is reversible 

and degenerate. It is therefore not consumed in useless side reactions because its lifetime is increased sufficiently 

to permit an essentially complete cyclisation, even under much more concentrated conditions.  

The addition of protected amino acid motif bearing a xanthate group was applied early on by Speckamp and 

Hiemstra for the synthesis both cyclic and open chain amino acids.[8] The examples of cyclic amino acids are 

pictured in Scheme 3.[8a] The ring-closure of xanthate 15 was accomplished under two different conditions. 

Initiation with di-t-butyl peroxide at high temperature (conditions A) furnished the 6-endo and 5-exo products 16 

and 17, respectively, in 64% combined yield and in a 1:5 ratio. Initiation using visible light in combination with a 

small amount of S-benzoyl xanthate gives the same mixture of compounds 16 and 17 in similar ratio, but in a better 

yield and a higher selectivity as far as the cis/trans ratio is concerned. The yellow-coloured S-benzoyl xanthate 

absorbs in the visible region of the spectrum; it initiates the radical chain without being consumed in the process.[9] 

The cyclisation of xanthates 18 and 20 proceeds by a 6-exo mode to give the corresponding pipecolic derivatives 

19 and 21 in good yield as mixtures of diastereoisomers.  
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Scheme 3. Formation of protected cyclic amino acids. 
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Scheme 4. Formation of protected amino acids. 
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last step hinges on the presence of the suitably positioned electron releasing methoxy substituent, which facilitates 

the departure of the sulfonyl group and formation of indole 33.   

 

 

Scheme 5. Variations on the synthesis of protected amino acids. 
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stoichiometric DLP in isopropanol (Scheme 6).[15] Compounds 35a-f were thus obtained in modest yields over the 

two steps. Allylation with allyl ethyl sulfone[16] was also explored as illustrated by the formation of products 36a-

d.    

 

 

Scheme 6. Synthesis of dipeptides. 
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A similar strategy can be used to access protected b3-amino acid. According to nomenclature proposed by 

Seebach,[17] b3- indicates that the substituent in the b-amino acid is on the carbon bearing the amino group. Such 

b-amino acids in protected form, 38, can be obtained by addition of xanthate 37 to various alkenes,[18]  then 

reducing off the xanthate group in the corresponding adducts using hypophosphorous acid salts, according to the 

method introduced by Barton (Scheme 7).[19]  The success of these additions hinges on the ability of the phthalimide 

(and imides in general) to stabilise the adjacent radical by providing it with a certain allylic character. [20] Examples 

38a-k are representative of structures accessible by this approach. Noteworthy are b-amino acids 38j, possessing 

an unusual fluorinated sidechain, and 38g and 38h, where cyclization of the unmasked amine with the ketone 

would lead to medicinally relevant bicyclic b-amino acid derivatives. Another interesting compound in Scheme 7 

is adduct 38d. It corresponds to methyl b-lysinate, where the two amino groups are protected as phthalimides. b-

Lysine (or isolysine) is biosynthetically derived from lysine itself by the action lysine 2,3-aminomutase, a SAM 

dependent enzyme. [21] Along with b-alanine and b-leucine, it is one of the earlier b-amino acids found in nature. 

It is present in tears, where it acts as an antibiotic by causing lysis of numerous Gram-positive bacteria, and in 

blood platelets during coagulation. It is also a subunit of several antibiotics isolated chiefly from Steptomyces 

strains in the middle of last century, such as viomycin, streptolin and streptothricin.[22]  
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Scheme 7. Synthesis of protected b-amino acids. 
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Scheme 8. Synthesis of protected b- and g-amino acids. 
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4. Alkenes bearing an amino acid motif 

An alternative and equally powerful strategy is to place the amino acid motif on the alkene and introduce the 

diversity through the xanthate partner. One such example is outlined in Scheme 9. It involves the addition of S- 

acyl xanthate 44 to protected allylglycine 45 to give the corresponding addition product 47.[25] This reaction 

exhibits a few interesting features. Firstly, intermediate acyl radical 46 does not undergo ring opening of the 

strained cyclopropane, in contrast to the analogous cyclopropyalkyl radicals, which rupture extremely rapidly with 

first order rate constants around 108s-1.[26] Nor does it extrude carbon monoxide, unlike typical tertiary acyl 

radicals.[27] Secondly, the xanthate group in adduct 47 is b- to the ketone and can thus be eliminated by brief 

treatment with a base such as DBU. When the reaction is conducted at 0 °C, enone 48 is produced in high yield. 

In contrast, operating at room temperature results in migration of the alkene via the extended enolate to furnish 

ultimately enamide 49. The asymmetric hydrogenation of enamides is a well-established route to optically pure 

amino acids.[28] In the present case, this would lead to derivative 50, which could be converted if so desired into 

tetrahydropyridine 51 by selective deprotection of the amino group. Ring expansion of the cyclopropyl group 

would constitute another path for diversification. 
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Scheme 9. Addition of cyclopropylacyl radicals. 

 

Addition of various xanthates to the optically pure allylglycine 45 would represent a simple approach to non-

racemic a-amino acids. Protected vinylglycine 52, a compound readily prepared from L-methionine, is another 

very attractive precursor to a broad range of non-racemic a-amino acids. Incidentally, vinyl glycine itself is a 

natural product isolated from certain mushrooms and reported to be an inhibitor of pyridoxal-linked aspartate 

aminotransferase.[29] The remarkable diversity of additions to alkene 52 is illustrated by the numerous examples 

provided in Scheme 10.[30] A tertiary butyl group (54c) as well as more polar nitrile (54a,b), ester (54d), as well 

as a Weinreb amide (54e), are easily introduced. Examples 54f-i arise by addition of a-ketonyl xanthates bearing 

various substituents and provide access to amino acids that would be exceedingly tedious to obtain by more 

conventional methods. The last example corresponds to the synthesis of protected ornithine 54j. The amino group 

in this compound was deprotected by catalytic hydrogenation and converted into the corresponding Mosher amide 

(not shown), which allowed us, by comparison with authentic material, to confirm that no significant racemisation 

occurred during the radical addition and reductive dexanthylation steps.   



 16 

 

Scheme 10. Radical additions to protected vinyl glycine. 
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and in situ stereoselective reduction of the resulting cyclic imine. This route is not only the shortest to the rare 

methyl 2-trifluormethyl-6-pipecolate 58, it is just one example of a broader strategy for the synthesis of optically 

pure pipecolates (and indeed piperidines in general) since any of keto amino acids 54f-i could be converted into 

the corresponding pipecolates by a similar treatment.  

 

 

Scheme 11. Synthesis of enantiopure methyl 2-trifluoromethyl-6-pipecolate. 
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Scheme 12 
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Scheme 13. Synthesis of Boc-protected proline derivatives. 
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trifluoronorleucine 71 are useful as modifiers of biologically active peptides.[38] They are commercially available 

but very expensive substances (200-400 USD/g) because of the complexity of their synthesis.[39] In the same 

manner, trifluoromethylated proline derivatives 73 and 75 were prepared by addition of reagent 67 to alkenes 59 

and 63, respectively. The reductive removal of the xanthate in adduct 72 was advantageously accomplished with 

DLP in isopropanol. The Barton procedure in this case gave a product contaminated with octadecanol.  

 

Scheme 14. Synthesis of protected fluorinated a-amino acids. 
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is in fact masked (S)-α-Tfm-lysine 79, an apparently unknown fluorinated amino acid, at least in the open 

literature. The lower congener, α-Tfm-ornithine 80, has been prepared from racemic carboxamide 81 by a 

Hoffmann-type degradation.[41] It is worth noting that racemic difluoromethyl-ornithine 82 (eflornithine) is 

clinically employed for the treatment of sleeping sickness.[42]  

 

 

Scheme 15. Synthesis of trifluoromethyl substituted lysine derivatives. 
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group. Dexanthylation of the corresponding adduct 84 gives rise to product 85, a masked form of 6,6,6-trifluoro-

α-Tfm-norleucine 86 and, so far, an unknown α-trifluoromethyl analog of 6,6,6-trifluoro-norleucine described by 

Ojima in 1989.[39c] 

 

 

Scheme 16. Synthesis of a protected bis(trifluoromethyl) substituted amino acid. 
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No work has yet been done on a-aminophosphonic acids, another class of medicinally useful compounds,[44] but, 

as depicted in Scheme 17,  the addition of xanthate 87 to diethyl allylphosphonate proceeds smoothly to give d-

aminophosphonate 89.[43] Another amusing example is the addition of malonyl xanthate 90 to commercially 

available N-vinyl phthalimide to give adduct 91, which in turn can be added to dimethyl alkylphosphonate to 

afford product 92, after reductive removal of the xanthate group. This compound is at the same time a masked g-

amino acid and a d-aminophosphonic acid. To access a-aminophosphonic acids, the required  a-aminophosphonic 

motif could in principle be placed on the alkene, the xanthate, or both. 

 

 

Scheme 17. Synthesis of protected aminophosphonic acids and b-lactams. 
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b-Lactams are masked b-amino acids that can also be accessed by this chemistry. One example is displayed in the 

lower part of Scheme 17, where b-lactam xanthate 93 is added to Feist’s ester 94 to give adduct 95.[45] b-Lactams 

constitute a hugely important family,[46] and the present route provides many structures not readily available 

otherwise.  

 

Many aspects in this area remain to be explored. Xanthates bearing chiral a-, b-, or g- amino acid motifs allowing 

direct access to optically pure amino acids are still needed. One solution is by asymmetric reductive amination of 

a-ketoesters and asymmetric reduction of a-oximinoesters. These are well-known routes to chiral non-racemic a-

amino acids.[3] Preliminary studies have indicated that a-ketoesters and a-oximinoesters can be obtained by the 

usual xanthate addition, one example being the addition of xanthate 96 to allyl acetate (Scheme 18). The resulting 

addition product 97 could in principle be processed into amino acid 98.[47]  

 

 

Scheme 18. Other routes to amino acids and to mercapto amino acids. 
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Finally, little use was made of the xanthate group in the adducts; it was simply reductively removed. Hydrolytic 

cleavage, for example by aminolysis, would give rise to the corresponding thiols. In most of the examples 

described in the present overview, the corresponding mercapto amino acids obtained after deprotection would 

constitute ideal substrates for the native chemical ligation. Native chemical ligation is an ingenious technique 

based on thiolesters derived from 2- and 3-mercapto amino acids that allows the formation in an aqueous medium 

of a peptide bond between two polypeptide fragments.[48] However, only cysteine and mercaptovaline are 

commercially available; other 2- and 3-mercapto amino acids have to be prepared as needed. For instance, the 

synthesis of protected 3-mercaptolysine 100 required 12 linear steps from protected aspartic acid 99.[49] Compound 

102, the synthetic equivalent of protected 3-mercaptolysine derivative 100, should be accessible in only one step 

by addition of xanthate 87 to protected enantiomerically pure allyl glycine 102. 3-Mercaptolysine derivative 101 

would arise from both compounds 100 and 102 by cleavage of the thioacetate or the xanthate group, respectively. 

Notice that cleavage to the xanthate in adduct 53j would lead to a protected 2-mercaptoornithine.  
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Scheme 1. Simplified mechanism for the xanthate addition to an alkene.  

 

 

Scheme 2. Two methods for ring formation on a b-lactam.  

 

R

S

S
R

Y

S

OEt

S
R

OEt

R

Y

OEtS
R

S

Initiation

•

3

4
3

6

R

S

S
R

OEt

Y1
2

R+

OEtS
R

S

3

Y

Y
R

Y Y

5

R
R

EtO S

S

17

•

•

••

•

N
O
t-BuO2C

Cl

N
O
t-BuO2C

S

N
O
t-BuO2C

N
O
t-BuO2C

N
O
t-BuO2CH

H

N
O
t-BuO2C

H S

Ph

EtOC(S)SK
Acetone

10
50%
5%

benzene 
reflux

 
(DLP)

cyclohexane 
(0.25M)  
reflux

11
20%
50%

[Bu3SnH] :  0.02 M
0.003 M

12
  —
14%

14, 74%
(87:13)

8

S

EtO

S

OEt

N
O
t-BuO2C

Bu3SnH
(AIBN)

9

10 11

12

13



 30 

 

Scheme 3. Formation of protected cyclic amino acids. 
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Scheme 4. Formation of protected amino acids. 
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Scheme 5. Variations on the synthesis of protected amino acids. 
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Scheme 6. Synthesis of dipeptides. 
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Scheme 7. Synthesis of protected b-amino acids. 
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Scheme 8. Synthesis of protected b- and g-amino acids. 
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Scheme 9. Addition of cyclopropylacyl radicals. 
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Scheme 10. Radical additions to protected vinyl glycine. 
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Scheme 11. Synthesis of enantiopure methyl 2-trifluoromethyl-6-pipecolate. 
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Scheme 12. Synthesis of proline derivatives. 
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Scheme 13. Synthesis of Boc-protected proline derivatives. 
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Scheme 14. Synthesis of protected fluorinated a-amino acids. 
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Scheme 15. Synthesis of trifluoromethyl substituted lysine derivatives. 
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Scheme 16. Synthesis of a protected bis(trifluoromethyl) substituted amino acid. 
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Scheme 17. Synthesis of protected aminophosphonic acids and b-lactams. 
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