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This article reviews the dramatic variation in wake structures and flow transitions, in addition to body forces, that appears as the motion of bluff bodies through a fluid occurs increasingly closer to a solid wall. In particular, the two cases of bluff bodies translating parallel at varying heights to solid walls and bluff bodies impacting on solid walls are discussed. In the former case, the changes to the wake structures as the flow varies from that of an isolated body to that of a body on or very close to the wall are highlighted, including the effects when the body is rotating. For the latter case of an impacting body, the flow structures following impact and their transition to three-dimensionality are reviewed. The issue of whether there is solid-solid contact between the bluff body and a wall and its importance to body motion is discussed.

INTRODUCTION

The flow around generic bluff bodies, such as circular cylinders and spheres, has been studied for more than a century. The vortex-shedding phenomenon occurring in the wake of these bodies, and the associated fluid-structure interactions, have been the topic of a number of previous contributions to the Annual Review of Fluid Mechanics: [START_REF] Berger | Periodic flow phenomena[END_REF], [START_REF] Bearman | Vortex shedding from oscillating bluff bodies[END_REF], [START_REF] Oertel | Wakes behind blunt bodies[END_REF], Williamson (1996b), [START_REF] Williamson | Vortex-induced vibrations[END_REF], [START_REF] Choi | Control of flow over a bluff body[END_REF], [START_REF] Ern | Wake-induced oscillatory paths of bodies freely rising or falling in fluids[END_REF].

Building on and extending these reviews, this article focuses on the wake dynamics of generic bluff bodies when moving relative to, and interacting with, walls. Examples of the wakes generated by a cylinder rolling on a wall and a sphere impacting a wall are shown in Figure 1. These vortical flows bear little resemblance to the wakes of isolated cylinders and spheres in freestream.

Practical Significance

A solid body moving along or colliding with a solid surface is a common element relevant to many industrial and environmental processes, leading to complex energy exchanges. An example is the resuspension of particles deposited on a surface, such as dust on the ground or sediments in rivers, by the wake generated by the impact of an object or other particles; see, e.g., [START_REF] Willetts | Aeolian and fluvial grain transport[END_REF][START_REF] Ziskind | Particle resuspension from surfaces: revisited and re-evaluated[END_REF], for reviews on this topic -also see Figure 1b. Wear due to particle impacts on surfaces is a major problem in many areas, including pumping and processing of slurry flows [START_REF] Clark | The influence of the flow field in slurry erosion[END_REF], as is the damaging impact of small particles on high-technology equipment in desert environments [START_REF] Yildirim | Rebound mechanics of micrometre-scale, spherical particles in high-velocity impacts[END_REF]). Micrometer- Schematics of the two types of configurations considered in this review, including the main parameters: (a) a bluff body translating and rotating along a wall, separated by a gap G; and (b) a body, initially at rest, moving a distance L before stopping at or near a wall (without or with rebound). In all cases the fluid is stationary with respect to the wall.

scale solid particles are used in a range of processes -polishing, shot peening, sand blasting and kinetic consolidation processes -in industries such as metallurgy and pharmaceutical manufacturing. At a larger scale, many sports, such as football, cricket, baseball, snooker, pétanque, bowls, tennis and table tennis, and golf, to name but a few, involve bluff bodies that move near and on a surface, and where impact, rolling, spin, and bounce are important.

The Problem of Solid-to-Solid Contact

Sisyphus, according to Greek mythology, was condemned to eternally repeat the process of rolling a massive boulder up a hill, only for it to then roll down the hill again (Homer 9th-8th century BC). Were we to model this process by a perfectly smooth sphere and hill within an incompressible Newtonian atmosphere, a startling result would await -no matter how mightily Sisyphus may strain, the sphere would not budge, even on a steep slope, due to infinite resistive pressure forces near the point of contact. This is the so-called Rolling Paradox (see section 4.3). However, of course bodies do roll, with the first scientific study initially published in 1632 by Galileo with his famous rolling-sphere experiments [START_REF] Galilei | Dialogues Concerning Two New Sciences[END_REF]. Galileo was reputed, anecdotally, to have dropped spheres from the Tower of Pisa to show that acceleration was proportional to gravitational force, independent of mass. However, for a perfectly smooth ball and ground and an incompressible Newtonian atmosphere, the dropped spheres would never actually touch the ground, due to the infinite fluid forces in the small gap as the sphere approaches the solid surface [START_REF] Brenner | The slow motion of a sphere through a viscous fluid towards a plane surface[END_REF]. And yet solid-to-solid impact of dropped bodies are evidently observed (and heard).

When isolated from a wall, the identical assumptions for a body moving relative to a the fluid does allow accurate modelling of the body and its wake (e.g., [START_REF] Johnson | Flow past a sphere up to a Reynolds number of 300[END_REF][START_REF] Thompson | Three-dimensional instabilities in the wake of a circular cylinder[END_REF]. Therein lies a major challenge to understanding the seemingly simple problem of a body in a fluid moving near, or impacting on, a wall.

Scope of Review

This review focuses on the flow around the generic bluff bodies of a circular cylinder and sphere, showing how the characteristics of the wake change due to the presence of the wall under a variety of translation, rotation, rolling, and impact conditions, and the effects of Reynolds number -see Figure 2 for the setups and important parameters. At present, the results of past investigations are often scattered throughout various research subfields, not always cross-referenced and sometimes inaccurate -this review aims to provide an overview of these various studies, raising important questions still to be fully addressed. The focus is on bodies translating in otherwise stationary fluids with fixed walls. The issue of fluid-structure interaction, and specifically flow-induced vibration, is limited to a brief discussion concerning freely rolling bodies. Most of the referenced results were obtained from experiments in water channels or tanks, or in computational studies involving direct numerical simulations. Comparisons between the two are shown where possible.

The starting point is a brief review of the wake transitions of generic bluff bodies (2dimensional cylinder and 3-dimensional sphere) at significant distances from a wall, considering both non-rotating and rotating cases, as wall as impulsively arrested bodies, in order to provide some context. Then, we map the changes in wakes as the bodies are located increasingly closer to a wall. Finally, we review the issues of bluff-body contact with a wall and point out future directions on this topic.

UNIFORMLY TRANSLATING ISOLATED BLUFF BODIES

2.1. Non-rotating Bodies 2.1.1. Circular cylinders. The flow past a circular cylinder has been a generic fluid flow problem that has maintained continuing interest for more than a century, and the intricate experimental and mathematical details of the transitions leading towards a fully turbulent wake have been revealed especially over the last three decades. The initial transition at Reynolds number ReC 1 ≈ 46 occurs through a Hopf bifurcation from a symmetric pair of attached recirculation bubbles to a periodic two-dimensional Bénard-von Kármán (BvK) wake [START_REF] Thompson • Leweke • Hourigan Dušek | A numerical and theoretical study of the first Hopf bifurcation in a cylinder wake[END_REF][START_REF] Williamson | Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers[END_REF]), see Figure 3a. Here, the Reynolds number is based on the free-stream velocity (U ) and the cylinder diameter (D): Re = U D/ν (ν is the kinematic viscosity of the fluid). On increasing the Reynolds number, the wake next undergoes a subcritical (hysteretic) three-dimensional transition at ReC 2 ≈ 190 [START_REF] Barkley | Three-dimensional Floquet stability analysis of the wake of a circular cylinder[END_REF], Williamson 1996a,b), which manifests as a sinusoidal distortion of the spanwise vortex rollers with streamwise vortex structures connecting these. At onset, the spanwise wavelength (λ) is approximately four cylinder diameters, and this wake instability is commonly known as Mode A. On increasing the Reynolds number further, another threedimensional mode of much shorter spanwise wavelength (λ ≈ D), Mode B, becomes unstable at ReC 3 ≈ 260. The remnants of this mode appear to persist at much higher Reynolds numbers after the wake becomes fully chaotic [START_REF] Henderson | Nonlinear dynamics and pattern formation in turbulent wake transition[END_REF], Williamson 1996a,b). The characteristic three-dimensional modes are visualized in Figure 3b. Of interest, equivalent modes have also been recognised in the wakes of other two-dimensional cylindrical bodies, such as square cylinders [START_REF] Reichl | Three-dimensional Floquet instability of the wake of square cylinder[END_REF]) and angled airfoils [START_REF] He | Linear instability of low Reynolds number massively separated flow around three NACA airfoils[END_REF]. However, different modes can be important for other cylindrical geometries; e.g., a quasiperiodic mode is the first transition mode of a normal-flat-plate wake (Thompson et al. 2006b).

Hopf bifurcation: loss of stability of a steady state, giving rise to a periodic solution, as the control parameter is increased 2.1.2. Spheres. The sequence of wake modes for a sphere, as Re is increased, is illustrated in Figure 3c. Consistent with other studies [START_REF] Tomboulides | Numerical investigation of transitional and weak turbulent flow past a sphere[END_REF][START_REF] Ghidersa | Breaking of axisymmetry and onset of unsteadiness in the wake of a sphere[END_REF][START_REF] Thompson | Kinematics and dynamics sphere wake transition[END_REF], experiments and numerical computations performed by [START_REF] Johnson | Flow past a sphere up to a Reynolds number of 300[END_REF] found that the initial axisymmetric wake undergoes a regular (i.e., steady→ steady) bifurcation through an off-axis shift of the steady axisymmetric recirculating bubble at ReS 1 ≈ 210. This results in a double-threaded wake consisting of a trailing vortex pair, as observed previously for buoyant oil drops (Magarvey & Bishop 1961a,b). On further increasing Re, a second topological transition from the steady two-threaded wake to a periodic wake occurs at ReS 2 ≈ 270 (above references), with the trailing vortices form- ing kinks that develop into strongly skewed loops advecting downstream. Computations by [START_REF] Mittal | Planar symmetry in the unsteady wake of a sphere[END_REF] and experiments of [START_REF] Brücker | Spatio-temporal reconstruction of vortex dynamics in axisymmetric wakes[END_REF] showed that the vortex loops in the wake lose planar symmetry at ReS 3 ≈ 400. These vortex loops are maintained at much higher Reynolds numbers, despite an increasing chaotic component. Through large-eddy simulations, [START_REF] Chomaz | The structure of the near wake of a sphere moving horizontally in a stratified fluid[END_REF] and [START_REF] Tomboulides | Numerical investigation of transitional and weak turbulent flow past a sphere[END_REF] reported fine-scale wake flow structures for 500 < Re < 1000; they speculated that these develop from a Kelvin-Helmholtz instability of the shear layer separating from the sphere. In agreement, Magarvey & Bishop (1961b) experimentally observed a breakdown in periodicity of the hairpin shedding for Re > 600. The same shear layer instability manifests in a cylinder wake beyond Re ≈ 2000, (see, e.g., [START_REF] Prasad | The instability of the shear layer separating from a bluff body[END_REF], Thompson & Hourigan 2005), although, for experiments at least, the onset is dependent on background turbulence.

Rotating Bodies

2.2.1. Circular cylinders. Numerical and experimental investigations have characterised and quantified the wake of a rotating cylinder for rotation rates α ≤ 7 and Reynolds numbers Re ≤ 400 -see Figure 4a. Here, α is the ratio of the circumferential speed of the cylinder surface and the flow velocity, or equivalently the cylinder translation speed: α = ωD/(2U ), with ω the angular velocity of the body. Using linear stability analysis, various two-and three-dimensional transitions have been identified and mapped. This effectively extends the previously described results for a non-rotating cylinder (section 2.1.1) from the α = 0 axis into the Re-α parameter space. For small rotation rates (α 2), the rotation breaks the symmetry of the BvK wake, but essentially only perturbs the vortex shedding and transition modes (A and B). However, as the rotation rate approaches α = 2, the connection points at the cylinder of the upstream and downstream stagnation streamlines essentially merge, significantly altering the flow topology, so that shedding is increasingly suppressed. At even higher rotation rates, these two streamlines join and separate from the surface of the cylinder forming a closed region of pure rotation about the cylinder. Given this change to the underlying base flow with α, the parameter space can be broadly split into two regions: α < 2 and α > 2, as the parameter map of Figure 4a shows. Two unsteady two-dimensional regimes exist: Mode I shedding occurs for α 2 and is characterised by alternate vortex shedding, while Mode II shedding only occurs over a small range of α, at much higher rotation rates that result in single-sided vortex shedding (see, e.g., [START_REF] Stojković | Effect of high rotation rates on the laminar flow around a circular cylinder[END_REF][START_REF] Prokunin | On a paradox in the motion of a rigid particle along a wall in a fluid[END_REF][START_REF] Mittal | Flow past a rotating cylinder[END_REF]. Two steady flow regimes have also been identified [START_REF] Mittal | Flow past a rotating cylinder[END_REF][START_REF] Pralits | Instability and sensitivity of the flow around a rotating circular cylinder[END_REF], Rao et al. 2015b): Steady state I occurs at lower Re, while Steady state II manifests at higher rotation rates beyond the Mode II shedding region. These two states are distinguished by differences in flow features such as the drag coefficient and the location of stagnation points. At higher Re, a variety of unstable three-dimensional modes with different spanwise wavelengths is found, including a periodic subharmonic mode (C), which is also found in other asymmetric bluff body flow configurations, such as curved circular cylinders (rings) or inclined square cylinders [START_REF] Sheard | The evolution of a subharmonic mode in a vortex street[END_REF][START_REF] Sheard | Wake stability features behind a square cylinder: Focus on small incidence angles[END_REF]), and a steady three-dimensional mode (E).

Subharmonic:

having half the frequency of the base flow 2.2.2. Spheres. Previous numerical investigations [START_REF] Kim | Laminar flow past a sphere rotating in the transverse direction[END_REF][START_REF] Giacobello | Wake structure of a transversely rotating sphere at moderate Reynolds numbers[END_REF], Poon et al. 2014[START_REF] Dobson | The flow structures of a transversely rotating sphere at high rotation rates[END_REF][START_REF] Rajamuni | Vortex-induced vibration of a transversely rotating sphere[END_REF] on the effects of rotation on the wakes of rigidly mounted rotating spheres at low Reynolds numbers (Re ≤ 1000) have revealed considerable wake modifications and even suppression of the vortex shedding, depending on rotation rate. In comparison with the cylinder case, the wake structure is more strongly affected at lower rotation rates, with Figure 4b showing that a broad change occurs beyond α 0.7. Similar to the cylinder, in the rotation centerplane, high rotation causes the streamlines to bend around the sphere, again leading to an isolated region of co-rotation near the sphere surface (separatrix regime).

Impulsively Arrested Bodies

2.3.1. Circular cylinders. The flow evolution associated with an arresting body has received little attention to date, a few notable studies include those by [START_REF] Tatsuno | Visualization of the unsteady flow past cylinders and plates decelerated from a steady speed[END_REF], [START_REF] Wang | Numerical solutions for impulsively started and decelerated viscous flow past a circular cylinder[END_REF] and [START_REF] Sheard | Flow around an impulsively arrested circular cylinder[END_REF] for the case of an arresting cylinder. They showed that, during cylinder motion, a recirculating wake develops and grows behind the body, consisting of an attached counter-rotating vortex pair. After the cylinder is impulsively stopped, the momentum in the surrounding fluid carries the wake over the cylinder, and the shear at the surface induces secondary vortices that pair with the primary wake vortices as the latter pass the cylinder (Figure 5a). In the subsequent flow evolution, [START_REF] Sheard | Flow around an impulsively arrested circular cylinder[END_REF] found that, similar to the flow past an arresting sphere discussed below, these counter-rotating vortex pairs self-propel over a range of sometimes surprising trajectories. For low Reynolds numbers and short translation distances, the wake vortices move past the cylinder and continue in the direction of the original cylinder motion. For higher Reynolds numbers, the pairs deviate outwards in circular arcs of increasing curvature, even to the extent that they can actually collide behind the cylinder. The curvature depends on the circulation balance of the vortex pairs. At sufficiently large translation distances, a wake instability that would lead to vortex shedding breaks the reflective symmetry about the centerline of the wake. 2.3.2. Spheres. Leweke et al. (2004a) and [START_REF] Thompson | Sphere-wall collisions: vortex dynamics and stability[END_REF] have investigated the flow dynamics of an impulsively arrested sphere. For an arrest occurring in isolation (Figure 5b), the recirculating wake translates towards the arrested sphere before spreading laterally as a vortex ring in the original upstream direction. A second vortex ring of opposite sign is induced from the sphere surface and pairs with the primary ring. The vortex ring pair follows a loop trajectory due to mutual induction, after which the primary ring continues its upstream motion, whereas the secondary ring is left behind and fades out.

BLUFF BODIES MOVING PARALLEL TO A WALL

3.1. Circular Cylinders [START_REF] Taneda | Experimental investigation of vortex streets[END_REF] was one of the first to visualize the wake of a circular cylinder moving parallel to a wall. He specifically examined the change to the vortex street as the gap height was reduced from G/D = 0.6 to 0.1 (see Figure 2a) at Re = 170. For the smaller gap, it appeared that only a single row of vortices formed, with the individual vortices being unstable and decaying rapidly. The streamwise wavelength of the vortex street increased as the gap was reduced. Various authors have since investigated the effect of wall proximity at low Reynolds numbers through two-dimensional numerical simulations. For example, for non-rotating cylinders, Huang & Sung (2007) quantified the wake and forces for 0.1 ≤ G/D ≤ 1 and for Re ≤ 600, while [START_REF] Yoon | Characteristics for flow and heat transfer around a circular cylinder near a moving wall in wide range of low Reynolds number[END_REF] considered the effect of gap height at Re = 200. A change from the standard BvK wake to a wake dominated by one-sided shedding was found to occur at G/D ≈ 0.25. Also, the shedding frequency f , expressed as the non-dimensional Strouhal number St = f D/U , initially increases slightly as the gap is reduced towards G/D = 0.5, but it decreases rapidly beyond this point, which is consistent with [START_REF] Taneda | Experimental investigation of vortex streets[END_REF] observation of an increased wavelength. The higher blockage to fluid passing under the cylinder, as the wall gap is reduced, tends to stabilize the wake to the onset of periodic shedding, resulting in an increase in the critical Reynolds number from ReC 1 = 46 for G/D → ∞ to ReC 1 > 100, for gaps below G/D 0.4.

More recently, Rao et al. (2013aRao et al. ( , 2015a) ) simulated the flow past non-rotating and rotating circular cylinders moving through a fluid at different heights above a no-slip plane boundary for Re ≤ 400. The series of two-dimensional vorticity fields in Figure 6 shows in more detail the changes to the flow physics caused by wall proximity. As the gap gets smaller, the increasing blockage reduces the circulation fed into the lower vortices shedding into the wake, affecting the symmetry between positive and negative vortices forming the vortex street. In addition, for small gaps, the proximity of the upper shed vortices to the wall induces opposite-signed secondary vorticity there that can be advected into the wake to pair with the primary vortices. Thus, the character of the wake changes as the gap is reduced, and with it the nature of the first transition from steady two-dimensional flow. Whereas this transition occurs through a Hopf bifurcation to periodic flow at large gaps, a regular bifurcation leads to steady three-dimensional flow (Mode E) for small gaps. Similarly, the onset of the three-dimensional Mode A instability, and indeed whether it is the first three-dimensional instability, is very sensitive to gap size.

Figure 7 summarizes the various transitions and unstable wake modes for cylinders moving along a wall, as function of Reynolds number and gap size, and also for the cases with simultaneous forward or backward rotation. Gap size has a strong influence in the range G/D 0.4; for higher values, the transition sequence is close to that of an isolated cylinder. Some of the three-dimensional instability modes are depicted in Figure 8. As for the isolated cylinder, they include a subharmonic mode (Mode C'), as well as a steady three-dimensional mode (E) at different spanwise wavelengths.

Spheres

Amongst studies conducted on rotating spheres near boundaries are the works of [START_REF] Zeng | Wall-induced forces on a rigid sphere at finite Reynolds number[END_REF] and [START_REF] Cherukat | The inertial lift on a rigid sphere in a linear shear flow field near a flat wall[END_REF], the latter being restricted to the Stokes regime, where a sphere is moving parallel to a wall at a distance of 0.25 sphere diameters or greater, and is free to rotate. Their results indicate that, in general, any observed induced rotation is in the prograde direction and that this rotation has little effect on the lift and drag forces.

The transition to unsteady flow with hairpin vortices and loops in the wake occurs earlier Prograde rotation: rotation in the same direction as for rolling without slip

than for an isolated sphere, with the critical Reynolds number decreasing as the distance to the wall is reduced. At the lowest gap ratio tested (G/D = 0.25), a sudden increase is observed: the wake remains steady beyond Re = 300. [START_REF] Zeng | Wall-induced forces on a rigid sphere at finite Reynolds number[END_REF] find that this delay of unsteadiness at small gaps is caused by viscous effects of the nearby wall, as well as by the strong asymmetry of the flow configuration. The behaviour of the lift and drag coefficients of spheres translating close to a wall was investigated by [START_REF] Zeng | Forces on a finite-sized particle located close to a wall in a linear shear flow[END_REF] at moderate Reynolds numbers covering the steady regimes (Re < 300). Force coefficients for spheres are defined in the standard way though

F = CF • 1 2 ρU 2 • π 4 D 2
, where F is the corresponding force and ρ the fluid density. These force coefficients, as a function of Reynolds number and gap ratio, are summarized in Figure 9 for the case of pure translation, as predicted by [START_REF] Zeng | Forces on a finite-sized particle located close to a wall in a linear shear flow[END_REF] and others. The isolated sphere drag variation, together with predictions of lubrication theory, are also provided for comparison. Orders-of-magnitude changes in both the drag and lift coefficients are observed as the Reynolds number and gap ratio are varied, the latter showing the profound effect of the wall. Note that the lift remains finite for all parameter values, whereas the drag diverges logarithmically and as Re -1 for vanishing gap size and Reynolds number, respectively. 

BLUFF BODIES ROLLING ALONG A WALL

Rolling Circular Cylinders

As discussed in section 3.1, the immediate proximity of a wall suppresses the passage of fluid underneath the cylinder, leading to single-sided vortex shedding into the wake. In turn, the proximity to the wall of these shed vortices induces secondary wall vorticity, which separates and rolls up into weaker vortex structures that pair with the primary vortices to form the wake. The addition of prograde (normal) rolling to the scenario has two main effects: it increases the circulation fed into the upper primary vortices (because of the increased velocity gradient at the cylinder surface), and it also leads to separation at a smaller angle from the front of the cylinder, so that these vortices advect into the wake further away from the wall. These two effects affect the magnitude of the secondary wall vorticity generated, and so influence the structure and stability of the wake. The details were explored experimentally and numerically by [START_REF] Stewart | Flow dynamics and forces associated with a cylinder rolling along a wall[END_REF]Stewart et al. ( , 2010b) ) for cylinders moving at constant speed with a very small fixed gap (G/D = 0.005) and for Re ≤ 350. The transition map as a function of Reynolds number and rotation rate is given in Figure 10a. For a non-rotating (sliding) cylinder, the two-dimensional flow remains steady up to Re = 165, beyond which periodic flow is observed, where opposite-signed vortex structures combine and self-propel away from the wall. Linear stability analysis was used to show that the flow becomes three-dimensional directly from steady flow at Re = 70.5. This is unlike the situation for an isolated cylinder, where transition to three-dimensional flow occurs from a periodic wake. The transition Reynolds numbers vary with the rotation rate, they increase with decreasing α, and vice versa. Water-tunnel wake visualisations are in good agreement with the numerical simulation predictions, as can be seen, e.g., for the forward-and reverse-rolling cases shown in Figure 11. More recently, [START_REF] Houdroge | Two-and three-dimensional wake transitions of an impulsively started uniformly rolling circular cylinder[END_REF] examined the onset of three-dimensionality of a cylinder rolling freely along a wall without slip (α = 1), again through experiments and numerical simulation. Figure 12 shows that wake three-dimensionality can strongly distort wake structures after a few shedding cycles at moderate Reynolds numbers, and additionally that the influence of the free ends of the cylinder propagates rapidly inwards along the span.

Rolling Spheres

While maintaining some of the flow physics governing rolling-cylinder wakes, there are also some important differences for rolling spheres. In particular, a rolling sphere touches the surface at a single point rather than along a line, which allows the fluid to pass around the sides of the sphere as the gap is reduced. For this reason, wall proximity has a reduced influence in modifying the wake from that of the isolated sphere, compared to the cylinder case. This problem has been explored by [START_REF] Stewart | Wake formation behind a rolling sphere[END_REF]Stewart et al. ( , 2010a) ) and [START_REF] Rao | Flow past a rotating cylinder translating at different gap heights along a wall[END_REF] for the flow around spheres translating at constant speed and rotating very close to a wall at Reynolds numbers up to several hundred, covering both steady and unsteady regimes.

The gap ratio was chosen to be sufficiently small (G/D = 0.005), so that the wake flow structures are not sensitive to the gap, even though the lift and drag forces are, as discussed below in section 4.3. The effect of the sign and magnitude of the rotation rate on the wake characteristics up to Re = 350 is shown in Figure 10b.

For α > 0 (prograde rolling), a compact zone of recirculating fluid is formed and the unsteady flow is marked by the shedding of hairpin vortices analogous to the periodic wake of an isolated sphere. However, for α < 0 (retrograde rolling), a streamwise vortex pair appears in the wake, and as Re is increased further the wake undergoes a transition to an antisymmetric mode. A comparison between these two wake states is given in Figure 13.

For the forward-rolling sphere with α = 1, the wake remains attached and steady at low Reynolds numbers (Stewart et al. 2010a); it is analogous to that of an isolated sphere, i.e., a double-threaded wake consisting of a counter-rotating vortex pair. Transition to unsteady, periodic and symmetric flow occurs at Re 139, as shown through direct numerical simulations by [START_REF] Rao | Flow past a rotating cylinder translating at different gap heights along a wall[END_REF], who also identified a second transition, at Re 192, to unsteady, asymmetrical flow, where the wake exhibits oscillations in the lateral directions. Both transitions were found to be supercritical (non-hysteretic). Visualisations of the symmetric and asymmetric unsteady wakes are shown in Figure 14. In general, when a body is not forced to move at a constant speed, e.g., in cases where it is rolling down a slope driven by gravity, unsteadiness in its wake leads to oscillations (vibrations) of its trajectory. As well as sphere oscillations in the down-slope direction, there is also considerable movement across the slope. The sidebar, Vortex-Induced Vibrations of Rolling Bodies, gives a few brief details concerning this topic, which is beyond the scope of the present review.

VIV: vortexinduced vibrations, body oscillations caused by time-dependent fluid forces due to vortex shedding

VORTEX-INDUCED VIBRATION OF ROLLING BODIES

Vortex-Induced Vibration (VIV) of rotating bodies is also influenced by the presence of a wall compared to isolated cases [START_REF] Bourguet | Flow-induced vibrations of a rotating cylinder[END_REF], Zhao et al. 2018), along with changes to the potential added mass. For a body accelerating in a fluid, the fluid force (drag) resisting this acceleration can be expressed as a mass which is added to the body mass in the equations for the body motion. The added mass coefficient is the ratio of this additional mass to the fluid mass displaced by the body. For a cylinder and a sphere, this coefficient increases from 1 and 1/2, respectively, at infinity, to approximately 2.29 and 0.58, respectively, at the wall for motion parallel to the wall, independent of rotation [START_REF] Brennen | A review of added mass and fluid inertial forces[END_REF]. These increases represent an added resistance to acceleration of the bodies, which should act to mitigate VIV to some extent. However, there are also dramatic changes in the wake structures, for both rolling cylinders (Houdroge et al. 2020a) and rolling spheres (Houdroge et al. 2020b), at least in the low-Reynolds number range. These bodies are found to undergo increasing VIV about their mean rolling speed with decreasing ratio of body and fluid densities, interestingly with spheres having considerably smaller vibration amplitudes than cylinders. 4.2.1. Body forces on rolling spheres. Theoretical analysis has been combined with laboratory experiments to investigate the forces acting on a sphere rolling freely down an incline [START_REF] Carty | Resistance coefficients for spheres on a plane boundary[END_REF][START_REF] Garde | Vorticity generation and wake transition for a translating circular cylinder: Wall proximity and rotation effects[END_REF][START_REF] Jan | Drag coefficients for a sphere rolling down an inclined channel[END_REF][START_REF] Verekar | Sphere rolling down an incline submerged in a liquid[END_REF], Houdroge et al. 2020b). Under the assumption of a no-slip surface, the sphere reaches a terminal velocity from which an effective drag coefficient (C D ) can be calculated. Note that for a sphere rolling down a slope without slip, this effective C D is given by the sum of the standard drag coefficient and the fluid torque coefficient (Houdroge et al. 2020b). The data are presented in the composite plot of Figure 15a. They show that, for low Reynolds numbers, the drag is significantly greater than for a sphere in an unbounded flow (compare with Figure 9a), but it also appears to vary as Re -1 up to Re ≈ 100. Although [START_REF] Carty | Resistance coefficients for spheres on a plane boundary[END_REF] and [START_REF] Garde | Vorticity generation and wake transition for a translating circular cylinder: Wall proximity and rotation effects[END_REF] followed a similar experimental methodology, drag coefficients calculated in the latter study are up to twice as large as those from the former. [START_REF] Garde | Vorticity generation and wake transition for a translating circular cylinder: Wall proximity and rotation effects[END_REF] relate this difference to the longer experimental flume used in their experiments, which leads to more accurate timing and therefore velocity calculations, although their graph is presented with a significant amount of scatter. For Re ≥ 5, the results of [START_REF] Jan | Drag coefficients for a sphere rolling down an inclined channel[END_REF] are broadly consistent with, although generally well above, the observations of [START_REF] Carty | Resistance coefficients for spheres on a plane boundary[END_REF], and their data show considerable scatter, too. It is also unclear why they do not present any values in the range 100 < Re < 1000.

The Rolling Paradox

Many careful experimental and numerical studies into the dynamics of rolling/sliding cylinders and spheres in close proximity to a wall have been undertaken. For the numerical studies, in particular, a finite gap was maintained between the cylinder and the wall, due to the problem related to a mesh singularity arising at zero gap, and also to keep a reasonable computational timestep, since the respective timescales governing the gap flow and the global wake dynamics become increasingly separated. For relatively small gaps (G/D 0.01), vortex formation and shedding is relatively independent of the gap size, but the force coefficients are strongly affected, as shown by the examples in Figure 16 (see also Figure 9). The so-called rolling paradox arises from theoretical/analytical results concerning the flow in the gap region using lubrication theory. Application of this theory to the rolling cylinder and rolling sphere problems can be found, e.g., in [START_REF] Merlen | Cylinder rolling on a wall at low Reynolds numbers[END_REF] and [START_REF] Goldman | Slow viscous motion of a sphere parallel to a plane wall-I Motion through a quiescent fluid[END_REF], respectively. They predict that, as the gap size approaches zero, the drag force on the body diverges as (D/G) 1/2 for the cylinder, and as ln(D/G) for the sphere, for any combination of sliding and rolling, due to the generation of a pressure peak diverging to positive infinity in front of the body, and another peak diverging to negative infinity behind it. This implies that a cylinder or sphere in contact with a solid surface would be impossible to move along this surface, which is contrary to common observation, and that any rolling or sliding motion along the wall would involve a liquid film of finite thickness between the two, i.e., the absence of solid-to-solid contact. [START_REF] Goldman | Slow viscous motion of a sphere parallel to a plane wall-I Motion through a quiescent fluid[END_REF] calculated that the gap size compatible with the drag coefficients of a rolling sphere determined experimentally by [START_REF] Carty | Resistance coefficients for spheres on a plane boundary[END_REF] (Figure 15a) would be of the order of atomic dimensions, which is well outside the validity domain of the theory. [START_REF] Goldman | Slow viscous motion of a sphere parallel to a plane wall-I Motion through a quiescent fluid[END_REF] put forth six points of discussion in an attempt to explain the discrepancy between the idealised model provided by lubrication theory and experimental data. They include the roughness of the sphere and/or wall, compressibility effects and cavitation linked to the large positive and negative pressures encountered, breakdown of the continuity assumption at very small gaps, inertial and non-Newtonian effects, and deformations of the sphere by the high pressure gradient. Surface roughness was dismissed by [START_REF] Goldman | Slow viscous motion of a sphere parallel to a plane wall-I Motion through a quiescent fluid[END_REF], since [START_REF] Carty | Resistance coefficients for spheres on a plane boundary[END_REF] drag data apparently did not show differences between the various spheres of different roughnesses used. Revisiting the data (Figure 16), it appears that this conclusion is not clearly justified. Specifically, the data points are not frequent enough to allow differentiation, and the results are presented on a log-log plot that masks any such trends. (On such a log-log plot with sparse points, a variation in drag coefficient of 100% is essentially not discernible!). More recent experiments by Houdroge et al. (2020b) number, as seen in Figure 15b. By providing an effective average gap, the roughness of the body (and/or the wall) therefore appears to be a determining factor for its motion along a wall. Interestingly, the drag prediction from direct numerical simulation for smooth rolling spheres at higher Reynolds number (Figure 16b) appears to approach the experimentally observed values given by [START_REF] Carty | Resistance coefficients for spheres on a plane boundary[END_REF] and Houdroge et al. (2020b) (Figure 15), as the gap ratio approaches expected relative roughness ratios (δ/D ∼ 10 -6 -10 -7 , where δ is the mean asperity height). Roughness effects were further investigated by [START_REF] Smart | Measurement of the translational and rotational velocities of a non-colloidal sphere rolling down a smooth inclined plane at low Reynolds number[END_REF], who extended the work of [START_REF] Goldman | Slow viscous motion of a sphere parallel to a plane wall-I Motion through a quiescent fluid[END_REF] by proposing that roughness elements can in fact lead to physical contact with the plane when the separation distance between the surfaces is of the order of the roughness height, and that the plane will then exert a nonhydrodynamic force and torque on the sphere. Their research gave quantitative agreement between measured translational and rotational velocities and their theory for small inclination angles of the plane, however their data at high angles showed a greater discrepancy, in line with a larger apparent gap than the one considered. [START_REF] King | Measurement of the inertial lift on a moving sphere in contact with a plane wall in a shear flow[END_REF], [START_REF] Galvin | Time-averaged hydrodynamic roughness of a non-colloidal sphere in low Reynolds number motion down an inclined plane[END_REF] and [START_REF] Zhao | Motion of a sphere down a rough plane in a viscous fluid[END_REF] argued that rather than experiencing a single surface roughness and separation distance, the sphere has two scales of roughness: small bumps that support the particle at rest and at low angles, and larger roughness elements distributed sparsely on the surface that dominate the separation at higher angles. [START_REF] Galvin | Time-averaged hydrodynamic roughness of a non-colloidal sphere in low Reynolds number motion down an inclined plane[END_REF] and [START_REF] Zhao | Motion of a sphere down a rough plane in a viscous fluid[END_REF] developed a theoretical model of this phenomena and tested it experimentally, confirming that at low angles, the sphere is in contact with the wall via the small asperities, whereas at high angles the large asperities may cause the sphere to lift off the wall and move without continuous contact.

Although a smooth bump, no matter the radius, will induce an unlimited pressure force as the gap between it and a smooth surface decreases, a roughness element or asperity of small enough dimension can decrease the gap to molecular dimension, whereby contact can be said to occur [START_REF] Smart | Measurement of the hydrodynamic surface roughness of non-colloidal spheres[END_REF][START_REF] Lecoq | Drag force on a sphere moving towards a corrugated wall[END_REF]). The observation that in practice contact does occur is therefore a consequence of physical considerations outside the assumptions of surface smoothness, fluid continuum and incompressibility, such as roughness closing the gap to the order of the fluid molecular dimension, or ultimately other short-range interactions like van der Waals forces. The precise details of how solid-to-solid contact occurs, which are essential for an understanding of the resistive forces due to contact, the effective hydrodynamic gap, and the rolling speed of bluff bodies, are presently still not entirely clear.

When the body is surrounded by a liquid, cavitation can occur for small gaps, when the diverging negative pressure decreases below the vapour pressure, an effect already investigated by [START_REF] Taylor | Cavitation of a viscous fluid in narrow passages[END_REF] for lubrication flow. [START_REF] Merlen | Cylinder rolling on a wall at low Reynolds numbers[END_REF] and [START_REF] Prokunin | On a paradox in the motion of a rigid particle along a wall in a fluid[END_REF] have analysed the cases of cylinders and spheres rolling along a plane wall. When cavitation appears, it eliminates the large negative pressure peak behind the body, but not the positive peak ahead of it. This asymmetry results in a net lift force, which can push the body further away from the surface, while at the same time maintaining a large drag force. (Similarly, fluid compressibility modifies the pressure distribution near contact but infinite pressures still arise from zero gap.) Experiments by [START_REF] Seddon | Reverse rotation of a cylinder near a wall[END_REF] on cylinders moving close to a wall in a highly viscous liquid have shown that cavitation appears in the gap region in the form of a periodic array of vapour bubbles (Figure 17a), whereas [START_REF] Prokunin | Microcavitation in the slow motion of a solid spherical particle along a wall in a fluid[END_REF] and [START_REF] Ashmore | Cavitation in a lubrication flow between a moving sphere and a boundary[END_REF] visualised a single cavitation bubble for the case of a rolling sphere (Figure 17b).

BLUFF BODIES IMPACTING ON A WALL

In this section, we are chiefly concerned with the flow structures arising from a rigid body impacting on a rigid wall, and not the elastic and/or plastic deformations that may occur in the solid structures (for the latter, see, e.g., [START_REF] Yildirim | Rebound mechanics of micrometre-scale, spherical particles in high-velocity impacts[END_REF]. In this case, the initial stage of the wake evolution is clearly related to those of impulsively arrested bodies discussed in section 2.3. In addition, in a broader sense, the later wake evolution involves secondary vorticity generation from the proximity of primary vortices to the wall that subsequently leads to vortex pair formation and self-propulsion away from the body, showing similarities with the wake evolution of rolling or sliding bodies in section 4.

Impacting Cylinders

Leweke et al. (2008) presented results from experiments and simulations on the flow around a circular cylinder on impact with a solid wall. At low Reynolds numbers, when impacting normally to the wall, the attached counter-rotating vortices that form during the preimpact motion of the cylinder, overtake it on impact, one on each side, and then initially move outwards along the wall, due to the influence of their image vortices. Subsequently, they experience a weak rebound associated with secondary vorticity generated at both the cylinder and wall (Figure 18a). For higher Reynolds numbers, the secondary vorticity generated rolls up into discrete secondary vortices, which orbit the primary vortices and undergo a three-dimensional elliptic instability (Figure 20a), a phenomenon known to occur in strained vortical flows [START_REF] Kerswell | Elliptical instability[END_REF]. Beyond a Reynolds number of a few hundred, this process leads to breakdown of the vortex system into small-scale structures. This flow behaviour is similar to the case of a counter-rotating vortex pair impinging on a solid wall [START_REF] Leweke | Dynamics and instabilities of vortex pairs[END_REF].

Image vortex: virtual vortex located symmetrically with respect to a surface, having the same effect as the boundary condition of zero normal velocity at this surface Oblique cylinder impacts have also been examined (Figure 18b). Not surprisingly, this asymmetry leads to different flows generated on each side of the cylinder. The vortical structures that develop on the side beneath the cylinder path appear similar to those for the normal impact case, while generation of secondary vorticity at the wall on the opposite side decreases with growing impact angle, leading to changes in the pair formation process. For higher impact angles, the source of secondary vorticity generation is mostly restricted to the cylinder surface, resulting in the formation of a vortex dipole which, through selfinduction, leads to rebound and self advection of the primary vortex to greater heights than occurs for the normal impact.

Impacting Spheres

The flow generated by the normal impact of a sphere on a wall bears similarities with the cylinder case. The recirculation zone behind the moving sphere takes here the form of a vortex ring. On impact, this ring overtakes the sphere, leading again to the generation of secondary vorticity at the sphere surface and at the wall, which separates and wraps around the primary ring (Figure 19). At low Reynolds numbers, the flow remains axisymmetric at all times, whereas for Re 1000 an instability develops in the azimuthal direction of the primary vortex ring, as seen in Figure 20b. [START_REF] Leweke | Instability of the flow around an impacting sphere[END_REF] endeavoured to gain an understanding of the flow physics involved in this instability. They found that the flow structures that developed were consistent with a centrifugal instability of the primary vortex ring core surrounded by secondary vorticity of opposite sign drawn up from the wall. Both the growth rate and azimuthal mode numbers, predicted from idealized centrifugal instability theory based on the local velocity profile, show good agreement with those observed in the experiments, simulations and linear stability analysis of the frozen flow state. Since the cross section of the primary ring becomes elliptical after the impact, the stability of the ring was also tested against elliptic instability. Although the predicted azimuthal mode numbers matched well, the predicted growth rates were negative. The dynamics bear resemblance to the related case of a vortex ring impacting on a wall, studied by [START_REF] Lim | An experimental study of a vortex ring interacting with an inclined wall[END_REF], [START_REF] Lim | A note on the cause of the rebound in the head-on collision of a vortex ring with a wall[END_REF], [START_REF] Masuda | Collision of a vortex ring on granular material. Part I. Interaction of the vortex ring with the granular layer[END_REF], [START_REF] Orlandi | Vortex rings impinging on walls: Axisymmetric and three-dimensional simulations[END_REF], [START_REF] Swearingen | Dynamics and stability of a vortex ring impacting a solid boundary[END_REF] and [START_REF] Walker | The impact of a vortex ring on a wall[END_REF]. In both configurations, the primary vortex ring draws up secondary vorticity generated as it nears the wall, and then the ring structure expands radially, leading to qualitatively similar vorticity patterns. However, the isolated impacting ring becomes unstable through fragmentation of the secondary vorticity into quasi-discrete vortices when the Reynolds number is sufficiently large. This secondary vortex fragmentation has a relatively low azimuthal wavenumber (∼6 waves along the ring perimeter, compared to ∼20 for the sphere impact in Figure 20b), and involves self-and mutual induction from the primary vortex, as discussed in the above articles. Of interest, direct simulations of vortex ring impact indicate that this fragmentation process arrests relatively quickly, and subsequently a shorter-wavelength instability manifests, possibly attributable to the same centrifugal mechanism causing ring breakup for the sphere impact.

A comparison between circular cylinder impact and normal sphere impact have revealed important differences in the developed wakes. The vortex stretching of the primary vortex as the ring expands radially is not present for the cylinder impact, and this leads to a reduction in core size and accelerated vorticity cross-diffusion in the axisymmetric geometry. These effects delay the onset of three-dimensional instabilities in the vortical flows generated on impact of a spherical particle with a wall, in comparison to the two-dimensional counterpart.

Comparing with the flow generated by a body arrested in isolation (section 2.3), the presence of the wall has two main effects: it restricts and modifies the trajectories of the primary vortices, through induction from the image vortices representing the boundary condition of vanishing normal velocity, and it is a further source of secondary vorticity. Together, these effects can produce vortex configurations not found for freely arresting bodies, e.g., where the secondary vorticity wraps around the primary vortex in a band (Figures 18a and19a) instead of forming a discrete concentrated vortex (Figure 5), which can lead to different types of three-dimensional instability (centrifugal instability) at higher Reynolds numbers.

Rebounding Bluff Bodies

The configuration involving a spherical particle in a viscous fluid rebounding from a solid surface after a normal collision has been investigated in numerous studies including analytical/numerical work by [START_REF] Davis | The elastohydrodynamic collision of two spheres[END_REF], [START_REF] Lian | Elastohydrodynamic collisions of solid spheres[END_REF], [START_REF] Ardekani | Numerical investigation of particle-particle and particle-wall collisions in a viscous fluid[END_REF], [START_REF] Li | A contact model for normal immersed collisions between a particle and a wall[END_REF] and Brändle de [START_REF] De Motta | Numerical modelling of finite-size particle collisions in a viscous fluid[END_REF], as well as experiments by [START_REF] Joseph | Particle-wall collisions in a viscous fluid[END_REF], [START_REF] Gondret | Experiments on the motion of a solid sphere toward a wall: From viscous dissipation to elasto-hydrodynamic bouncing[END_REF][START_REF] Gondret | Bouncing motion of spherical particles in fluids[END_REF] and [START_REF] Ruiz-Angulo | Measurements of the coefficient of restitution for particle collisions with ductile surfaces in a liquid[END_REF]. Most of these studies focused on the flow structure around the point and near the time of impact, and on the determination of the coefficient of restitution (ε), given by the ratio of rebound velocity to particle impact velocity. Few studies have considered the vortical structures in a more extended region and time interval around the collision. The visualization by [START_REF] Thompson | Sphere-wall collisions: vortex dynamics and stability[END_REF] and simulations by [START_REF] Ardekani | Numerical investigation of particle-particle and particle-wall collisions in a viscous fluid[END_REF] show that the primary vortex ring in the wake of the approaching sphere is left behind after the rebound and exhibits dynamics similar to that for a sphere with no rebound -compare Figures 19 and21a,b.

The coefficient of restitution was found to depend on the non-dimensional Stokes number Stk = (1/9)(ρp/ρ f )Re, where ρp and ρ f are the particle and fluid densities, respectively, and Re is the particle Reynolds number at impact, with only a weak dependence on the elastic properties of the material [START_REF] Joseph | Particle-wall collisions in a viscous fluid[END_REF]). This parameter compares particle inertia to viscous effects; according to [START_REF] Legendre | Experimental study of a drop bouncing on a wall in a liquid[END_REF] the effect of added mass should also be included: Stk * = (1/9)(ρp/ρ f + Cm)Re, with Cm the added mass coefficient. No rebound is found to occur below a critical value of Stk * ≈ 10, and the coefficient of restitution approaches that for a dry collision (ε dc ) for Stk * 1000, as shown in Figure 21c.

As for rolling bodies discussed in sections 4.2.1 and 4.3 above, the issue of whether there is solid-to-solid contact, or if lubrication forces prevent this contact, is relevant also to a bluff-body impact and rebound. In the study by [START_REF] Davis | The elastohydrodynamic collision of two spheres[END_REF], the pressure forces in the viscous liquid lubrication film between the particle and the wall during the collision were found to be sufficiently large to cause the particles to deform elastically and rebound. The Stokes number dependence has been attributed to the drainage of the lubrication film. In this model of elastohydrodynamic collisions based on lubrication theory, the two solids never touch.

Effects that lead to a breakdown of the lubrication approach include again surface roughness [START_REF] Smart | Measurement of the hydrodynamic surface roughness of non-colloidal spheres[END_REF]. [START_REF] Davis | Elastohydrodynamic collisions of particles[END_REF] already suggested that when the gap between the surfaces becomes equal to the size of the largest surface roughness element, solid-to-solid contact of the roughness bumps could occur due to discrete molecular nature of the fluid and/or attractive London-van der Waals forces. More recently, [START_REF] Birwa | Solid-on-solid contact in a sphere-wall collision in a viscous fluid[END_REF] have studied the collision between spheres and a wall in a viscous fluid, focusing on the question of solid-to-solid contact. For Stokes numbers below the rebound threshold, the lubrication film forces were found to decelerate the spheres to zero velocity before reaching the wall. As soon as rebound occurred for increasing Stokes numbers, contact between the two solids was systematically detected. The explanation provided was that the lubrication film thickness needed to produce the force for stopping the sphere motion is significantly smaller than the roughness of the particle or the wall, and therefore contact is made via the roughness elements.

INTERACTION WITH A FREE SURFACE

There are many important interactions that take place at free, or nearly free, surfaces, such as for oceans, lakes and rivers, as well as industrial processes involving risers, bridge piers, mixing vessels and bioreactors. A number of studies have provided valuable insights into the surprising wake structures and free-surface response for non-rotating submerged or semi-submerged cylinders or spheres [START_REF] Sheridan | Flow past a cylinder close to a free surface[END_REF][START_REF] Reichl | The unsteady wake of a circular cylinder near a free surface[END_REF], 2005[START_REF] Kawamura | Large eddy simulation of a flow past free surface piercing circular cylinder[END_REF][START_REF] Chaplin | Steady flow past a vertical surface-piercing circular cylinders[END_REF][START_REF] Koo | Reynolds and Froude number effect on the flow past an interface-piercing circular cylinder[END_REF][START_REF] Shao | Drag force on a free surface-piercing yawed circular cylinder in steady flow[END_REF], Vlachos & Tellionis 2008[START_REF] Sareen | Vortex-induced vibrations of a sphere close to a free surface[END_REF]. Far from being a passive boundary, the free surface, when distorted, becomes a rich source of vorticity that can remarkably change the wake of a bluff body [START_REF] Brøns | Vorticity generation and conservation for two-dimensional interfaces and boundaries[END_REF][START_REF] Terrington | The generation and conservation of vorticity: deforming interfaces and boundaries in two-dimensional flows[END_REF]. However, the effects of the interface on the force distribution on the body, vortex generation and turbulence structures, and air-water interface structures, still require much further study.

CONCLUDING REMARKS

In this review, we discuss the effect of a wall on the wake structures and transitions of bluff bodies moving relative to the wall. The review is restricted to the generic two-and three-dimensional bluff bodies -the circular cylinder and the sphere, respectively -and to the ambient fluid being at rest relative to the wall. This excludes the class of flows for which boundary layers form due to the fluid flow along the wall and where the bluff body is fixed to the wall, such as is typical in wind engineering applications. The simplified flow allows a clearer analysis of the direct effect that the wall itself has on the wakes. We also consider only interactions with a rigid wall; the sidebar, Interaction with a Free Surface, briefly addresses the configuration of bluff bodies placed near a fluid-fluid interface.

SUMMARY POINTS

1. Proximity to a wall changes the bluff-body wake structures and transitions significantly. For example, the strong absolute instability causing Bénard-von Kármán vortex shedding for an isolated cylinder becomes much weaker in the immediate presence of a wall, with a predominately single-sided wake, and a steady threedimensional transition mode appears at higher Reynolds numbers. 2. Flow underneath a cylinder or sphere is restricted as the body is moved closer to the wall, which effectively eliminates shedding of near-wall vortices. However, the proximity of the upper shed vortices to the wall leads to secondary vorticity generation there, which can roll up into discrete structures forming pairs with the upper vortex. These pairs propagate away from the wall, causing a significant spread of the wake. This mechanism dominates the flow dynamics for the cylinder case, but is less important for a sphere. 3. For small gaps (less than 1% of the body diameter), the gap flow effectively becomes uncoupled from the global flow around rolling bodies, hence simulation of rolling bodies with small imposed gaps produce wake dynamics relatively insensitive to the gap ratio. However, this is not true for the lift and especially the drag force, which are very sensitive to gap size. 4. The flow dynamics for bluff bodies impacting a surface is governed by the starting distance and the Reynolds number. A vortex system is formed from the initial wake (vortex pair for the cylinder, vortex ring for the sphere) and secondary wall vorticity, which propagates away from the impact point. At higher Reynolds number, it becomes three-dimensionally unstable, through an elliptic instability in the case of a cylinder, and a centrifugal-type instability for the sphere. 5. For freely rolling or sliding bodies, surface roughness appears to be a key element, leading to an effective contact between the two solids, while at the same time providing an effective finite gap. Predicted drag coefficients for smooth spheres rolling without slip are similar to those observed in experiments for a roughness height of the order of the chosen gap size. However, this requires further investigation.

FUTURE ISSUES

1. Studies of the wakes of sliding and rolling bodies of other geometries (elliptical cylinders, cubes) and the combined wakes of multiple bodies, particularly spheres, in motion near walls will extend current knowledge to a broader set of applications. 2. Simulations of rolling/sliding bodies near surfaces at higher Reynolds numbers are required to examine turbulent transition and fully turbulent wakes. 3. The effects of body rotation, as well as wall and body material elasticity, on the wakes of impacting bluff bodies are largely unexplored. 4. The details of the physics of solid-to-solid contact due to surface roughness need to be further addressed, ideally through a combination of careful experiments, detailed numerical simulations resolving the flow near the gap, and theoretical analysis. 5. How bluff bodies interact with free surfaces and multi-fluid interfaces is yet to be investigated in detail.
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 1 Figure 1 (a) Mixing induced by a cylinder (red circle on the left) rolling in a quiescent fluid along a wall previously coated with a thin layer of dyed fluid. Experimental visualization in water at Re = 220. (b) Resuspension of a layer of particles by the normal wall impact of a sphere at Re = 3100. Oblique view from above. Panel b adapted with permission from Eames & Dalziel (2000).

  Figure 1 (a) Mixing induced by a cylinder (red circle on the left) rolling in a quiescent fluid along a wall previously coated with a thin layer of dyed fluid. Experimental visualization in water at Re = 220. (b) Resuspension of a layer of particles by the normal wall impact of a sphere at Re = 3100. Oblique view from above. Panel b reprinted from Eames & Dalziel (1999), with permission of AIP Publishing.

Figure

  Figure "free-cylinder-sphere-new" (a) Two-dimensional periodic cylinder wake (experimental dye visualization). (b) Three-dimensional structures in the wake of a cylinder (flow is upward, the cylinder is at the bottom). Top: Mode A, bottom: Mode B, left: dye visualization, right: numerical simulation with tracer particles. Panel b (left) adapted with permission from Williamson (1996a); panel b (right) adapted from Thompson et al. (2006b), with permission from Elsevier. (c) Evolution of the wake of a sphere with increasing Reynolds number (dye visualization and numerical simulation). Experimental top views in panel c reproduced from Thompson et al. (2001), with permission from Elsevier.
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  Figure "free-rotating-regimes" (a) Stability diagram in Re-α parameter space for a rotating cylinder. Panel a adapted from Rao et al. (2015a), with permission from Elsevier. (b) Wake regimes of a rotating sphere, as function of Re and α, based on data collected by Poon et al. (2014) and Dobson (2014).

  Figure 4 (a) Stability diagram in Re-α parameter space for a rotating cylinder. Panel a adapted from Rao et al. (2015b), with permission from Elsevier. (b) Wake regimes of a rotating sphere, as function of Re and α, based on data collected by Poon et al. (2014) and Dobson et al. (2014).
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  Figure "free-stopping-cylinder-sphere" (a) Flow around an impulsively arrested cylinder previously translating a distance 2D from top to bottom at Re = 500; experimental dye visualization (left) and numerical simulation with tracer particles (right). Panel a adapted from Sheard et al. (2007), with permission of AIP Publishing. (b) Experimental dye visualization of the vortex rings developing for an impulsively arrested sphere after translating a distance 5D at Re = 800.

Figure 6

 6 Figure 6 Two-dimensional wakes (vorticity fields) of cylinders translating parallel to a solid wall at different gaps G, for Re = 200. Figure adapted from Rao et al. (2013), with permission from Elsevier.

  Figure 7 Parameter space showing the wake modes of a cylinder translating near a wall, for (a) forward (normal) rotation, (b) no rotation and (c) backward (reverse) rotation. The transition from steady to unsteady flow is marked by a dashed line. Diagrams on the right are enlargements of the regions outlined in red on the left. Numbers in red refer to the modes shown in Figure 8. Figure adapted from Rao et al. (2015a), with permission from Elsevier.

  Figure 8 Three-dimensional instability modes of the wake of a cylinder translating parallel to a wall, visualized by isosurfaces of positive and negative streamwise vorticity. (a) Subharmonic Mode C' with λ/D = 1.35 for the sliding cylinder. (b) Periodic Mode D with λ/D = 2.6 for the cylinder in reverse rotation. (c) Steady Mode E with λ/D = 11 for the cylinder in normal rotation. (d) Steady Mode E with λ/D = 2.75 for the cylinder in reverse rotation. Numbers in red refer to the locations in the parameter space shown in Figure 7.Figure adapted from Rao et al. (2015a), with permission from Elsevier.

  Lubrication theory: modelling of the flow in a thin fluid layer bounded by solid surfaces, neglecting inertial effects

Figure

  Figure "sphere-forces-Re-gap" (a) Drag and (b) lift coefficients for a non-rotating sphere moving parallel to a solid wall in a quiescent fluid, as function of Reynolds number (top) and of gap size (bottom). The limits for Stokes flow at large gaps and for lubrication at vanishing gaps are shown as dashed lines. Diagrams computed using the correlations proposed by Zeng et al. (2009), which are based on a survey of various experimental and numerical studies.
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 10 Figure9(a) Drag and (b) lift coefficients for a non-rotating sphere moving parallel to a solid wall in a quiescent fluid, as function of Reynolds number (top) and of gap size (bottom). The limits for Stokes flow at large gaps and for lubrication at vanishing gaps[START_REF] Goldman | Slow viscous motion of a sphere parallel to a plane wall-I Motion through a quiescent fluid[END_REF]) are shown as dashed lines. Diagrams computed using the correlations proposed by[START_REF] Zeng | Forces on a finite-sized particle located close to a wall in a linear shear flow[END_REF], based on a survey of various experimental and numerical studies.
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  Figure "rolling-cylinder-3D" Development of three-dimensionality in the wake of a rolling cylinder at Re = 160. (a) Experimental dye visualization of the first three shedding cycles after an impulsive start from rest. The cylinder is 47D long, with free ends. (b) Isosurface of the Q-function (Hunt et al. 1998) from numerical simulation, showing vortical structures during three consecutive shedding cycles after the onset of 3D flow. The cylinder length is 54D, with periodic boundary conditions. Panel b adapted with permission from Houdroge et al. (2017).

  Figure 13 Unsteady wake of a sphere translating on a wall, for (a) normal rolling (α = +1) and (b) reverse rolling (α = -1). Left: experimental dye visualizations (top view) at Re = 200 in a water channel equipped with a moving floor, reproduced from Stewart et al. (2008), with permission of AIP Publishing. Right: isosurfaces of the λ 2 -function (Jeong & Hussain 1995) from numerical simulation, at Re = 200 (top) and Re = 300 (bottom), showing vortical structures (oblique view), adapted with permission from Stewart et al. (2010a).

Figure 7

 7 Figure 7 Wake of a sphere rolling in a straight line along a wall at different Reynolds numbers, seen from above. Experimental dye visualization (left) and numerical simulation with tracer particles (right). A bifurcation breaking the initial planar symmetry occurs at Re = 192, between panels a and b. Figure adapted with permission from Rao et al. (2012).
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  Figure "rolling-sphere-drag" Mean drag coefficient of a sphere rolling down an incline, as function of Reynolds number. (a) Collection of various experimental data. (b) Close-up of the measurements by Houdroge et al. (2020b) showing an increase of the drag with decreasing relative surface roughness (increasing diameter) of the sphere. Figure reprinted with permission from Houdroge et al. (2020b).

Figure 15

 15 Figure 15Mean effective drag coefficient (including torque) of a sphere rolling down an incline, as function of Reynolds number. (a) Collection of various experimental data. (b) Close-up of the measurements byHoudroge et al. (2020b), showing an increase of the drag with decreasing relative surface roughness (increasing diameter) of the sphere.
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  Figure 17 Experimental visualization of cavitation bubbles in the gap region of bluff bodies moving along a wall in a Stokes flow. Views from below through the transparent wall. All bodies move to the left. (a) Cylinder in forward rotation, Re = 1.2, α ≈ 1. (b) Cylinder in backward rotation, Re = 2.9, α ≈ -0.2. Panels a and b adapted from Seddon & Mullin (2006), with permission of AIP Publishing. (c) Sphere in forward rotation, Re = 0.5, α ≈ 0.3. Panel c adapted with permission from Ashmore et al. (2005), copyright 2005 by the American Physical Society.

Figure

  Figure "2D-cylinder-impact" Flow generated by the impact of a circular cylinder on a solid wall at Re = 200 for L/D = 4. Experimental dye visualization and numerical vorticity fields. (a) Normal impact, and (b) oblique impact at θ = 33°. Panels a and b reprinted from Leweke et al. (2008), with permission from Elsevier.

FigureFigure 19

 19 Figure "sphere-impact" Sphere impact at Re = 800 for L/D = 5. (a) Side views with experimental dye visualizations and numerical vorticity fields. Panel a adapted from Leweke et al. (2004b), with permission of AIP Publishing. (b) Bottom view, experimental dye visualization. Panel b reprinted from Leweke et al. (2004a), with permission of AIP Publishing.

Figure

  Figure "3D-impact-cylinder-sphere" Three-dimensional instability of the secondary vortex generated by a wall impact. (a) Cylinder at Re = 400 for L/D = 5. Isosurfaces of vorticity from numerical simulation. Panel a reproduced from Thompson et al. (2006), with permission from Elsevier. (b) Sphere for L/D = 5. Dye visualization in water at Re = 1500 (left) and isocontours of radial vorticity from simulation at Re = 1200 (right). Panel b reprinted from Leweke et al. (2004), with permission of AIP Publishing.

FigureFigure 21

 21 Figure "sphere-rebound" Rebound of a sphere from a wall. (a) Forced rebound for L/D = 5, Re = 800 and εdc = 1. Dye visualization in water. Panel a reprinted with permission from Thompson et al. (2007). (b) Rebound after a free fall under gravity for L/D = 5, Re = 865 (at impact). Vorticity contours from numerical simulations, comparing the cases εdc = 0 (left half of the images) and εdc = 1 (right half). t0 = 0.8!𝐷/𝑔. (c) Normalized coefficient of restitution as function of modified Stokes number, collected from various studies. Panels b and c adapted with permission from Ardekani & Rangel (2008).
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