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Abstract

This article reviews the dramatic variation in wake structures and flow

transitions, in addition to body forces, that appears as the motion of

bluff bodies through a fluid occurs increasingly closer to a solid wall. In

particular, the two cases of bluff bodies translating parallel at varying

heights to solid walls and bluff bodies impacting on solid walls are dis-

cussed. In the former case, the changes to the wake structures as the

flow varies from that of an isolated body to that of a body on or very

close to the wall are highlighted, including the effects when the body

is rotating. For the latter case of an impacting body, the flow struc-

tures following impact and their transition to three-dimensionality are

reviewed. The issue of whether there is solid-solid contact between the

bluff body and a wall and its importance to body motion is discussed.
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1. INTRODUCTION

The flow around generic bluff bodies, such as circular cylinders and spheres, has been studied

for more than a century. The vortex-shedding phenomenon occurring in the wake of these

bodies, and the associated fluid-structure interactions, have been the topic of a number of

previous contributions to the Annual Review of Fluid Mechanics: Berger & Wille (1972),

Bearman (1984), Oertel (1990), Williamson (1996b), Williamson & Govardhan (2004), Choi

et al. (2008), Ern et al. (2012).

Building on and extending these reviews, this article focuses on the wake dynamics of

generic bluff bodies when moving relative to, and interacting with, walls. Examples of the

wakes generated by a cylinder rolling on a wall and a sphere impacting a wall are shown

in Figure 1. These vortical flows bear little resemblance to the wakes of isolated cylinders

and spheres in freestream.

1.1. Practical Significance

A solid body moving along or colliding with a solid surface is a common element relevant

to many industrial and environmental processes, leading to complex energy exchanges. An

example is the resuspension of particles deposited on a surface, such as dust on the ground

or sediments in rivers, by the wake generated by the impact of an object or other particles;

see, e.g., Willetts 1998 and Ziskind 2006, for reviews on this topic - also see Figure 1b. Wear

due to particle impacts on surfaces is a major problem in many areas, including pumping

and processing of slurry flows (Clark 1992), as is the damaging impact of small particles

on high-technology equipment in desert environments (Yildirim et al. 2017). Micrometer-

 

 

 

    
 
Figure 1 

(a) Mixing induced by a cylinder (red circle on the left) rolling in a quiescent fluid along a wall previously 
coated with a thin layer of dyed fluid. Experimental visualization in water at Re = 220. (b) Resuspension of 
a layer of particles by the normal wall impact of a sphere at Re = 3100. Oblique view from above. Panel b 
adapted with permission from Eames & Dalziel (2000). 
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Figure 1

(a) Mixing induced by a cylinder (red circle on the left) rolling in a quiescent fluid along a wall

previously coated with a thin layer of dyed fluid. Experimental visualization in water at Re = 220.
(b) Resuspension of a layer of particles by the normal wall impact of a sphere at Re = 3100.
Oblique view from above. Panel b reprinted from Eames & Dalziel (1999), with permission of AIP

Publishing.
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Schematics of the two types of configurations considered in this review, including the main
parameters: (a) a bluff body translating and rotating along a wall, separated by a gap G; and

(b) a body, initially at rest, moving a distance L before stopping at or near a wall (without or with

rebound). In all cases the fluid is stationary with respect to the wall.

scale solid particles are used in a range of processes – polishing, shot peening, sand blasting

and kinetic consolidation processes – in industries such as metallurgy and pharmaceutical

manufacturing. At a larger scale, many sports, such as football, cricket, baseball, snooker,

pétanque, bowls, tennis and table tennis, and golf, to name but a few, involve bluff bodies

that move near and on a surface, and where impact, rolling, spin, and bounce are important.

1.2. The Problem of Solid-to-Solid Contact

Sisyphus, according to Greek mythology, was condemned to eternally repeat the process

of rolling a massive boulder up a hill, only for it to then roll down the hill again (Homer

9th-8th century BC). Were we to model this process by a perfectly smooth sphere and hill

within an incompressible Newtonian atmosphere, a startling result would await – no matter

how mightily Sisyphus may strain, the sphere would not budge, even on a steep slope, due

to infinite resistive pressure forces near the point of contact. This is the so-called Rolling

Paradox (see section 4.3). However, of course bodies do roll, with the first scientific study

initially published in 1632 by Galileo with his famous rolling-sphere experiments (Galilei

1638).

Galileo was reputed, anecdotally, to have dropped spheres from the Tower of Pisa to show

that acceleration was proportional to gravitational force, independent of mass. However,

for a perfectly smooth ball and ground and an incompressible Newtonian atmosphere, the

dropped spheres would never actually touch the ground, due to the infinite fluid forces in the

small gap as the sphere approaches the solid surface (Brenner 1961). And yet solid-to-solid

impact of dropped bodies are evidently observed (and heard).

When isolated from a wall, the identical assumptions for a body moving relative to a

the fluid does allow accurate modelling of the body and its wake (e.g., Johnson & Patel

1999, Thompson et al. 1996). Therein lies a major challenge to understanding the seemingly

simple problem of a body in a fluid moving near, or impacting on, a wall.

www.annualreviews.org • Bluff Bodies and Wake-Wall Interactions 3



1.3. Scope of Review

This review focuses on the flow around the generic bluff bodies of a circular cylinder and

sphere, showing how the characteristics of the wake change due to the presence of the wall

under a variety of translation, rotation, rolling, and impact conditions, and the effects of

Reynolds number – see Figure 2 for the setups and important parameters. At present,

the results of past investigations are often scattered throughout various research subfields,

not always cross-referenced and sometimes inaccurate – this review aims to provide an

overview of these various studies, raising important questions still to be fully addressed.

The focus is on bodies translating in otherwise stationary fluids with fixed walls. The issue

of fluid-structure interaction, and specifically flow-induced vibration, is limited to a brief

discussion concerning freely rolling bodies. Most of the referenced results were obtained

from experiments in water channels or tanks, or in computational studies involving direct

numerical simulations. Comparisons between the two are shown where possible.

The starting point is a brief review of the wake transitions of generic bluff bodies (2-

dimensional cylinder and 3-dimensional sphere) at significant distances from a wall, consid-

ering both non-rotating and rotating cases, as wall as impulsively arrested bodies, in order

to provide some context. Then, we map the changes in wakes as the bodies are located

increasingly closer to a wall. Finally, we review the issues of bluff-body contact with a wall

and point out future directions on this topic.

2. UNIFORMLY TRANSLATING ISOLATED BLUFF BODIES

2.1. Non-rotating Bodies

2.1.1. Circular cylinders. The flow past a circular cylinder has been a generic fluid flow

problem that has maintained continuing interest for more than a century, and the intricate

experimental and mathematical details of the transitions leading towards a fully turbulent

wake have been revealed especially over the last three decades. The initial transition at

Reynolds number ReC1 ≈ 46 occurs through a Hopf bifurcation from a symmetric pair of

attached recirculation bubbles to a periodic two-dimensional Bénard-von Kármán (BvK)

wake (Dušek et al. 1994, Williamson 1989), see Figure 3a . Here, the Reynolds number

is based on the free-stream velocity (U) and the cylinder diameter (D): Re = UD/ν (ν is

the kinematic viscosity of the fluid). On increasing the Reynolds number, the wake next

undergoes a subcritical (hysteretic) three-dimensional transition at ReC2 ≈ 190 (Barkley

& Henderson 1996, Williamson 1996a,b), which manifests as a sinusoidal distortion of the

spanwise vortex rollers with streamwise vortex structures connecting these. At onset, the

spanwise wavelength (λ) is approximately four cylinder diameters, and this wake instability

is commonly known as Mode A. On increasing the Reynolds number further, another three-

dimensional mode of much shorter spanwise wavelength (λ ≈ D), Mode B, becomes unsta-

ble at ReC3 ≈ 260. The remnants of this mode appear to persist at much higher Reynolds

numbers after the wake becomes fully chaotic (Henderson 1997, Williamson 1996a,b). The

characteristic three-dimensional modes are visualized in Figure 3b. Of interest, equivalent

modes have also been recognised in the wakes of other two-dimensional cylindrical bodies,

such as square cylinders (Robichaux et al. 1999) and angled airfoils (He et al. 2017). How-

ever, different modes can be important for other cylindrical geometries; e.g., a quasiperiodic

mode is the first transition mode of a normal-flat-plate wake (Thompson et al. 2006b).

Hopf bifurcation:

loss of stability of a

steady state, giving
rise to a periodic

solution, as the

control parameter is
increased

4 Thompson • Leweke • Hourigan



 

 

 

  

  
 

Figure “free-cylinder-sphere-new” 

(a) Two-dimensional periodic cylinder wake (experimental dye visualization). (b) Three-dimensional 
structures in the wake of a cylinder (flow is upward, the cylinder is at the bottom). Top: Mode A, bottom: 
Mode B, left: dye visualization, right: numerical simulation with tracer particles. Panel b (left) adapted with 
permission from Williamson (1996a); panel b (right) adapted from Thompson et al. (2006b), with permission 
from Elsevier. (c) Evolution of the wake of a sphere with increasing Reynolds number (dye visualization and 
numerical simulation). Experimental top views in panel c reproduced from Thompson et al. (2001), with 
permission from Elsevier. 
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Figure 3

(a) Two-dimensional periodic cylinder wake (experimental dye visualization). (b) Three-dimensional structures in the wake
of a cylinder (flow is upward, the cylinder is at the bottom). Top: Mode A, bottom: Mode B, left: dye visualization, right:

numerical simulation with tracer particles. Panel b (left) adapted with permission from Williamson (1996a); panel b (right)

adapted from Thompson et al. (2006b), with permission from Elsevier. (c) Evolution of the wake of a sphere with
increasing Reynolds number (dye visualization and numerical simulation). Experimental top views in panel c reproduced

from Thompson et al. (2001), with permission from Elsevier.

2.1.2. Spheres. The sequence of wake modes for a sphere, as Re is increased, is illustrated

in Figure 3c. Consistent with other studies (Tomboulides & Orszag 2000, Ghidersa &

Dušek 2000, Thompson et al. 2001), experiments and numerical computations performed by

Johnson & Patel (1999) found that the initial axisymmetric wake undergoes a regular (i.e.,

steady→ steady) bifurcation through an off-axis shift of the steady axisymmetric recircu-

lating bubble at ReS1 ≈ 210. This results in a double-threaded wake consisting of a trailing

vortex pair, as observed previously for buoyant oil drops (Magarvey & Bishop 1961a,b). On

further increasing Re, a second topological transition from the steady two-threaded wake

to a periodic wake occurs at ReS2 ≈ 270 (above references), with the trailing vortices form-

www.annualreviews.org • Bluff Bodies and Wake-Wall Interactions 5



Figure “free-rotating-regimes” 

(a) Stability diagram in Re-α parameter space for a rotating cylinder. Panel a adapted from Rao et al. (2015a), with permission from 
Elsevier. (b) Wake regimes of a rotating sphere, as function of Re and α, based on data collected by Poon et al. (2014) and Dobson 
(2014). 
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Figure 4

(a) Stability diagram in Re–α parameter space for a rotating cylinder. Panel a adapted from Rao et al. (2015b), with

permission from Elsevier. (b) Wake regimes of a rotating sphere, as function of Re and α, based on data collected by Poon
et al. (2014) and Dobson et al. (2014).

ing kinks that develop into strongly skewed loops advecting downstream. Computations by

Mittal (1999) and experiments of Brücker (2001) showed that the vortex loops in the wake

lose planar symmetry at ReS3 ≈ 400. These vortex loops are maintained at much higher

Reynolds numbers, despite an increasing chaotic component. Through large-eddy simula-

tions, Chomaz et al. (1993) and Tomboulides & Orszag (2000) reported fine-scale wake

flow structures for 500 < Re < 1000; they speculated that these develop from a Kelvin-

Helmholtz instability of the shear layer separating from the sphere. In agreement, Magarvey

& Bishop (1961b) experimentally observed a breakdown in periodicity of the hairpin shed-

ding for Re > 600. The same shear layer instability manifests in a cylinder wake beyond

Re ≈ 2000, (see, e.g., Prasad & Williamson 1997, Thompson & Hourigan 2005), although,

for experiments at least, the onset is dependent on background turbulence.

2.2. Rotating Bodies

2.2.1. Circular cylinders. Numerical and experimental investigations have characterised

and quantified the wake of a rotating cylinder for rotation rates α ≤ 7 and Reynolds numbers

Re ≤ 400 – see Figure 4a . Here, α is the ratio of the circumferential speed of the cylinder

surface and the flow velocity, or equivalently the cylinder translation speed: α = ωD/(2U),

with ω the angular velocity of the body. Using linear stability analysis, various two- and

three-dimensional transitions have been identified and mapped. This effectively extends the

previously described results for a non-rotating cylinder (section 2.1.1) from the α = 0 axis

into the Re-α parameter space. For small rotation rates (α . 2), the rotation breaks the

symmetry of the BvK wake, but essentially only perturbs the vortex shedding and transition

modes (A and B). However, as the rotation rate approaches α = 2, the connection points

at the cylinder of the upstream and downstream stagnation streamlines essentially merge,

6 Thompson • Leweke • Hourigan



significantly altering the flow topology, so that shedding is increasingly suppressed. At

even higher rotation rates, these two streamlines join and separate from the surface of the

cylinder forming a closed region of pure rotation about the cylinder. Given this change to

the underlying base flow with α, the parameter space can be broadly split into two regions:

α < 2 and α > 2, as the parameter map of Figure 4a shows. Two unsteady two-dimensional

regimes exist: Mode I shedding occurs for α . 2 and is characterised by alternate vortex

shedding, while Mode II shedding only occurs over a small range of α, at much higher

rotation rates that result in single-sided vortex shedding (see, e.g., Stojković et al. 2002,

2003, Mittal & Kumar 2003). Two steady flow regimes have also been identified (Mittal

& Kumar 2003, Pralits et al. 2010, Rao et al. 2015b): Steady state I occurs at lower Re,

while Steady state II manifests at higher rotation rates beyond the Mode II shedding region.

These two states are distinguished by differences in flow features such as the drag coefficient

and the location of stagnation points. At higher Re, a variety of unstable three-dimensional

modes with different spanwise wavelengths is found, including a periodic subharmonic mode

(C), which is also found in other asymmetric bluff body flow configurations, such as curved

circular cylinders (rings) or inclined square cylinders (Sheard et al. 2005, Sheard 2011), and

a steady three-dimensional mode (E).

Subharmonic:

having half the

frequency of the
base flow

2.2.2. Spheres. Previous numerical investigations (Kim 2009, Giacobello et al. 2009, Poon

et al. 2014, Dobson et al. 2014, Rajamuni et al. 2018) on the effects of rotation on the wakes

of rigidly mounted rotating spheres at low Reynolds numbers (Re ≤ 1000) have revealed

considerable wake modifications and even suppression of the vortex shedding, depending

on rotation rate. In comparison with the cylinder case, the wake structure is more strongly

affected at lower rotation rates, with Figure 4b showing that a broad change occurs beyond

α ' 0.7. Similar to the cylinder, in the rotation centerplane, high rotation causes the

streamlines to bend around the sphere, again leading to an isolated region of co-rotation

near the sphere surface (separatrix regime).

2.3. Impulsively Arrested Bodies

2.3.1. Circular cylinders. The flow evolution associated with an arresting body has re-

ceived little attention to date, a few notable studies include those by Tatsuno & Taneda

(1971), Wang & Dalton (1991) and Sheard et al. (2007) for the case of an arresting cylin-

der. They showed that, during cylinder motion, a recirculating wake develops and grows

behind the body, consisting of an attached counter-rotating vortex pair. After the cylinder

is impulsively stopped, the momentum in the surrounding fluid carries the wake over the

cylinder, and the shear at the surface induces secondary vortices that pair with the primary

wake vortices as the latter pass the cylinder (Figure 5a). In the subsequent flow evolution,

Sheard et al. (2007) found that, similar to the flow past an arresting sphere discussed below,

these counter-rotating vortex pairs self-propel over a range of sometimes surprising trajec-

tories. For low Reynolds numbers and short translation distances, the wake vortices move

past the cylinder and continue in the direction of the original cylinder motion. For higher

Reynolds numbers, the pairs deviate outwards in circular arcs of increasing curvature, even

to the extent that they can actually collide behind the cylinder. The curvature depends

on the circulation balance of the vortex pairs. At sufficiently large translation distances, a

wake instability that would lead to vortex shedding breaks the reflective symmetry about

the centerline of the wake.

www.annualreviews.org • Bluff Bodies and Wake-Wall Interactions 7



 
 
 
 
 
 
 
 

   

 
Figure “free-stopping-cylinder-sphere” 

(a) Flow around an impulsively arrested cylinder previously translating a distance 2D from top to bottom at 
Re = 500; experimental dye visualization (left) and numerical simulation with tracer particles (right). Panel 
a adapted from Sheard et al. (2007), with permission of AIP Publishing. (b) Experimental dye visualization 
of the vortex rings developing for an impulsively arrested sphere after translating a distance 5D at Re = 800. 
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Figure 5

(a) Flow around an impulsively arrested cylinder previously translating a distance 2D from top to
bottom at Re = 500; experimental dye visualization (left) and numerical simulation with tracer

particles (right). Panel adapted from Sheard et al. (2007), with permission of AIP Publishing.

(b) Experimental dye visualization of the vortex rings developing for an impulsively arrested
sphere after translating a distance 5D at Re = 800.

2.3.2. Spheres. Leweke et al. (2004a) and Thompson et al. (2007) have investigated

the flow dynamics of an impulsively arrested sphere. For an arrest occurring in isolation

(Figure 5b), the recirculating wake translates towards the arrested sphere before spreading

laterally as a vortex ring in the original upstream direction. A second vortex ring of oppo-

site sign is induced from the sphere surface and pairs with the primary ring. The vortex

ring pair follows a loop trajectory due to mutual induction, after which the primary ring

continues its upstream motion, whereas the secondary ring is left behind and fades out.

3. BLUFF BODIES MOVING PARALLEL TO A WALL

3.1. Circular Cylinders

Taneda (1965) was one of the first to visualize the wake of a circular cylinder moving

parallel to a wall. He specifically examined the change to the vortex street as the gap height

was reduced from G/D = 0.6 to 0.1 (see Figure 2a) at Re = 170. For the smaller gap,

it appeared that only a single row of vortices formed, with the individual vortices being

unstable and decaying rapidly. The streamwise wavelength of the vortex street increased as

the gap was reduced.

8 Thompson • Leweke • Hourigan



 
 

   
   
   

 
Figure 6 

Two-dimensional wakes (vorticity fields) of cylinders translating parallel to a solid wall at different gaps G, 
for Re = 200. Figure adapted from Rao et al. (2013), with permission from Elsevier. 
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Figure 6

Two-dimensional wakes (vorticity fields) of cylinders translating parallel to a solid wall at different
gaps G, for Re = 200. Figure adapted from Rao et al. (2013a), with permission from Elsevier.

Various authors have since investigated the effect of wall proximity at low Reynolds

numbers through two-dimensional numerical simulations. For example, for non-rotating

cylinders, Huang & Sung (2007) quantified the wake and forces for 0.1 ≤ G/D ≤ 1 and

for Re ≤ 600, while Yoon et al. (2010) considered the effect of gap height at Re = 200. A

change from the standard BvK wake to a wake dominated by one-sided shedding was found

to occur at G/D ≈ 0.25. Also, the shedding frequency f , expressed as the non-dimensional

Strouhal number St = fD/U , initially increases slightly as the gap is reduced towards

G/D = 0.5, but it decreases rapidly beyond this point, which is consistent with Taneda’s

(1965) observation of an increased wavelength. The higher blockage to fluid passing under

the cylinder, as the wall gap is reduced, tends to stabilize the wake to the onset of periodic

shedding, resulting in an increase in the critical Reynolds number from ReC1 = 46 for

G/D →∞ to ReC1 > 100, for gaps below G/D . 0.4.

More recently, Rao et al. (2013a, 2015a) simulated the flow past non-rotating and ro-

tating circular cylinders moving through a fluid at different heights above a no-slip plane

boundary for Re ≤ 400. The series of two-dimensional vorticity fields in Figure 6 shows

in more detail the changes to the flow physics caused by wall proximity. As the gap gets

smaller, the increasing blockage reduces the circulation fed into the lower vortices shedding

into the wake, affecting the symmetry between positive and negative vortices forming the

vortex street. In addition, for small gaps, the proximity of the upper shed vortices to the

wall induces opposite-signed secondary vorticity there that can be advected into the wake

to pair with the primary vortices. Thus, the character of the wake changes as the gap is

reduced, and with it the nature of the first transition from steady two-dimensional flow.

Whereas this transition occurs through a Hopf bifurcation to periodic flow at large gaps,

a regular bifurcation leads to steady three-dimensional flow (Mode E) for small gaps. Sim-

ilarly, the onset of the three-dimensional Mode A instability, and indeed whether it is the

first three-dimensional instability, is very sensitive to gap size.

Figure 7 summarizes the various transitions and unstable wake modes for cylinders

moving along a wall, as function of Reynolds number and gap size, and also for the cases

with simultaneous forward or backward rotation. Gap size has a strong influence in the

range G/D . 0.4; for higher values, the transition sequence is close to that of an isolated

cylinder. Some of the three-dimensional instability modes are depicted in Figure 8. As

www.annualreviews.org • Bluff Bodies and Wake-Wall Interactions 9
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Parameter space showing the wake modes of a cylinder translating near a wall, for (a) forward

(normal) rotation, (b) no rotation and (c) backward (reverse) rotation. The transition from steady
to unsteady flow is marked by a dashed line. Diagrams on the right are enlargements of the

regions outlined in red on the left. Numbers in red refer to the modes shown in Figure 8. Figure

adapted from Rao et al. (2015a), with permission from Elsevier.

for the isolated cylinder, they include a subharmonic mode (Mode C’), as well as a steady

three-dimensional mode (E) at different spanwise wavelengths.

3.2. Spheres

Amongst studies conducted on rotating spheres near boundaries are the works of Zeng et al.

(2005) and Cherukat & McLaughlin (1994), the latter being restricted to the Stokes regime,

where a sphere is moving parallel to a wall at a distance of 0.25 sphere diameters or greater,

and is free to rotate. Their results indicate that, in general, any observed induced rotation

is in the prograde direction and that this rotation has little effect on the lift and drag forces.

The transition to unsteady flow with hairpin vortices and loops in the wake occurs earlier

Prograde

rotation: rotation

in the same direction
as for rolling
without slip

than for an isolated sphere, with the critical Reynolds number decreasing as the distance

to the wall is reduced. At the lowest gap ratio tested (G/D = 0.25), a sudden increase is

observed: the wake remains steady beyond Re = 300. Zeng et al. (2005) find that this delay

10 Thompson • Leweke • Hourigan
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➍ - Mode E (α = −1)

➌ - Mode E (α = +1)
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c

d

Figure 8

Three-dimensional instability modes of the wake of a cylinder translating parallel to a wall,

visualized by isosurfaces of positive and negative streamwise vorticity. (a) Subharmonic Mode C’

with λ/D = 1.35 for the sliding cylinder. (b) Periodic Mode D with λ/D = 2.6 for the cylinder in
reverse rotation. (c) Steady Mode E with λ/D = 11 for the cylinder in normal rotation.

(d) Steady Mode E with λ/D = 2.75 for the cylinder in reverse rotation. Numbers in red refer to

the locations in the parameter space shown in Figure 7. Figure adapted from Rao et al. (2015a),
with permission from Elsevier.

of unsteadiness at small gaps is caused by viscous effects of the nearby wall, as well as by

the strong asymmetry of the flow configuration.

The behaviour of the lift and drag coefficients of spheres translating close to a wall

was investigated by Zeng et al. (2009) at moderate Reynolds numbers covering the steady

regimes (Re < 300). Force coefficients for spheres are defined in the standard way though

F = CF · 12ρU
2 · π

4
D2, where F is the corresponding force and ρ the fluid density. These force

coefficients, as a function of Reynolds number and gap ratio, are summarized in Figure 9

for the case of pure translation, as predicted by Zeng et al. (2009) and others. The isolated

sphere drag variation, together with predictions of lubrication theory, are also provided for

comparison. Orders-of-magnitude changes in both the drag and lift coefficients are observed

as the Reynolds number and gap ratio are varied, the latter showing the profound effect of

the wall. Note that the lift remains finite for all parameter values, whereas the drag diverges

logarithmically and as Re−1 for vanishing gap size and Reynolds number, respectively.

Lubrication

theory: modelling

of the flow in a thin
fluid layer bounded

by solid surfaces,

neglecting inertial
effects

4. BLUFF BODIES ROLLING ALONG A WALL

4.1. Rolling Circular Cylinders

As discussed in section 3.1, the immediate proximity of a wall suppresses the passage of

fluid underneath the cylinder, leading to single-sided vortex shedding into the wake. In

turn, the proximity to the wall of these shed vortices induces secondary wall vorticity,

which separates and rolls up into weaker vortex structures that pair with the primary

vortices to form the wake. The addition of prograde (normal) rolling to the scenario has

two main effects: it increases the circulation fed into the upper primary vortices (because

of the increased velocity gradient at the cylinder surface), and it also leads to separation
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Figure “sphere-forces-Re-gap” 

(a) Drag and (b) lift coefficients for a non-rotating sphere moving parallel to a solid wall in a quiescent 
fluid, as function of Reynolds number (top) and of gap size (bottom). The limits for Stokes flow at large 
gaps and for lubrication at vanishing gaps are shown as dashed lines. Diagrams computed using the 
correlations proposed by Zeng et al. (2009), which are based on a survey of various experimental and 
numerical studies.  
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Figure 9

(a) Drag and (b) lift coefficients for a non-rotating sphere moving parallel to a solid wall in a

quiescent fluid, as function of Reynolds number (top) and of gap size (bottom). The limits for

Stokes flow at large gaps and for lubrication at vanishing gaps (Goldman et al. 1967) are shown as
dashed lines. Diagrams computed using the correlations proposed by Zeng et al. (2009), based on

a survey of various experimental and numerical studies.
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Figure 10

Wake regimes for (a) a cylinder and (b) a sphere translating along a wall and rotating at different
rates. The gap size is G/D = 0.005. Diagrams based on results from numerical simulations and

stability analyses by Stewart et al. (2010a,b) and Rao et al. (2011, 2012).
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Figure 11

Unsteady two-dimensional wake of a cylinder translating on a wall, for (a) normal rolling (α = +1) and (b) reverse rolling

(α = -1). Left: experimental dye visualizations in a water channel equipped with a moving floor; right: vorticity fields from

numerical simulation. Panels a and b adapted with permission from Stewart (2008).

  

  

  
 

Figure “rolling-cylinder-3D” 

Development of three-dimensionality in the wake of a rolling cylinder at Re = 160. (a) Experimental dye visualization of the first 
three shedding cycles after an impulsive start from rest. The cylinder is 47D long, with free ends. (b) Isosurface of the Q-function 
(Hunt et al. 1998) from numerical simulation, showing vortical structures during three consecutive shedding cycles after the onset of 
3D flow. The cylinder length is 54D, with periodic boundary conditions. Panel b adapted with permission from Houdroge et al. 
(2017). 
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Figure 12

Development of three-dimensionality in the wake of a freely rolling cylinder at Re = 160. (a) Experimental dye
visualization of the first three shedding cycles after an impulsive start from rest. The cylinder is 47D long, with free ends.
(b) Isosurface of the Q-criterion function (Hunt et al. 1998) from numerical simulation, showing vortical structures during

three consecutive shedding cycles after the onset of three-dimensional flow. The cylinder length is 54D, with periodic
boundary conditions. Panel b adapted with permission from Houdroge et al. (2017).
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at a smaller angle from the front of the cylinder, so that these vortices advect into the

wake further away from the wall. These two effects affect the magnitude of the secondary

wall vorticity generated, and so influence the structure and stability of the wake. The

details were explored experimentally and numerically by Stewart et al. (2006, 2010b) for

cylinders moving at constant speed with a very small fixed gap (G/D = 0.005) and for

Re ≤ 350. The transition map as a function of Reynolds number and rotation rate is given

in Figure 10a . For a non-rotating (sliding) cylinder, the two-dimensional flow remains

steady up to Re = 165, beyond which periodic flow is observed, where opposite-signed vortex

structures combine and self-propel away from the wall. Linear stability analysis was used

to show that the flow becomes three-dimensional directly from steady flow at Re = 70.5.

This is unlike the situation for an isolated cylinder, where transition to three-dimensional

flow occurs from a periodic wake. The transition Reynolds numbers vary with the rotation

rate, they increase with decreasing α, and vice versa. Water-tunnel wake visualisations are

in good agreement with the numerical simulation predictions, as can be seen, e.g., for the

forward- and reverse-rolling cases shown in Figure 11. More recently, Houdroge et al. (2017)

examined the onset of three-dimensionality of a cylinder rolling freely along a wall without

slip (α = 1), again through experiments and numerical simulation. Figure 12 shows that

wake three-dimensionality can strongly distort wake structures after a few shedding cycles

at moderate Reynolds numbers, and additionally that the influence of the free ends of the

cylinder propagates rapidly inwards along the span.

4.2. Rolling Spheres

While maintaining some of the flow physics governing rolling-cylinder wakes, there are also

some important differences for rolling spheres. In particular, a rolling sphere touches the

surface at a single point rather than along a line, which allows the fluid to pass around

the sides of the sphere as the gap is reduced. For this reason, wall proximity has a reduced

influence in modifying the wake from that of the isolated sphere, compared to the cylinder

case. This problem has been explored by Stewart et al. (2008, 2010a) and Rao et al. (2012)

for the flow around spheres translating at constant speed and rotating very close to a wall

at Reynolds numbers up to several hundred, covering both steady and unsteady regimes.

The gap ratio was chosen to be sufficiently small (G/D = 0.005), so that the wake flow

structures are not sensitive to the gap, even though the lift and drag forces are, as discussed

below in section 4.3. The effect of the sign and magnitude of the rotation rate on the wake

characteristics up to Re = 350 is shown in Figure 10b.

For α > 0 (prograde rolling), a compact zone of recirculating fluid is formed and the

unsteady flow is marked by the shedding of hairpin vortices analogous to the periodic wake

of an isolated sphere. However, for α < 0 (retrograde rolling), a streamwise vortex pair

appears in the wake, and as Re is increased further the wake undergoes a transition to an

antisymmetric mode. A comparison between these two wake states is given in Figure 13.

For the forward-rolling sphere with α = 1, the wake remains attached and steady

at low Reynolds numbers (Stewart et al. 2010a); it is analogous to that of an isolated

sphere, i.e., a double-threaded wake consisting of a counter-rotating vortex pair. Transition

to unsteady, periodic and symmetric flow occurs at Re ' 139, as shown through direct

numerical simulations by Rao et al. (2012), who also identified a second transition, at

Re ' 192, to unsteady, asymmetrical flow, where the wake exhibits oscillations in the lateral

directions. Both transitions were found to be supercritical (non-hysteretic). Visualisations

of the symmetric and asymmetric unsteady wakes are shown in Figure 14.
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Figure 13

Unsteady wake of a sphere translating on a wall, for (a) normal rolling (α = +1) and (b) reverse rolling (α = -1). Left:
experimental dye visualizations (top view) at Re = 200 in a water channel equipped with a moving floor, reproduced from

Stewart et al. (2008), with permission of AIP Publishing. Right: isosurfaces of the λ2-function (Jeong & Hussain 1995)

from numerical simulation, at Re = 200 (top) and Re = 300 (bottom), showing vortical structures (oblique view), adapted
with permission from Stewart et al. (2010a). 

  

  

  
 

Figure 7 

Wake of a sphere rolling in a straight line along a wall at different Reynolds numbers, seen from above. Experimental dye 
visualization (left) and numerical simulation with tracer particles (right). A bifurcation breaking the initial planar symmetry occurs at 
Re = 192, between panels a and b. Figure adapted with permission from Rao et al. (2012). 
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 Figure 14

Wake of a sphere rolling in a straight line along a wall at different Reynolds numbers, seen from above. Experimental dye

visualization (left) and numerical simulation with tracer particles (right). A bifurcation breaking the initial planar
symmetry occurs at Re = 192, between panels a and b. Figure adapted with permission from Rao et al. (2012).

In general, when a body is not forced to move at a constant speed, e.g., in cases where

it is rolling down a slope driven by gravity, unsteadiness in its wake leads to oscillations

(vibrations) of its trajectory. As well as sphere oscillations in the down-slope direction, there

is also considerable movement across the slope. The sidebar, Vortex-Induced Vibrations of

Rolling Bodies, gives a few brief details concerning this topic, which is beyond the scope of

the present review.

VIV: vortex-
induced vibrations,
body oscillations

caused by
time-dependent fluid

forces due to vortex

shedding
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VORTEX-INDUCED VIBRATION OF ROLLING BODIES

Vortex-Induced Vibration (VIV) of rotating bodies is also influenced by the presence of a wall compared to

isolated cases (Bourguet & Lo Jacono 2014, Zhao et al. 2018), along with changes to the potential added

mass. For a body accelerating in a fluid, the fluid force (drag) resisting this acceleration can be expressed as

a mass which is added to the body mass in the equations for the body motion. The added mass coefficient

is the ratio of this additional mass to the fluid mass displaced by the body. For a cylinder and a sphere, this

coefficient increases from 1 and 1/2, respectively, at infinity, to approximately 2.29 and 0.58, respectively, at

the wall for motion parallel to the wall, independent of rotation (Brennen 1982). These increases represent

an added resistance to acceleration of the bodies, which should act to mitigate VIV to some extent. However,

there are also dramatic changes in the wake structures, for both rolling cylinders (Houdroge et al. 2020a)

and rolling spheres (Houdroge et al. 2020b), at least in the low-Reynolds number range. These bodies are

found to undergo increasing VIV about their mean rolling speed with decreasing ratio of body and fluid

densities, interestingly with spheres having considerably smaller vibration amplitudes than cylinders.

4.2.1. Body forces on rolling spheres. Theoretical analysis has been combined with

laboratory experiments to investigate the forces acting on a sphere rolling freely down an

incline (Carty 1957, Garde & Sethuraman 1969, Jan & Shen 1995, Verekar & Arakeri 2010,

Houdroge et al. 2020b). Under the assumption of a no-slip surface, the sphere reaches a

terminal velocity from which an effective drag coefficient (C′D) can be calculated. Note that

for a sphere rolling down a slope without slip, this effective C′D is given by the sum of

the standard drag coefficient and the fluid torque coefficient (Houdroge et al. 2020b). The

data are presented in the composite plot of Figure 15a . They show that, for low Reynolds

numbers, the drag is significantly greater than for a sphere in an unbounded flow (compare

with Figure 9a), but it also appears to vary as Re−1 up to Re ≈ 100. Although Carty

(1957) and Garde & Sethuraman (1969) followed a similar experimental methodology, drag

coefficients calculated in the latter study are up to twice as large as those from the former.

Garde & Sethuraman (1969) relate this difference to the longer experimental flume used in

their experiments, which leads to more accurate timing and therefore velocity calculations,

although their graph is presented with a significant amount of scatter. For Re ≥ 5, the

results of Jan & Shen (1995) are broadly consistent with, although generally well above,

the observations of Carty (1957), and their data show considerable scatter, too. It is also

unclear why they do not present any values in the range 100 < Re < 1000.

4.3. The Rolling Paradox

Many careful experimental and numerical studies into the dynamics of rolling/sliding cylin-

ders and spheres in close proximity to a wall have been undertaken. For the numerical stud-

ies, in particular, a finite gap was maintained between the cylinder and the wall, due to the

problem related to a mesh singularity arising at zero gap, and also to keep a reasonable com-

putational timestep, since the respective timescales governing the gap flow and the global

wake dynamics become increasingly separated. For relatively small gaps (G/D . 0.01),

vortex formation and shedding is relatively independent of the gap size, but the force coef-

ficients are strongly affected, as shown by the examples in Figure 16 (see also Figure 9).
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Figure “rolling-sphere-drag”

Mean drag coefficient of a sphere rolling down an incline, as function of Reynolds number. (a) Collection
of various experimental data. (b) Close-up of the measurements by Houdroge et al. (2020b) showing an 
increase of the drag with decreasing relative surface roughness (increasing diameter) of the sphere. Figure 
reprinted with permission from Houdroge et al. (2020b).
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Figure 15

Mean effective drag coefficient (including torque) of a sphere rolling down an incline, as function

of Reynolds number. (a) Collection of various experimental data. (b) Close-up of the

measurements by Houdroge et al. (2020b), showing an increase of the drag with decreasing
relative surface roughness (increasing diameter) of the sphere.

The so-called rolling paradox arises from theoretical/analytical results concerning the flow

in the gap region using lubrication theory. Application of this theory to the rolling cylinder

and rolling sphere problems can be found, e.g., in Merlen & Frankiewicz (2011) and Gold-

man et al. (1967), respectively. They predict that, as the gap size approaches zero, the drag

force on the body diverges as (D/G)1/2 for the cylinder, and as ln(D/G) for the sphere, for

any combination of sliding and rolling, due to the generation of a pressure peak diverging to

positive infinity in front of the body, and another peak diverging to negative infinity behind

it. This implies that a cylinder or sphere in contact with a solid surface would be impossible

to move along this surface, which is contrary to common observation, and that any rolling

or sliding motion along the wall would involve a liquid film of finite thickness between the

two, i.e., the absence of solid-to-solid contact. Goldman et al. (1967) calculated that the

gap size compatible with the drag coefficients of a rolling sphere determined experimentally

by Carty (1957) (Figure 15a) would be of the order of atomic dimensions, which is well

outside the validity domain of the theory. Goldman et al. (1967) put forth six points of

discussion in an attempt to explain the discrepancy between the idealised model provided

by lubrication theory and experimental data. They include the roughness of the sphere

and/or wall, compressibility effects and cavitation linked to the large positive and negative

pressures encountered, breakdown of the continuity assumption at very small gaps, inertial

and non-Newtonian effects, and deformations of the sphere by the high pressure gradient.

Surface roughness was dismissed by Goldman et al. (1967), since Carty’s (1957) drag

data apparently did not show differences between the various spheres of different roughnesses

used. Revisiting the data (Figure 16), it appears that this conclusion is not clearly justified.

Specifically, the data points are not frequent enough to allow differentiation, and the results

are presented on a log-log plot that masks any such trends. (On such a log-log plot with

sparse points, a variation in drag coefficient of 100% is essentially not discernible!). More

recent experiments by Houdroge et al. (2020b) appear to show that different relative surface

roughnesses do in fact lead to different drag coefficient variations with macroscopic Reynolds
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Figure 16

Drag coefficient for rolling bodies as function of gap size from direct simulation. (a) Cylinder at
Re = 50. The line shows the prediction from lubrication theory: CD = 4π/[Re(G/D)1/2]. Panel a

adapted with permission from Houdroge et al. (2020a). (b) Sphere at Re = 100. The lines

represent scalings in line with lubrication theory: CD ∼ ln(D/G).

number, as seen in Figure 15b. By providing an effective average gap, the roughness of the

body (and/or the wall) therefore appears to be a determining factor for its motion along a

wall. Interestingly, the drag prediction from direct numerical simulation for smooth rolling

spheres at higher Reynolds number (Figure 16b) appears to approach the experimentally

observed values given by Carty (1957) and Houdroge et al. (2020b) (Figure 15), as the

gap ratio approaches expected relative roughness ratios (δ/D ∼ 10−6–10−7, where δ is the

mean asperity height).

Roughness effects were further investigated by Smart et al. (1993), who extended the

work of Goldman et al. (1967) by proposing that roughness elements can in fact lead to

physical contact with the plane when the separation distance between the surfaces is of the

order of the roughness height, and that the plane will then exert a nonhydrodynamic force

and torque on the sphere. Their research gave quantitative agreement between measured

translational and rotational velocities and their theory for small inclination angles of the

plane, however their data at high angles showed a greater discrepancy, in line with a larger

apparent gap than the one considered. King & Leighton (1997), Galvin et al. (2001) and

Zhao et al. (2002) argued that rather than experiencing a single surface roughness and

separation distance, the sphere has two scales of roughness: small bumps that support the

particle at rest and at low angles, and larger roughness elements distributed sparsely on

the surface that dominate the separation at higher angles. Galvin et al. (2001) and Zhao

et al. (2002) developed a theoretical model of this phenomena and tested it experimentally,

confirming that at low angles, the sphere is in contact with the wall via the small asperities,

whereas at high angles the large asperities may cause the sphere to lift off the wall and

move without continuous contact.

Although a smooth bump, no matter the radius, will induce an unlimited pressure force

as the gap between it and a smooth surface decreases, a roughness element or asperity

of small enough dimension can decrease the gap to molecular dimension, whereby contact

can be said to occur (Smart & Leighton 1989, Lecoq et al. 2004). The observation that in

practice contact does occur is therefore a consequence of physical considerations outside the

18 Thompson • Leweke • Hourigan



Cylinder Sphere

Forward rotation Backward rotation

a b c

Forward rotation

Figure 17

Experimental visualization of cavitation bubbles in the gap region of bluff bodies moving along a

wall in a Stokes flow. Views from below through the transparent wall. All bodies move to the left.

(a) Cylinder in forward rotation, Re = 1.2, α ≈ 1. (b) Cylinder in backward rotation, Re = 2.9,
α ≈ –0.2. Panels a and b adapted from Seddon & Mullin (2006), with permission of AIP

Publishing. (c) Sphere in forward rotation, Re = 0.5, α ≈ 0.3. Panel c adapted with permission

from Ashmore et al. (2005), copyright 2005 by the American Physical Society.

assumptions of surface smoothness, fluid continuum and incompressibility, such as roughness

closing the gap to the order of the fluid molecular dimension, or ultimately other short-range

interactions like van der Waals forces. The precise details of how solid-to-solid contact

occurs, which are essential for an understanding of the resistive forces due to contact, the

effective hydrodynamic gap, and the rolling speed of bluff bodies, are presently still not

entirely clear.

When the body is surrounded by a liquid, cavitation can occur for small gaps, when the

diverging negative pressure decreases below the vapour pressure, an effect already inves-

tigated by Taylor (1963) for lubrication flow. Merlen & Frankiewicz (2011) and Prokunin

(2003) have analysed the cases of cylinders and spheres rolling along a plane wall. When

cavitation appears, it eliminates the large negative pressure peak behind the body, but not

the positive peak ahead of it. This asymmetry results in a net lift force, which can push the

body further away from the surface, while at the same time maintaining a large drag force.

(Similarly, fluid compressibility modifies the pressure distribution near contact but infinite

pressures still arise from zero gap.) Experiments by Seddon & Mullin (2006) on cylinders

moving close to a wall in a highly viscous liquid have shown that cavitation appears in

the gap region in the form of a periodic array of vapour bubbles (Figure 17a), whereas

Prokunin (2004) and Ashmore et al. (2005) visualised a single cavitation bubble for the case

of a rolling sphere (Figure 17b).

5. BLUFF BODIES IMPACTING ON A WALL

In this section, we are chiefly concerned with the flow structures arising from a rigid body

impacting on a rigid wall, and not the elastic and/or plastic deformations that may occur

in the solid structures (for the latter, see, e.g., Yildirim et al. 2017). In this case, the initial

stage of the wake evolution is clearly related to those of impulsively arrested bodies discussed

in section 2.3. In addition, in a broader sense, the later wake evolution involves secondary
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Figure “2D-cylinder-impact” 

Flow generated by the impact of a circular cylinder on a solid wall at Re = 200 for L/D = 4. Experimental dye visualization and 
numerical vorticity fields. (a) Normal impact, and (b) oblique impact at θ = 33°. Panels a and b reprinted from Leweke et al. (2008), 
with permission from Elsevier. 
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Figure 18

Flow generated by the impact of a circular cylinder on a solid wall at Re = 200 for L/D = 4. Experimental dye

visualization and numerical vorticity fields. (a) Normal impact, and (b) oblique impact at θ = 57◦. Non-dimensional time
τ = tU/D is counted from the moment of impact. Panels a and b reprinted from Leweke et al. (2008), with permission

from Elsevier.

vorticity generation from the proximity of primary vortices to the wall that subsequently

leads to vortex pair formation and self-propulsion away from the body, showing similarities

with the wake evolution of rolling or sliding bodies in section 4.

5.1. Impacting Cylinders

Leweke et al. (2008) presented results from experiments and simulations on the flow around

a circular cylinder on impact with a solid wall. At low Reynolds numbers, when impact-

ing normally to the wall, the attached counter-rotating vortices that form during the pre-

impact motion of the cylinder, overtake it on impact, one on each side, and then initially

move outwards along the wall, due to the influence of their image vortices. Subsequently,

they experience a weak rebound associated with secondary vorticity generated at both the

cylinder and wall (Figure 18a). For higher Reynolds numbers, the secondary vorticity

generated rolls up into discrete secondary vortices, which orbit the primary vortices and

undergo a three-dimensional elliptic instability (Figure 20a), a phenomenon known to oc-

cur in strained vortical flows (Kerswell 2002). Beyond a Reynolds number of a few hundred,

this process leads to breakdown of the vortex system into small-scale structures. This flow

behaviour is similar to the case of a counter-rotating vortex pair impinging on a solid wall

(Leweke et al. 2016).

Image vortex:

virtual vortex locat-
ed symmetrically
with respect to a

surface, having the
same effect as the

boundary condition

of zero normal veloc-
ity at this surface
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Figure “sphere-impact” 

Sphere impact at Re = 800 for L/D = 5. (a) Side views with experimental dye visualizations and numerical vorticity fields. Panel a 
adapted from Leweke et al. (2004b), with permission of AIP Publishing. (b) Bottom view, experimental dye visualization. Panel b 
reprinted from Leweke et al. (2004a), with permission of AIP Publishing. 
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Figure 19

Sphere impact at Re = 800 for L/D = 5. (a) Side views with experimental dye visualizations and numerical vorticity

fields. Panel a adapted from Leweke et al. (2004a), with permission of AIP Publishing. (b) Bottom view, experimental dye
visualization. Panel b reprinted from Leweke et al. (2004b), with permission of AIP Publishing.

Oblique cylinder impacts have also been examined (Figure 18b). Not surprisingly, this

asymmetry leads to different flows generated on each side of the cylinder. The vortical

structures that develop on the side beneath the cylinder path appear similar to those for

the normal impact case, while generation of secondary vorticity at the wall on the opposite

side decreases with growing impact angle, leading to changes in the pair formation process.

For higher impact angles, the source of secondary vorticity generation is mostly restricted

to the cylinder surface, resulting in the formation of a vortex dipole which, through self-

induction, leads to rebound and self advection of the primary vortex to greater heights than

occurs for the normal impact.

5.2. Impacting Spheres

The flow generated by the normal impact of a sphere on a wall bears similarities with the

cylinder case. The recirculation zone behind the moving sphere takes here the form of a

vortex ring. On impact, this ring overtakes the sphere, leading again to the generation of

secondary vorticity at the sphere surface and at the wall, which separates and wraps around

the primary ring (Figure 19). At low Reynolds numbers, the flow remains axisymmetric

at all times, whereas for Re & 1000 an instability develops in the azimuthal direction

of the primary vortex ring, as seen in Figure 20b. Leweke et al. (2006) endeavoured to

gain an understanding of the flow physics involved in this instability. They found that

the flow structures that developed were consistent with a centrifugal instability of the

primary vortex ring core surrounded by secondary vorticity of opposite sign drawn up from

the wall. Both the growth rate and azimuthal mode numbers, predicted from idealized

centrifugal instability theory based on the local velocity profile, show good agreement with

those observed in the experiments, simulations and linear stability analysis of the frozen

flow state. Since the cross section of the primary ring becomes elliptical after the impact,

the stability of the ring was also tested against elliptic instability. Although the predicted

azimuthal mode numbers matched well, the predicted growth rates were negative.
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Figure “3D-impact-cylinder-sphere” 

Three-dimensional instability of the secondary vortex generated by a wall impact. (a) Cylinder at Re = 400 for L/D = 5. Isosurfaces 
of vorticity from numerical simulation. Panel a reproduced from Thompson et al. (2006), with permission from Elsevier. (b) Sphere 
for L/D = 5. Dye visualization in water at Re = 1500 (left) and isocontours of radial vorticity from simulation at Re = 1200 (right). 
Panel b reprinted from Leweke et al. (2004), with permission of AIP Publishing. 
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Figure 20

Three-dimensional instability of the flow generated by a wall impact. (a) Cylinder at Re = 400 for L/D = 5. Isosurfaces of

vorticity from numerical simulation, showing an elliptic instability of the secondary vortex. Panel a reproduced from

Thompson et al. (2006a), with permission from Elsevier. (b) Sphere for L/D = 5. Dye visualization in water at Re = 1500
(left) and isocontours of radial vorticity from simulation at Re = 1200 (right), showing the centrifugal instability of the

primary vortex. Panel b reprinted from Leweke et al. (2004a), with permission of AIP Publishing.

The dynamics bear resemblance to the related case of a vortex ring impacting on a wall,

studied by Lim (1989), Lim et al. (1991), Masuda et al. (2012), Orlandi & Verzicco (1993),

Swearingen et al. (2000) and Walker et al. (1987). In both configurations, the primary vor-

tex ring draws up secondary vorticity generated as it nears the wall, and then the ring

structure expands radially, leading to qualitatively similar vorticity patterns. However, the

isolated impacting ring becomes unstable through fragmentation of the secondary vorticity

into quasi-discrete vortices when the Reynolds number is sufficiently large. This secondary

vortex fragmentation has a relatively low azimuthal wavenumber (∼6 waves along the ring

perimeter, compared to ∼20 for the sphere impact in Figure 20b), and involves self- and

mutual induction from the primary vortex, as discussed in the above articles. Of interest,

direct simulations of vortex ring impact indicate that this fragmentation process arrests

relatively quickly, and subsequently a shorter-wavelength instability manifests, possibly at-

tributable to the same centrifugal mechanism causing ring breakup for the sphere impact.

A comparison between circular cylinder impact and normal sphere impact have revealed

important differences in the developed wakes. The vortex stretching of the primary vortex as

the ring expands radially is not present for the cylinder impact, and this leads to a reduction

in core size and accelerated vorticity cross-diffusion in the axisymmetric geometry. These

effects delay the onset of three-dimensional instabilities in the vortical flows generated on

impact of a spherical particle with a wall, in comparison to the two-dimensional counterpart.

Comparing with the flow generated by a body arrested in isolation (section 2.3), the

presence of the wall has two main effects: it restricts and modifies the trajectories of the

primary vortices, through induction from the image vortices representing the boundary

condition of vanishing normal velocity, and it is a further source of secondary vorticity.

Together, these effects can produce vortex configurations not found for freely arresting

bodies, e.g., where the secondary vorticity wraps around the primary vortex in a band
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Figure “sphere-rebound”  

Rebound of a sphere from a wall. (a) Forced rebound for L/D = 5, Re = 800 and εdc = 1. Dye visualization in water. Panel a reprinted 
with permission from Thompson et al. (2007). (b) Rebound after a free fall under gravity for L/D = 5, Re = 865 (at impact). Vorticity 
contours from numerical simulations, comparing the cases εdc = 0 (left half of the images) and εdc = 1 (right half). t0 = 0.8!𝐷/𝑔.  
(c) Normalized coefficient of restitution as function of modified Stokes number, collected from various studies. Panels b and c 
adapted with permission from Ardekani & Rangel (2008). 
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Figure 21

Rebound of a sphere from a wall. (a) Forced rebound for L/D = 5, Re = 800 and εdc = 1. Dye visualization in water.

Panel a reprinted with permission from Thompson et al. (2007). (b) Rebound after a free fall under gravity for L/D = 5,
Re = 865 (at impact). Vorticity contours from numerical simulations, comparing the cases of plastic (εdc = 0, left half of

the images) and elastic (εdc = 1, right half) collisions. t0 = 0.8
√
D/g (g: gravitational acceleration). (c) Normalized

coefficient of restitution as function of modified Stokes number, collected from various studies. Panels b and c adapted
with permission from Ardekani & Rangel (2008).

(Figures 18a and 19a) instead of forming a discrete concentrated vortex (Figure 5),

which can lead to different types of three-dimensional instability (centrifugal instability) at

higher Reynolds numbers.

5.3. Rebounding Bluff Bodies

The configuration involving a spherical particle in a viscous fluid rebounding from a solid

surface after a normal collision has been investigated in numerous studies including analyt-

ical/numerical work by Davis et al. (1986), Lian et al. (1996), Ardekani & Rangel (2008),

Li et al. (2012) and Brändle de Motta et al. (2013), as well as experiments by Joseph et al.

(2001), Gondret et al. (1999, 2002) and Ruiz-Angulo & Hunt (2010). Most of these studies

focused on the flow structure around the point and near the time of impact, and on the

determination of the coefficient of restitution (ε), given by the ratio of rebound velocity to

particle impact velocity. Few studies have considered the vortical structures in a more ex-

tended region and time interval around the collision. The visualization by Thompson et al.

(2007) and simulations by Ardekani & Rangel (2008) show that the primary vortex ring in

the wake of the approaching sphere is left behind after the rebound and exhibits dynamics

similar to that for a sphere with no rebound – compare Figures 19 and 21a,b.

The coefficient of restitution was found to depend on the non-dimensional Stokes number

Stk = (1/9)(ρp/ρf )Re, where ρp and ρf are the particle and fluid densities, respectively, and

Re is the particle Reynolds number at impact, with only a weak dependence on the elastic

properties of the material (Joseph et al. 2001). This parameter compares particle inertia to

viscous effects; according to Legendre et al. (2005) the effect of added mass should also be

included: Stk∗ = (1/9)(ρp/ρf + Cm)Re, with Cm the added mass coefficient. No rebound

is found to occur below a critical value of Stk∗ ≈ 10, and the coefficient of restitution

approaches that for a dry collision (εdc) for Stk∗ & 1000, as shown in Figure 21c.
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As for rolling bodies discussed in sections 4.2.1 and 4.3 above, the issue of whether there

is solid-to-solid contact, or if lubrication forces prevent this contact, is relevant also to a

bluff-body impact and rebound. In the study by Davis et al. (1986), the pressure forces in

the viscous liquid lubrication film between the particle and the wall during the collision

were found to be sufficiently large to cause the particles to deform elastically and rebound.

The Stokes number dependence has been attributed to the drainage of the lubrication film.

In this model of elastohydrodynamic collisions based on lubrication theory, the two solids

never touch.

Effects that lead to a breakdown of the lubrication approach include again surface

roughness (Smart & Leighton 1989). Davis (1987) already suggested that when the gap

between the surfaces becomes equal to the size of the largest surface roughness element,

solid-to-solid contact of the roughness bumps could occur due to discrete molecular nature

of the fluid and/or attractive London-van der Waals forces. More recently, Birwa et al.

(2018) have studied the collision between spheres and a wall in a viscous fluid, focusing on

the question of solid-to-solid contact. For Stokes numbers below the rebound threshold, the

lubrication film forces were found to decelerate the spheres to zero velocity before reaching

the wall. As soon as rebound occurred for increasing Stokes numbers, contact between the

two solids was systematically detected. The explanation provided was that the lubrication

film thickness needed to produce the force for stopping the sphere motion is significantly

smaller than the roughness of the particle or the wall, and therefore contact is made via

the roughness elements.

INTERACTION WITH A FREE SURFACE

There are many important interactions that take place at free, or nearly free, surfaces, such as for oceans,

lakes and rivers, as well as industrial processes involving risers, bridge piers, mixing vessels and bioreactors.

A number of studies have provided valuable insights into the surprising wake structures and free-surface

response for non-rotating submerged or semi-submerged cylinders or spheres (Sheridan et al. 1997, Reichl

et al. 2003, 2005, Kawamura et al. 2002, Chaplin & Teigen 2003, Koo et al. 2004, Shao et al. 2013, Vlachos

& Tellionis 2008, Sareen et al. 2018). Far from being a passive boundary, the free surface, when distorted,

becomes a rich source of vorticity that can remarkably change the wake of a bluff body (Brøns et al. 2014,

Terrington et al. 2020). However, the effects of the interface on the force distribution on the body, vortex

generation and turbulence structures, and air-water interface structures, still require much further study.

6. CONCLUDING REMARKS

In this review, we discuss the effect of a wall on the wake structures and transitions of

bluff bodies moving relative to the wall. The review is restricted to the generic two- and

three-dimensional bluff bodies – the circular cylinder and the sphere, respectively – and

to the ambient fluid being at rest relative to the wall. This excludes the class of flows for

which boundary layers form due to the fluid flow along the wall and where the bluff body

is fixed to the wall, such as is typical in wind engineering applications. The simplified flow

allows a clearer analysis of the direct effect that the wall itself has on the wakes. We also

consider only interactions with a rigid wall; the sidebar, Interaction with a Free Surface,

briefly addresses the configuration of bluff bodies placed near a fluid-fluid interface.
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SUMMARY POINTS

1. Proximity to a wall changes the bluff-body wake structures and transitions signif-

icantly. For example, the strong absolute instability causing Bénard-von Kármán

vortex shedding for an isolated cylinder becomes much weaker in the immediate

presence of a wall, with a predominately single-sided wake, and a steady three-

dimensional transition mode appears at higher Reynolds numbers.

2. Flow underneath a cylinder or sphere is restricted as the body is moved closer

to the wall, which effectively eliminates shedding of near-wall vortices. However,

the proximity of the upper shed vortices to the wall leads to secondary vorticity

generation there, which can roll up into discrete structures forming pairs with the

upper vortex. These pairs propagate away from the wall, causing a significant spread

of the wake. This mechanism dominates the flow dynamics for the cylinder case,

but is less important for a sphere.

3. For small gaps (less than 1% of the body diameter), the gap flow effectively becomes

uncoupled from the global flow around rolling bodies, hence simulation of rolling

bodies with small imposed gaps produce wake dynamics relatively insensitive to the

gap ratio. However, this is not true for the lift and especially the drag force, which

are very sensitive to gap size.

4. The flow dynamics for bluff bodies impacting a surface is governed by the starting

distance and the Reynolds number. A vortex system is formed from the initial wake

(vortex pair for the cylinder, vortex ring for the sphere) and secondary wall vortic-

ity, which propagates away from the impact point. At higher Reynolds number, it

becomes three-dimensionally unstable, through an elliptic instability in the case of

a cylinder, and a centrifugal-type instability for the sphere.

5. For freely rolling or sliding bodies, surface roughness appears to be a key element,

leading to an effective contact between the two solids, while at the same time pro-

viding an effective finite gap. Predicted drag coefficients for smooth spheres rolling

without slip are similar to those observed in experiments for a roughness height of

the order of the chosen gap size. However, this requires further investigation.

FUTURE ISSUES

1. Studies of the wakes of sliding and rolling bodies of other geometries (elliptical

cylinders, cubes) and the combined wakes of multiple bodies, particularly spheres,

in motion near walls will extend current knowledge to a broader set of applications.

2. Simulations of rolling/sliding bodies near surfaces at higher Reynolds numbers are

required to examine turbulent transition and fully turbulent wakes.

3. The effects of body rotation, as well as wall and body material elasticity, on the

wakes of impacting bluff bodies are largely unexplored.

4. The details of the physics of solid-to-solid contact due to surface roughness need to

be further addressed, ideally through a combination of careful experiments, detailed

numerical simulations resolving the flow near the gap, and theoretical analysis.

5. How bluff bodies interact with free surfaces and multi-fluid interfaces is yet to be

investigated in detail.
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