

Systematic Investigation of Lipophilicity Modulation by Aliphatic Fluorination Motifs

Benjamin Jeffries, Zhong Wang, Hannah Felstead, Jy. Le Questel, James Scott, Elisabetta Chiarparin, Jérôme Graton, Bruno Linclau

▶ To cite this version:

Benjamin Jeffries, Zhong Wang, Hannah Felstead, Jy. Le Questel, James Scott, et al.. Systematic Investigation of Lipophilicity Modulation by Aliphatic Fluorination Motifs. Journal of Medicinal Chemistry, 2020, 63 (3), pp.1002-1031. 10.1021/acs.jmedchem.9b01172. hal-03416697

HAL Id: hal-03416697

https://hal.science/hal-03416697

Submitted on 4 Jun 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A Systematic Investigation of Lipophilicity Modulation by Aliphatic Fluorination Motifs

Benjamin Jeffries, ^a Zhong Wang, ^a Hannah R. Felstead, ^a Jean-Yves Le Questel, ^b James S. Scott, ^c Elisabetta Chiarparin, ^c Jérôme Graton, ^{b*} Bruno Linclau^{a*}

^a University of Southampton, School of Chemistry, Highfield, Southampton SO17 1BJ, UK

^b CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes 2, rue de la Houssinière – BP 92208,44322 Nantes Cedex 3, France

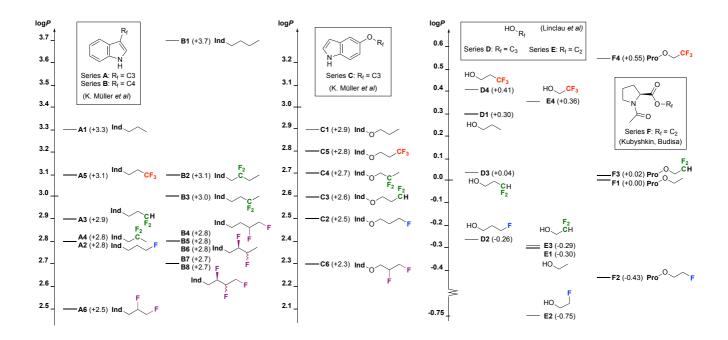
^c Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB40WG, UK

Corresponding Author: *Tel.: +44 (0)23 8059 3816, Fax: +44 (0)23 8059 3781, E-mail: bruno.linclau@soton.ac.uk

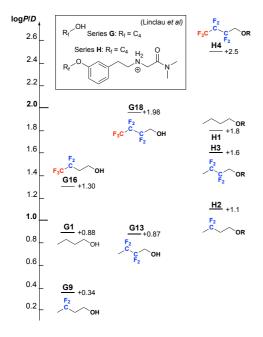
Abstract.

Optimization of compound lipophilicity is a key aspect of drug discovery. The aim of this work was to compare the lipophilicity modulations induced by 16 distinct known and novel fluoroalkyl motifs on three parent models. Fifty fluorinated compounds, with 28 novel experimental aliphatic log *P* values, are involved in discussing various lipophilicity trends. As well as confirming known trends, a number of novel lipophilicity reducing motifs are introduced. Tactics to reduce lipophilicity are discussed, such as "motif extensions" and "motif rearrangements", including with concomitant extension of the carbon chain, as well as one-

and two-fluorine 'deletions' within perfluoroalkyl groups. Quantum chemical log*P* calculations (SMD-MN15) based on solvent-dependent 3D conformational analysis gave excellent correlations with experimental values, superior to Clog*P* predictions based on 2D structural motifs. The availability of a systematic collection of data based on a small number of parent molecules illustrates the relative lipophilicity modulations of aliphatic fluorination motifs.


Introduction.

Fluorine introduction is a much-used operation in the drug development optimization process.¹⁻⁴ While any change in molecular structure will have an impact on a number of properties, this is particularly pronounced for fluorination. This is due to the high electronegativity of fluorine, resulting in a highly polar C–F bond with concomitant strong inductive effect and low polarizability of the fluorine lone pairs,⁵ without leaving much of a steric footprint. The efficiency of fluorine introduction for property optimization is exemplified by statistics on the proportion of commercial drugs, or drugs currently in clinical trials, that are fluorinated.⁶⁻⁸ The vast advances that are continuing to be made in synthetic organofluorine chemistry⁹⁻¹⁷ have accelerated its use and, with the emergence of late stage fluorination methodologies,^{18,19} this is set to continue. The increased understanding of the stability of fluorinated motifs, especially when heteroatoms are involved,²⁰⁻²² will further enhance its successful application.


Lipophilicity is an important property that is affected by fluorination. While fluorine introduction on aromatic rings generally leads to a lipophilicity increase, the influence of aliphatic fluorination on lipophilicity is more complex. 2,4 This is best illustrated by CH₃ \rightarrow CF₃ exchange, which can result in a lipophilicity increase or decrease, which can be in both cases quite significant (see below). Given the need to keep lipophilicity within optimal boundaries during optimization, $^{23-29}$ the possibility to use aliphatic fluorination for lipophilicity reduction

purposes is an attractive prospect. New fluorine-containing motifs continue to be introduced that are suitable for this purpose, with recent examples being the (Ar)-SCF₂CH₃ and (Ar)- OCF_2CH_3 groups by O'Hagan, 30 and the $-OCH_2(CF_2)_nCH_3$ (n = 2,3) groups from our lab. 31 In addition, lipophilicities of some known motifs such as a 1,2-difluoroethyl group, which has been demonstrated to be very efficient in lipophilicity reduction (see below), ^{32,33} and the CF₂H group, which has additional interest as 'lipophilic hydrogen bond donor', 34,35 have been investigated in detail. In this context, the availability of a toolbox of "fluorinated motifs" from which the medicinal chemist can pick and choose for optimal effect would be of great practical use, and the understanding of the lipophilicity impact of diverse fluorinated motifs, with or without modifying the chain lengths involved, will be of great benefit in medicinal chemistry. The process of understanding the influence of aliphatic fluorination on lipophilicity was pioneered by the Müller/Carreira group (Figure 1, series A-C), by investigating a series of compounds with increasing fluorine content, such as A1-A5.36 Using a combination of dipole moment and fluorine hydrophobic surface considerations, they explained the decrease in lipophilicity upon monofluorination by the C-F dipole introduction. Given that a trifluoromethyl group has approximately the same dipole moment as a C-F group, but a larger hydrophobic surface, a higher logP would be expected compared to monofluorination. The dipole moment of a CF₂-group is slightly larger than that of a single C-F, but the expected log P decrease is overridden by the log P increase caused by the larger hydrophobic surface area. The lower lipophilicities of a vicinal over a geminal difluoro motif could nicely be explained by the higher vector sum of the two C–F dipoles for a ca. 60° (gauche dihedral) angle compared to a ca. 110° (bond) angle. 32,37 Subsequently, through the synthesis of Gilenya® derivatives with alkyl side chains of various lengths, Gilmour has further demonstrated the lower logP of 1,2-difluoroethyl groups compared to their ethyl and trifluoroethyl counterparts.³³ Müller also pointed out that the lipophilicity increase resulting from aliphatic chain extension is compensated when a CF₂ group is simultaneously replaced by a vicinal difluoro group (e.g. compare **A3**, **A4** with **B4–B6**).³² Such observations are of great interest as these represent liponeutral bulk increases.

Although their lipophilicity range is three orders of magnitude apart, the fluorinated propoxy side chains in series C and the corresponding propanols (series **D**, Figure 1) display the same lipophilicity trend, 38 except that now the trifluorinated **D4** shows a slightly increased log Pcompared to propanol **D1**. For the ethanol series (**E**, Figure 1)³⁸ and the proline ester series (**F**, Figure 1),³⁹ this logP increase for the trifluorinated analogues is even more pronounced, with the difluorinated derivatives in series E and F being as lipophilic as their nonfluorinated parents. In these cases, the decrease in polarizability of the oxygen lone pairs caused by the inductive effect of the trifluoromethyl group has a logP increasing effect (similar to how aromatic fluorination increases lipophilicity). In addition, with a C2-chain, there is always a conformation in which a C-F dipole is antiperiplanar to the C-O dipole. Furthermore, the lipophilicity range of series **D**–**F** (from -0.75 to +0.55 log*P* units) is much lower compared to that of series C (\pm 2.3 to \pm 2.9 log D units). Hence, the relative contribution of the dipole is much reduced, in contrast to the volume contribution, a consideration already recognized by Müller through the lipophilicity comparison across the logP scale of a set of trifluoromethylated compounds with their methylated analogues.³⁶ Interestingly, Rafique et al. reported the logD of a number of CF₃CH₂OAr/FCH₂CH₂OAr matched molecular pairs (not shown), with Ar representing 4-pyridyl rings having a range of (non-conjugated) substituents, in which the trifluoromethylated derivative is not always the most lipophilic one although all compounds are within a narrow lipophilicity range. 40

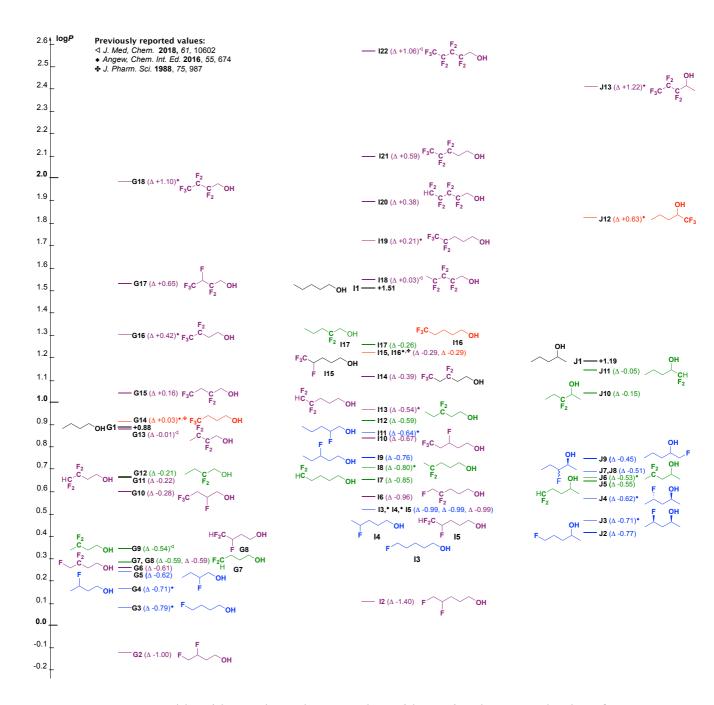
Figure 1. A selection of relevant precedence of aliphatic fluorination and lipophilicity featuring different fluorination patterns for given 'parent' (nonfluorinated) compounds **A–F**.

Figure 2. Log*P/D* values of derivatives obtained by internal polyfluorination of the parent compounds **G1** and **H1**.

Based on the observation that there is a large $\log P$ decrease when terminal pentafluorination is changed to a CF₂ motif at the penultimate chain position (Figure 2, compare G16 with G9), our group established that this remains the case even with longer perfluoroalkyl moieties (e.g. G18 \rightarrow G13).³¹ Interestingly, the tetrafluorinated G13 has a similar lipophilicity as its nonfluorinated parent G1. Very similar observations were made when such butoxy groups were introduced in a druglike molecule, such as evenamide H1,³¹ a schizophrenia drug currently in phase II clinical trials.⁴¹

The availability of measured lipophilicity data of matched molecular pairs (or matched molecular series) is of great interest for qualitative evaluation about the relative effect of a given motif on lipophilicity, and more importantly, as a collective body of data to extract trends and gain understanding of the effects at work. The reporting of experimental log*P* data is very valuable^{27,29} as inputs to validate/optimize computational log*P* prediction algorithms, or to obtain correlations of their predictions with the experiment.

Here, we report experimental octanol-water shake flask $\log P$ values of 50 saturated fluorinated aliphatic compounds involving, in total, 16 different aliphatic fluorination motifs introduced on three "parent" alcohol models. Our choice for alkanols as model compounds is based on the aforementioned interplay of the polar C–F bond with an electronegative functional group, which affects its resulting lipophilicity modulation. Given that the magnitude of fluorine's lipophilicity modulating effect is also dependent on the lipophilicity of the nonfluorinated parent compound, it is important that different motifs can be compared when substituted on the same framework, hence the limited number of nonfluorinated 'parents'. Two nonfluorinated 'parents' are linear alkanols (Figure 3): 1-butanol (BuOH, $\log P + 0.88$) and 1-pentanol (1-PentOH, $\log P + 1.51$). Positional isomers which have the fluorination motif at different carbon atoms are investigated systematically for the CHF and CF₂-motifs. For this purpose, 2-pentanol (2-PentOH, $\log P + 1.19$) is also included as a parent substrate. Around half of the $\log P$ values

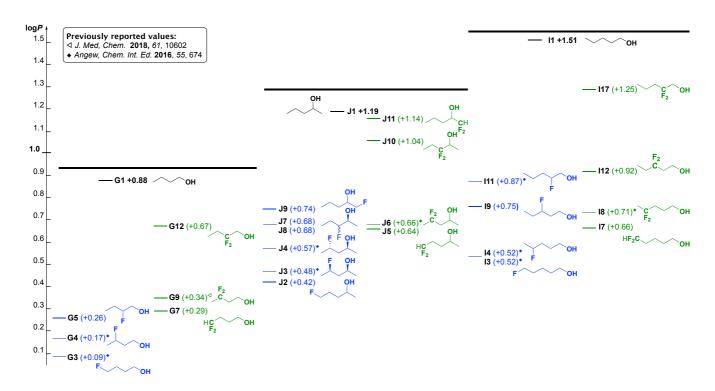

are new, and the precedent is included to have as large a data set as possible to facilitate discussion and allow comparison between different motifs, and positioning of motifs vs a polar alcohol group.

Results.

Lipophilicity results.

The direct determination of log*P* values was conveniently achieved by a ¹⁹F NMR based method developed by our group, which is suitable for measuring the octanol/water partition coefficients *P* of (fluorinated) non-UV active substrates.³¹ The use of an internal standard as a mixture with the compound of interest obviates the need for accurate weight/partition volume/sample volume measurements. Potential quantitative integration issues due to the solvent-dependence of the relaxation time are minimized by selecting a sufficiently long relaxation delay for the NMR experiments (D1-setting).

The results of the lipophilicity measurements are shown in Figure 3, together with previously measured values of analogues. The difference in lipophilicity with the nonfluorinated parent is indicated.


Figure 3. Summary table with new $\log P$ data, together with previously reported values for completion.^{31,38,42} Color coding: blue, monofluorinated; green, *gem*-difluorinated; red, a (single) CF₃ group; purple, multifluorinated (fluorination at more than one carbon atom). The difference in $\log P$ value with the corresponding nonfluorinated parent compounds **G1**, **I1**, **J1** (depicted in black) is given (See Figure S1 for a list of all $\log P$ values).

Discussion

The discussion of the data is organized by motif. First, mono- and geminal difluorination will be discussed, then vicinal fluorination motifs, followed by skipped motifs. A number of compound series will be discussed, and finally correlations will be shown with a number of log*P* prediction methods.

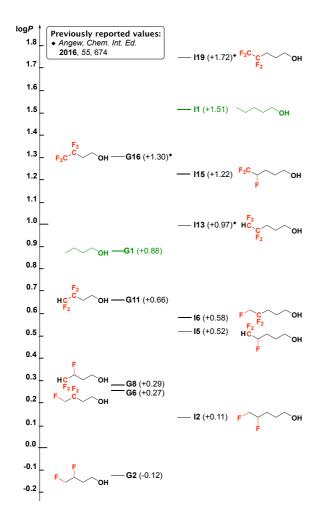
Monofluorination and geminal difluorination.

The data for all monofluorinated and geminal difluorinated analogues is shown in Figure 4. As expected, monofluorination of acyclic alkanols results in a systematic decrease in lipophilicity when compared to their respective parent compound. This decrease is clearly dependent on the relative position of the fluorination and the alcohol functional group (cf. the series G3,4,5; J2,3,4,7,8,9, and I3,4,9,11). The β-monofluorinated analogues G5, J7–9 and I11 all have the highest logP values within their respective families. This is explained by the proximity of the fluorination site to the hydroxyl group, resulting in a higher reduction in polarizability of the oxygen lone pairs, as well as a possible conformation where the C-O/C-F dipoles counteract. Monofluorination at the methyl group (J9) causes a slightly lower reduction in lipophilicity compared to internal monofluorination (J7/J8). Unfortunately, due to partial ¹⁹F NMR signal overlap in the aqueous solvent, the lipophilicity of the individual diastereomers J7 and J8 could not be determined (the stereoisomers were not separable), although qualitatively the values appear to be very similar (the average value is given, see SI section 4.3.2). An increasing number of methylene groups between the OH and F groups leads to a further reduction in lipophilicity. For **I3** and **I4**, the decrease in lipophilicity is guite substantial ($\Delta \log P_{\text{II-I3,4}}$ –0.99). Compounds **J3** and **J4** were obtained in diastereomerically pure form, and the lower lipophilicity of the syn-diastereomer J3 can be explained by the comparatively larger stabilization of its most polar conformation (featuring parallel C–O and C–F bonds) in water compared to that of **J4** (and the opposite for the less polar conformers in octanol).³⁸

Figure 4. Systematic mono- and difluorinated lipophilicity series of the parent compounds 1-butanol (**G1**), 2-pentanol (**J1**) and 1-pentanol (**I1**). Color coding: blue, monofluorinated; green, *gem*-difluorinated.

All the geminal difluorinated alkanols are more lipophilic than their corresponding monofluorinated congeners, which conforms to Müller's 'rule'³⁷ that the influence of the larger CF₂-dipole moment (compared to C–F) is counterbalanced by an increased hydrophobic surface. For the compounds in Figure 4, the increase from the monofluorinated congeners is about 0.15-0.20 log*P* units, except for the vicinal difluorohydrins where the difference is up to 0.40 log*P* units. This can be explained by the larger polarizability reduction of the alcohol lone pairs by a CF₂-group, as well as by the increased probability that the C–O dipole is antiperiplanar with a C–F dipole (compared to monofluorination). Nevertheless, all *gem*-

difluorinated compounds investigated in this study still have a lower lipophilicity in comparison to their respective nonfluorinated parent compound. As with the monofluorinated derivatives, their lipophilicity progressively decreases with fluorination further from the alcohol group. Indeed, the β-difluorination analogues G12, J10, J11 and I17 all have the highest log*P* values within their respective families. In the 2-PentOH family, just like for the monofluorination, the internal β-difluorination J10 causes a larger log*P* decrease compared to its terminal counterpart J11. For matched compound pairs featuring internal CF₂ and terminal CF₂H groups, Müller already noted that there was little difference in their log*P* values.³² In our data set involving longer aliphatic chains, we show that this remains true only when CF₂H compounds are compared with compounds having CF₂ groups at the penultimate carbon atom (cf. 17 and 18 for the PentOH family, J5 and J6 for the 2-PentOH family, and G7 and G9 for the BuOH family). For CF₂ groups further away from the final carbon atom the difference is much more significant, because of the influence of the polar alcohol group. In all cases, compounds having a RCH₂CF₂H group are slightly less lipophilic than their congeners with a RCF₂CH₃ group (compare G7 and G9; J5 and J6; and I7 and I8).


In longer chains such in 1-pentanol, the increase in lipophilicity in comparing C–F with CF₂ is roughly compensated when moving one bond further away from the alcohol group. For example, 3-fluoropentan-1-ol **I9** has a similar log*P* as 4,4-difluoropentan-1-ol **I8**.

Vicinal fluorination series.

Two series featuring vicinal fluorination motifs at the terminal position of the alkyl chain are shown in Figure 5. In general, the lipophilicity increases with increasing number of fluorine atoms present in the motif, and it is notable that only the compounds with the fully fluorinated pentafluoroethyl motif (**G16**, **I19**) have a larger lipophilicity than their nonfluorinated parents. The introduction of vicinal difluorination causes significant reductions in lipophilicity (–1.00

logP unit for G2, $-1.40 \log P$ units for I2). This is in keeping with Müller's analysis,³² and with Gilmours's Gilenya® examples (there was a 1.7 logP unit decrease between the respective CH₂–CH₃ and CHF–CH₂F Gilenya® analogues).³³ The differences in logP tend to slightly increase between compounds having 2 vs 3, 3 vs 4 and 4 vs 5 fluorines present. For motifs with the same number of fluorines, their internal arrangement has an impact on the logP. For the vicinal trifluorination motifs, which have been considered by Müller in the context of polarity prediction,⁴³ this impact is small ($\Delta \log P$ 0.02-0.06, and reverses between BuOH (G6/G8) and PentOH (I5/I6)), but there is a larger difference between the two vicinal tetrafluorinated motifs ($\Delta \log P$ 0.25, I13/I15).

In all cases, for series where the fluorine count at a particular carbon is increasing whilst keeping that at the other carbon of the motif constant (e.g. consider $I2\rightarrow I5\rightarrow I15$ or $I6\rightarrow I13\rightarrow I19$), the log*P* increases. This is further elaborated in the SI (Figures S2-S3).

Figure 5. Systematic exploration of all $C_2H_xF_{(5-x)}$ motifs.

The vicinal fluorination motifs in G2/I2, G6/I6, G8/I5, and G11/I13 feature different conformations upon rotation of the bond between the fluorinated carbons and, given the polarity of the various C–F bonds present, it was of interest to explore the impact of their conformations on the lipophilicity. Hence, conformational analysis in water and octanol medium was carried out for the corresponding butanol derivatives (Table 1).

Table 1. Calculated^a dipole moments and conformational distribution of selected vicinal fluorinated butanols in the octanol and the water phase. The repartition of the g(+), g(-) and t

conformers (defined by the H(F)- C_4 - C_3 - C_2 dihedral angle) is given. For full details, see Tables S8-S11.

Compound ^b		g(+)		g(-)		t		NMR	
$\frac{(\log P)^c}{\mu_t \left(D\right)^d}$	$\Delta \mu_t^d$ (D)	p^e	$ \mu_{s}^{f} $ (D)	p^c	$ \mu_{s}^{f} $ (D)	p^c	μ_{s}^{f} (D)	analysis (% antiperiplanar)	
H.C.C OH F ₂ G11 (+0.66)		F	F H R	F	F F R	F	F F R	h	
Oct: 3.13 Wat: 3.73	-0.60	26% 35%	4.25 4.45	26% ^g 35% ^g	4.25 4.45	47% 30%	1.88 2.08		
H C OH G8 (+0.29)		H F	F H R	H	F F R	H F	F F R	$^{3}J_{\text{H3-H4}}$ (oct) 3.3 Hz (41%) $^{3}J_{\text{H3-H4}}$ (wat) 2.8 Hz (31%)	
Oct: 3.48 Wat: 3.90	-0.42	41% 31%	3.56 3.58	33% 50%	4.20 4.58	25% 19%	2.42 2.58	$^{3}J_{\text{F3-H4}}$ (oct) 7.4 Hz (33%) $^{3}J_{\text{F3-H4}}$ (wat) 9.0 Hz (50%)	
F_C OH G6 (+0.27)		F	H F R	F	F H R	F H	F F H R	$^{3}J_{\text{H4-F3}}$ (wat) 13.2 Hz (39%) $^{3}J_{\text{H4-F3}}$ (oct): <i>J</i> -values could not be	
Oct: 3.69 Wat: 4.15	-0.46	24% 22%	2.76 2.93	24% ^g 22% ^g	2.76 2.93	52% 55%	4.56 5.14	determined	
F OH G2 (-0.12)		H	H F R	H F	F H R	H	F H R	h	
Oct: 3.74 Wat: 4.04	-0.30	38% 36%	3.12 3.95	0.0% 0.0%	2.24 2.34	62% 64%	4.10 4.09		

^aCalculated at the SMD/MN15/aug-cc-pVTZ//MN15/cc-pVTZ level of theory in water and octanol medium. ^bt-Conformer shown. ^c Experimental *logP*. ^dWeighted by the relative populations of each conformer: $\mu_t = \mu_{\text{oct}} - \mu_{\text{wat}}$ (t = total). ^eSum of all conformers with a given H(F)-C₄-C₃-C₂ dihedral angle. ^fWeighted dipole moment of the conformers with the H(F)-C₄-C₃-C₂ dihedral angle as shown: μ_s (s = subset). ^gStructure with equivalence of the g(+) and g(-) conformations. ^hNot investigated.

In all cases, the "total" molecular dipole moment μ_t (weighed across *all* conformations) in the octanol phase is lower than that in the water phase (cf. $\Delta\mu_t$), which reflects the expected higher populations of apolar conformers in the octanol phase due to its lower dielectric constant. This difference is clearly significant for the tetrafluorinated **G11**.

The data were then further refined to provide insight into the contribution of the fluorinated motif: the fluorohydrin conformations are grouped according to the three possible C3-C4 rotational minima. Their respective population in both the octanol and water phases, and the corresponding weighted dipole moment μ_s of these subsets of conformers are given. The magnitude of μ_s is determined by the two main contributors, the fluorinated motif and the alcohol group, and the contribution of the former is easily seen. For example, for **G11**, all C–F dipole moments in the *t*-conformers are opposed so the $\mu_s(t)$ value is much lower than that of the (equivalent) g conformations, where only two C–F bonds are antiperiplanar. For **G8**, the g(+)- and t-conformations each have two C–F dipoles opposed, but their corresponding μ_s values (for a given phase) are different, which is due to a different relative average orientation of the C–O–H dipoles. Still, both values are lower than that of the $\mu_s(g(-))$ value, as there the three C–F dipoles point into the same direction (vector sum ~2.16 $\mu_{(C-F)}$). For a given motif conformation, the μ_s values are typically lower for the octanol phase, which is attributed to the aforementioned conformational differences across the C1-C2 and C2-C3 bonds (higher population of apolar conformations in the octanol phase).

The conformational population data show that there is considerable difference in the influence of the medium on the conformational profile of the fluorinated motifs. For the compounds bearing two fluorines at the C-terminal position, **G11** and **G8**, the motif conformer populations in water are very different from those in octanol. For **G11**, the population of the more apolar trans conformation significantly increases going from water to octanol (from 30% to 47%, a ca. 60% increase). Similarly for **G8**, the populations of the two less polar g(+) and t conformations both increase by around 30% each. Conversely, with only one fluorine at the C-terminal position (**G6** and **G2**), there is minimal influence of the medium on the motif conformer population. Hence, for these compounds, despite the overall conformational profile in the two phases being clearly different (as shown by the $\Delta\mu_t$ values), the different solvent

polarities do not influence the conformational behavior of these fluorination motifs: regardless the medium, for **G2** there is 36-38% of g(+), 62-64% of t, and 0% g(-) population (similar consideration for **G6**). In other words: the dielectric constant of the medium has no impact on the conformational distribution of the motif, despite the different dipole moments of these conformations (e.g. compare **G6**(t) and **G6**(g)). This could be explained by additional factors that stabilize conformations, over and above dipole stabilization by the dielectric constant of the medium, such as steric effects, and by stereoelectronic effects such as the fluorine gauche effect, which is a stabilizing $\sigma_{C-H} \rightarrow \sigma^*_{C-F}$ hyperconjugation. The latter was investigated further.

The energies of hyperconjugations operating in these motifs can be estimated through NBO analysis by calculating the charge transfer from the corresponding bonding to the antibonding orbitals, $E^{(2)}_{\sigma \to \sigma^*}$, reported in Table S15. As expected, the stabilization by $\sigma_{C-H} \to \sigma^*_{C-F}$ hyperconjugation is larger than a $\sigma_{C-C} \rightarrow \sigma^*_{C-F}$ hyperconjugation, which in turn is larger than a $\sigma_{C-F} \rightarrow \sigma^*_{C-F}$ hyperconjugation. Furthermore, the calculations show that the $\sigma_{C-H} \rightarrow \sigma^*_{C-F}$ hyperconjugation energy roughly decreases with the extent of additional fluorination in the order G2 \rightarrow G6 \rightarrow G8 \rightarrow G11. Hence, the g conformations of G11 are stabilized by one weak σ_{C-} $_{\rm H} \rightarrow \sigma^*_{\rm C-F}$ (ca. 14 kJ mol⁻¹) and $\sigma_{\rm C-C} \rightarrow \sigma^*_{\rm C-F}$ hyperconjugation (ca. 6 kJ mol⁻¹). For **G8**, the g(-) conformation exhibits two $\sigma_{C-H} \rightarrow \sigma^*_{C-F}$ hyperconjugations (ca. 17 kJ mol⁻¹), and the tconformation only one (ca. 17 kJ mol⁻¹). The g(+) and again the g(-)-conformations have a weaker C–C mediated hyperconjugation (ca. 9 kJ mol⁻¹). For G6, the t-conformer has one C-H (ca. 21 kJ mol⁻¹) and one C–C (ca. 8 kJ mol⁻¹) mediated hyperconjugation, while its g(+)conformer only has one C-H mediated one (ca. 20 kJ mol⁻¹). Finally, compound G2 only occupies conformations that have either two C-H mediated hyperconjugations (ca. 21 kJ mol⁻¹ in g(+), or one C-H and one C-C mediated hyperconjugations (ca. 21 and 12 kJ mol⁻¹ in t). The latter is the most populated, which may be due to the lower amount of steric congestion.

Hence, we qualitatively suggest that the larger F-gauche stabilization in **G2** would make it the dominant force in both phases, while for **G11** the smaller fluorine gauche stabilization would be of the same order of magnitude as the interactions that destabilize polar conformations in apolar phases, resulting in a 'chameleon' character in which the molecule adopts polar or apolar conformations depending on the dielectric constant of the medium. Nevertheless, crystal structures containing -CF₂CF₂H groups show that this motif was present as a *g* conformation.⁴⁴⁻⁴⁷ The calculations of the motif conformations in **G8** and **G11** correspond reasonably well to the relative energies of the respective conformations for 1,1,2-trifluoro and 1,1,2,2-tetrafluoroethane as calculated with MP2/6-31+G*.⁴⁸

A correlation of these calculated populations with the solution-phase populations through a (qualitative) *J*-value NMR analysis (see SI section 8 for full details) was possible for **G8**. Using (octanol-saturated) D₂O and (water-saturated) octanol as solvents, the ³*J*_{H3-H4} value measured in the octanol phase (3.3 Hz) is larger compared to the value in the water phase (2.8 Hz), and vice versa for the ³*J*_{F3-H4} values (7.4 vs 9.0 Hz). This is consistent with the population differences of conformers containing antiperiplanar H3-H4 and F3-H4 dihedral angles (see Table 1, last column). For **G6**, the coupling constants in water-saturated octanol could not be determined due to signal overlap.

'Skipped' fluorination.

A small number of 'skipped' fluorination motifs, with a methylene group separating the fluorinated carbons, are shown in Figure 6. In all cases the motif contains a trifluoromethyl group.

While in both cases skipped tetrafluorination leads to a lower log P than skipped pentafluorination, a key difference between the butanol and the pentanol series is their relative

position with the nonfluorinated parent: the pentafluorinated **G15** has a higher $\log P$ than butanol **G1**, while **I14** has a much lower lipophilicity than **I1**. This can be explained by the proximity of the motif to the alcohol group (cf. Figure 4: β , β -difluorination leads to a much higher $\log P$ than γ , γ -difluorination, see Figure S4 for further analysis).

Conformational analysis in water and octanol medium of some skipped fluorination motifs, calculated on the 1-pentanol chain are given in Table 2. Following the analysis for the vicinal motifs, the conformations are grouped according to the three possible C3-C4 rotational minima, hence the data refer to the conformational profile of the skipped fluorination motif.

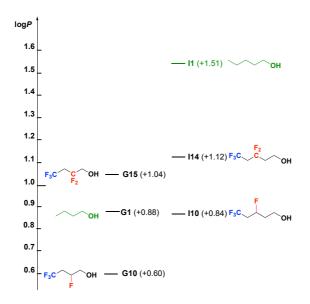


Figure 6. Skipped fluorination motifs.

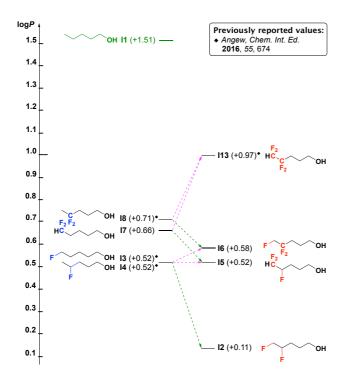
Table 2. Calculated^a dipole moments and conformational distribution of the skipped fluorinated pentanols **I10** and **I14** in the octanol and the water phase, next to the monofluorinated **I9**. The repartition of the g(+), g(-) and t conformers (defined by the F₃C-C₄-C₃-C₂ or H₃C-C₄-C₃-C₂ dihedral angle) is given. For full details see Tables S12-S14.

Compound ^b	g(+)	g(-)	t
-----------------------	------	------	---

$(\log P)^c$ $\mu_t (D)^d$	$\Delta \mu_{\mathbf{t}}^{d}$ (D)	p^e	μ_s^f (D)	p^c	$ \mu_{s}^{f} $ (D)	p^c	μ_s^f (D)	NMR analysis (% antiperiplanar)
F ₃ C C OH		F H R	CF ₃	F ₃ C	H F H	F	CF ₃ F H R	$^{3}J_{\text{H4-F3}}$ (wat) 15.6 (37%) $^{3}J_{\text{H4-F3}}$ (oct) 15.5 (39%)
Oct: 3.81	-0.30	26%	2.87	26% ^g	2.87	47%	4.86	
H ₂ O: 4.11	-0.30	21%	3.06	21% ^g	3.06	57%	4.92	
F ₃ C OH	ı	H H R	CF ₃	H F ₃ C	H H R	H _S	F H _R	$^{3}J_{\text{H3-H4}R}$ (wat) 9.0 Hz (97%) $^{3}J_{\text{H3-H4}S}$ (wat) 2.7 Hz (2%)
Oct: 4.45	0.42	2%	2.45	3%	3.44	94%	4.54	$^{3}J_{\text{F3-H4}R}$ (wat) 16.5 Hz (1%) $^{3}J_{\text{F3-H4}S}$ (wat) 33.6 Hz (97%)
H ₂ O: 4.87	-0.42	1%	2.16	2%	3.58	97%	4.93	JF3-H4S (wat) 33.0 HZ (9770)
F OH 19 (+0.75)		H	F CH ₃	H ₃ C	H F R	H	CH ₃ F H R	h
Oct: 2.58	-0.57	13%	2.88	21%	2.96	56%	2.39	
H ₂ O: 3.15	-0.57	27%	3.32	16%	3.29	56%	3.02	

^aCalculated at the SMD/MN15/aug-cc-pVTZ//MN15/cc-pVTZ level of theory in water and octanol medium. ^bt-Conformer shown. ^cExperimental *logP*. ^dWeighted by the relative populations of each conformer: $\mu_t = \mu_{\text{oct}} - \mu_{\text{wat}}$ (t = total). ^eSum of all conformers with a given H(F)-C₄-C₃-C₂ dihedral angle. ^fWeighted dipole moment of the conformers with the H₃(F₃)C-C₄-C₃-C₂ dihedral angle as shown: μ_s (s = subset). ^gStructure with equivalence of the g(+) and g(-) conformations. ^hNot investigated.

In line with the results described for the vicinal fluorination motifs, a lower averaged molecular dipole moment is found in the octanol phase than in the water phase for these three fluoropentanol derivatives. The grouping of the conformations along the three possible motif conformational minima reveals interesting differences between **I10** and **I14**. There is a broad population distribution for the skipped pentafluorinated motif, while the opposite is observed for the skipped tetrafluorination motif, for which the *t*-conformer is by far the most stable conformer. The destabilization of the *t*-conformer of **I14** is most likely due to the linear 1,3-repulsions between the CF₂ and CF₃ groups,⁴⁹ although *t*-**I10** also features such an interaction. As a separate point of interest, the conformational profile of **I10** was compared with that of **I9**, in which the trifluoromethyl group is replaced with a methyl group. Again, there is much more conformational disorder to a level close to that of **I14**. The estimated hyperconjugation


contributions (Table S16) for **I9** ($\sigma_{C-H4} \rightarrow \sigma^*_{C-F3}$ ca 25 kJ mol⁻¹ and $\sigma_{C4-C5} \rightarrow \sigma^*_{C-F}$ ca 14 kJ mol⁻¹) are much higher than those calculated for **I14** ($\sigma_{C-H4} \rightarrow \sigma^*_{C-F3}$ ca 20 kJ mol⁻¹ and $\sigma_{C-C} \rightarrow \sigma^*_{C-F}$ ca 10 kJ mol⁻¹). Hence, the electronic stabilization of the *g*-conformers is higher for **I9**, and is now able to compete with the steric destabilization between the methyl and R-groups. For **I10**, the populations of the *t*-conformers is only slightly reduced in the octanol phase, despite their weighted dipole moment being much higher than that of the *g*-conformers. For **I9**, for which all conformer subsets have similar averaged dipole moments in water, only the *g*-conformers show variation in population between the solvents.

¹H and ¹⁹F NMR analysis (see SI section 8 for a detailed discussion) was possible for **I10** and **I14**, and is fully consistent with the calculated conformational profile. For **I10**, the dominant *anti*-conformation of the skipped tetrafluorinated motif in **I10** is clearly demonstrated. In water, the very different vicinal couplings of H3 to the two diastereotopic H4 protons, which are averaged over all conformations, indicate a biased conformational profile, with the 9.0 Hz coupling relating to an antiperiplanar arrangement between H3 and what must be the H4(*R*) proton (cf. the corresponding Newman projection in Table 2), and a *gauche* arrangement between H3 and the H4(*S*) proton. Hence, this H4(*S*) proton must then predominantly be antiperiplanar with the fluorine at C3, which is indeed borne out with the large vicinal H-F coupling. Unfortunately, due to signal overlap, the corresponding *J*-values in water-saturated octanol could not be obtained. For **I14**, the ³*J*_{H4-F3} values in the octanol and water phases are essentially the same (within the error limit), which is what was expected given their very similar (averaged) antiperiplanar disposition between the H4 and F3 nuclei.

Fluorinated motif extension (no change in carbon framework)

As indicated in the introduction, there are many reasons for fluorine introduction as part of the drug development process. In the context of lipophilicity control, it can be of interest to have knowledge whether the log*P* of a candidate that already contains fluorine can be further reduced by introducing additional fluorines. The possibility of fluorinated motif extension for that purpose, where fluorine is introduced at other carbons than those already fluorinated, is explored in Figures 7 and 8 (further introduction of fluorine at an already fluorinated carbon is expected to lead to a lipophilicity increase).

The extension of the monofluorination in **I3** and **I4** by a vicinal C–F group (Figure 7), leading to **I2**, leads to a significant log*P* reduction. The same operation starting from the difluorinated structures **I7** and **I8**, leading to **I5/I6**, still leads to a log*P* decrease, albeit much smaller. The extension of the monofluorination in **I3** and **I4** by two geminal C–F bonds, leading to **I5/I6**, is either liponeutral or slightly log*P* enhancing. In contrast, the same operation starting from the difluorinated structures **I7** and **I8**, leading to **I13**, now leads to a significant log*P* increase. Hence, extension with a single fluorine leads to an overall increase in polarity that outweighs the introduction of hydrophobic surface, while the opposite is the case when extending with two geminal C–F bonds.

Figure 7. F-motif extension of mono- and geminal difluorinated motifs (See Figure S7 for BuOH).

The extension of a trifluoromethyl group is illustrated in Figure 8. Introducing a C–F group in the vicinal position, leading to **I15**, is liponeutral, but a large log*P* reduction is observed when the C–F group is added in the β-position, leading to **I10**. The comparative operations with a *gem*-difluoro motif lead to very different results: the vicinal pentafluorination (**I19**) leads to a very large log*P* increase, while the skipped pentafluorinated **I14** has a reduced log*P*. Hence, comparing the lipophilicity of the vicinal and skipped motifs with the same number of fluorines shows that the latter have a lower lipophilicity. This may be rationalized by C–F dipole annihilation in the vicinal motif, and by the polarized C–H bonds of the CH₂-group within the skipped fluorination motif (the chemical shift of CF₃CH₂CF₂- protons is 2.88 ppm, compared to 2.15 ppm for a methylene group adjacent to a pentafluoroethyl group).

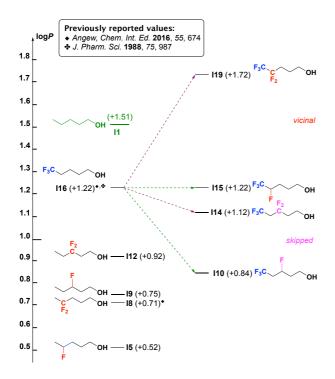


Figure 8. Motif extension involving a trifluoromethyl group. (see Figure S8 for BuOH).

The "reverse" motif extension operation, i.e. extending a mono- or difluorinated motif (cf. **I5**, **I8**, **I9**, **I12**) with a trifluoromethyl motif always leads to a $\log P$ increase which can be very large (e.g. **I8** \rightarrow **I19**: +1.01 $\log P$ units) or very modest (e.g. **I9** \rightarrow **I10**: +0.09 $\log P$ units).

Fluorine motif reorganization (same numbers of fluorines, same carbon framework)

In motif reorganization, the fluorine atoms of a given motif are re-distributed on the same carbon skeleton. The trend identified by Müller (Figure 1)³² regarding the lower lipophilicity of vicinal difluorinated compounds compared to the corresponding geminal analogues is also observed here (Figure 9). The vicinal difluorinated $\mathbf{I2}$ has a much lower $\log P$ than $\mathbf{I7/I8}$, with a difference of up to -0.6 $\log P$ units for the latter. A similar observation is made for the butanol compounds (compare $\mathbf{G2}$ with $\mathbf{G7/G9}$, see Figure S9).

Interestingly, our data show that a similar operation for a trifluoromethyl group, i.e. changing a "geminal" trifluorinated motif to the corresponding vicinal trifluorinated motifs, also results in a significant decrease in lipophilicity ($\mathbf{I}\mathbf{16}\rightarrow\mathbf{I}\mathbf{5}/\mathbf{I}\mathbf{6}$), with log*P* differences of up to -0.7 units.

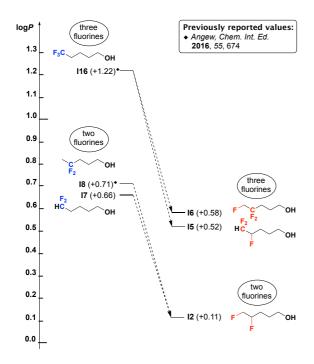


Figure 9. Motif reorganizations (See Figure S9 for the BuOH series).

As a further observation, Müller's data in Figure 1 show that converting a $-CH_2-CF_3$ group to a vicinal $-CHF-CH_2F$ group leads to a reduction in lipophilicity. In proposing the vicinal difluoroethylidene group as a bioisostere for a trifluoromethyl group, Gilmour has further demonstrated that this reduction is substantial when modifying the aliphatic side chain of Gilenya® in this way, and showed that $>1 \log P$ unit reductions are possible in side chains of varying lengths.³³ The 1.11 $\log P$ decrease observed going from $\mathbf{I16} \rightarrow \mathbf{I2}$ fully agrees with Gilmour's data.

Fluorine 'deletions' from perfluoroalkyl groups

As shown above in Figure 1, a CF_2H motif leads to a lower lipophilicity than a CF_3 motif. 36,38,39 Hence, converting the widely used CF_3 group into a CF_2H group can be used to achieve a reduction in lipophilicity. Indeed, the same observation was made for I16 and also for I15 (Figure 10). Such a lipophilicity reduction operation will be of even more interest when working with larger perfluoroalkyl motifs. Our group had already shown that a significant logP reduction can be thus obtained for a pentafluoroethyl group (compare I19 with I13), 31 and this observation is confirmed for the butanol series (G16 \rightarrow G11). In both cases, the tetrafluorinated compounds have a much lower lipophilicity than the nonfluorinated parents, which has precedent in the literature. 50

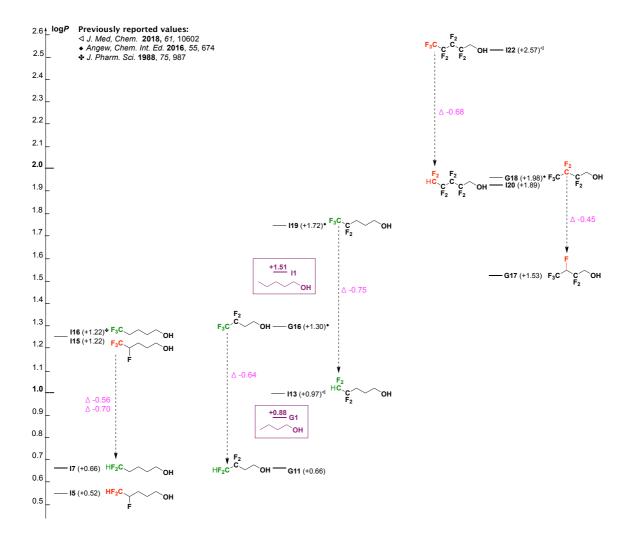


Figure 10. Single fluorine 'deletions' from perfluoroalkylated carbon motifs.

Even for a nonafluorinated 'ponytail' as in **I22**, replacing a terminal C–F bond with a C–H bond to give an octafluorinated motif as in **I20** leads to a large log*P* reduction. Removing an internal fluorine from a perfluoroalkyl group also leads to a log*P* reduction: compare **G18** with commercially available **G17**.

The 'deletion' of two geminal fluorines from a perfluorinated moiety also reduces the lipophilicity, as expected from comparing a pentafluorinated with a trifluorinated compound (Figure 11). Very large log*P* reductions are achieved by replacing an internal CF₂ group of a perfluoroalkyl group by a CH₂ group as shown by comparing **G18** with **G15** and **I21** with **I14**.

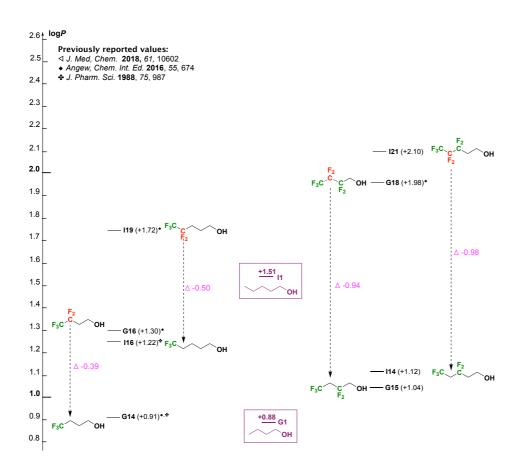
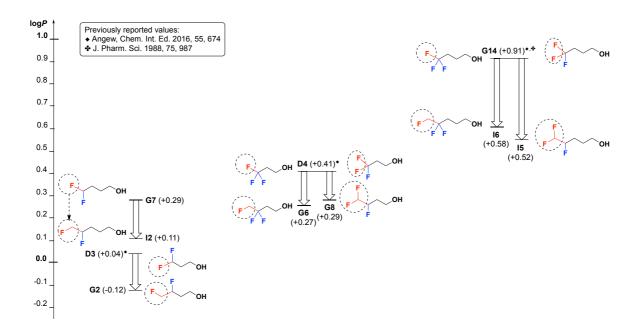



Figure 11. Geminal fluorination 'deletion' effects.

Finally, as illustrated in Figure 2 above, this type of operation with the trifluoromethyl group of a polyfluoroalkyl moiety also leads to a drastic lipophilicity reduction, and all the relevant examples are gathered in Figure S10.

Chain extension

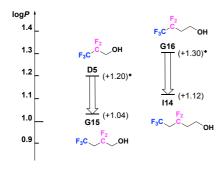

Extending the size of an aliphatic substituent is sometimes required to fill hydrophobic pockets in binding sites. However, the addition of methyl groups, or the insertion of methylene groups, usually leads to an increase in lipophilicity, which is often undesired. Hence, it is of interest to have a panel of extensions available that do not lead to such a $\log P$ increase. As mentioned in the introduction, Müller had identified that aliphatic chain extension is liponeutral when a CF_2 group is simultaneously replaced by a vicinal difluoro group,³² and our group has shown that extending a terminal polyfluorinated group by a (nonfluorinated) methyl group even leads to a $\log P$ reduction (summarized in Figure S11).³¹

Figure 12. Chain extensions with motif rearrangements that result in log*P* reduction.

Our data (Figure 12) show that chain extension with simultaneous modification of a CF₂H group into a CHF-CH₂F group leads to a small logP reduction (cf. **G7** \rightarrow **I2** and **D3** \rightarrow **G2**, Figure 12). In addition, our data also show that chain extension of a trifluoromethylated compound is also possible with concomitant logP reduction using similar operations. Changing a C–F with a fluoromethyl group reduces the logP: the logP of 3,3,3-trifluoropropanol **D4** is higher than that of 3,3,4-trifluorobutanol **G6** (\triangle 0.14 units) and that of 4,4,4-trifluorobutanol **G14** is higher than that of 4,4,5-trifluoropentanol **I6** (\triangle 0.33 units). In addition, carrying two fluorine atoms forward with the extra methyl group also leads to a lipophilicity reduction: compare the logP's of **D4** and **G14** with those of **G8** and **I5** respectively. The latter has a logP reduction of 0.39 logP units.

We also observed that chain extension of a vicinal pentafluoroethyl group by insertion of a methylene group leads to a lipophilicity reduction (Figure 13).

Figure 13. Chain extension of pentafluoroethyl motifs resulting in log*P* reduction.

Even more interesting is how extension of nonfluorinated chains can be achieved without log P increase by exploiting fluorination. The scope is huge: from the summary table (Figure 3), it is easily seen that 1-butanol **G1** (log P + 0.88) has a higher lipophilicity than many fluorinated 1-

pentanol derivatives (namely **I2–I11**). Equally, 1-propanol **D1** ($\log P + 0.30$) has a higher lipophilicity than many fluorinated 1-butanols (**G2–G8**). Remarkably, given that the $\log P$ of 1-pentanol **I1** (+1.51) is so much larger than that of 1-propanol **D1** (+0.30), chain extension of the latter by two carbon atoms having terminal vicinal difluorosubstitution, as in 4,5-difluoropentanol **I2** ($\log P + 0.11$), still leads to a lipophilicity reduction.

Further analysis of logP trends is given in the SI (Section 2.1)

Finally, lipophilicity trends for a vicinal trifluorinated motif were further investigated by incorporation in the evenamide analogue **K1** (Table 3). Because of the presence of the ammonium group, $\log D$ values were measured at pH 7.4, this time using AstraZeneca's routine shake-flask method involving UV-detection for concentration determination. The change in $pK_{a(H)}$ of the amine due to the fluorination of the remote alkoxy group is expected to be very minimal and this factor was thus assumed to have a negligible influence on the $\log D_{7.4}$ of the evenamide analogues.

Table 3. Analysis of fluorinated motifs when incorporated in evenamide H1 and analogue K1.

Structure	$\log\!D_{7.4}{}^{\mathrm{a}}$	Solubility ^b (µM)	PPB ^c (%free)	Hu Mics CLint ^d	Rat Heps Clint ^e	hERG ^f (μM)
N H CI O KI	+2.3 ³¹	779	23	29	91	1.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+1.6	870	47	<3	34	15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+1.7 ³¹	1000	49	7	38	7.6
O H CI O CF ₃	+2.3	>1000	28	10	105	9.6

^alogD_{7.4} determined by shake flask method; ^bSolubility of compounds in aqueous phosphate buffer at pH 7.4 after 24 h at 25 °C; ^cDetermined from DMSO stock solution by equilibrium dialysis in 10% human plasma supplied by Quintiles; ^dRate of metabolism (μL/min/mg) determined from DMSO stock solution in human microsomes; ^eRate of metabolism (μL/min/10⁶ cells) determined from DMSO stock solution in isolated rat hepatocytes diluted to 1x10⁶ cells/mL; ^fInhibition of the hERG tail current was measured using a plate-based planar patch clamp system (IonWorksTM).

The $\log D$ value of the nonfluorinated evenamide analogue **K1** is +2.3.³¹ Introduction of the vicinal trifluorination motif to obtain **K2** led to a significant $\log D$ decrease (0.6 $\log D$ units), in line with the $\log P$ difference between **I1** and **I6** (Δ 0.93 units, Figure 5). Motif extension going from **K3** to **K2** leads to a reduction in $\log D$ (Δ 0.1 unit), which is similar to the difference observed for the corresponding alkanols **I8** and **I6** (0.13 $\log P$ units, Figure 7). Motif rearrangement from **K4** to **K2** reduces the $\log D$ by 0.6 units, in line with a similar reduction in $\log P$ between the corresponding alkanols **I16** and **I6** (Δ 0.64 units, Figure 9). Finally, chain extension with concomitant motif rearrangement (**H5** to **K2**) leads to a 0.3 $\log D$ unit reduction, again very similar to the 0.31 $\log P$ unit reduction between the corresponding alkanols **G14** and **I6**, Figure 12), and in contrast to a 0.5 $\log D$ unit increase when simply extending the butyl chain in **H1** to a pentyl chain in **K1**. Hence, the $\log P$ trends that were obtained upon introducing these fluorinated motifs in the butanol and pentanol models are fully replicated in the $\log D_{7.4}$

trends of a pharmaceutically relevant drug candidate when they are introduced as part of an aromatic butoxy/pentoxy chain.

The introduction of the fluorine atoms lead to an increase in aqueous solubility. Human plasma protein binding clearly correlates with the lipophilicity (cf. K1/K4 and K2/K3/H1/H5). Metabolic stability studies (human microsomes and rat hepatocytes) generally showed an increased stability of the fluorinated derivatives towards oxidative degradation, with only one exception, K4, which showed similarly high metabolism with rat hepatocytes compared with K1. With respect to inhibition of the hERG receptor, all of the fluorinated analogues showed lower IC₅₀'s than the corresponding compounds with the same chain length (cf. K2/K3/K4 with K1 and H5 with H1).

Lipophilicity prediction

Müller's two-parameter model involving dipole moment and hydrophobic volume considerations is a useful means for rapid $\log P$ predictions.^{32,37} The difference in the number of fluorine atoms m has a 'volume' contribution of $+0.3 \cdot m$, and a dipole difference has a polarity contribution expressed in 'units' of $\cdot \mu_{C-F}$. For example, the $\sim 0.4 \log P$ difference between **G2** and **G6** is in accordance with this model, given the negligible dipole contribution (the averaged calculated dipole moments for **G2** and **G6** are very similar, cf. Table 1), and **G2** contains one less fluorine atom. Compound **G6** is about 0.25 D more polar than **G8**, with an equal number of fluorines, hence the model predicts the $\log P$ value to be lower for **G6** by about 0.1 $\log P$ units $(0.25 \text{ D} \sim 0.1 \cdot \mu_{C-F})$.

However, DFT calculations taking into account 3D conformational preferences in water and in octanol clearly show an often significant difference between the averaged dipole moments of a given compound in octanol and in water, reflecting its different conformational profiles

between these solvents. In addition, a more accurate description of compound solubility in a given phase, that does not rely on prior experimental data, is given by the relative free energy in solution.

While there are a plethora of methods available for log*P* prediction, typically based on 2D substructure and property-based methods,^{51,52} there is excellent precedent for lipophilicity prediction using quantum chemical calculations,^{53,54} including for nonfluorinated⁵⁵ and fluorinated⁵⁶ alkanols. The description of octanol as a continuum solvent is challenging to model. This is not only because of the significant amount of water dissolved in this solvent (the water solubility in octanol is 48.91 mg g⁻¹ at 25 °C,⁵⁶ which is 26 mol%!), but also because of octanol self-association phenomena in the liquid state which leads to a non-uniform dispersion of the water in octanol.^{52,58} Nevertheless, the SMD model was reported to give the best correlations (as opposed to the C-PCM and IEF-PCM implicit models) for a series of nonfluorinated aliphatic alcohols within a benchmark of 6 different DFT funtionals.⁵⁵ Recently, Ho and coworkers found that implicit solvent models outperformed explicit solvent models in the log*P* prediction of a set of fluorinated alcohols, with the SMD model also giving the best result.⁵⁶ However, to their surprise, fragment-based prediction methods were found to give mean and maximum absolute errors about two times smaller compared to the implicit solvent models.⁵⁶

The DFT conformational analysis of the compounds above, carried out in water and *n*-octanol, was performed using the SMD model, but with the MN15 functional, which to the best of our knowledge has yet to be employed for log*P* calculations. However, we have found that this functional best describes molecular interactions involving fluorohydrins, and hence octanol/water partition coefficients were estimated from the SMD/MN15/aug-cc-pVTZ//MN15/cc-pVTZ Gibbs energies, used here for the conformational analysis in both water and *n*-octanol medium at 298 K. These calculated log*P*_{theor} values are given in Table S4,

and a correlation with the experimental values is given in Figure 14a. While the absolute values and variation range are far from the experimental values (a slope of 2.098 is obtained), an excellent correlation between experimental and theoretical trends is observed ($r^2 = 0.957$). Indeed, the experimentally found decreases in lipophilicity upon vic-diffuorination (G2/I2), upon going from the pentafluorinated (G16/I19) to the tetrafluorinated motifs (G11/I13), and upon going from the nonafluorinated I22 to the terminal methylated hexafluorinated I18, are in agreement with the calculated $log P_{theor}$ values. The very similar values between the internally polyfluorinated G13/I18 and their nonfluorinated parents that were determined experimentally are also reproduced theoretically, even though the calculations slightly overestimate the lipophilicities of G13 and I18. However, with the C-terminal trifluorination of I9, leading experimentally to a slight increase of lipophilicity in I10, the calculations show a logP decrease. Hence, despite the absolute values and variation range being still far from the experimental values, the evolution of lipophilic properties are appropriately reproduced, with any inherent errors due to the inadequate description of the solvation models (e.g. "pure" solvents rather than wet octanol and water with small amounts of octanol) only introducing a proportional, as opposed to a random error.

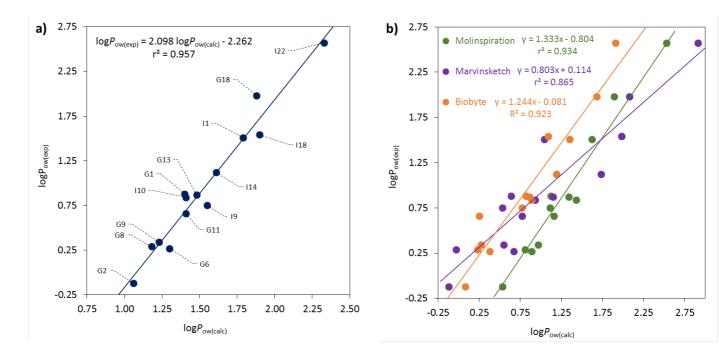


Figure 14. a) Correlation between the $\log P_{\text{theor}}$ values, calculated after obtaining the (weighted) solvation energies in octanol and water, with the experimental $\log P$ data for a subset of fluorohydrins. b) Correlation between the $\operatorname{Clog} P$ values obtained with three web-based calculators, with the experimental $\log P$ values for the same fluorohydrin subset.

As a comparison with the free energy of solvation log*P* calculation method, the graph in Figure 14b shows correlations with Clog*P* values, obtained by three web-based programs for the same compound subset. The Molinspiration method gives the best correlation (RMSE 0.934), closely followed by Biobyte.

In addition, the calculated lipophilicity (Clog*P*) values for all compounds as listed in Figure 3 were obtained from a number of calculation programmes (Tables S1-S3). While there were usually large differences with the experimental values for individual compounds, some of the calculation programmes gave correlations with RMSE of >0.9.

Chemistry.

The synthesis of the targets with fluorination at a single carbon atom is given in Scheme 1. The diastereomers **J7** and **J8** were obtained as an inseparable mixture from electrophilic fluorination of 2-pentanone, followed by reduction. The electrophilic fluorination also led to ca. 10% of primary fluoride and trace amounts of *gem*-difluorinated byproducts. Fluorine introduction for targets **G5** and **19** (Scheme 1b,c) was achieved by NfF-mediated deoxyfluorination^{59,60} of precursors **2**⁶¹ and **5**, the latter obtained by reduction of ketone **4**.⁶² Deoxyfluorination of **5** was accompanied by elimination leading to alkene side products (in a 1:0.4 ratio), which were conveniently removed by treatment of the mixture with *m*CPBA. Finally, protecting group removal through benzoate transesterification and benzyl ether hydrogenolysis afforded the desired products **G5** and **19**. The final monofluorinated target **J2** (Scheme 1d) was obtained by DAST-mediated deoxyfluorination of **8**, which was obtained by silyl ether cleavage of **7**,⁶³ and acetate methanolysis.

The geminal difluorinated targets were mostly synthesized by DAST mediated deoxofluorination. Aldehyde **9** was obtained by DMP oxidation of **8** (Scheme 1d), and subjected to DAST followed by acetate methanolysis to give **J5**. Similarly, the difluorinated **12**, **13**, and **15** (Scheme 1e-g) were obtained from aldehyde **10**⁶⁴ and ketones **4**⁶² and **14**.⁶⁵ Deprotection of **11**⁶⁶ – **13** and **15** led to targets **G7**, **17**, **112**, and **J10**. Some elimination product (6%, 3,4-isomer, not shown) was observed with the deoxofluorination of **14**, which could only be separated after the deprotection step. Finally, the synthesis of both **G12** and **I17** (Scheme 1h) was achieved *via* electrophilic fluorination of the aldehydes **16** and **18** with NFSI. Due to the volatility of the compounds involved, the literature procedure⁶⁷ was adapted in that no change of solvent to CH₂Cl₂/EtOH was performed, and instead the mixture was diluted with Et₂O during the extraction procedure and, after drying with MgSO₄, NaBH₄ was added to effect the reduction step directly.

Scheme 1. Synthesis of model compounds with fluorination at a single carbon.

The synthesis of targets with fluorination at vicinal positions is given in Scheme 2. The electrophilic fluorination of the benzyloxyalkanals 20^{68} and 10 (Scheme 2a) under conditions developed by MacMillan *et al.*⁶⁹ and Barbas *et al.*⁷⁰ was the basis for the synthesis of most

members of this class. For both starting materials, the use of 1 equiv. of NFSI led mainly to monofluorinated alcohols 23 and 27 following aqueous work up, change of solvent to CH₂Cl₂/EtOH, and aldehyde reduction. In our hands, the use of a substoichiometric amount of L-proline gave mainly the difluorinated products, exclusively so if 2.2 equiv. of NFSI was used, in which case 24 was isolated in 40% yield (not shown). Following a method used by the Carreira/Müller group,²² the vicinal difluorinated targets G2 and I2 (Scheme 2b) were obtained by NfF mediated deoxyfluorination of 23 and 27, followed by alcohol deprotection. Interestingly, when the benzoate deprotection was carried out at room temperature, a low yield of G2 was obtained. While this could be due to the volatility of G2, cyclization to a tetrahydrofuran byproduct was also possible. Müller has reported that *N*-(4-fluorobutyl) piperidines are prone to cyclization,²² and our group has experienced that distillation of 4-fluoropentan-1-ol led to partial (20%) cyclization.³⁸ Hence, for 30 the reaction was carried out at 0 °C to give 12 in 83% yield.

Scheme 2. Synthesis of model compounds with fluorination at vicinal carbon atoms.

It should be noted that novel, catalytic, vicinal difluorination methodology to access vicinal alkenes has become available,^{71,72} including enantioselective variants.^{73,74} However, when the Gilmour conditions⁷¹ were attempted (Scheme 3), only a trace amount of fluorinated products were observed, with **40** isolated as the major product in a yield of 46%. While the outcome of this reaction was unexpected, reaction of **39** with (dibenzoyloxyiodo)benzene and palladium (II) diacetate was reported to lead to the same outcome.⁷⁵

Scheme 3. Attempted direct vicinal difluorination to G2.

The synthesis of the trifluorination motif as in targets **G6** and **I6** (Scheme 2c) was achieved by deoxyfluorination of a β,β-difluorinated primary alcohol,^{76,77} but other methodology is available.⁷⁸ Starting from **24**, the introduction of the primary fluorine atom using NfF deoxyfluorination at room temperature only led to **31** in 10% yield, with 70% of the crystalline nonaflate **41** (Scheme 4). This reflects the deactivating influence of the adjacent CF₂ group on an S_N2 reaction.⁷⁹⁻⁸¹ However, reaction of the nonaflate with Et₃N•3HF at elevated temperature gave **31** in excellent yield. Hence, submitting **24** (and **28**) to NfF with Et₃N•3HF at the same temperature (Scheme 2c) gave the desired **31** (and **32**) directly in 68% (and 78%) yields. In comparison, reaction of **24** with DAST at room temperature did lead to **31** in 60% yield, but required a 5 day reaction time, and a reduced yield of 56% when conducted at 40 °C over 16h (not shown). Targets **G6** and **I6** were then obtained following benzoate methanolysis (at rt).

Scheme 4. Deactivation of a CF₂ group for deoxyfluorination. Crystal structure of **41** shown.

Precedent for the incorporation of the other vicinal trifluorinated motif RCHFCHF₂ into organic substrates usually employs trifluoroethylene as a fluorinated building block.^{82,83} Here, its synthesis was achieved via DMP-mediated oxidation of 23/27 (Scheme 2d) to the fluoroaldehydes 21/25, followed by immediate treatment with DAST to give 33/34 in moderate yields. Deprotection then resulted in the isolation of G8 and I5.

The vicinal tetrafluorinated motif was synthesized from the commercially available **35** (Scheme 2f), and **G11** was directly obtained by a radical reduction procedure. Synthetic methodology towards vicinal tetrafluorinated compounds has recently been reviewed, ¹⁰ and new methodology for the synthesis of CF₂CF₂H motifs has recently been published. ⁸³

The other tetrafluorinated target I15 (Scheme 2g) was synthesized from known⁸⁴ aldehyde 36. Trifluoromethyl addition using the Ruppert-Prakash reagent⁸⁵ led to 37, and the resulting alcohol was then fluorinated under heating, to give 38. This led to significant elimination (ratio $S_N2/E2$ 1.2:1), and elimination products were removed by ozonolysis. Alcohol deprotection then gave I15.

Finally, the synthesis of targets with a skipped fluorination motif is shown in Scheme 5. Trityl protection of commercially available **42** was performed before subjecting the product to silver-mediated oxidative fluorotrifluoromethylation developed by Qing et al.⁸⁶ Acidic cleavage of the trityl group yielded the tetrafluorinated alcohol **I10**. For the skipped pentafluorinated motif, the ketone **45**⁸⁷ was subjected to deoxyfluorination with DAST providing the desired **46**, together with the fluoroalkene elimination side product **47**, as an inseparable mixture. Hydrogenolysis of the benzyl ethers with concomitant hydrogenation of the alkene **47** was performed in Et₂O to give **G15** and **G10** as a mixture in a 5.5:1 ratio, which again proved

G10 were baseline-separated, their lipophilicity could be determined from the mixture. Hence, the synthesis of pure G10 using Qing's methodology⁸⁶ was not carried out. For the synthesis of the skipped pentafluorinated target I14, aldehyde 48 was subjected to Carreira's homologation chemistry with trifluoromethyl diazomethane, which was generated in situ from trifluoroethylamine hydrochloride.⁸⁷ This provided 49 in a low yield (in contrast to the synthesis of 45, for which the same methodology was used), but sufficient quantities were obtained for our purposes. Deoxofluorination with DAST proceeded slowly to give 50, which was then deprotected to yield I14 in reasonable yield.

Scheme 5. Synthesis of model compounds with skipped fluorination motifs.

Evenamide analogues **K2**, **K4**, **and H5** were synthesized from known **52** (Scheme 6),³¹ by aryl ether formation with tosylates **51a–c**, prepared from their corresponding alcohols, followed by Boc hydrolysis.

Scheme 6. Synthesis of evenamide analogues.

Conclusions

Monofluorination of aliphatic chains leads to a large reduction in lipophilicity, which becomes less pronounced the closer the fluorine is positioned to the alcohol group. The same observation is made for geminal difluorination, with the latter always being more lipophilic compared to its monofluorinated congeners, but for the examples investigated, still less lipophilic than the nonfluorinated parent alkanols.

When fluorination is considered at two vicinal carbon atoms, the log*P* increases with increasing number of fluorines, but only the fully fluorinated pentafluoroethyl containing compounds have a larger log*P* than the parent nonfluorinated compound. The internal arrangement of the fluorines across the two carbons of the motif affects the log*P* value to some degree. Skipped fluorination motifs involving a CF₃ group, in which a CH₂- group separates the fluorinated carbons, were also investigated. Here, even the pentafluorinated motif in the pentanol series leads to a large lipophilicity reduction. This is not the case in the BuOH series, due to the proximity of the motif to the alcohol functional group, illustrating the importance of considering motif positions close to electronegative functional groups.

Whereas 'adding' fluorines to an already fluorinated carbon typically increases the log P, this is not always the case when more fluorines are added in the vicinal or skipped positions, which we coin 'motif extension'. The change in lipophilicity strongly depends on the fluorination level of the original motif. For all the examples investigated, extending a motif with a C-F

bond in the vicinal position causes a negligible (CF₃ motif), small (CF₂ motif), or large (CF motif) log*P* decrease (which in itself is smaller than the decrease in log*P* caused by monofluorination at the same positions in the parent alcohol). Extending a motif with a *gem*-difluoro motif results in a very large (CF₃ motif), large (CF₂ motif), or negligible/small increase (CF motif) (this compares to a decrease in log*P* when starting from the parent alcohol). However, extending a CF₃ motif with skipped C–F or CF₂ fluorination leads to a decrease in log*P*. A 'motif reorganization' refers to a motif extension without an increase in fluorine atoms. In all cases, converting a geminal to a vicinal motif leads to a significant lipophilicity reduction. Reducing the fluorine count of a motif ('fluorine deletions') decreases log*P*. In the examples investigated, single fluorine deletion from a perfluoroalkylated motif (CF₃, C₂F₅, C₃F₇, C₄F₉), and double internal deletion from a CF₃CF₂CF₂ to CF₃CH₂CF₂ motif, leads to large or very large log*P* reductions.

Finally, fluorination can be exploited to achieve chain extensions without concomitant lipophilicity increase. Starting from a non-fluorinated alkyl chain, introduction of many possible aliphatic F-motifs (with up to 4 fluorines) allows for one-carbon extension without log increase, and vicinal difluoro motif introduction even allows a two-carbon extension without log increase. Starting from an existing polyfluorinated motif, chain extension with concomitant conversion of a geminal polyfluorinated motif to a vicinal motif, or of a vicinal perfluorinated to a skipped motif, also leads to lipophilicity reduction.

3D Conformational analysis (SMD-MN15) showed that the conformational profile of the -CHFCH₂F and -CF₂CH₂F motifs are very similar between the octanol and water phases, while the -CHFCF₂H and -CF₂CF₂H motifs have 'chameleon'-like character, as their conformational distribution is very much dependent on the medium. This leads to a larger averaged dipole moment differences between the phases. Interestingly, the skipped -CHFCH₂CF₃ motif appears

very rigid, with ca. 95% of the population in the linear conformation, in both octanol and water phases.

It is shown that available web-based ClogP programs based on 2D structures perform well in predicting the effects of fluorine introduction on lipophilicity across a range of motifs, over almost three orders of magnitude in partition coefficient. However, DFT based prediction produced a tighter correlation albeit on a smaller subset. The reliance of this method on 3D conformational analysis and relative energies of solvation will benefit accuracy, although the approximation introduced by the necessary use of a continuum solvent model, especially for water-saturated octanol, will be a limiting factor.

This extensive dataset of aliphatic fluorination motifs enables a full overview of how their introduction affects lipophilicity, and we hope will facilitate lipophilicity optimization efforts in drug discovery programs. The opportunities for lipophilicity modulation by aliphatic fluorination motifs will stimulate further research in this area.⁸⁸

Experimental Section.

General Methods. All chemical reagents were obtained from commercial sources and used without further purification. Anhydrous solvents were purchased from commercial sources. All glassware was flame-dried under vacuum and cooled under Ar prior to use. Water or air sensitive reactions were performed under inert atmosphere, using dry solvents. Reactions were monitored by TLC (Merck Kieselgel 60 F₂₅₄, aluminium sheet) and spots were visualized by UV and/or by exposure to a basic solution of KMnO₄, followed by brief heating. Flash column chromatography was performed on silica gel (Merck silica gel 60, particle size 40–63 μm). All reported solvent mixtures are volume measures. Nuclear magnetic resonance spectra were recorded using either a Bruker Ultrashield 400 MHz or 500 MHz spectrometer. The chemical

shift (δ) is given in ppm using the residual solvent peak as an internal standard. The coupling constants (*J*) are given in Hertz (Hz). IR spectra were recorded on a Thermo ScientificTM Nicolet iS5 as films and absorption peaks are given in cm⁻¹. Low resolution electrospray mass spectra were recorded with a Waters Acquity TQD mass tandem quadrupole mass spectrometer. HRMS spectra were measured on a Bruker Daltonics MaXis time of flight (TOF) mass spectrometer or, for volatile compounds, a Thermo MAT900 XP double focusing sector mass spectrometer. All compounds subjected to biological assays were of >95% purity (liquid chromatography–UV).

Determination of logP

Lipophilicities of the fluorinated alkanols were determined using a previously published protocol:³⁸ to a 10 mL pear-shaped flask was added the compound (1.0 - 10 mg) for logP determination, the reference compound (1.0 - 10 mg, with known log P value, e.g., 2,2,2trifluoroethanol, logP: +0.36), water (2 mL) and n-octanol (2 mL). The resulting biphasic mixture was stirred (at 600 rpm) for 2 h at 25 °C, and then left without stirring for 16 h at 25 °C to allow phase separation. An aliquot of 0.5 mL was taken from each phase using 1 mL syringes with long needles and added to two separate NMR tubes. A deuterated NMR solvent (0.1 mL, e.g., acetone-d₆), or a capillary tube containing deuterated NMR solvent, was added to the NMR tubes to enable signal locking. Because of the volatility of the used compounds, the NMR tubes were sealed using a blowtorch. For NMR samples with directly added deuterated solvent, the tubes were inverted 20 times for mixing. For ¹⁹F{¹H} NMR experiments, NMR parameters were set as follows: D1 30 sec for the octanol sample, D1 60 sec for the water sample; and O1P centered between two diagnostic fluorine peaks. If needed, an increased number of transients (NS) and/or narrower spectral window (SW) for a good S/N ratio (typically >300) was applied. After NMR data processing, integration ratios ρ_{oct} and ρ_{aq} (ρ_{oct}) is defined as the integration ratio between the compound and the reference compound in the octanol sample; likewise for ρ_{aq}) were obtained, and used in the equation ($\log P^{X} = \log P^{ref} + \log[\rho_{oct}/\rho_{aq}]$) to obtain the $\log P$ value of the compound. The $\log P$ measurement of each compound was run in triplicate. $\log P$ values of non-fluorinated compounds were taken from the literature.

Calculations

The calculations were carried out with the Gaussian16 program. ⁸⁹ The conformational analysis of the various compounds investigated was performed with the MN15 functional ^{90,91} in combination with the triple-zeta quality aug-cc-pVTZ basis set. Scans along the various rotatable bonds: C-C, C-O, and O-H bonds of the compounds have systematically been conducted. The solvent effects (octanol and water) were taken into account using the SMD solvation continuum model. ⁹² The vibrational spectrum of each optimized conformer was computed to confirm its nature of true minimum and to obtain the correction to the free energies. Single point calculations at the SMD/MN15/aug-cc-pVTZ were finally carried out to obtain refined electronic energy values. The relative populations, p_i , of the various conformers were evaluated at 298K from the computed free energies through a Boltzmann distribution (Eq. (1)).

$$p_i = \frac{e^{-\Delta G_i/RT}}{\sum_{i=1}^n e^{-\Delta G_i/RT}} \tag{1}$$

The theoretical molecular dipole moments were then computed for each conformer, and were weighted according to these populations (either for the compound as a whole or within a conformer series as in Tables 1,2). The fluorohydrin lipophilicity was then estimated from the above results through the calculations of the weighted SMD Gibbs energies obtained in water and in *n*-octanol at 298.15 K to obtain the standard free energy associated with the transfer between these two solvents. The octanol/water partition coefficient was then calculated

according to Eq(2), and following the procedure proposed by Ribeiro for chloroform/water partition coefficient calculations:⁹³

$$\log P = -\frac{\Delta G_{o/w}^{\circ}}{2.303RT} = -\frac{G_o^{\circ} - G_w^{\circ}}{2.303RT}$$
 (2)

Synthesis

Compounds 1, 16, 18, 35, 42, 48, G17, I20, and J13 were commercially available, and the syntheses of 2,⁶¹ 4,⁶² 7,^{63, 94} 10,⁶⁴ 11,²² 14,⁹⁵ 20,⁶⁸ 36,⁸⁴ 39,⁹⁶ 45,⁸⁷ J9 and J11⁹⁷ were achieved according to published procedures.

General procedure A for tosylate formation

To a solution of alcohol (1.0 equiv) in CH₂Cl₂ (3.2 mL/mmol alcohol) was added Et₃N (1.1 equiv), DMAP (0.1 equiv) and tosyl chloride (1.1 equiv) at rt under inert atmosphere. After 1 h stirring, the reaction was quenched with 2M aq. HCl (3.2 mL/mmol) and the layers were separated. The organic layer was washed with aq. sat. NaHCO₃ (3.2 mL/mmol), dried over Na₂SO₄, concentrated, and purified via column chromatography (SiO₂, 10/90 -> 20/80 acetone/hexane) to afford the desired tosylate **51**.

General Procedure B for Aryl Ether Formation via the Tosylate

To a solution of **52** (1.0 or 1.1 equiv) and the tosylate **51** (1 equiv) in DMF was added Cs₂CO₃ (2 equiv) at rt under inert atmosphere. After 16 h, the solvent was removed *in vacuo*. The residue was dissolved in water (30% v/v of DMF volume) and extracted with EtOAc. The combined organic layers were dried over Na₂SO₄, concentrated, and the resulting oil was purified by column chromatography (1:1, EtOAc/heptane) to afford the ether **53**, which was used directly in the next step.

General Procedure C for Boc-Deprotection

To the Boc-protected amine **53** was added 4 M HCl in dioxane (0.5 mL) at rt under inert atmosphere. The reaction was concentrated after complete consumption of starting material as confirmed by mass-spec analysis (roughly 4 h). The residue is then dissolved in CH₂Cl₂ (5 mL) and concentrated 3 times. The salt was then stirred in Et₂O (10 mL), filtered, further rinsed with Et₂O (10 mL) and dried to afford the evenamide analogues **K2**, **K4**, **H5** as the pure HCl salt.

2-Fluorobutyl benzoate (3): To a solution of 2^{61} (1.60 g, 1 equiv) in MeCN (25 mL) was added Et₃N (6.89 mL, 6 equiv), Et₃N•3HF (2.68 mL, 2 equiv) and nonafluorobutane-1-sulphonyl fluoride (2.96 mL, 2 equiv). After 16 h, the mixture was quenched with sat. aq. NaHCO₃ (70 mL) and diluted with CH₂Cl₂ (100 mL). The organic phase was collected and washed with 2M HCl (70 mL), sat. aq. NaHCO₃ (70 mL) and brine. The organic layer was dried over MgSO₄ and concentrated. The resulting crude was purified by column chromatography (5:95 acetone/hexane) to yield **3** as a colorless oil (1.06 g, 66%). ¹H NMR (400 MHz, CDCl₃) δ 8.09 (dd, J = 8.1, 1.0 Hz, 2H, H_{Ar}), 7.63–7.55 (m, 1H, H_{Ar}), 7.46 (t, J = 7.6 Hz, 2H, H_{Ar}), 4.86–4.65 (m, 1H, H2), 4.57–4.33 (m, 2H, H1), 1.91–1.65 (m, 2H, H3), 1.07 (t, J = 7.5 Hz, 3H, H4) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.3 (C = O), 133.2 (C_{Ar}), 129.8 (C_{Ar}), 129.7 (C_{Ar}×2), 128.4 (C_{Ar}×2), 92.5 (d, J = 172.4 Hz, C2), 65.9 (d, J = 22.7 Hz, C1), 24.7 (d, J = 21.3 Hz, C3), 9.2 (d, J = 5.9 Hz, C4) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -188.1 (dtdd, J = 48.6, 27.0, 22.5, 17.3 Hz, 1F) ppm; ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -188.1 (dtdd, J = 48.6, 27.0, 22.5, 17.3 Hz, 1F) ppm; ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -188.1 (s, 1F) ppm; IR (neat) 2972 (w), 2883 (w), 1719 (s), 1451 (m), 1267 (s), 707 (s) cm⁻¹; HRMS (CI) for C₁₁H₁₃FO₂ [M+H]⁺, calculated 197.09723, found 197.09604.

1-(Benzyloxy)pentan-3-ol (5): To a solution of **4**⁶² (2.33 g, 1 equiv) in MeOH (40 mL), NaBH₄ (0.92 g, 2 equiv) was added portionwise at 0 °C. The reaction mixture was allowed to warm to room temperature and after 30 min, the reaction mixture was quenched with water (30 mL) at 0 °C. The aqueous phase was extracted with EtOAc (3×30 mL) and the combined organic

phases were dried over Na₂SO₄ and concentrated to afford **5** as a colorless oil (2.16 g, 92%). ¹H NMR (400 MHz, CDCl₃) δ 7.42–7.28 (m, 5H, H_{Ar}), 4.54 (s, 2H, PhC<u>H</u>₂), 3.81–3.62 (m, 3H, H1 + H3), 2.85 (s, 1H, OH), 1.82–1.68 (m, 2H, H2), 1.56–1.43 (m, 2H, H4), 0.95 (t, J = 7.5 Hz, 3H, H5) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 137.9 (C_{Ar}), 128.4 (C_{Ar}×2), 127.7 (C_{Ar}), 127.6 (C_{Ar}×2), 73.3 (Ph<u>C</u>H₂), 72.8 (C3), 69.3 (C1), 35.9 (C2), 30.2 (C4), 9.9 (C5) ppm. Data consistent with literature. ⁹⁸

1-Benzyloxy-3-fluoropentane (6): To a solution of **5** (2.08 g, 1 equiv) in MeCN (32 mL) was added Et₃N (8.99 mL, 6 equiv), Et₃N•3HF (3.50 mL, 2 equiv) and nonafluorobutane-1sulphonyl fluoride (3.20 mL, 2 equiv). After 16 h, the reaction was quenched with sat. aq. NaHCO₃ until pH 7 and the aqueous layer was extracted with CH₂Cl₂ (3×30 mL). The combined organic layers were washed with brine, dried over MgSO₄ and concentrated. The resulting crude was purified by column chromatography (1:19 acetone/petroleum ether 40–60 °C) to yield a mixture of 6 and elimination byproducts (1.31 g, 1:0.4 respectively). This mixture was dissolved in CH₂Cl₂ (25 mL), followed by portionwise addition of mCPBA (0.97 g, 2 equiv) at 0 °C. After 16 h, the reaction was quenched with sat. aq. NaHCO₃ (20 mL) and the aqueous layer was extracted with CH₂Cl₂ (3×30 mL). The combined organic layers were washed with brine, dried over MgSO₄ and concentrated. The resulting crude was purified by column chromatography (1:19 Et₂O/petroleum ether 40-60 °C) to yield 6 as a colorless oil (0.75 g, 36%). ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.28 (m, 5H, H_{Ar}), 4.73–4.54 (m, a doublet with 49.5 Hz can be observed, 1H, H3), 4.55 (d, J = 11.9 Hz, 1H, PhCHH'), 4.51 (d, J = 11.9Hz, 1H, PhCHH'), 3.68-3.57 (m, 2H, H1), 1.96-1.78 (m, 2H, H2), 1.72-1.59 (m, 2H, H4), 0.99 (t, J = 7.5 Hz, 3H, H5) ppm; ${}^{13}C\{{}^{1}H\}$ NMR (101 MHz, CDCl₃) δ 138.4 (C_{Ar}), 128.4 $(C_{Ar}\times 2)$, 127.6 $(C_{Ar}\times 2)$, 127.6 (C_{Ar}) , 92.7 (d, J = 167.3 Hz, C3), 73.1 $(Ph\underline{C}H_2)$, 66.3 (d, J = 4.4)Hz, C1), 35.1 (d, J = 21.3 Hz, C2), 28.3 (d, J = 20.5 Hz, C4), 9.3 (d, J = 5.9 Hz, C5) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -184.4– -184.0 (m, 1F) ppm; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -184.1 (s, 1F) ppm; IR (neat) 3065 (w), 2967 (m), 2879 (m), 1363 (m), 1097 (s), 930 (s) cm⁻¹; HRMS (ESI+) for C₁₂H₁₇FNaO [M+Na]⁺, calculated 219.1156, found 219.1156.

5-Hydroxypent-2-yl acetate (8): To a stirred solution of $7^{94,63}$ (16.80 g, 1 equiv) in THF (100 mL), was added TBAF (1M in THF, 92 mL, 1.1 equiv) dropwise at 0 °C over 30 min. The reaction was stirred at 0 °C for 30 min, before allowing to warm to room temperature. After 2 h, the reaction mixture was quenched by the dropwise addition of sat. aq. NH₄Cl (150 mL) at 0 °C. After 30 min of vigorous stirring, the aqueous phase was extracted with EtOAc (3×300 mL) and the combined organic layers were dried over MgSO₄. The crude oil was purified with column chromatography (1:9 acetone/petroleum ether 40–60 °C) to afford **8** as a slightly orange oil (7.80 g, 69%). ¹H NMR (400 MHz, CDCl₃) δ 4.90–4.87 (m, 1H, H2), 3.67 (t, J = 6.0 Hz, 2H, H5), 2.04 (s, 3H, CH₃, Ac), 1.71–1.50 (m, 4H, H3 + H4), 1.42 (br. s, 1H, OH), 1.23 (d, J = 6.4 Hz, 3H, H1) ppm; 13 C{ 1 H} NMR (101 MHz, CDCl₃) δ 170.8 (C = O), 70.7 (C2), 62.5 (C5), 32.2 (C3 or C4), 28.5 (C3 or C4), 21.3 (CH₃, Ac), 20.0 (C1) ppm. Data consistent with literature.

5-Oxopent-2-yl acetate (9): To a solution of **8** (2.02 g, 1 equiv) in CH₂Cl₂ (20 mL) was added DMP (8.40 g, 1.4 equiv) portionwise at 0 °C. The reaction mixture was allowed to warm to room temperature and after 45 min, the reaction mixture was quenched with sat. aq. Na₂S₂O₃ (20 mL). The organic layer was washed with sat. aq. NaHCO₃ (20 mL) and the aqueous layer was extracted with CH₂Cl₂ (3×30 mL). The combined organic phases were dried over MgSO₄, concentrated *in vacuo* and the crude oil was purified with column chromatography (1:3 EtOAc/pentane) to afford **9** as a colorless oil (1.89 g, 96%), which was immediately subjected to the next step (¹H NMR (400 MHz, CDCl₃) δ 9.77 (t, J = 1.3 Hz, 1H, H5), 4.93 (sxt, J = 6.3 Hz, 1H, H2), 2.50 (td, J = 7.3, 1.3 Hz, 2H, H4), 2.03 (s, 3H, CH₃, Ac), 1.95–1.84 (m, 2H, H3), 1.25 (d, J = 6.2 Hz, 3H, H1) ppm).

5,5-Difluoropentyl benzoate (12): To a solution of **10**⁶⁴ (3.27 g, 1 equiv) in CH₂Cl₂ (30 mL), DAST (4.0 mL, 1.9 equiv) was added dropwise at 0 °C. After 60 h the reaction was quenched with sat. aq. NaHCO₃ until pH 7. The aqueous phase was extracted with CH₂Cl₂ (2×150 mL), the organic phases were combined, dried over MgSO₄ and concentrated *in vacuo*. The crude product was purified by column chromatography (5:95 EtOAc/petroleum ether 40–60 °C) to afford **12** as a pale-yellow oil (3.23 g, 91%). ¹H NMR (400 MHz, CDCl₃) δ 8.07–8.03 (m, 2H, H_{Ar}), 7.58 (tt, J = 7.4, 1.3 Hz, 1H, H_{Ar}), 7.49–7.43 (m, 2H, H_{Ar}), 5.85 (tt, J = 57.6, 4.4 Hz, 1H, H5), 4.36 (t, J = 6.4 Hz, 2H, H1), 2.01–1.81 (m, 4H, H2 + H3), 1.71–1.60 (m, 2H, H4) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.9 (C = O), 133.3 (C_{Ar}), 130.6 (C_{Ar}), 129.8 (C_{Ar}×2), 128.7 (C_{Ar}×2), 117.4 (t, J = 239.3 Hz, C5), 64.7 (C1), 34.0 (t, J = 20.9 Hz, C4), 28.5 (C2), 19.2 (t, J = 5.5 Hz, C3) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.3 (dt, J = 57.2, 17.3 Hz, 2F) ppm; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -116.3 (s, 2F) ppm; IR (neat) 2959(w), 1714 (s), 1451 (m), 1269 (s), 1094 (s), 1026 (s) cm⁻¹; HRMS (ESI+) for C₁₂H₁₄F₂NaO₂ [M+Na]⁺, calculated 251.0854, found 251.0853.

1-Benzyloxy-3,3-difluoropentane (13): To a solution of **4**⁶² (2.23 g, 1 equiv) in CH₂Cl₂ (35 mL), DAST (3.07 mL, 2 equiv) was added dropwise at 0 °C. The reaction mixture was heated 40 °C and after 48 h, the reaction mixture was quenched with sat. aq. NaHCO₃ until pH 7 was reached. The aqueous phase was extracted with CH₂Cl₂ (3×100 mL) and the combined organic phases were washed with brine and dried over MgSO₄ and concentrated. The crude oil was purified by column chromatography (5:95 acetone/petroleum ether 40–60 °C) to yield **13** as a pale-yellow oil (0.91 g, 37%), as well as allowing for **4** (1.12 g, 50%) to be reclaimed. ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.28 (m, 5H, H_{Ar}), 4.53 (s, 2H, PhC<u>H</u>₂), 3.67 (t, J = 6.7 Hz, 2H, H1), 2.20 (tt, J = 16.2, 6.7 Hz, 2H, H2), 1.90 (tq, J = 16.8, 7.6 Hz, 2H, H4), 1.03 (t, J = 7.5, 3H, H5) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 138.0 (C_{Ar}), 128.4 (C_{Ar}×2), 127.7 (C_{Ar}), 127.6 (C_{Ar}×2), 124.8 (t, J = 240.3 Hz, C3), 73.2 (Ph<u>C</u>H₂), 64.3 (t, J = 5.9 Hz, C1), 36.2 (t, J =

25.7 Hz, C2), 30.0 (t, J = 25.7, C4), 6.6 (t, J = 5.5, C5) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ - 98.9 (quin, J = 16.5 Hz, 2F) ppm; ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -98.9 (s, 2F) ppm; IR (neat) 2982 (br. w), 2888 (w), 1374 (m), 1102 (s), 940 (s), 737 (s) cm⁻¹; HRMS (ESI+) for C₁₂H₁₆F₂NaO [M+Na]⁺, calculated 237.1061, found 237.1055.

3,3-Difluoropent-2-yl benzoate (15): To a solution of **14**⁹⁵ (5.0 g, 1 equiv) in CH₂Cl₂ (15 mL) was added DAST (6.4 mL, 2 equiv) dropwise at 0 °C. The reaction was heated to 40 °C and after 24 h, 10 drops of HF•py was added. The reaction was heated to 40 °C for 24 h, then cooled to 0 °C and quenched with sat. aq. NaHCO₃ until pH 7 was reached. The aqueous layer was then extracted with CH₂Cl₂ (3×75 mL), and the combined organic layers were dried over MgSO₄ and concentrated. The crude oil was purified by column chromatography (1:19 Et₂O/pentane) to afford **15** and the corresponding elimination byproduct (3-fluoropent-3-en-2-yl benzoate **53**) as a mix of inseparable products with a 94:6 ratio by ¹⁹F NMR, which was used in the next step.

Data for 15: ¹H NMR (400 MHz, CDCl₃) δ 8.13–8.02 (m, 2H, H_{Ar}), 7.67–7.56 (m, 1H, H_{Ar}), 7.52–7.44 (m, 2H, H_{Ar}), 5.48–5.23 (m, 1H, H2), 2.10–1.83 (m, 2H, H4), 1.45 (d, J = 6.6 Hz, 3H, H1), 1.07 (t, J = 7.5 Hz, 3H, H5) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 165.3 (C = O), 133.4 (C_{Ar}), 129.8 (C_{Ar}×2), 129.6 (C_{Ar}), 128.5 (C_{Ar}×2), 122.7 (dd, J = 246.5, 242.8 Hz, C3), 70.0 (dd, J = 34.5, 28.6 Hz, C2), 26.5 (t, J = 24.9 Hz, C4), 13.4 (t, J = 2.9 Hz, C1), 5.7 (dd, J = 6.6, 5.1 Hz, C5)ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -111.2 – -112.2 (m, 1F, F3'), -113.8 – 115.0 (m, 1F, F3'') ppm; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -111.8 (d, J = 250.6 Hz, 1F, F3'), -114.4 (d, J = 251.4 Hz, 1F, F3'') ppm; IR (neat) 2990 (w), 2948 (w), 1723 (s), 1265 (s), 1097 (s), 965 (s) cm⁻¹; HRMS (ESI+) for C₁₂H₁₄F₂NaO₂ [M+Na]⁺, calculated 251.0854, found 251.0853.

Selected data for byproduct 53: ¹H NMR (400 MHz, CDCl₃) δ benzoyl group not visible due to overlap with major product, 5.63 (dq, J = 17.6, 6.6 Hz, 1H, H2), 5.02 (dq, J = 36.3, 6.8 Hz,

1H, H4), 1.65 (dd, J = 7.2, 2.3 Hz, 1H, H5), 1.52 (d, J = 6.7 Hz, 1H, H1) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -126.4 (ddd, J = 36.4, 17.3, 3.5 Hz, 1F) ppm; ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -126.4 (s, 1F) ppm; HRMS (ESI+) for C₁₂H₁₃FNaO₂ [M+Na]⁺, calculated 231.0792, found 231.0791.

3-Fluoro-4-hydroxybutyl benzoate (23) and 3,3-difluoro-4-hydroxybutyl benzoate (24): A solution of NFSI (10.73 g, 1 equiv) and proline (4.02 g, 1 equiv) in THF (40 mL) and *i*-PrOH (5 mL) was stirred for 15 min before the addition of a solution of 20⁶⁸ (6.72 g, 1 equiv) in THF (5 mL). After 16 h, Et₂O (50 mL) was added and the reaction mixture was cooled to -78 °C. After 30 min at -78 °C, the reaction mixture was directly filtered through a silica plug, eluting with cold Et₂O (75 mL). The organic mixture was washed with sat. aq. NaHCO₃ (3×50 mL), brine and dried over MgSO₄ and concentrated. The resultant crude oil was dissolved in EtOH (48 mL) and CH₂Cl₂ (72 mL), followed by addition of NaBH₄ (6.62 g, 5 equiv) in one portion. After 30 min, the reaction mixture was cooled to 0 °C and quenched with sat. aq. NH₄Cl (300 mL) stirring vigorously for 30 min. The reaction mixture was then diluted with CH₂Cl₂ (250 mL) and the layers separated. The aqueous phase was extracted with CH₂Cl₂ (3×150 mL) and the combined organic phases washed with NaHCO₃ (2×150 mL), brine and dried over MgSO₄. The crude was concentrated and purified by column chromatography (3:7 acetone/petroleum ether 40–60 °C) to yield 23 as a colorless oil (4.83 g, 65%) and 24 as a pale-yellow oil (0.72 g, 9%).

Data for 23: ¹H NMR (400 MHz, CDCl₃) δ 8.09–8.00 (m, 2H, H_{Ar}), 7.65-7.56 (m, 1H, H_{Ar}), 7.53–7.43 (m, 2H, H_{Ar}), 4.85 (ddddd, J = 49.3, 8.7, 5.9, 3.9, 3.0 Hz, 1H, H3), 4.59–4.39 (m, 2H, H1), 3.94–3.68 (m, 2H, H4), 2.28–2.00 (m, 2H, H2), 1.89 (br. t, J = 7.1, 1H, OH) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.4 (C = O), 133.1 (C_{Ar}), 130.0 (C_{Ar}), 129.6 (C_{Ar}×2), 128.4 (C_{Ar}×2), 91.5 (d, J = 168.7 Hz, C3), 64.8 (d, J = 22.0 Hz, C4), 60.7 (d, J = 5.1 Hz, C1), 30.4 (d, J = 20.5 Hz, C2) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -192.7 (app. dddq, J = 49.3,

26.0, 23.4, 15.6 Hz, 1F) ppm; $^{19}F\{^{1}H\}$ NMR (376 MHz, CDCl₃) δ -192.7 (s, 1F) ppm; IR (neat) 3447 (br. w), 2965 (w), 2945 (w), 1716 (s), 1271 (s), 1111 (s), 1070 (s) cm⁻¹; HRMS (CI) for $C_{11}H_{14}FO_{3}$ [M+H]⁺, calculated 213.09215, found 213.09212.

Data for 24: ¹H NMR (400 MHz, CDCl₃) δ 8.11–8.00 (m, 2H, H_{Ar}), 7.61–7.54 (m, 1H, H_{Ar}), 7.49–7.42 (m, 2H, H_{Ar}), 4.56 (t, J = 6.5 Hz, 2H, H1), 3.86 (td, J = 12.8, 6.8 Hz, 2H, H4), 2.48 (tt, J = 16.3, 6.4 Hz, 2H, H2), 1.94 (br. t, J = 7.0 Hz, 1H, OH) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.4 (C = O), 133.2 (C_{Ar}), 129.8 (C_{Ar}), 129.6 (C_{Ar}×2), 128.5 (C_{Ar}×2), 122.2 (t, J = 242.1 Hz, C3), 64.3 (t, J = 31.9 Hz, C4), 58.7 (t, J = 5.9 Hz, C1), 32.8 (t, J = 24.6 Hz, C2) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -107.6 (tt, J = 16.13, 12.8 Hz, 2F) ppm; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -107.6 (s, 2F) ppm; IR (neat) 3444 (br. w), 2961 (w), 2938 (w), 1714 (s), 1271 (s), 1110 (m), 1069 (m) cm⁻¹; HRMS (CI) for C₁₁H₁₃F₂O₃ [M+H]⁺, calculated 231.08273, found 231.08249.

4-Fluoro-5-hydroxypentyl benzoate (27) and 4,4-difluoro-5-hydroxypentyl benzoate (28): A solution of NFSI (6.12 g, 1 equiv) and proline (2.23 g, 1 equiv) in THF (45 mL) and *i*-PrOH (5 mL) was stirred for 15 min before the addition of a solution of **10**⁶⁴ (4.00 g, 1 equiv) in THF (5 mL). After 16 h, Et₂O (50 mL) was added and the reaction mixture was cooled to -78 °C. After 30 min the reaction mixture was filtered through a silica plug, eluting with cold Et₂O (50 mL). The organic mixture was washed with sat. aq. NaHCO₃ (2×50 mL), brine and dried over MgSO₄ and concentrated. The resultant crude oil was dissolved in EtOH (40 mL) and CH₂Cl₂ (60 mL) before the addition of NaBH₄ (3.67 g, 5 equiv) in one portion. After 30 min, the reaction mixture was cooled to 0 °C and quenched with sat. aq. NH₄Cl (50 mL) stirring vigorously for 30 min. The reaction mixture was then diluted with CH₂Cl₂ (100 mL) and the layers separated. The aqueous phase was extracted with CH₂Cl₂ (3×50 mL) and the combined organic phases washed with NaHCO₃ (50 mL), brine and dried over MgSO₄. The crude was

concentrated and purified by column chromatography (3:7 EtOAc/heptane) to yield **27** as a colorless oil (2.12 g, 48%) and **28** as a pale-yellow oil (0.60 g, 13%).

Data for 27: ¹H NMR (500 MHz, CDCl₃) δ 8.07–8.00 (m, 2H, H_{Ar}), 7.59–7.54 (m, 1H, H_{Ar}), 7.47–7.42 (m, 2H, H_{Ar}), 4.74–4.57 (m, 1H, H4), 4.44–4.31 (m, 2H, H1), 3.83–3.66 (m, 2H, H5), 2.10–1.59 (m, 5H, H2 + H3 + OH) ppm; ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 166.6 (C = O), 133.0 (C_{Ar}), 130.2 (C_{Ar}), 129.5 (C_{Ar}×2), 128.4 (C_{Ar}×2), 94.1 (d, J= 169.1 Hz, C4), 64.9 (d, J= 22.1 Hz, C5), 64.4 (C1), 27.7 (d, J= 21.1 Hz, C3), 24.5 (d, J= 4.6 Hz, C2) ppm; ¹⁹F NMR (471 MHz, CDCl₃) δ -190.4 – -190.9 (m, 2F) ppm; ¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ -190.6 (s, 2F) ppm; IR (neat) 3427 (br. w), 2955 (m), 2876 (w), 1714 (s), 1271 (s), 1110 (m), 709 (s) cm⁻¹; HRMS (ESI+) for C₁₂H₁₅FNaO₃ [M+Na]⁺, calculated 249.0897, found 249.0898.

Data for 28: ¹H NMR (500 MHz, CDCl₃) δ 8.06–8.02 (m, 2H, H_{Ar}), 7.60–7.53 (m, 1H, H_{Ar}), 7.47–7.42 (m, 2H, H_{Ar}), 4.38 (t, J = 6.3 Hz, 2H, H1), 3.78 (t, J = 12.6 Hz, 2H, H5), 2.20–1.98 (m, 4H, H2 + H3), 1.93 (br. s, 1H, OH) ppm; ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 166.5 (C = O), 133.0 (C_{Ar}), 130.1 (C_{Ar}), 129.6 (C_{Ar}×2), 128.4 (C_{Ar}×2), 122.9 (t, J = 241.8 Hz, C4), 64.2 (t, J = 32.2 Hz, C5), 64.1 (C1), 30.1 (t, J = 24.4 Hz, C3), 21.4 (t, J = 4.6 Hz, C2) ppm; ¹⁹F NMR (471 MHz, CDCl₃) δ 109.0 (tt, J = 17.3, 12.6 Hz, 2 F) ppm; ¹⁹F {¹H} NMR (471 MHz, CDCl₃) δ -109.0 (s, 2F) ppm; IR (neat) 3445 (br. w), 2959 (w), 2941 (w), 1716 (s), 1271 (s), 1111 (m), 709 (s) cm⁻¹; HRMS (ESI+) for C₁₂H₁₄F₂NaO₃ [M+Na]⁺, calculated 267.0803, found 267.0802. **3,4-Difluorobutyl benzoate (29):** To a solution of **23** (1.00 g, 1 equiv) in THF (20 mL) was added Et₃N (3.94 mL, 6 equiv), Et₃N•3HF (1.50 mL, 2 equiv) and nonafluorobutane-1-sulphonyl fluoride (1.70 mL, 2 equiv). After 4 h, the reaction was quenched with sat. aq. NaHCO₃ until pH 7 and the aqueous layer was extracted with Et₂O (3×30 mL). The combined organic layers were washed with brine, dried over MgSO₄ and concentrated. The resulting crude was purified by column chromatography (7:3 CH₂Cl₂/petroleum ether 40–60 °C) to yield

29 as a colorless oil (0.64 g, 63%). ¹H NMR (400 MHz, CDCl₃) δ 8.08–8.03 (m, 2H, H_{Ar}), 7.62–7.56 (m, 1H, H_{Ar}), 7.49–7.43 (m, 2H, H_{Ar}), 5.06–4.80 (m, 1H, H3), 4.75–4.42 (m, 4H, H1 + H4), 2.30–2.02 (m, 2H, H2) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.3 (C = O), 133.2 (C_{Ar}), 129.9 (C_{Ar}), 129.6 (C_{Ar}×2), 128.4 (C_{Ar}×2), 88.8 (dd, J= 173.9, 19.8 Hz, C3), 83.8 (dd, J= 174.6, 22.7 Hz, C4), 60.3 (d, J= 5.1 Hz, C1), 29.7 (dd, J= 21.3, 6.6 Hz, C2) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -191.7– -192.2 (m, 1F, F3), -230.9 (tdd, J= 47.3, 21.7, 13.0 Hz, 1F, F4) ppm; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -191.9 (d, J= 13.0 Hz, 1F, F3), -230.9 (br. d, J= 13.0 Hz, 1F, F4) ppm; IR (neat) 2964 (w), 2908 (w), 1715 (s), 1452 (m), 1270 (s), 1109 (s) cm⁻¹; HRMS (ESI+) C₁₁H₁₂F₂NaO₂ [M+Na]⁺, calculated 237.0698, found 237.0698.

4,5-Difluoropentyl benzoate (30): To a solution of **27** (1.00 g, 1 equiv) in THF (15 mL) was added Et₃N (3.70 mL, 6 equiv), Et₃N•3HF (1.44 mL, 2 equiv) and nonafluorobutane-1-sulphonyl fluoride (1.59 mL, 2 equiv). After 16 h, the reaction was quenched with sat. aq. NaHCO₃ (40 mL) and diluted with Et₂O (50 mL). The organic phase was collected and the aqueous layer was extracted with Et₂O (3×40 mL). The combined organic layers were washed with aq. HCl (2M, 30 mL), brine, dried over MgSO₄, filtered and concentrated. The resulting crude was purified by column chromatography (1:19 EtOAc/heptane) to yield **30** as a colorless oil (0.65 g, 64%). ¹H NMR (400 MHz, CDCl₃) δ 8.13–7.97 (m, 2H, H_{Ar}), 7.64–7.56 (m, 1H, H_{Ar}), 7.53–7.41 (m, 2H, H_{Ar}), 4.96–4.67 (m, 1H, H4), 4.67–4.45 (m, 2H, H5), 4.46–4.33 (m, 2H, H1), 2.18–1.66 (m, 4H, H2 + H3) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.5 (C = O), 133.0 (C_{Ar}), 130.1 (C_{Ar}), 129.5 (C_{Ar}×2), 128.4 (C_{Ar}×2), 91.2 (dd, J = 173.5, 19.4 Hz, C4), 83.9 (dd, J = 174.6, 23.5 Hz, C5), 64.2 (C1), 26.9 (dd, J = 21.3, 6.6 Hz, C3), 24.3 (d, J = 4.4 Hz, C2) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -190.0 – -190.6 (m, 1F, F4), -230.6 (tdd, J = 46.8, 20.8, 13.9 Hz, 1F, F5) ppm; ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -190.3 (d, J = 13.9 Hz, 1F, F5) ppm; 1F, F4), -230.6 (d, J = 13.9 Hz, 1F, F5) ppm; IR (neat) 2959 (w), 2906 (w), 1714 (s), 1270 (s),

 $1109 \text{ (m)}, 709 \text{ (s) cm}^{-1}; HRMS \text{ (ESI+) for } C_{12}H_{14}F_2NaO_2 \text{ [M+Na]}^+, \text{ calculated } 251.0854, \text{ found } 251.0850.$

3,3,4-Trifluorobutyl benzoate (31): To a solution of **24** (570 mg, 1 equiv) in MeCN (15 mL) was added Et₃N (2.07 mL, 6 equiv), Et₃N•3HF (0.83 mL, 2 equiv) and nonafluorobutane-1sulphonyl fluoride (0.89 mL, 2 equiv). The reaction was heated to 80 °C and after 16 h, was quenched with sat. aq. NaHCO₃ (50 mL). The aqueous layer was extracted with CH₂Cl₂ (3×50 mL) and the combined organic layers were washed with brine, dried over MgSO₄ and concentrated. The resulting crude was purified by column chromatography (3:7 Et₂O/pentane) to yield **31** as a pale-yellow oil (391 mg, 68%). ¹H NMR (400 MHz, CDCl₃) δ 8.11–7.97 (m, 2H, H_{Ar}), 7.65–7.54 (m, 1H, H_{Ar}), 7.51–7.41 (m, 2H, H_{Ar}), 4.57 (t, J = 6.2 Hz, 2H, H1), 4.54 $(dt, J = 46.1, 11.7 \text{ Hz}, 2H, H4), 2.50 \text{ (ttd}, J = 16.4, 6.5, 2.4 \text{ Hz}, 2H, H2) ppm; {}^{13}C\{{}^{1}H\} \text{ NMR}$ (101 MHz, CDCl₃) δ 166.2 (C = O), 133.2 (C_{Ar}), 129.7 (C_{Ar}), 129.6 (C_{Ar}×2), 128.5 (C_{Ar}×2), 119.9 (td, J = 243.0, 23.1 Hz, C3), 81.5 (dt, J = 179.0, 36.7 Hz, C4), 58.2 (t, J = 5.9 Hz, C1), 32.6 (t, J = 24.2 Hz, C2) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -108.1 (tdt, J = 16.4, 15.4, 12.1 Hz, 2F, F3), -234.2 (tt, J = 46.2, 15.4 Hz, 1F, F4) ppm; $^{19}F\{^{1}H\}$ NMR (376 MHz, CDCl₃) δ -108.1 (d, J = 15.6 Hz, 2F, F3), -234.2 (t, J = 15.6 Hz, 1F, F4) ppm; IR (neat) 2971 (w), 2912 (w), 1718 (s), 1268 (s), 1110 (m), 1053 (m) cm⁻¹; HRMS (ESI+) for $C_{11}H_{11}F_3NaO_2$ [M+Na]⁺, calculated 255.0603, found 255.0605.

3,3,4-Trifluorobutyl benzoate (31, from 41): To a solution of **41** (40 mg, 1 equiv) in MeCN (2 mL) was added Et₃N (0.07 mL, 6 equiv) and Et₃N•3HF (0.03 mL, 2 equiv). The reaction was heated to 80 °C and after 16 h was quenched with sat. aq. NaHCO₃ (5 mL), followed by extraction with CH₂Cl₂ (3×5 mL). The combined organic layers were washed with brine, dried over MgSO₄ and concentrated. The resulting crude was purified by column chromatography (3:7 Et₂O/petroleum ether 40–60 °C) to yield **31** as a colorless oil (16 mg, 88%).

4,4,5-Trifluoropentyl benzoate (32): To a solution of **28** (0.54 g, 1 equiv) in MeCN (15 mL) was added Et₃N (1.85 mL, 6 equiv), HF•Et₃N (0.72 mL, 2 equiv) and nonafluorobutane-1sulphonyl fluoride (0.79 mL, 2 equiv). The reaction was heated to 80 °C and after 16 h, was quenched with sat. aq. NaHCO₃ (50 mL). The aqueous layer was extracted with Et₂O (3×50 mL) and the combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated. The resulting crude was purified by column chromatography (1:19 EtOAc/heptane) to yield 32 as a pale-yellow oil (0.42 g, 78%). ¹H NMR (400 MHz, CDCl₃) δ 8.10-8.01 (m, 2H, H_{Ar}), 7.62-7.55 (m, 1H, H_{Ar}), 7.49-7.43 (m, 2H, H_{Ar}), 4.48 (dt, J=46.5, 11.5 Hz, 2H, H5), 4.40 (t, J = 6.2 Hz, 2H, H1), 2.26–1.95 (m, 4H, H3 + H4) ppm; ${}^{13}C\{{}^{1}H\}$ NMR (101 MHz, CDCl₃) δ 166.4 (C = O), 133.1 (C_{Ar}), 130.0 (C_{Ar}), 129.6 (C_{Ar}×2), 128.4 $(C_{Ar} \times 2)$, 120.7 (td, J = 241.4, 22.0 Hz, C5), 81.6 (dt, J = 178.3, 37.4 Hz, C4), 63.9 (C2), 29.9 (t, J = 23.8 Hz, C3) 21.2 (t, J = 4.8 Hz, C2) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -109.6 (tdt, J= 16.5, 15.6, 11.5 Hz, 2F, F4), -234.3 (tt, J = 46.2, 15.4 Hz, 1F, F5) ppm; ${}^{19}F\{{}^{1}H\}$ NMR (376) MHz, CDCl₃) δ -109.6 (d, J = 15.6 Hz, 2F, F4), -234.3 (t, J = 15.6 Hz, 1F, F5) ppm; IR (neat) 2969 (w), 2901 (w), 1716 (s), 1269 (s), 1110 (m), 709 (s) cm⁻¹; HRMS (ESI+) for $C_{12}H_{13}F_3NaO_2$ [M+Na]⁺, calculated 269.0760, found 269.0760.

3,4,4-Trifluorobutyl benzoate (33): To a solution of **23** (1.00 g, 1 equiv) in CH_2Cl_2 (20 mL) was added DMP (2.99 g, 1.5 equiv). After 1 h, the reaction was quenched with sat. aq. $Na_2S_2O_3$ (10 mL) and sat. aq. $NaHCO_3$ (10 mL). The layers were separated and the aqueous was extracted with CH_2Cl_2 (3×20 mL). The combined organic layers were dried over Na_2SO_4 , filtered and concentrated. The crude was purified by column chromatography (2:1, Et_2O /petroleum ether 40–60 °C) to afford the intermediate **21**, which was immediately dissolved in CH_2Cl_2 before the dropwise addition of DAST (1.10 mL, 2.5 equiv) at 0 °C. The reaction mixture was allowed to warm to room temperature and after 16 h, was quenched with sat. aq. $NaHCO_3$ until pH 7. The aqueous layer was then extracted with CH_2Cl_2 (3×20 mL) and

the combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated. The crude was purified by column chromatography (7:3 CH₂Cl₂/petroleum ether 40–60 °C) to afford **33** (0.38 g, 34% over 2 steps) as a pale-yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.11–8.01 (m, 2H, H_{Ar}), 7.63–7.56 (m, 1H, H_{Ar}), 7.50–7.43 (m, 2H, H_{Ar}), 5.91 (tdd, J = 54.7, 5.6, 3.7 Hz, H4), 4.95–4.64 (m, a doublet with 46.9 Hz can be observed, 1H, H3), 4.63–4.42 (m, 2H, H1), 2.36–2.14 (m, 2H, H2) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.2 (C = O), 133.2 (C_{Ar}), 129.8 (C_{Ar}), 129.6 (C_{Ar}×2), 128.5 (C_{Ar}×2), 113.3 (td, J = 244.5, 31.2 Hz, C4), 87.5 (dt, J = 177.5, 27.1 Hz, C3), 59.6 (d, J = 3.7 Hz, C1), 27.7 (dt, J = 20.5, 2.9 Hz, C2) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -129.6 (dddd, J = 297.8, 54.7, 12.1, 8.7 Hz, 1F, F4'), -133.3 (ddt, J = 297.8, 54.7, 12.1 Hz, 1F, F4''), -203.26– -203.72 (m, 1F, F3) ppm; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -129.6 (dd, J = 297.8, 11.7 Hz, 1F, F4'), -133.3 (dd, J = 297.8, 13.4 Hz, 1F, F4''), -203.5 (t, J = 13.4 Hz, 1F, F3) ppm; IR (neat) 2975 (w), 2910 (w), 1717 (s), 1270 (s), 1069 (s), 1069 (s) cm⁻¹; HRMS (EI) for C₁₁H₁₁F₃O₂ [M⁺], calculated 232.07057, found 232.07216.

4,5,5-Trifluoropentyl benzoate (34): To a solution of **27** (0.90 g, 1 equiv) in CH₂Cl₂ (15 mL) was added DMP (2.53 g, 1.5 equiv). After 1 h, the reaction was quenched with sat. aq. Na₂S₂O₃ (8 mL) and sat. aq. NaHCO₃ (8 mL). The layers were separated and the aqueous was extracted with CH₂Cl₂ (3×15 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated. The crude was purified by column chromatography (3:1, Et₂O/petroleum ether 40–60 °C) to afford the intermediate **25**, which was immediately dissolved in CH₂Cl₂ before the dropwise addition of DAST (1.62 mL, 3 equiv) at 0 °C. The reaction mixture was allowed to warm to room temperature and after 16 h, was quenched with sat. aq. NaHCO₃ until pH 7. The aqueous layer was then extracted with CH₂Cl₂ (3×20 mL) and the combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated. The crude was purified by column chromatography (1:1 CH₂Cl₂/petroleum ether 40–60 °C) to afford **34** (0.34 g, 35%

over 2 steps) as a pale-yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.07–8.02 (m, 2H, H_{Ar}), 7.62–7.54 (m, 1H, H_{Ar}), 7.49–7.43 (m, 2H, H_{Ar}), 5.83 (tdd, J = 54.9, 5.5, 3.8 Hz, 1H, H5), 4.74–4.49 (m, 1H, H4), 4.47–4.32 (m, 2H, H1), 2.17–1.78 (m, 4H, H2 + H3) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.5 (C = O), 133.0 (C_{Ar}), 130.1 (C_{Ar}), 129.5 (C_{Ar} x 2), 128.4 (C_{Ar} x 2), 113.5 (td, J = 244.3, 31.5 Hz, C5), 89.9 (dt, J = 176.8, 26.8 Hz, C4), 64.0 (C1), 25.0 (dt, J = 20.5, 3.3 Hz, C3), 23.8 (d, J = 2.9 Hz, C2) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -129.5 (dddd, J = 297.4, 55.0, 11.7, 9.5 Hz, 1F, F5), -132.9 (ddt, J = 297.4, 55.0, 12.1 Hz, 1F, F5'), -201.9– -201.4 (m, 1F, F4) ppm; ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -129.5 (dd, J = 297.4, 12.1 Hz, 1F, F5), -132.9 (dd, J = 297.6, 13.7 Hz, 1F, F5'), -201.7 (t, J = 12.6 Hz, 1F, F4) ppm; IR (neat) 2967 (w), 1715 (s), 1270 (s), 1069 (s), 709 (s) cm⁻¹; HRMS (EI) for C₁₂H₁₃F₃O₂ [M⁺], calculated 246.08622, found 246.08425.

5-Benzyloxy-1,1,1-trifluoropentan-2-ol (37): A solution of 4-benzyloxy-1-butanal 36^{84} (4.94 g, 27.7 mmol, 1.0 equiv) in anhydrous THF (50 mL) under argon was cooled to -10 °C, followed by addition of TMSCF₃ (4.50 mL, 30.4 mmol, 1.1 equiv) and dropwise addition of TBAF solution (2.8 mL, 1M in THF, 2.8 mmol, 0.1 equiv). The reaction mixture was warmed to room temperature and stirred for 1 h, followed further addition of more TBAF solution (28 mL, 1M in THF, 28.0 mmol, 1.01 equiv). The resulting mixture was stirred at room temperature overnight. On the following day, the reaction mixture was quenched with aq. 1M HCl solution (100 mL), followed by extraction with EtOAc (3×100 mL). The combined organic layer was dried over Na₂SO₄, filtered and concentrated. The crude mixture was purified by flash chromatography (5/95 – 10/90 acetone/40-60 °C petroleum ether) to afford the desired product 37 (5.36 g, 78%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.29 - 7.42 (5H, m, H_{Ar}), 4.56 (2H, s, CH₂Ph), 3.86 - 3.98 (1H, m, H-2), 3.77 (1H, br. s, -OH), 3.49 - 3.62 (2H, m, H-5 + H-5'), 1.89 - 1.99 (1H, m, H-3), 1.80 - 1.89 (2H, m, H-4 + H-4'), 1.65 - 1.76 (1H, m, H-3') ppm; 13 C{¹H} NMR (101 MHz, CDCl₃) δ 137.5 (s, C_{Ar}), 128.5 (s, CH_{Ar}×2), 127.9 (s, CH_{Ar}), 127.8

(s, $CH_{Ar} \times 2$), 125.2 (q, J 281.9 Hz, C-1), 73.3 (s, CH_2Ph), 70.3 (q, J 30.8 Hz, C-2), 69.8 (s, C-5), 27.6 (q, J 1.8 Hz, C-3), 25.4 (s, C-4) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -79.7 (3F, d, J 6.9 Hz, C F_3) ppm; ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -79.7 (3F, s, C F_3) ppm; IR (neat) 3389 (br. m), 3095 (w), 3068 (w), 3040 (w), 2937 (m), 2863 (m), 1457 (m), 1277 (s), 1167 (s), 1133 (s), 1087 (s), 1032 (m) cm⁻¹;HRMS (EI) for $C_{12}H_{15}F_3O_2$ [M⁺⁺] calcd, 248.10187; found, 248.10342.

1-Benzyloxy-4,5,5,5-tetrafluoropentane (38): To a sealed tube reactor were added **37** (1.73 g, 6.97 mmol, 1.0 equiv), anhydrous THF (10 mL), Et₃N (5.61 mL, 40.25 mmol, 5.77 equiv), Et₃N·3HF (2.18 mL, 13.37 mmol, 1.92 equiv) and perfluoro-1-butanesulfonyl fluoride (2.42 mL, 13.5 mmol, 1.93 equiv) under argon. The reaction mixture was stirred at 90 °C overnight, and then monitored by TLC analysis. Upon completion, the reaction mixture was diluted with CH₂Cl₂ (30 mL) and slowly quenched with sat. aq. NaHCO₃ solution (100 mL), followed by extraction with CH₂Cl₂ (3×100 mL). The combined organic layer was dried over Na₂SO₄, filtered and concentrated. The crude mixture was purified by flash chromatography (40/60 CH₂Cl₂/40-60 °C petroleum ether) to afford a mixture of desired product **38** and alkene byproducts. To this mixture were added CH₂Cl₂ (20 mL) and MeOH (5 mL). The solution was cooled to -78 °C, and bubbled with ozone in O₂ until the reaction mixture turned slightly blue. The reaction mixture was then bubbled with O₂ for 30 min, followed by addition of dimethyl sulphide (2 mL). The resulting mixture was stirred at room temperature overnight. On the following day, the solvent was removed by rotary evaporation under reduced pressure inside a fume hood. The crude mixture was purified by repeated flash chromatography (20/80 - 30/70)CH₂Cl₂/40-60 °C petroleum ether) to isolate the desired product 38 (738 mg, 41%) as a colourless oil. IR (neat) 3092 (w), 3065 (w), 3031 (w), 2940 (m), 2869 (m), 1457 (m), 1366 (m), 1283 (s), 1176 (s), 1155 (s), 1099 (s), 1026 (m), 983 (m) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.29–7.41 (5H, m, H_{Ar}), 4.60 - 4.81 (1H, m, H-4, a doublet with J 46.8 Hz was observed),

4.55 (1H, d, J 12.7 Hz, PhCHH'), 4.52 (1H, d, J 12.7 Hz, PhCHH'), 3.48–3.63 (2H, m, H-1 + H-1'), 1.73–2.04 (4H, m, H-3 + H-3' + H-2 + H-2') ppm; 13 C 1 H 1 NMR (101 MHz, CDCl₃) δ 138.2 (s, C_{Ar}), 128.4 (s, C_{HAr} ×2), 127.7 (s, C_{HAr}), 127.6 (s, C_{HAr} ×2), 122.9 (qd, J 281.0, 25.7 Hz, C-5), 88.4 (dq, J 183.4, 34.1 Hz, C-4), 73.0 (s, Ph C_{H2}), 69.0 (s, C-1), 25.3 (dq, J 20.5, 1.5 Hz, C-3), 24.4 (d, J 2.9 Hz, C-2) ppm; 19 F NMR (376 MHz, CDCl₃) δ -79.8 (3F, dd, J 10.8, 6.1 Hz, C F_{3}), -202.0 - -201.4 (1F, m, CHF) ppm; 19 F 1 H 1 NMR (376 MHz, CDCl₃) δ -79.8 (3F, d, J 11.1 Hz, C F_{3}), -201.7 (1F, q, J 11.1 Hz, CHF) ppm; HRMS (EI) for C₁₂H₁₄F₄O [M*+]: calcd, 250.09753; found, 250.09880.

Attempted direct vicinal difluorination leading to 3-oxacyclopentyl benzoate (40): To a Teflon tube was added a solution of 39^{96} (100 mg, 1 equiv) and p-iodotoluene (24 mg, 0.2 equiv) in DCE (1.3 mL). A solution of Et₃N•3HF (0.76 mL) and HF•Py (0.55 mL) was then added, followed by Selectfluor® (302 mg, 1.5 equiv). After 16 h, the reaction was quenched with sat. aq. NaHCO₃ until pH 7. The aqueous phase was extracted with CH₂Cl₂ (3×5 mL) and the combined organic layers were dried over MgSO₄. The crude mixture was concentrated and purified by column chromatography (1:4 acetone/petroleum ether 40–60 °C) to yield **40** as a colorless oil (0.50 mg, 46%). ¹H NMR (400 MHz, CDCl₃) δ 8.20–7.97 (m, 2H, H_{Ar}), 7.66–7.54 (m, 1H, H_{Ar}), 7.51–7.42 (m, 2H, H_{Ar}), 5.57 (ddt, J = 6.4, 4.3, 2.0Hz, 1H, H1), 4.08–3.96 (m, 3H, H3° + H4), 3.93 (td, J = 8.3, 4.4 Hz, 1H, H3°), 2.37–2.24 (m, 1H, H2°), 2.23–2.12 (m, 1H, H2°) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.3 (C=O), 133.1 (C_{Ar}), 130.0 (C_{Ar}), 129.63 (C_{Ar}×2), 128.4 (C_{Ar}×2), 75.4 (C1), 73.2 (C4), 67.2 (C3), 33.0 (C2) ppm. Data consistent with literature. ¹⁰⁰

4-Benzoyloxy-2,2-difluorobutyl nonafluorobutanesulfonate (41): To a solution of **24** (50 mg, 1 equiv) in MeCN (2 mL) was added Et₃N (0.18 mL, 6 equiv), Et₃N•3HF (0.07 mL, 2 equiv) and nonafluorobutane-1-sulfonyl fluoride (0.08 mL, 2 equiv). After 16 h the reaction was quenched with sat. aq. NaHCO₃ (5 mL), followed by extraction with CH₂Cl₂ (3×10 mL).

The combined organic layers were washed with brine, dried over MgSO₄ and concentrated. The resulting crude was purified by column chromatography (3:7 Et₂O/petroleum ether 40–60 °C) to yield **41** as colourless crystals (77 mg, 70%) and **31** a colourless oil (5 mg, 10%). Mp: 55-57 °C (Et₂O/CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.08–8.01 (m, 2H, H_{Ar}), 7.65–7.56 (m, 1H, H_{Ar}), 7.51–7.44 (m, 2H, H_{Ar}), 4.68 (t, J=11.5 Hz, 2H, H4), 4.58 (t, J=6.1 Hz, 2H, H1), 2.52 (tt, J=16.0, 6.1 Hz, 2H, H2) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.1 (C = O), 133.4 (C_{Ar}), 129.6 (C_{Ar}×2), 129.4 (C_{Ar}), 128.5 (C_{Ar}×2), 118.7 (t, J=245.0 Hz, C3), 73.0 (t, J=34.8 Hz, C4), 57.8 (t, J=5.9 Hz, C1), 33.0 (t, J=23.5 Hz, C2) ppm (nonafluorobutane sulfonate carbons not visible due to multiple fluorine-fluorine couplings); ¹⁹F NMR (376 MHz, CDCl₃) δ -80.9 (t, J=8.7 Hz, 3F), -105.7 (tt, J=15.6, 12.1 Hz, 2F, F3), -110.3 (t, J=13.9 Hz, 2F), -121.3–-121.5 (m, 2F), -126.0–-126.2 (m, 2F) ppm; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -80.9 (br. t, J=9.5 Hz, 3F), -105.7 (s, 2F, F3), -110.3 (t, J=13.9 Hz, 2F), -121.3–121.5 (m, 2F), -126.0–-126.1 (m, 2F) ppm; IR (neat) 2964 (w), 2918 (w), 1722 (s), 1422 (s), 1238 (s), 1199 (m), 1142 (s) cm⁻¹; HRMS (ESI+) for C₁₅H₁₁F₁₁NaO₅S [M+Na]⁺, calculated 535.0044, found 535.0055.

1-Trityloxybut-3-ene (43): To a solution 3-buten-1-ol **42** (0.80 g, 1 equiv) and pyridine (1.35 mL, 1.05 equiv) in CH₂Cl₂ (33 mL), was added trityl chloride (3.40 g, 1.1 equiv). After 20 h, the reaction mixture was washed with sat. aq. NaHCO₃ (2×30 mL), water and brine. The organic layer was dried over MgSO₄ and concentrated *in vacuo*. The crude oil was purified by flash column chromatography (1:19 CH₂Cl₂/petroleum ether 40-60 °C) to **43** as a colorless oil (3.34 g, 96%). ¹H NMR (400 MHz, CDCl₃) δ 7.50–7.43 (m, 6H, H_{Ar}), 7.34–7.27 (m, 6H, H_{Ar}), 7.26–7.20 (m, 3H, H_{Ar}), 5.86 (ddt, J = 17.1, 10.2, 6.8 Hz, 1H, H3), 5.13–4.98 (m, 2H, H4), 3.13 (t, J = 6.8 Hz, 2H, H1), 2.38 (q, J = 6.8 Hz, 2H, H2) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 144.3 (C_{Ar}×3), 135.6 (C3), 128.7 (C_{Ar}×6), 127.7 (C_{Ar}×6), 126.9 (C_{Ar}×3), 116.3 (C4), 86.4 (CPh₃), 63.2 (C1), 34.6 (C2) ppm; IR (neat) 3058 (w), 2924 (w), 1448 (s), 1068 (s), 695

(s) cm⁻¹; HRMS (EI) for C₂₃H₂₂O [M⁻⁺], calculated 314.16652, found 314.16555. ¹H NMR data consistent with literature.¹⁰¹

1-Trityloxy-3,5,5-tetrafluoropentane (44): To a solution of Selectfluor® (6.08 g, 3 equiv) in DMF (70 mL) was added PhI(OAc)₂ (1.85 g, 1 equiv), AgOTf (2.94 g, 2 equiv) and CsF (1.73 g, 2 equiv) at -50 °C. A solution of **43** (1.80 g, 1 equiv) in DMF (10 mL) was added, followed by CF₃SiMe₃ (2.52 mL, 3 equiv). The reaction was allowed to warm to -20 °C and after 5 h was allowed to warm to room temperature. After 16 h, the reaction was quenched with water (80 mL) and the aqueous phase was extracted with Et₂O (3×100 mL). The combined organic phases were washed with water, brine, dried over Na₂SO₄ and concentrated. The crude oil was purified by column chromatography (1:4 CH₂Cl₂/petroleum ether 40-60 °C) to 44 as a colorless oil (0.90 g, 39%). ¹H NMR (400 MHz, CDCl₃) δ 7.52–7.45 (m, 6H, H_{Ar}), 7.39–7.32 $(m, 6H, H_{Ar}), 7.31-7.26 (m, 3H, H_{Ar}), 5.12 (dtt, J = 49.0, 8.0, 4.0 Hz, 1H, H3), 3.39-3.20 (m, 4.0 Hz, 1H, H3), 3.20 (m, 4.0 Hz, 1H, H3)$ 2H, H1), 2.63–2.24 (m, 2H, H4), 2.11–1.81 (m, 2H, H2) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 143.9 (C_{Ar} x 3), 128.5 (C_{Ar} x 6), 127.8 (C_{Ar} x 6), 127.1 (C_{Ar} x 3), 125.4 (qd, J = 277.3, 2.9 Hz, C5), 86.9 (\underline{C} Ph₃), 85.4 (dq, J = 172.1, 3.3 Hz, C3), 58.8 (d, J = 5.1 Hz, C1), 39.4 (qd, $J = 28.5, 22.4 \text{ Hz}, C4), 35.4 (d, <math>J = 21.3 \text{ Hz}, C2) \text{ ppm}; ^{19}\text{F NMR} (376 \text{ MHz}, \text{CDCl}_3) \delta -64.2 (q, C1)$ J = 10.4 Hz, 3F, F5), -183.4—182.9 (m, 1F, F3) ppm; $^{19}\text{F}\{^1\text{H}\}$ NMR (376 MHz, CDCl₃) δ -64.2 (d, J = 8.1 Hz, 3F, F5), -183.2 (q, J = 8.1 Hz, 1F, F3) ppm; IR (neat) 3059 (w), 2932 (w),1449 (s), 1256 (s), 1135 (s), 1072 (s), 697 (s) cm⁻¹; HRMS (EI) for $C_{24}H_{22}F_4O$ [M⁺], calculated 402.16013, found 402.16171.

1-Benzyloxy-2,2,4,4,4-pentafluorobutane (**46**): To a solution of **45**⁸⁷ (2.3 g, 1 equiv) in CH₂Cl₂ (35 mL), DAST (4.37 mL, 3 equiv) was added dropwise at 0 °C. The reaction mixture was allowed to warm to room temperature and after 16 h, was quenched with sat. aq. NaHCO₃ until pH 7. The aqueous phase was extracted with CH₂Cl₂ (3×30 mL) and the combined organic phases were dried over MgSO₄ and concentrated. The crude oil was purified by column

chromatography (1:4 CH₂Cl₂/hexane) to yield an inseparable mixture of **46** and **47** as a pale-yellow oil in a ratio of 7:1 respectively (1.64 g, 65%).

Data for 46: ¹H NMR (500 MHz, CDCl₃) δ 7.44–7.31 (m, 5H, H_{Ar}), 4.64 (s, 2H, PhC<u>H</u>₂), 3.72 (t, J = 12.4 Hz, 2H, H1), 2.90 (tq, J = 14.6, 10.2 Hz, 2H, H3) ppm; ¹³C { ¹H} NMR (126 MHz, CDCl₃) δ 136.7 (C_{Ar}), 128.6 (C_{Ar}×2), 128.2 (C_{Ar}), 127.9 (C_{Ar}×2), 123.7 (qt, J = 276.7, 5.8 Hz, C4), 118.9 (tq, J = 244.7, 3.1 Hz, C2), 73.9 (Ph<u>C</u>H₂), 70.0 (tq, J = 31.7, 1.4 Hz, C1), 37.8 (qt, J = 30.1, 26.5 Hz, C3) ppm; ¹⁹F NMR (471 MHz, CDCl₃) δ -61.9 (tt, J = 10.2, 8.9 Hz, 3F, F4), -103.0 (ttq, J = 14.6, 12.4, 8.9 Hz, 3F, F2) ppm; ¹⁹F { ¹H} NMR (471 MHz, CDCl₃) δ -62.1 (t, J = 8.7 Hz, 3F), -103.2 (q, J = 8.7 Hz, 2F) ppm; IR (neat) 2926 (w), 2876 (w), 1389 (s), 1171 (s), 1119 (s), 1095 (s), 698 (s) cm⁻¹; HRMS (CI) for C₁₁H₁₂F₅O [M+H]⁺, calculated 255.08028, found 255.08272.

Selected data for 1-benzyloxy-2,4,4,4-tetrafluorobut-2-ene 47: ¹H NMR (500 MHz, CDCl₃) δ 5.41 (dqt, J = 33.4, 7.5, 1.0 Hz, 1H, H3), 4.62 (s, 2H, PhCH₂), 4.12–4.04 (m, 2H, H1) ppm (benzoyl resonances not visible due to overlap with major product); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 97.9 (qd, J = 35.8, 5.7 Hz, C3), 73.3 (PhCH₂), 65.9 (d, J = 34.1 Hz, C1) ppm (other carbons not visible due to overlap with 46); ¹⁹F NMR (471 MHz, CDCl₃) δ -57.9 (ddt, J = 16.7, 7.5, 2.2 Hz, 3F, F4), -101.0 (dqt, J = 33.5, 16.7, 6.4 Hz, 1F, F2) ppm; ¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ -57.9 (d, J = 16.5 Hz, 3F, F4), -101.0 (q, J = 16.8 Hz, 1F, F2); HRMS (EI) for C₁₁H₁₀F₄O [M⁻⁺], calculated 234.06623, found 234.06659.

5-Benzyloxy-1,1,1-trifluoropentan-3-one (49): To a 2 L three-neck round-bottom flask were added 2,2,2-trifluoroethylamine hydrochloride (12.52 g, 92.4 mmol, 5.05 equiv), CH₂Cl₂ (485 mL) and water (16.2 mL). The resulting mixture was cooled to 0 °C, followed by adding NaNO₂ (7.65 g, 110.9 mmol, 6.06 equiv). The reaction was stirred further for 1 h at 0 °C behind a blast shield, and the water layer was removed by using a separating funnel. The organic layer was transferred to a new 2 L two-neck flask and cooled immediately to -78 °C. To this solution

were added 3-benzyloxypropanal 48 (3.0 g, 18.3 mmol, 1.0 equiv) and ZrCl₄ (14.02 g, 60.2 mmol, 3.29 equiv). The reaction mixture was then stirred at -78 °C and warmed up very slowly to room temperature by the ambient environment overnight. On the following day, the reaction was quenched by MeOH (100 mL) and sat. aq. NaHCO₃ solution (150 mL), followed by extraction with CH₂Cl₂ (200 mL × 3). The combined organic layer was dried over Na₂SO₄, filtered and concentrated. The crude mixture was repeatedly purified by chromatography $(50/50 - 60/40 \text{ CH}_2\text{Cl}_2/\text{hexane})$ to afford the desired product 49 (~90% purity, 272 mg, < 6%) as a yellow oil. IR (neat) 3092 (w), 3068 (w), 3037 (w), 2942 (w), 2875 (m), 1732 (s), 1457 (w), 1417 (m), 1372 (s), 1268 (s), 1106 (s), 1035 (s) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.28 - 7.39 (5H, m, H_{Ar}), 4.52 (2H, s, PhC*H*₂), 3.77 (2H, t, *J* 6.1 Hz, H-5), 3.29 (2H, q, *J* 10.3 Hz, H-2), 2.80 (2H, t, J 6.1 Hz, H-4) ppm; ${}^{13}C\{{}^{1}H\}$ NMR (101 MHz, CDCl₃) δ 198.7 (q, J 2.6 Hz, C-3), 137.7 (s, C_{Ar}), 128.4 (s, $CH_{Ar} \times 2$), 127.8 (s, CH_{Ar}), 127.7 (s, $CH_{Ar} \times 2$), 123.5 (q, J 277.3 Hz, C-1), 73.4 (s, PhCH₂), 64.7 (s, C-5), 46.7 (q, J 28.2 Hz, C-2), 43.5 (q, J 2.1 Hz, C-4) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (3F, t, J 10.4 Hz, CF₃) ppm; ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -62.7 (3F, s, CF₃) ppm; HRMS (EI) for C₁₂H₁₃F₃O₂ [M*+]: calcd, 246.08622; found, 246.08619.

1-Benzyloxy-3,3,5,5,5-pentafluoropentane (50): To a solution of 49 (250 mg, 1.02 mmol, 1.0 equiv) in anhydrous toluene (10 mL) was added DAST (1.0 mL, 7.57 mmol, 7.42 equiv) at 0 °C. The resulting mixture was stirred at 75 °C for 16 h. On the following day, the reaction was cooled to room temperature, and additional DAST (2.0 mL, 15.14 mmol, 14.84 mmol) was added. The reaction mixture was stirred at 60 °C for 3 d. Upon completion as indicated by TLC analysis, the reaction mixture was cooled to room temperature, diluted with CH₂Cl₂ (100 mL) and slowly quenched with sat. aq. NaHCO₃ solution (150 mL), followed by extraction with CH₂Cl₂ (100 mL × 3). The combined organic layer was dried over Na₂SO₄, filtered and concentrated. The crude reaction mixture was purified by chromatography (20/80

CH₂Cl₂/hexane) to afford the desired product **50** (140 mg, 0.52 mmol, 51%) as a colourless oil. This product was used directly in the next step. ¹³C NMR data were not recorded as extended NS was needed to provide a good S/N ratio for pentyl carbon signals (*see* **114** for its pentyl carbon signals and multiplicity). IR (neat) 3095 (w), 3071 (w), 3034 (w), 2943 (w), 2878 (m), 1411 (m), 1277 (m), 1234 (s), 1167 (s), 1099 (s) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.28 - 7.41 (5H, m, H_{Ar}), 4.53 (2H, s, PhC*H*₂), 3.69 (2H, t, *J* 6.2 Hz, H-1), 2.86 (2H, tq, *J* 14.9, 10.3 Hz, H-4), 2.30 (2H, tt, *J* 15.9, 6.1 Hz, H-2) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.8 (3F, tt, *J* 10.3, 9.2 Hz, C*F*₃), -94.9 - -94.6 (2F, m, C*F*₂) ppm; ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -61.6 (3F, t, *J* 9.1 Hz, C*F*₃), -94.5 (2F, q, *J* 9.2 Hz, C*F*₂) ppm; HRMS (EI) for C₁₂H₁₃F₅O [M⁺⁺]: calcd, 268.08811; found, 268.08921.

4,4,5-Trifluoropentyl tosylate (51a): Using general procedure A with 4,4,5-trifluoropentan-1-ol **I6** (98 mg) in CH₂Cl₂ (3.5 mL), **51a** was obtained as a colourless oil (121 mg, 59%). 1 H NMR (400 MHz, CDCl₃) δ 7.82–7.79 (m, 2H, H_{Ar}), 7.37 (d, J = 8.1 Hz, 2H, H_{Ar}), 4.41 (dt, J = 46.7, 11.1 Hz, 2H, H5), 4.11 (t, J = 6.1 Hz, 2H, H1), 2.47 (s, 3H, PhCH₃), 2.09–1.88 (m, 4H, H2 and H3) ppm; 13 C{ 1 H} NMR (101 MHz, CDCl₃) δ 145.0 (C_{Ar}), 132.8 (C_{Ar}), 129.9 (CH_{Ar}), 127.9 (CH_{Ar}), 120.3 (td, J = 242.5, 22.7 Hz, C9), 81.6 (dt, J = 178.6, 37.2 Hz, C5), 69.3 (C1), 29.3 (t, J = 23.8 Hz, C3), 21.6 (Me), 21.3 (t, J = 4.4 Hz, C2) ppm; 19 F NMR (376 MHz, CDCl₃) δ -234.3 (tt, J = 48.1, 15.6 Hz, 1F, F5), -110.4 (m, 2F, F4) ppm; 19 F{ 1 H} NMR (376 MHz, CDCl₃) δ -234.3 (t, J = 15.6 Hz, 1F, F5), -110.0 (d, J = 13.9 Hz, 2F, F4) ppm; HRMS (ESI⁺) for C₁₂H₁₅F₃NaO₃S [M + Na]⁺, calcd 319.0586; found 319.0591.

5,5,5-Trifluoropentyl tosylate (51b): Using general procedure A with 5,5,5-trifluoropentan-1-ol **I16** (1.00 g) in CH₂Cl₂ (25 mL), **51b** was obtained as a colourless oil (1.40 g, 67%). 1 H NMR (400 MHz, CDCl₃) δ 7.80 (d J = 8.0 Hz, 2H, H_{Ar}), 7.37 (dd, J = 8.6, 0.6, 2H, H_{Ar}), 4.05 (t, J = 6.1 Hz, 2H, H1), 2.46 (s, 3H, PhCH₃), 2.10–1.98 (m, 2H, H2 or H4), 1.77–1.71 (m, 2H, H2 or H4), 1.65–1.57 (m, 2H, H3) ppm; 13 C { 1 H} NMR (101 MHz, CDCl₃) δ 144.9 (C_{Ar}), 132.9

(C_{Ar}), 129.8 (CH_{Ar}), 127.6 (CH_{Ar}), 126.9 (q, J = 281.7 Hz, C5), 69.5 (C1), 33.0 (q, J = 29.1 Hz, C4), 27.8 (C2), 21.9 (Me), 18.2 (q, J = 2.9 Hz, C3) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -66.6 (t, J = 11.3 Hz, 3F) ppm; ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -66.6 (s, 3F) ppm; HRMS (ESI⁺) for C₁₂H₁₅F₃NaO₃S [M + Na]⁺, calcd 319.0586; found 319.0593.

4,4,4-Trifluorobutyl tosylate (51c): Using general procedure A with 4,4,4-trifluorobutan-1-ol **G14** (1.00 g) in CH₂Cl₂ (25 mL), **51c** was obtained as a colourless oil (1.62 g, 74%). 1 H NMR (400 MHz, CDCl₃) δ 7.82–7.78 (m, 2H, H_{Ar}), 7.37 (d, J = 8.0 Hz, 2H, H_{Ar}), 4.09 (t, J = 6.1 Hz, 2H, H1), 2.47 (s, 3H, PhCH₃), 2.23–2.11 (m, 2H, H2 or H3), 1.96-1.89 (m, 2H, H3 or H2) ppm; 13 C{ 1 H} NMR (101 MHz, CDCl₃) δ 145.1 (C_{Ar}), 132.7 (C_{Ar}), 130.0 (CH_{Ar}), 127.9 (CH_{Ar}), 126.6 (q, J = 275.8 Hz, C4), 68.3 (C1), 30.1 (q, J = 29.8 Hz, C3), 21.9 (q, J = 2.9 Hz, C2), 21.6 (C5) ppm; 19 F NMR (376 MHz, CDCl₃) δ -66.7 (t, J = 10.4 Hz, 3F) ppm; 19 F{ 1 H} NMR (376 MHz, CDCl₃) δ -66.7 (s, 3F) ppm; HRMS (ESI⁺) for C₁₁H₁₃F₃NaO₃S [M + Na]⁺, calcd 305.0430; found 305.0433.

3,4-Difluorobutan-1-ol (G2): To a solution of **29** (0.59 g, 1 equiv) in Et₂O (20 mL), NaOMe (25% in MeOH, 1.26 mL, 2 equiv) was added. After 16 h, the reaction was quenched with aq. HCl (2M) until pH 7. The aqueous layer was extracted with CH₂Cl₂ (3×10 mL) and the organic phases were collected, washed with brine, and dried over MgSO₄. The crude was carefully concentrated at 750 mbar/30 °C and was purified by column chromatography (1:9 CH₂Cl₂/Et₂O) to afford **G2** as a pale-yellow oil (81 mg, 27%). ¹H NMR (400 MHz, CDCl₃) δ 4.93 (ddddddd, J = 48.9, 22.0, 8.9, 5.1, 4.2, 2.3 Hz, 1H, H3), 4.72–4.38 (m, 2H, H4), 3.85 (br. t, J = 4.9 Hz, 2H, H1), 2.08–1.77 (m, 2H, H2), 1.59 (br. s, 1H, OH) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 89.6 (dd, J = 172.4, 19.8 Hz, C3), 84.2 (dd, J = 173.9, 22.0 Hz, C4), 58.3 (d, J = 5.1 Hz, C1), 32.8 (dd, J = 20.5, 6.6 Hz, C2) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -191.6–192.2 (m, 1F, F3), -230.1 (tdd, J = 47.6, 21.9, 13.0 Hz, 1F, F4) ppm; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -191.9 (d, J = 13.0 Hz, 1F, F3), -230.1 (d, J = 13.0 Hz, 1F, F4) ppm; IR (neat) 3371

(br. w), 2931 (m), 2853 (w), 1152 (m), 1072 (s), 1045 (s), 688 (s) cm⁻¹; HRMS (CI) for $C_4H_9F_2O[M+H]^+$, calculated 111.06160, found 111.06206.

2-Fluorobutanol (**G5**): To a solution of **3** (0.98 g, 1 equiv) in Et₂O (15 mL), NaOMe (25% in MeOH, 2.28 mL, 2 equiv) was added. After 18 h, the reaction was quenched with aq. HCl (2M) until pH 7. The aqueous layer was extracted with CH₂Cl₂ (3×20 mL) and the organic phases were collected washed with brine and dried over MgSO₄. The crude was carefully concentrated at 750 mbar/30 °C and was purified by column chromatography (CH₂Cl₂) to afford **G5** as a pale-yellow oil (297 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ 4.51 (ddddd, J = 49.4, 7.93, 6.2, 5.1, 3.0 Hz, 1H, H2), 3.80–3.58 (m, 2H, H1), 1.94 (br. s, 1H), 1.80–1.49 (m, 2H, H3), 1.00 (t, J = 7.5 Hz, 3H, H4) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 95.9 (d, J = 167.3 Hz, C2), 64.7 (d, J = 22.0 Hz, C1), 24.1 (d, J = 20.5 Hz, C3), 9.2 (d, J = 5.9 Hz, C4) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -190.7 (dtdd, J = 49.4, 27.7, 23.4, 16.5 Hz, 1F) ppm; ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -190.7 (s, 1F) ppm; IR (neat) 3346 (br. w), 2972 (w), 2884 (w), 1464 (w), 1058 (s), 843 (s) cm⁻¹; HRMS (CI) for C₄H₁₀FO [M+H]⁺, calculated 93.07102, found 93.07046.

3,3,4-Trifluorobutan-1-ol (G6): To a solution of **31** (500 mg, 1 equiv) in Et₂O (15 mL), NaOMe (25% in MeOH, 0.99 mL, 2 equiv) was added dropwise. After 16 h, the reaction was quenched with aq. HCl (1M) until pH 7. The aqueous layer was extracted with CH₂Cl₂ (3×10 mL) and the organic phases were collected and dried over MgSO₄. The crude was carefully concentrated at 750 mbar/30 °C and was then purified by column chromatography (CH₂Cl₂) to afford **G6** as a pale-yellow oil (171 mg, 62%). ¹H NMR (400 MHz, CDCl₃) δ 4.52 (dt, J = 46.6, 11.9 Hz, 2H, H4), 3.92 (t, J = 5.9 Hz, 2H, H1), 2.26 (ttd, J = 16.7, 6.0, 2.3 Hz, 2H, H2), 1.64 (br. s, 1H, OH) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 120.7 (td, J = 242.3, 22.4 Hz, C3), 81.8 (dt, J = 178.1, 35.7 Hz, C4), 56.4 (t, J = 5.9 Hz, C1), 36.0 (t, J = 22.7 Hz, C2) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -108.1 (tdt, J = 16.7, 15.4, 11.9 Hz, 2F, F3), -234.6 (ttt, J = 46.2, 15.4, 2.3 Hz, 1F, F4) ppm; ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -108.1 (d, J = 13.9 Hz, 2F, F3),

-234.6 (t, J = 13.9 Hz, 1F, F4) ppm; IR (neat) 3365 (br. w), 2974 (w), 2905 (w), 1105 (m), 1049 (s), 917 (s) cm⁻¹; HRMS (CI) for C₄H₈F₃O [M+H]⁺, calculated 129.05277, found 129.0521.

4,4-Difluorobutan-1-ol (G7): To a solution of **11**²² (3.00 g, 1 equiv) in Et₂O (30 mL), NaOMe (25% w/w in MeOH, 6.41 mL, 2 equiv) was added dropwise. After 4 h, the reaction was neutralised with aq. HCl (2M, 20 mL) and the aqueous phase was washed with CH₂Cl₂ (3×30 mL). The combined organic phases were dried (MgSO₄), filtered and concentrated (750 mbar, 30 °C). The crude oil was purified by column chromatography (CH₂Cl₂) to **G7** as a pale-yellow oil (1.24 g, 80%). ¹H NMR (400 MHz, CDCl₃) δ 5.89 (tt, J = 57.0, 4.0 Hz, 1H H4), 3.72 (td, J = 5.6, 4.9, 2H, H1), 2.11–1.86 (m, 2H, H3), 1.81–1.66 (m, 2H, H2), 1.41 (br. t, J = 4.9, 1H, OH) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 117.2 (t, J = 238.8 Hz, C4), 61.9 (C1), 30.7 (t, J = 21.3 Hz, C3), 25.1 (t, J = 5.1 Hz, C2) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.2 (dt, J = 57.2, 18.2 Hz, 2F) ppm; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -116.2 (s, 2F) ppm; IR (neat) 3300 (br, w), 2950 (w), 2900 (w), 980 (s), 1010 (s), 1060 (s), 1110 (s) cm⁻¹; HRMS (EI) for C₄H₈F₂O [M⁺], calculated 110.05377, found 110.05350.

3,4,4-Trifluorobutan-1-ol (G8): To a solution of **33** (0.35 g, 1 equiv) in Et₂O (15 mL), NaOMe (25% in MeOH, 0.69 mL, 2 equiv) was added. After 16 h, the reaction was quenched with aq. HCl (2M) until pH 7. The aqueous layer was extracted with CH₂Cl₂ (3×10 mL) and the organic phases were collected washed with brine and dried over MgSO₄. The crude was carefully concentrated at 750 mbar/30 °C and was purified by column chromatography (1:9 CH₂Cl₂/Et₂O) to afford **G8** as a pale-yellow oil (0.15 g, 79%). ¹H NMR (400 MHz, CDCl₃) δ 5.89 (tdd, J = 55.0, 6.1, 3.7 Hz, 1H, H4), 4.94–4.65 (m, 1H, H3), 3.95–3.80 (m, 2H, H1), 2.09–1.87 (m, 2H, H2), 1.53–1.44 (m, 1H, OH) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 113.6 (td, J = 243.9, 30.8 Hz, C4), 87.7 (dt, J = 175.7, 27.0 Hz, C3), 57.5 (d, J = 4.1 Hz, C1), 30.8 (dt, J = 20.5, 2.9 Hz, C2) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -130.1 (ddt, J = 296.5, 55.5, 10.4 Hz,

1F, F4'), -133.0 (ddt, J = 296.5, 55.5, 12.1 Hz, 1F, F4''), -204.2– -204.6 (m, 1F, F3) ppm; 19 F{ 1 H} NMR (376 MHz, CDCl₃) δ -130.1 (dd, J = 296.5, 12.1 Hz, 1F, F4'), -133.0 (dd, J = 296.5, 13.9 Hz, 1F, F4''), -204.4 (t, J = 13.0 Hz, 1F, F3) ppm; IR (neat) 3362 (br. w), 2971 (w), 2900 (w), 1152 (m), 1068 (s), 1042 (s), 968 (s) cm⁻¹; HRMS (CI) for C₄H₈F₃O [M+H]⁺, calculated 129.05218, found 129.05293.

2,4,4,4-Tetrafluorobutan-1-ol (G10) and **2,2,4,4,4-pentafluorobutan-1-ol** (G15): To a solution of **46** and **47** (0.6 g, 1 equiv) in THF (8 mL) was added a suspension of Pd/C 10% (300 mg) in THF (2 mL). The reaction mixture was degassed with argon and one balloon of hydrogen. The reaction mixture was stirred at room temperature under a hydrogen atmosphere for 5 h. The reaction was then filtered over Celite, which was then rinsed with CH₂Cl₂ (30 mL). The crude was carefully concentrated at 750 mbar/30 °C and was purified by column chromatography (9:1 CH₂Cl₂/pentane) to afford **G15** and **G10** as an inseparable mixture, a pale-yellow oil, in a 5.5:1 ratio respectively (225 mg, 61%). **IR** (neat) 3364 (br. w), 2953 (w), 2887 (w), 1389 (s), 1161 (s), 1076 (s), 890 (s) cm⁻¹.

Data for G10: ¹H NMR (400 MHz, CDCl₃) δ 4.91 (dsxt, J = 48.3, 3.9 Hz, 1H, H2), 3.97–3.63 (m, 2H, H1), 2.72–2.38 (m, 2H, H3), 1.81 (br. t, J = 6.6 Hz, 1H, OH) ppm; ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 125.4 (qd, J = 276.3, 4.8 Hz, C4), 87.8 (dq, J = 172.9, 3.1 Hz, C2), 64.0 (d, J = 22.9 Hz, C1), 35.7 (qd, J = 29.3, 23.0 Hz, C3) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -64.3 (td, J = 10.6, 6.9 Hz, 3F), -191.0– -191.4 (m, 1F) ppm; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -64.3 (d, J = 6.9 Hz, 3F), -191.2 (q, J = 6.9 Hz, 1F) ppm; HRMS (CI) for C₄H₅F₄O [M-H]⁻, calculated 145.02710, found 145.02606.

Data for G15: ¹H NMR (400 MHz, CDCl₃) δ 3.86 (td, J = 12.5, 7.1 Hz, 2H, H1), 2.89 (tq, J = 14.5, 10.2 Hz, 2H, H3), 1.93 (br. t, J = 7.0 Hz, 1H, OH) ppm; ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 123.6 (qt, J = 276.6, 6.0 Hz, C4), 119.1 (tq, J = 244.5, 2.9 Hz, C2), 63.6 (tq, J = 31.5, 1.4 Hz, C1), 37.4 (qt, J = 30.3, 26.7 Hz, C3) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.1 (quin, J = 9.5

Hz, 3F), -106.2 (ttq, J = 14.5, 12.6, 9.3 Hz, 2F) ppm; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -62.1 (t, J = 8.7 Hz, 3F), -106.2 (q, J = 9.2 Hz, 2F) ppm; HRMS (CI) for C₄H₆F₅O [M+H]⁺, calculated 165.03333, found 165.03153.

3,3,4,4-Tetrafluorobutan-1-ol (G11): To a solution of 3,3,4,4-tetrafluoro-4-bromobutan-1-ol 35 (3.00 g, 1 equiv) and AIBN (219 mg, 0.1 equiv) in degassed toluene (15 mL) was added Bu₃SnH (5.4 mL, 1.5 equiv). The reaction mixture was refluxed for 16 h, before purification by column chromatography (100:0 to 0:100, pentane/ CH₂Cl₂). The resulting crude was carefully concentrated 750 mbar/30 °C and purified again by column chromatography (10:0 to 8:2, CH₂Cl₂, Et₂O) on a silica gel/K₂CO₃ mix¹⁰² (9:1). The combined fractions were concentrated at 750 mbar/30 °C, which was combined with the concentrate from a second reaction on a 2 g scale. Final careful removal of residual solvent using a Kugelrohr apparatus at 50 °C at atmospheric pressure, G11 was obtained as a colorless oil (1.47 g, 45%). ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 5.83 \text{ (tt, } J = 53.8, 3.5 \text{ Hz}, 1\text{H}, \text{H4}), 3.95 \text{ (q, } J = 5.9 \text{ Hz}, 2\text{H}, \text{H1}), 2.29 \text{ (ttt, } J = 5.9 \text{ Hz}, 2\text{H}, 1\text{H}), 2.29 \text{ (ttt, } J = 5.9 \text{ Hz}, 2\text{ Hz}, 2\text{ (ttt, } J = 5.9 \text{ (ttt$ J = 17.5, 6.2, 1.5 Hz, 2H, H2), 1.65 (t, J = 5.1 Hz, 1H, OH) ppm; ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 117.7 (tt, J = 246.9, 28.9 Hz, C3), 110.1 (tt, J = 248.9, 39.3 Hz, C4), 55.7 (t, J = 5.5 Hz, C1), 33.2 (t, J = 21.7 Hz, C2) ppm; ¹⁹F NMR (471 MHz, CDCl₃) δ -115.8 (tdt, J = 17.5, 3.7, 1.8 Hz, 2F, F3), -136.2 (ddt, J = 53.8, 3.5, 1.8 Hz, 2F, F4) ppm; $^{19}F\{^{1}H\}$ NMR (471 MHz, CDCl₃) δ -115.7 (t, J = 1.8 Hz, 2F, F3), -136.2 (t, J = 1.8 Hz, 2F, F4) ppm; IR (neat) 3370 (br. w), 2982 (w), 2908 (w), 1091 (s), 1047 (s), 986 (s) cm⁻¹; HRMS (EI) for C₄H₆F₄O [M⁺], calculated 146.03493, found 146.03463.

2,2-Difluorobutan-1-ol (G12): A solution of NFSI (21.88 g, 2.5 equiv) and proline (1.27 g, 0.4 equiv) in THF (45 mL) was stirred for 15 min before the addition of a solution of butanal **16** (2.50 mL, 1 equiv) in THF (5 mL). After 16 h, Et₂O (50 mL) was added and the reaction mixture was cooled to -78 °C. After 30 min the reaction mixture was filtered through a silica plug, eluting with cold Et₂O (100 mL). The organic mixture was washed with sat. aq. NaHCO₃

(3×100 mL), brine and dried over MgSO₄ and filtered. NaBH₄ (10.48 g, 10 equiv) was then added portionwise to the resultant crude solution. After 16 h, the reaction mixture was cooled to 0 °C and quenched with sat. aq. NH₄Cl (300 mL), stirring vigorously for 30 min. The layers were then separated, and the aqueous phase was extracted with Et₂O (3×75 mL). The combined organic phases were washed with NaHCO₃ (3×100 mL), brine and dried over MgSO₄. The crude was carefully concentrated at 750 mbar/30 °C, and then concentrated further by short path distillation (to remove THF), before purification by column chromatography (CH₂Cl₂ to 9:1 CH₂Cl₂/Et₂O) to yield **G12** as a yellow oil (0.86 g, 28%). ¹H NMR (400 MHz, CDCl₃) δ 3.75 (td, J = 12.8, 6.8 Hz, 2H, H1), 1.96 (tq, J = 17.1, 7.5 Hz, 2H, H3), 1.84-1.90 (m, 1H, OH), 1.05 (t, J = 7.5 Hz, 3H, H4) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 123.5 (t, J = 241.4 Hz, C2), 63.8 (t, J = 31.9 Hz, C1), 26.5 (t, J = 24.6 Hz, C3), 6.1 (t, J = 5.5 Hz, C4) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -111.0 (tt, J = 17.3, 12.1 Hz, 2F) ppm; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -111.0 (s, 2F) ppm; IR (neat) 3337 (br. w), 2987 (w), 2893 (w), 1072 (s), 1050 (m), 903 (s) cm⁻¹; HRMS (CI) for C₄H₇F₂O [M-H]⁻, calculated 109.4595, found 109.04886.

2-((3-(4,4,4-Trifluorobutoxy)phenethyl)amino)-*N*,*N*-**dimethylacetamide·HCl (H5):** Using general procedure B with **52** (1.1 equiv) and **51c** (67 mg) in DMF (2 mL), **53c** was obtained as a colourless gum (46 mg, 49%). According to general procedure C, N-Boc cleavage of **53c** (51 mg, 1 equiv) yielded **H5** as an off-white solid (36 mg, quantitative). ¹H NMR (500 MHz, CDCl₃) δ 9.61 (br s, 2H, NH₂+), 7.23 (t, J = 8.0 Hz, 1H, H4), 6.89 (d, J = 7.6 Hz, 1H, H5), 6.86 (t, J = 2.1 Hz, 1H, H1), 6.78 (dd, J = 8.2, 1.8 Hz, 1H, H3), 4.00 (t, J = 6.0 Hz, 2H, H13), 3.98 (br s, 2H, H9), 3.37 (m, 2H, H8), 3.28 (m, 2H, H7), 2.97 (s, 3H, H11 or H12), 2.96 (s, 3H, H11 or H12), 2.31 (m, 2H, H15), 2.03 (m, 2H, H14) ppm (see SI for atom numbering); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 164.3 (C10), 159.0 (C2), 137.8 (C6), 130.1 (C4), 127.1 (q, J = 278.7 Hz, C16), 121.3 (C5), 114.9 (C1), 113.5 (C3), 66.0 (C13), 49.8 (C8), 47.9 (C9), 36.2 (C11 or C12), 35.9 (C11 or C12), 32.5 (C7), 30.7 (q, J = 29.2 Hz, C15), 22.2 (q, J = 2.9 Hz,

C14) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -66.6 (t, J = 10.4 Hz, 3F) ppm; ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -66.6 (s, 3F) ppm; IR (neat): 2925 (br m), 2757 (br m), 1671 (s), 1241 (s), 1151 (m) cm⁻¹; HRMS (ESI⁺) for C₁₆H₂₄F₃N₂O₂ [M + H]⁺, calcd 333.1784; found 333.1789 (-1.3 ppm error), for C₁₆H₂₄F₃N₂NaO₂ [M + Na]⁺, calcd 355.1604; found 355.1601.

4,5-Difluoropentan-1-ol (12): To a solution of **30** (0.58 g, 1 equiv) in Et₂O (10 mL), NaOMe (25% in MeOH, 0.86 mL, 1.5 equiv) was added at 0 °C. After 6 h, the reaction was quenched with aq. HCl (2M) until pH 7. The aqueous layer was extracted with CH₂Cl₂ (3×10 mL) and the organic phases were collected washed with brine and dried over MgSO₄. The crude was carefully concentrated at 750 mbar/30 °C and was purified by column chromatography (1:9 Et₂O/CH₂Cl₂) to afford **12** as a colorless oil (0.26 g, 83%). ¹H NMR (400 MHz, CDCl₃) δ 4.88–4.64 (m, a doublet with 49.2 Hz can be observed, 1H, H4), 4.65–4.35 (m, 2H, H5), 3.78–3.65 (m, 2H, H1), 1.91–1.64 (m, 4H, H2 + H3), 1.44 (br. s, 1H, OH) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 91.7 (dd, J = 172.8, 19.4 Hz, C4), 84.0 (dd, J = 173.9, 23.5 Hz, C5), 62.2 (C1), 27.9 (d, J = 4.4 Hz, C2), 26.6 (dd, J = 23.1, 6.6 Hz, C3) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -189.3 – 189.9 (m, 1F, F4), -230.4 (tdd, J = 47.5, 20.4, 13.9 Hz, 1F, F5) ppm; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -189.4 (d, J = 13.9 Hz, 1F, F4), -230.2 (d, J = 13.9 Hz, 1F, F5) ppm; IR (neat) 3349 (br. w), 2955 (w), 2881 (w), 1456 (w), 1038 (s), 916 (m) cm⁻¹; HRMS (CI) for C₅H₁₁F₂O [M+H]⁺, calculated 125.07725, found 125.07576.

4,5,5-Trifluoropentan-1-ol (I5): To a solution of **34** (0.31 g, 1 equiv) in Et₂O (5 mL), NaOMe (25% in MeOH, 0.58 mL, 2 equiv) was added at 0 °C. After 16 h, the reaction was quenched with aq. HCl (2M) until pH 7. The aqueous layer was extracted with CH₂Cl₂ (3×5 mL) and the organic phases were collected washed with brine and dried over MgSO₄. The crude was carefully concentrated at 750 mbar/30 °C and was purified by column chromatography (CH₂Cl₂) to afford **I5** as a colorless oil (0.16 g, 88%). ¹H NMR (400 MHz, CDCl₃) δ 5.80 (tdd, J = 54.9, 5.8, 3.8 Hz, 1H, H5), 4.72–4.45 (m, 1H, H4), 3.82–3.64 (m, 2H, 2H, H1), 2.04–1.66

(m, 4H, H2 + H3), 1.43 (br. s, 1H, OH) ppm; 13 C{ 1 H} NMR (101 MHz, CDCl₃) δ 113.6 (td, J = 244.3, 31.5 Hz, C5), 90.3 (dt, J = 176.1, 26.8 Hz, C4), 62.1 (C1), 27.3 (d, J = 2.9 Hz, C2), 24.7 (dt, J = 20.5, 2.9 Hz, C3) ppm; 19 F NMR (376 MHz, CDCl₃) δ -129.7 (dddd, J = 296.5, 55.5, 12.1, 9.5 Hz, 1F, F5), -132.8 (dddd, J = 296.5, 54.6, 13.0, 11.3 Hz, 1F, F5'), -201.3—201.8 (m, 1F, F4) ppm; 19 F{ 1 H} NMR (376 MHz, CDCl₃) δ -129.7 (dd, J = 296.5, 12.1 Hz, 1F, F5), -132.8 (dd, J = 296.5, 13.9 Hz, 1F, F5'), -201.5 (t, J = 12.1 Hz, 1F, F4) ppm; IR (neat) 3349 (br. w), 2960 (w), 2884 (w), 1152 (m), 1058 (s), 980 (w) cm $^{-1}$; HRMS (CI) for C₅H₁₀F₃O [M+H]⁺, calculated 143.06783, found 143.06665.

4,4,5-Trifluoropentan-1-ol (16): To a solution of **32** (0.40 g, 1 equiv) in Et₂O (5 mL), NaOMe (25% in MeOH, 0.55 mL, 1.5 equiv) was added. After 16 h, the reaction was quenched with aq. HCl (2M) until pH 7. The aqueous layer was extracted with CH₂Cl₂ (3×5 mL) and the organic phases were collected, washed with brine and dried over MgSO₄. The crude was carefully concentrated at 750 mbar/30 °C and was purified by column chromatography (1:9 Et₂O/CH₂Cl₂) to afford **16** as a pale-yellow oil (202 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 4.46 (dt, J = 46.5, 11.5 Hz, 2H, H5), 3.74 (t, J = 6.2 Hz, 2H, H1), 2.18–1.98 (m, 2H, H3), 1.88–1.75 (m, 2H, H2), 1.33 (br. s, 1H, OH) ppm; 13 C{ 1 H} NMR (101 MHz, CDCl₃) δ 120.9 (td, J = 242.1, 22.7 Hz, C4), 81.6 (dt, J = 178.3, 37.0 Hz, C5), 61.9 (C1), 29.6 (t, J = 23.8 Hz, C3), 24.6 (t, J = 4.0 Hz, C2) ppm; 19 F NMR (376 MHz, CDCl₃) δ -109.5 (tdt, J = 17.3, 15.2, 11.5 Hz, 2F, F4), -234.5 (ttt, J = 46.0, 15.2, 2.6 Hz, 1F, F5) ppm; 19 F{ 1 H} NMR (376 MHz, CDCl₃) δ -109.5 (d, J = 15.2 Hz, 2F, F4), -234.5 (tt, J = 15.2 Hz, 1F, F5) ppm; IR (neat) 3363 (br. w), 2970 (w), 2885 (w), 1197 (m), 1054 (s), 1017 (s), 930 (s) cm⁻¹; HRMS (CI) for C₅H₁₀F₃O [M+H]⁺, calculated 143.06783, found 143.06737.

5,5-Difluoropentan-1-ol (I7): To a solution of **12** (3.19 g, 1 equiv) in Et₂O (30 mL), NaOMe (25% w/w in MeOH, 6.60 mL, 2 equiv). After 18 h, the reaction was quenched with aq. HCl (1M) until pH 7. The aqueous layer was extracted with CH₂Cl₂ (3×30 mL) and the organic

phases were collected and dried over MgSO₄. The crude was carefully concentrated at 750 mbar/30 °C and was purified by column chromatography (CH₂Cl₂ to 9:1 CH₂Cl₂/Et₂O) to afford **I7** as a pale-yellow oil (1.50 g, 86%). ¹H NMR (400 MHz, CDCl₃) δ 5.82 (tt, J = 56.9, 4.4 Hz, 1H, H5), 3.68 (t, J = 6.5 Hz, 2 H, H1), 1.95–1.80 (m, 2H, H4), 1.68–1.52(m, 4H, H2 + H3), 1.34 (br. s, 1H, OH) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 117.2 (t, J = 238.8 C5), 62.4 (C1), 33.7 (t, J = 20.91 Hz, C4), 32.0 (C2), 18.5 (t, J = 5.5 Hz, C3) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.2 (dt, J = 55.9, 18.0 Hz, 2F) ppm; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -116.2 (s, 2F) ppm; IR (neat) 3333 (br. w), 2940 (w), 2873 (w), 1404 (m), 1121 (s), 1087 (s), 994 (s) cm⁻¹; HRMS (EI) for C₅H₁₀F₂O [M⁺], calculated 124.06942, found 124.06616.

3-Fluoropentan-1-ol (19): To a solution of **6** (0.70 g, 1 equiv) in Et₂O (20 mL) was added a suspension of Pd/C 10 wt. % (300 mg) in Et₂O (10 mL). The reaction mixture was degassed with nitrogen and one balloon of hydrogen. The reaction mixture was stirred at room temperature under a hydrogen atmosphere. After 16 h, the reaction was then filtered over Celite, which was then rinsed with CH₂Cl₂ (30 mL). The crude was carefully concentrated at 750 mbar/30 °C and purified by column chromatography (9:1 CH₂Cl₂/Et₂O) to afford **19** as a colorless oil (0.33 g, 87%). ¹H NMR (400 MHz, CDCl₃) δ 4.79–4.53 (m, a doublet with 49.2 Hz can be observed, 1H, H3), 3.82 (t, J = 5.8 Hz, 2H, H1), 1.99–1.48 (m, 5H, H2 + H4 + OH), 1.00 (t, J = 7.5 Hz, 3H, H5) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 93.8 (d, J = 165.8 Hz, C3), 59.5 (d, J = 3.7 Hz, C1), 37.4 (d, J = 20.5 Hz, C2), 28.3 (d, J = 20.5 Hz, C4), 9.3 (d, J = 6.6 Hz, C5) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -183.5 – -184.0 (m, 1F) ppm; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -183.7 (s, 1F) ppm; IR (neat) 3341 (br. w), 2969 (m), 2884 (m), 1463 (m), 1056 (s), 927 (s) cm⁻¹; HRMS (CI) for C₅H₁₂FO [M+H]⁺, calculated 107.08667, found 107.08630.

3,5,5,5-Tetrafluoropentan-1-ol (I10): To a solution of **44** (0.90 g, 1 equiv) in CH₂Cl₂ (4.4 mL) and MeOH (2.2 mL), *p*-TsOH•H₂O (207 mg, 0.05 equiv) was added. After 16 h, the

reaction was quenched with sat. aq NaHCO₃ (5 mL). The aqueous layer was extracted with CH₂Cl₂ (3×5 mL) and the organic phases were collected washed with brine and dried over Na₂SO₄. The crude was carefully concentrated at 750 mbar/30 °C and was purified by column chromatography (CH₂Cl₂) to afford **I10** as a colorless oil (298 mg, 83%). ¹H NMR (400 MHz, CDCl₃) δ 5.07 (dtt, J = 49.0, 8.5, 3.7 Hz, 1H, H3), 3.86 (dt, J = 6.8, 5.0 Hz, 2H, H1), 2.69–2.31 (m, 2H, H4), 2.09–1.79 (m, 2H, H2), 1.47 (td, J = 5.0, 0.7 Hz, 1H, OH) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 125.4 (qd, J = 276.6, 2.9 Hz, C5), 85.5 (dq, J = 171.3, 3.3 Hz, C3), 58.2 (d, J = 4.4 Hz, C1), 39.5 (qd, J = 28.6, 22.7 Hz, C4), 37.4 (d, J = 20.5 Hz, C2) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -64.3 (td, J = 10.4, 7.4 Hz, 3F, F5), -184.3 – -184.8 (m, 1F, F3) ppm; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -64.3 (d, J = 7.4 Hz, 3F, F5), -184.5 (q, J = 7.4 Hz, 1F, F3) ppm; IR (neat) 3364 (br. w), 2962 (w), 2898 (w), 1257 (s), 1151 (s), 1130 (s), 1053 (s) cm⁻¹; HRMS (CI) for C₅H₈F₄O [M+H]⁺, calculated 161.05840, found 161.05551.

3,3-Difluoropentan-1-ol (I12): To a solution of **13** (0.64 g, 1 equiv) in Et₂O (20 mL) was added a suspension of Pd/C 10% (300 mg) in Et₂O (10 mL). The reaction mixture was degassed with nitrogen and one balloon of hydrogen. The reaction mixture was stirred at room temperature under a hydrogen atmosphere. After 16 h, the reaction was then filtered over Celite, which was then rinsed with CH₂Cl₂ (30 mL). The crude was carefully concentrated at 750 mbar/30 °C and was purified by column chromatography (9:1 CH₂Cl₂/Et₂O) to afford **I12** as a colorless oil (0.32 g, 86%). ¹H NMR (400 MHz, CDCl₃) δ 3.89 (q, J = 5.9 Hz, 2H, H1), 2.14 (tt, J = 17.0, 6.2 Hz, 2H, H2), 1.91 (tq, J = 16.8, 7.5 Hz, 2H, H4), 1.61 (br. t, J = 7.1 Hz, 1H, OH), 1.04 (t, J = 7.5 Hz, 3H, H5) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 125.4 (t, J = 240.3 Hz, C3), 57.2 (t, J = 5.5 Hz, C1), 38.5 (t, J = 24.2 Hz, C2), 30.2 (t, J = 26.0 Hz, C4), 6.5 (t, J = 5.9 Hz, C5) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -99.5 (quin, J = 16.9 Hz, 2F) ppm; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -99.5 (s, 2F) ppm; IR (neat) 3351 (br. w), 2984 (m), 2893

(w), 1375 (m), 1144 (s), 1052 (s), 936 (s) cm⁻¹; HRMS (CI) for $C_5H_{11}F_2O$ [M+H]⁺, calculated 125.07725, found 125.07681.

3,3,5,5,5-Pentafluoropentan-1-ol (I14): To a solution of 50 (135 mg, 0.50 mmol) in Et₂O (10 mL) was added Pd/C (10 wt. % loading palladium on carbon, 300 mg) under argon. The resulting reaction mixture was degassed with H₂, and stirred under H₂ at room temperature for 2 d. Upon completion as indicated by TLC analysis, the reaction mixture was loaded directly onto a column for purification (100% pentane – 50/50 CH₂Cl₂/pentane – 10/90 Et₂O/CH₂Cl₂) to afford the desired product I14 in solution, which was concentrated at 700 mbar/35 °C to ca. 2 mL and further dried by slow evaporation at atmospheric pressure to obtain I14 (50 mg, 56%) as a colourless oil. IR (neat) 3383 (br. m), 2964 (m), 2930 (m), 2860 (w), 1280 (m), 1225 (s), 1167 (s), 1097 (s) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.93 (2H, q, *J* 5.8 Hz, H-1), 2.88 (2H, tq, *J* 14.6, 10.1 Hz, H-4), 2.27 (2H, tt, *J* 16.8, 6.0 Hz, H-2), 1.51 (1H, t, *J* 5.4 Hz, -O*H*) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 123.6 (qt, *J* 276.9, 6.2 Hz, C-5), 120.4 (tq, *J* 243.2, 3.3 Hz, C-3), 56.5 (t, *J* 6.1 Hz, C-1), 41.2 (qt, *J* 29.3, 27.9 Hz, C-4), 38.9 (tq, *J* 23.5, 1.5 Hz, C-2) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.9 (3F, tt, *J* 9.7, 9.2 Hz, C*F*₃), -94.8 - -94.4 (2F, m, C*F*₂) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.9 (3F, t, *J* 9.7, 9.2 Hz, C*F*₃), -94.5 (2F, q, *J* 9.2 Hz, C*F*₂) ppm; HRMS (CI) for C₅H₈F₅O (M + H)⁺: calcd, 179.04898; found, 179.05001.

4,5,5,5-Tetrafluoropentan-1-ol (**I15**): To a solution of 1-benzyloxy-4,5,5,5-tetrafluoropentane **38** (660 mg, 2.64 mmol) in Et₂O (30 mL) was added Pd/C (10 wt. % loading palladium on carbon, 350 mg) under argon. The resulting reaction mixture was degassed with H₂, and stirred under H₂ at room temperature overnight. Upon completion as indicated by TLC analysis, the reaction mixture was loaded directly onto a column for purification (50/50 CH₂Cl₂/pentane – 10/90 Et₂O/CH₂Cl₂) to afford the desired product **I15** in solution, which was concentrated at 700 mbar/35 °C to ca. 2 mL and further dried by slow evaporation at atmospheric pressure to obtain **I15** (313 mg, 74%) as a colourless oil. IR (neat) 3092 (w), 3065

(w), 3031 (w), 2940 (m), 2869 (m), 1457 (m), 1366 (m), 1283 (s), 1176 (s), 1155 (s), 1099 (s), 1026 (m), 983 (m) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.59–4.83 (1H, m, H-4, a doublet with J 47.0 Hz was observed), 3.63–3.83 (2H, m, H-1 + H-1'), 1.61–2.02 (5H, m, H-3 + H-3' + H-2 + H-2' + OH) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 122.8 (qd, J 280.8, 26.0 Hz, C-5), 88.5 (dq, J 183.4, 33.9 Hz, C-4), 61.8 (s, C-1), 27.1 (d, J 2.6 Hz, C-2), 24.8 (dq, J 20.5, 1.6 Hz, C-3) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -80.1 (3F, dd, J 11.3, 6.1 Hz, CF₃), -201.9– -201.5 (1F, m, CHF) ppm; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -79.9 (3F, d, J 11.3 Hz, CF₃), -201.5 (1F, q, J 11.3 Hz, CHF) ppm; HRMS (CI) for C₅H₉F₄O [M + H]⁺: calcd 161.05840; found, 161.05772.

2,2-Difluoropentan-1-ol (I17): A solution of NFSI (18.31 g, 2.5 equiv) and proline (1.07 g, 0.4 equiv) in THF (45 mL) was stirred for 15 min before the addition of a solution of pentanal 18 (2.47 mL, 1 equiv) in THF (5 mL). After 16 h, Et₂O (50 mL) was added and the reaction mixture was cooled to -78 °C. After 30 min the reaction mixture was filtered through a silica plug, eluting with cold Et₂O (100 mL). The organic mixture was washed with sat. aq. NaHCO₃ (3×100 mL), brine and dried over MgSO₄ and filtered. NaBH₄ (10.48 g, 10 equiv) was then added portionwise to the resultant crude solution. After 16 h, the reaction mixture was cooled to 0 °C and quenched with sat. aq. NH₄Cl (300 mL), stirring vigorously for 30 min. The layers were then separated, and the aqueous phase was extracted with Et₂O (3×75 mL). The combined organic phases were washed with NaHCO₃ (3×100 mL), brine and dried over MgSO₄. The crude was carefully concentrated at 750 mbar/30 °C, and then concentrated further by short path distillation (to remove THF), before purification by column chromatography (CH₂Cl₂ to 9:1 CH₂Cl₂/Et₂O) to yield **I17** as a yellow oil (0.95 g, 33%). ¹H NMR (400 MHz, CDCl₃) δ 3.74 (td, J = 12.8, 6.6 Hz, 2H, H1), 1.99-1.88 (m, 2H, H3), 1.81 (br. t, J = 6.7 Hz, 1H, OH), 1.54 (tq, J = 8.2, 7.5 Hz, 2H, H4), 0.99 (t, J = 7.4 Hz, 3H, H5) ppm; ${}^{13}C\{{}^{1}H\}$ NMR (101 MHz, CDCl₃) δ 123.2 (t, J = 241.4, C2), 64.1 (t, J = 31.9 Hz, C1), 35.3 (t, J = 23.8 Hz, C3), 15.3 (t,

J = 5.1 Hz, C4), 13.9 (C5) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -108.8 (tt, J = 17.3, 13.9 Hz, 2F) ppm; ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -108.9 (s, 2F) ppm; IR (neat) 3349 (br. w), 2968 (m), 2880 (w), 1164 (m), 1068 (s), 1010 (s) cm⁻¹; HRMS (CI) for C₅H₁₁F₂O [M+H]⁺, calculated 125.07772, found 125.07725.

5-Fluoropentan-2-ol (J2): To a stirred solution of DAST (2.50 mL, 2.5 equiv) in CH₂Cl₂ (3 mL), was added 8 (1.08 g, 1 equiv) dissolved in CH₂Cl₂ (3 mL) dropwise at -78 °C. The reaction was allowed to warm to room temperature and after 16 h, DAST (1 mL) was added at 0 °C. After 24 h, the reaction mixture was quenched with sat. aq. NaHCO₃ (60 mL) dropwise at 0 °C and left to stir for 15 min until evolution of CO₂ ceased. The aqueous was extracted with CH₂Cl₂ (3×40 mL) and the combined organic layers were dried over MgSO₄. The crude was carefully concentrated at 750 mbar/30 °C and was purified with column chromatography (1:9, Et₂O/pentane) to afford a slightly yellow solution (790 mg). Due to its presumed volatility, the product, 5-fluoropent-2-yl acetate 54, (containing elution solvents) was used directly for next step without complete removal of the solvent residue. (Selected characterization data: ¹H NMR (400 MHz, CDCl₃) δ 4.95 (sxt, J = 6.2 Hz, 1H, H2), 4.57–4.35 (m, a doublet with J = 47.1 was observed, 2H, H5), 2.04 (s, 3H, CH₃, Ac), 1.89–1.61 (m, 4H, H3 + H4), 1.25 (d, J = 6.2 Hz, 3H, H1) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -218.9 (tt, J =46.7, 24.3 Hz, 1F) ppm; ${}^{19}F\{{}^{1}H\}$ NMR (376 MHz, CDCl₃) δ -218.9 (s, 1F) ppm). To a stirred solution of 54 (593 mg, ~1 equiv) in Et₂O (5 mL) was added NaOMe (25% w/w in MeOH, 1.8 mL, ~2 equiv). After 1.5 h, the reaction was neutralized with aq. HCl (1 M) until 7 pH. The aqueous layer was extracted with CH₂Cl₂ (3×10 mL) and the combined organic layers were dried over MgSO₄. The crude was carefully concentrated at 750 mbar/30 °C and purified by column chromatography (1:9 Et₂O/CH₂Cl₂) to afford **J2** as a slightly yellow oil (110 mg, 19%, 2 steps). ¹H NMR (400 MHz, CDCl₃) δ 4.61–4.38 (m, a doublet with J = 47.3 was observed, 2H, H5), 3.87 (sxt, J = 6.2 Hz, 1H, H2), 1.98-1.67 (m, 2H, H4), 1.67-1.47 (m, 2H, H3), 1.34

(br. s, 1H, OH), 1.24 (d, J = 6.2 Hz, 3H, H1) ppm; $^{13}C\{^{1}H\}$ NMR (101 MHz, CDCl₃) δ 84.2 (d, J = 164.3 Hz, C5), 67.6 (C2), 34.8 (d, J = 5.1 Hz, C3), 26.8 (d, J = 19.8 Hz, C4), 23.6 (C1) ppm; ^{19}F NMR (376 MHz, CDCl₃) δ -218.2 (tt, J = 46.8, 26.0 Hz, 1F) ppm; $^{19}F\{^{1}H\}$ NMR (376 MHz, CDCl₃) δ -218.0 (s, 1F) ppm; IR (thin film, CDCl₃) 3486 (br. w), 2965 (w), 2893 (w), 1424 (s), 1371 (s), 1134 (s) cm⁻¹; HRMS (EI) for C₅H₁₁FO [M⁻⁺], calculated 106.07884, found 106.07791.

5,5-Difluoropentan-2-ol (J5): To a stirred solution of **9** (1.89 g, 1 equiv) in CH₂Cl₂ (50 mL) was added DAST (3.46 mL, 2 equiv) dropwise at 0 °C. The reaction was allowed to warm to room temperature and after 16 h, was quenched with sat. aq. NaHCO₃ until pH 7. The aqueous phase was extracted with CH₂Cl₂ (3×50 mL), dried over MgSO₄ and carefully concentrated at 750 mbar/30 °C. The crude was purified with column chromatography (1:19 to 1:9 Et₂O/pentane) to afford a colorless solution (1.60 g). Due to the presumed volatility of this fluorinated product, 55 (containing eluting solvents) was used directly for next step without complete removal of the solvent residue. (Selected characterization data: ¹H NMR (400 MHz, CDCl₃) δ 5.84 (tt, J = 56.7, 4.3 Hz, 1H, H5), 4.28 (sxt, J = 6.24 Hz, 1H, H2), 2.05 (s, 3H, CH₃, Ac), 2.00–1.79 (m, 2H, H4), 1.77–1.67 (m, 2H, H3), 1.25 (d, J = 6.24 Hz, 3H, H1) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.4 (dt, J = 57.2, 17.3 Hz, 2F) ppm; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -116.4 (s, 2F) ppm). To a stirred solution of 55 (1.60 g, ~1 equiv) in Et₂O (30 mL) was added NaOMe (25% w/w in MeOH, 4.40 mL, ~2 equiv). After 6 h, the reaction was neutralized with aq. HCl (1 M) until pH 7. The aqueous layer was extracted with CH₂Cl₂ (3×30 mL) and the combined organic layers were dried with MgSO₄. The crude was carefully concentrated at 750 mbar/30 °C and purified by column chromatography (CH₂Cl₂) to afford **J5** as a colorless oil (633 mg, 40%, 2 steps). ¹H NMR (400 MHz, CDCl₃) δ 5.88 (tt, J = 57.0, 4.3 Hz, 1H, H5), 3.87 (qtd, J = 6.1, 6.0, 4.7 Hz, 1H, H2), 2.16–1.79 (m, 2H, H4), 1.73–1.48 (m, 2H, H3), 1.38 (d, J = 4.6 Hz, 1H, OH), 1.24 (d, J = 6.1 Hz, 3H, H1) ppm; $^{13}C\{^{1}H\}$ NMR

(101 MHz, CDCl₃) δ 117.3 (t, J = 238.8 Hz, C5), 67.3 (C2), 31.2 (t, J = 4.8 Hz, C3), 30.5 (t, J = 21.3 Hz, C4), 23.7 (C1) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -115.7 (ddt, J = 279.2, 55.5, 17.3 Hz, 1F, F5'), -116.7 (ddt, J = 280.0, 57.2, 17.3 Hz, 1F, F5'') ppm; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -115.7 (d, J = 279.2 Hz, 1F, F5'), -116.7 (d, J = 280.0 Hz, 1F, F5'') ppm; IR (neat) 3346 (br. w), 2971 (w), 2936 (w), 2875 (w), 1120 (s), 1003 (s), 928 (m) cm⁻¹; HRMS (EI) for C₅H₁₀OF₂ [M⁺], calculated 124.06942, found 124.06995.

rac-(2S,3R)-3-Fluoropentan-2-ol (J7) and rac-(2S,3S)-3-fluoropentan-2-ol (J8): To a 100 mL two-neck round-bottom flask was added 2-pentanone (1.24 mL, 11.61 mmol, 1.0 equiv), Selectfluor (5.14 g, 14.51 mmol, 1.25 equiv), anhydrous DMF (30 mL) and acetic acid (0.066 mL, 1.16 mmol, 0.1 equiv) under argon. The reaction mixture was stirred at 75 °C overnight and then monitored by ¹H and ¹⁹F NMR analysis. Upon completion, the reaction mixture was cooled to room temperature and quenched with sat. aq. NaHCO₃ solution (100 mL), followed by extraction using Et₂O (3×100 mL). The combined organic layer was dried over Na₂SO₄, filtered and concentrated to ca. 4 mL (at 700 mbar/35 °C). To this solution (containing DMF and Et₂O) was added anhydrous Et₂O (30 mL) under argon, and cooled to -78 °C. NaBH₄ (1.32 g, 34.83 mmol) was slowly added at -78 °C. The reaction mixture was warmed to room temperature, followed by addition of 10 drops of EtOH. The reaction was then left at room temperature overnight. On the following day, the solvent of reaction mixture was taken out of the reaction flask, and filtered over a pad of silica gel (CH₂Cl₂ – 3/97 Et₂O/CH₂Cl₂). The filtrate was concentrated to ca. 2 mL (at 700 mbar/35 °C), and further dried by slow evaporation at atmospheric pressure to afford a mixture of the desired products J7 and J8 (50 mg, ~75% pure, ratio: J7:J8: ~1:1, calculated yield < 5% over 2 steps). Note: In ¹⁹F{¹H} NMR spectrum, impurities signals were not overlapped with the desired products signals. Therefore, logP measurement is still feasible. ¹H NMR (500 MHz, CDCl₃) δ 4.32 (1H, ddt, J 48.5, 9.4, 3.4 Hz, H-3 of **J7** or **J8**), 4.11 - 4.26 (1H, m, H-3 of **J8** or **J7**, a doublet with *J* 49.1 Hz was observed),

3.85 - 3.95 (1H, m, H-2 of **J7** or **J8**), 3.81 (1H, dquin, J 16.0, 6.3 Hz, H-2 of **J8** or **J7**), 2.07 (1H, br. s, -OH of **J7** or **J8**), 1.80 (1H, br. s, -OH of **J8** or **J7**), 1.56 - 1.76 (4H, m, H-4 and H-4' of **J7** and **J8**), 1.21 (3H, dd, J 6.5, 1.3 Hz, H-1 of **J7** or **J8**), 1.20 (3H, dd, J 6.5, 0.9 Hz, H-1 of **J8** or **J7**), 1.03 (3H, t, J7.4 Hz, H-5 of **J7** or **J8**), 1.02 (3H, t, J7.4 Hz, H-5 of **J8** or **J7**) ppm; ¹H{¹⁹F} NMR (500 MHz, CDCl₃) δ 4.32 (1H, dt, J 9.2, 3.7 Hz, H-3 of **J7** or **J8**), 4.19 (1H, dt, J 6.7, 5.6 Hz, H-3 of **J8** or **J7**), 3.86 - 3.94 (1H, m, H-2 of **J7** or **J8**), 3.81 (1H, quin, J 6.3 Hz, H-2 of **J8** or **J7**), 2.07 (1H, br. s, -OH of **J7** or **J8**), 1.80 (1H, br. s, -OH of **J8** or **J7**), 1.56 - 1.74 (4H, m, H-4 and H-4' of **J7** and **J8**), 1.21 (3H, d, J 6.5 Hz, H-1 of **J7** or **J8**), 1.20 (3H, d, J 6.5 Hz, H-1 of **J8** or **J7**), 1.03 (3H, t, J 7.4 Hz, H-5 of **J7** or **J8**), 1.02 (3H, t, J 7.4 Hz, H-5 of **J8** or **J7**) ppm; ${}^{13}C\{{}^{1}H\}$ NMR (126 MHz, CDCl₃) δ 99.0 (d, J 169.5 Hz, C-3 of **J8** or **J7**), 97.6 (d, J 170.5 Hz, C-3 of **J7** or **J8**), 69.0 (d, J 17.9 Hz, C-2 of **J8** or **J7**), 68.8 (d, J 20.0 Hz, C-2 of **J7** or **J8**), 24.2 (d, *J* 21.2 Hz, C-4 of **J7** or **J8**), 23.0 (d, *J* 21.5 Hz, C-4 of **J8** or **J7**), 18.4 (d, J6.0 Hz, C-1 of **J8** or **J7**), 17.4 (d, J6.0 Hz, C-1 of **J7** or **J8**), 9.7 (d, J4.8 Hz, C-5 of **J7** or **J8**), 9.3 (d, J 5.0 Hz, C-5 of **J8** or **J7**) ppm; ¹⁹F NMR (471 MHz, CDCl₃) δ -194.6 --194.2 (1F, m, F-3 of **J7** or **J8**), -195.1 - -194.8 (1F, m, F-3 of **J8** or **J7**) ppm; $^{19}F\{^{1}H\}$ NMR $(471 \text{ MHz}, \text{CDCl}_3) \delta$ -194.4 (1F, s, F-3 of **J7** or **J8**), -194.9 (1F, s, F-3 of **J8** or **J7**) ppm; HRMS (CI) for $C_5H_{12}FO [M + H]^+$: calcd, 107.08667; found, 107.08470.

3,3-Difluoropentan-2-ol (J10): To a stirred solution of the mixture of **15** and **51**, obtained as described above, in Et₂O (30 mL) was added NaOMe (25% w/w in MeOH, 11.0 mL). After 6 h, the reaction was neutralized with aq. HCl (1 M) until pH 7. The aqueous layer was extracted with CH₂Cl₂ (3×30 mL) and the combined organic layers were dried over MgSO₄. The crude was carefully concentrated at 750 mbar/30 °C and purified by column chromatography (CH₂Cl₂) to afford **J10** as a colorless oil (1.05 g, 35% over 2 steps starting from **14**). ¹H NMR (400 MHz, CDCl₃) δ 3.93 (ddq, J = 18.5, 8.7, 6.5 Hz, 1H, H2), 2.09–1.85 (m, 2H, H4), 1.85–1.80 (m, 1H, OH), 1.29 (d, J = 6.6 Hz, 3H, H1), 1.06 (t, J = 7.5 Hz, 3H, H5) ppm; 13 C{ 1 H}

NMR (101 MHz, CDCl₃) δ 124.3 (t, J = 243.9 Hz, C3), 68.9 (t, J = 29.3 Hz, C2), 25.3 (t, J = 24.9 Hz, C4), 16.1 (t, J = 3.7 Hz, C1), 5.7 (t, J = 5.5 Hz, C5) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -113.7 – -115.0 (m, 1F, F3'), -116.7 (ddt, J = 246.2, 23.4, 12.1 Hz, 1F, F3'') ppm; ¹⁹F { ¹H } NMR (376 MHz, CDCl₃) δ -114.3 (d, J = 246.2 Hz, 1F, F3'), -116.7 (d, J = 246.2 Hz, 1F, F3'') ppm; IR (neat) 3356 (br. w), 2989 (w), 2949 (w), 2882 (w), 1468 (m), 1106 (s), 957 (s) cm⁻¹; HRMS (CI) for C₅H₁₁OF₂ [M+H]⁺, calculated 125.07725, found 125.07773).

2-((3-(4,4,5-Trifluoropentoxy)phenethyl)amino)-N,N-dimethylacetamide·HCl (K2): Using general procedure B with 52 (1 equiv) and 51a (96 mg) in DMF (2 mL), 53a was obtained as a colourless gum (68 mg, 64%). According to general procedure C, N-Boc cleavage of 53a (51 mg, 1 equiv) yielded K2 as an off-white solid (37 mg, 73%). ¹H NMR (500 MHz, CDCl₃) δ 9.56 (br s, 2H, NH₂⁺), 7.20 (br t, J = 7.4 Hz, 1H, H4), 6.89-6.86 (m, 2H, H5 and H1), 6.77 (d, J = 8.1 Hz, 1H, H3), 4.47 (dt, J = 46.9, 11.4 Hz, 2H, 17), 4.03-4.00 (m, 4H, H13 and H9), 3.38 (br s, 2H, H8), 3.28 (br s, 2H, H7), 2.97 (s, 3H, H11 or H12), 2.94 (s, 3H, H11 or H12), 2.15 (m, 2H, H15), 2.00 (m, 2H, H14) ppm (see SI for atom numbering); ¹³C{¹H} NMR $(125 \text{ MHz}, \text{CDCl}_3) \delta 164.5 \text{ (C10)}, 159.1 \text{ (C2)}, 138.0 \text{ (C6)}, 129.0 \text{ (C4)}, 121.3 \text{ (C5)}, 120.8 \text{ (td, }J$ = 241.3, 22.7 Hz, C16), 115.0 (C1), 113.3 (C3), 81.7 (dt, <math>J = 178.1, 35.5 Hz, C17), 66.8 (C13),49.7 (C8), 48.3 (C9), 36.5 (C11 or C12), 35.9 (C11 or C12), 32.5 (C7), 29.9 (t, J = 23.8 Hz, C15), 21.6 (t, J = 4.4 Hz, C14) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -234.4 (tt, J = 46.6, 15.0 Hz, 1F, F17), -109.7 (m, 2F, F16) ppm; ${}^{19}F\{{}^{1}H\}$ NMR (376 MHz, CDCl₃) δ -234.5 (t, J = 15.6 Hz, 1F, F17), -109.7 (d, J = 15.6 Hz, 2F, F16) ppm; IR (neat): 2924 (br m), 2757 (br m), 1671 (s), 1244 (s), 1165 (m) cm⁻¹; HRMS (ESI⁺) for $C_{17}H_{26}F_3N_2O_2$ [M + H]⁺, calcd 347.1941; found 347.1946 (-1.6 ppm error), for $C_{17}H_{26}F_3N_2NaO_2$ [M + Na]⁺, calcd 369.1760; found 369.1765.

2-((3-(5,5,5-Trifluoropentoxy)phenethyl)amino)-N,N,-dimethylacetamide·HCl

Using general procedure B with 52 (1 equiv) and 51b (71 mg) in DMF (2 mL), 53b was

obtained as a colourless gum (32 mg, 33%). According to general procedure C, N-Boc cleavage

(K4):

of 53b (51 mg, 1 equiv) yielded K4 as an off-white solid (27 mg, quantitative). ¹H NMR (500

MHz, CDCl₃) δ 9.57 (br s, 2H, NH₂⁺), 7.21 (t, J = 7.6 Hz, 1H, H4), 6.89-6.85 (m, 2H, H5 and

H1), 6.77 (d, J = 8.2 Hz, 1H, H3), 4.03-3.96 (m, 4H, H13 and H9), 3.37 (br s, 2H, H8), 3.28

(br s, 2H, H7), 2.97 (s, 3H, H11 or H12), 2.96 (s, 3H, H11 or H12), 2.17 (m, 2H, H16), 1.87-

1.73 (m, 4H, H14 and H15) ppm (see SI for atom numbering); ¹³C{¹H} NMR (125 MHz,

CDCl₃) δ 164.4 (C10), 159.2 (C2), 137.9 (C6), 127.1 (q, J = 271.6 Hz, C17), 129.9 (C4), 121.2

(C5), 114.9 (C1), 113.4 (C3), 67.2 (C13), 49.8 (C8), 48.2 (C9), 36.4 (C11 or C12), 35.9 (C11

or C12), 33.5 (q, J = 28.5 Hz, C16), 32.5 (C7), 28.3 (C14), 18.9 (q, J = 3.1 Hz, C15) ppm; ¹⁹F

NMR (376 MHz, CDCl₃) δ -66.6 (t, J = 10.4 Hz, 3F) ppm; ¹⁹F{¹H} NMR (376 MHz, CDCl₃)

 δ -66.6 (s, 3F) ppm; IR (neat): 3466 (m), 2929 (br m), 2789 (br m), 1658 (s), 1285 (s), 1132

(m) cm $^{-1}$; HRMS (ESI $^{+}$) for C₁₇H₂₆F₃N₂O₂ [M + H] $^{+}$, calcd 347.1941; found 347.1947 (-1.9

ppm error), for $C_{17}H_{26}F_3N_2NaO_2 [M + Na]^+$, calcd 369.1760; found 369.1765.

Supporting Information Available. The supporting Information is available free of charge

on the ACS Publications website at DOI:

Copies of ¹H, ¹³C, and ¹⁹F NMR spectra of all novel compounds, ¹⁹F NMR spectra of the H₂O

and octanol phases of all new fluorohydrin logP measurements, tables with the relative Gibbs

energy and populations of the energetic minima of D1, D4-6, E1, E5, E6 (PDF). Molecular

formula strings (CSV). The raw data are stored in (to be completed in case of acceptance).

AUTHOR INFORMATION

Corresponding author

*Phone: +44 23 8059 3816. E-mail: bruno.linclau@soton.ac.uk

*Phone: +33 2 7664 5168. E-mail: jerome.graton@univ-nantes.fr

85

ORCID

Jerome Graton: 0000-0002-1114-200X

Benjamin Jeffries: 0000-0002-7630-1761

Jean-Yves Le Questel: 0000-0001-5307-2137

Bruno Linclau: <u>0000-0001-8762-0170</u>

James S. Scott: 0000-0002-2263-7024

Zhong Wang: <u>0000-0002-6144-4022</u>

Notes: The authors declare no competing financial interest.

Acknowledgements

We are grateful to AstraZeneca for a CASE award, and to the EPSRC for a CASE Conversion

grant (EP/M508147/1), a standard grant (EP/P019943/1), and a core capability grant

(EP/K039466/1). The CCIPL (Centre de Calcul Intensif des Pays de Loire) is acknowledged

for provision of computer time.

Abbreviations used.

Ac, acetyl; AIBN, azo bis(isobutyronitrile); Bn, benzyl; Bz, benzoyl; Cat, catalytic; ClogP,

calculated logP; CI, chemical ionisation; DAST, diethylaminosulfur trifluoride; DCE, 1,2-

dichloroethane; DMAP, 4-(N,N-dimethylamino) pyridine; DMF, dimethyl formamide; DMP,

Dess-Martin periodinane; ESI, electrospray ionisation; Et, ethyl; LC-MS, liquid

chromatography-mass spectroscopy; logP, lipophilicity; mbar, millibar; mCPBA, meta

chloroperbenzoic acid; Me, methyl; MHz, megahertz; NfF, nonafluorobutylsulfonyl fluoride;

N-fluorobenzenesulfonimide; NMR, pTSA, NFSI. nuclear magnetic resonance;

paratoluenesulfonic acid; py, pyridine; rt, room temperature; SMD, solvation model based on

86

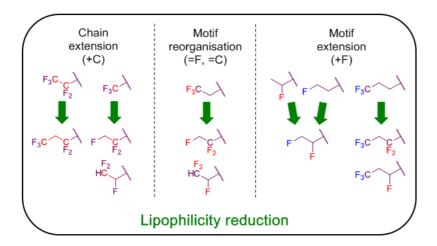
density; TBAF, tetrabutyl ammonium fluoride; Tf, trifluoromethylsulfonyl; TLC, thin layer chromatography; TMS, trimethyl silyl; Ts, tosyl.

References:

- 1. Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. Applications of Fluorine in Medicinal Chemistry. *J. Med. Chem.* **2015**, 58, 8315-8359.
- 2. Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Fluorine in Medicinal Chemistry. *Chem. Soc. Rev.* **2008,** 37, 320-330.
- 3. Hagmann, W. K. The Many Roles for Fluorine in Medicinal Chemistry. *J. Med. Chem.* **2008,** 51, 4359-4369.
- 4. Böhm, H.-J.; Banner, D.; Bendels, S.; Kansy, M.; Kuhn, B.; Müller, K.; Obst-Sander, U.; Stahl, M. Fluorine in Medicinal Chemistry. *ChemBioChem* **2004**, *5*, 637-643.
- 5. O'Hagan, D. Understanding Organofluorine Chemistry. An Introduction to the C-F Bond. *Chem. Soc. Rev.* **2008**, 37, 308-319.
- 6. Zhou, Y.; Wang, J.; Gu, Z. N.; Wang, S. N.; Zhu, W.; Acena, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Next Generation of Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase II-III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas. *Chem. Rev.* **2016**, 116, 422-518.
- 7. Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Fluorine in Pharmaceutical Industry: Fluorine-Containing Drugs Introduced to the Market in the Last Decade (2001–2011). *Chem. Rev.* **2014**, 114, 2432-2506.
- 8. O'Hagan, D. Fluorine in Health Care: Organofluorine Containing Blockbuster Drugs. *J. Fluorine Chem.* **2010,** 131, 1071-1081.
- 9. Zhu, Y.; Han, J.; Wang, J.; Shibata, N.; Sodeoka, M.; Soloshonok, V. A.; Coelho, J. A. S.; Toste, F. D. Modern Approaches for Asymmetric Construction of Carbon-Fluorine Quaternary Stereogenic Centers: Synthetic Challenges and Pharmaceutical Needs. *Chem. Rev.* **2018**, 118, 3887-3964.
- 10. Václavík, J.; Klimánková, I.; Budinská, A.; Beier, P. Advances in the Synthesis and Application of Tetrafluoroethylene- and 1,1,2,2-Tetrafluoroethyl-Containing Compounds. *Eur. J. Org. Chem.* **2018**, 2018, 3554-3593.
- 11. Yerien, D. E.; Barata-Vallejo, S.; Postigo, A. Difluoromethylation Reactions of Organic Compounds. *Chem. Eur. J.* **2017**, 23, 14676-14701.
- 12. Bos, M.; Poisson, T.; Pannecoucke, X.; Charette, A. B.; Jubault, P. Recent Progress Toward the Synthesis of Trifluoromethyl- and Difluoromethyl-Substituted Cyclopropanes. *Chem. Eur. J.* **2017**, 23, 4950-4961.
- 13. Tlili, A.; Toulgoat, F.; Billard, T. Synthetic Approaches to Trifluoromethoxy-Substituted Compounds. *Angew. Chem. Int. Ed.* **2016,** 55, 11726-11735.
- 14. Sammis, G.; Paquin, J.-F.; Chatalova-Sazepin, C.; Hemelaere, R. Recent Advances in Radical Fluorination. *Synthesis* **2015**, 47, 2554-2569.
- 15. Champagne, P. A.; Desroches, J.; Hamel, J. D.; Vandamme, M.; Paquin, J. F. Monofluorination of Organic Compounds: 10 Years of Innovation. *Chem. Rev.* **2015**, 115, 9073-174.
- 16. Campbell, M. G.; Ritter, T. Modern Carbon-Fluorine Bond Forming Reactions for Aryl Fluoride Synthesis. *Chem. Rev.* **2015,** 115, 612-33.

- 17. Liang, T.; Neumann, C. N.; Ritter, T. Introduction of Fluorine and Fluorine-Containing Functional Groups. *Angew. Chem. Int. Ed.* **2013,** 52, 8214-8264.
- 18. Yerien, D. E.; Bonesi, S.; Postigo, A. Fluorination Methods in Drug Discovery. *Org. Biomol. Chem.* **2016**, 14, 8398-8427.
- 19. Neumann, C. N.; Ritter, T. Late-Stage Fluorination: Fancy Novelty or Useful Tool? *Angew. Chem. Int. Ed.* **2015**, 3216-3221.
- 20. Wang, L. F.; Wei, J.; Wu, R. R.; Cheng, G.; Li, X. J.; Hu, J. B.; Hu, Y. Z.; Sheng, R. The Stability and Reactivity of Tri-, Di-, and Monofluoromethyl/Methoxy/Methylthio Groups on Arenes under Acidic and Basic Conditions. *Org. Chem. Front.* **2017**, 4, 214-223.
- 21. Pan, Y. The Dark Side of Fluorine. *ACS Medicinal Chemistry Letters* **2019**, 10, 1016-1019.
- 22. Vorberg, R.; Trapp, N.; Zimmerli, D.; Wagner, B.; Fischer, H.; Kratochwil, N. A.; Kansy, M.; Carreira, E. M.; Muller, K. Effect of Partially Fluorinated N-Alkyl-Substituted Piperidine-2-carboxamides on Pharmacologically Relevant Properties. *ChemMedChem* **2016**, 11, 2216-2239.
- 23. Gleeson, M. P.; Hersey, A.; Montanari, D.; Overington, J. Probing the Links Between in vitro Potency, ADMET and physicochemical Parameters. *Nat. Rev. Drug Disc.* **2011,** 10, 197-208.
- 24. Waring, M. J. Lipophilicity in Drug Discovery. *Expert Opin. Drug Discov.* **2010,** 5, 235-248.
- 25. Young, R. J.; Green, D. V. S.; Luscombe, C. N.; Hill, A. P. Getting Physical in Drug Discovery II: the Impact of Chromatographic Hydrophobicity Measurements and Aromaticity. *Drug Discov. Today* **2011**, 16, 822-830.
- 26. Johnson, T. W.; Gallego, R. A.; Edwards, M. P. Lipophilic Efficiency as an Important Metric in Drug Design. *J. Med. Chem.* **2018**, 61, 6401-6420.
- 27. Young, R. J.; Leeson, P. D. Mapping the Efficiency and Physicochemical Trajectories of Successful Optimizations. *J. Med. Chem.* **2018**, 61, 6421-6467.
- 28. Scott, J. S.; Waring, M. J. Practical Application of Ligand Efficiency Metrics in Lead Optimisation. *Bioorg. Med. Chem.* **2018**, 26, 3006-3015.
- 29. Shultz, M. D. Two Decades under the Influence of the Rule of Five and the Changing Properties of Approved Oral Drugs. *J. Med. Chem.* **2018**, 62, 1701-1714.
- 30. Tomita, R.; Al-Maharik, N.; Rodil, A.; Buhl, M.; O'Hagan, D. Synthesis of Aryl alpha, alpha-Difluoroethyl Thioethers a Novel Structure Motif in Organic Chemistry, and Extending to Aryl alpha, alpha-Difluoro Oxyethers. *Org. Biomol. Chem.* **2018**, 16, 1113-1117.
- 31. Jeffries, B.; Wang, Z.; Graton, J.; Holland, S. D.; Brind, T.; Greenwood, R. D. R.; Le Questel, J.-Y.; Scott, J. S.; Chiarparin, E.; Linclau, B. Reducing the Lipophilicity of Perfluoroalkyl Groups by CF2–F/CF2–Me or CF3/CH3 Exchange. *J. Med. Chem.* **2018**, 61, 10602-10618.
- 32. Huchet, Q. A.; Kuhn, B.; Wagner, B.; Kratochwil, N. A.; Fischer, H.; Kansy, M.; Zimmerli, D.; Carreira, E. M.; Muller, K. Fluorination Patterning: A Study of Structural Motifs That Impact Physicochemical Properties of Relevance to Drug Discovery. *J. Med. Chem.* **2015**, 58, 9041-9060.
- 33. Erdeljac, N.; Kehr, G.; Ahlqvist, M.; Knerr, L.; Gilmour, R. Exploring Physicochemical Space via a Bioisostere of the Trifluoromethyl and Ethyl Groups (BITE): Attenuating Lipophilicity in Fluorinated Analogues of Gilenya(R) for Multiple Sclerosis. *Chem. Commun.* **2018**, 54, 12002-12005.
- 34. Zafrani, Y.; Yeffet, D.; Sod-Moriah, G.; Berliner, A.; Amir, D.; Marciano, D.; Gershonov, E.; Saphier, S. Difluoromethyl Bioisostere: Examining the "Lipophilic Hydrogen Bond Donor" Concept. *J. Med. Chem.* **2017**, 60, 797-804.

- 35. Zafrani, Y.; Sod-Moriah, G.; Yeffet, D.; Berliner, A.; Amir, D.; Marciano, D.; Elias, S.; Katalan, S.; Ashkenazi, N.; Madmon, M.; Gershonov, E.; Saphier, S. CF2H, a Functional Group-Dependent Hydrogen-Bond Donor: Is It a More or Less Lipophilic Bioisostere of OH, SH, and CH3? *J. Med. Chem.* **2019**, 62, 5628-5637.
- 36. Huchet, Q. A.; Kuhn, B.; Wagner, B.; Fischer, H.; Kansy, M.; Zimmerli, D.; Carreira, E. M.; Müller, K. On the Polarity of Partially Fluorinated Methyl Groups. *J. Fluorine Chem.* **2013**, 152, 119-128.
- 37. Muller, K. Simple Vector Considerations to Assess the Polarity of Partially Fluorinated Alkyl and Alkoxy Groups. *Chimia* **2014**, 68, 356-362.
- 38. Linclau, B.; Wang, Z.; Compain, G.; Paumelle, V.; Fontenelle, C. Q.; Wells, N.; Weymouth-Wilson, A. Investigating the Influence of (Deoxy)fluorination on the Lipophilicity of Non-UV-Active Fluorinated Alkanols and Carbohydrates by a New log P Determination Method. *Angew. Chem. Int. Ed.* **2016,** 55, 674-678.
- 39. Kubyshkin, V.; Budisa, N. Hydrolysis, Polarity, and Conformational Impact of Cterminal Partially Fluorinated Ethyl Esters in Peptide Models. *Beilstein J. Org. Chem.* **2017**, 13, 2442-2457.
- 40. Rafique, W.; Kramer, V.; Pardo, T.; Smits, R.; Spilhaug, M. M.; Hoepping, A.; Savio, E.; Engler, H.; Kuljs, R.; Amaral, H.; Riss, P. J. Image-Guided Development of Heterocyclic Sulfoxides as Ligands for Tau Neurofibrillary Tangles: From First-in-Man to Second-Generation Ligands. *ACS Omega* **2018**, 3, 7567-7579.
- 41. Anand, R.; Forrest, E. C.; Hartman, R. D.; Graham, S. M.; Faravelli, L., Antipsychotic Efficacy of Evenamide (NW-3509) Is Due To Modulation of Glutamatergic Dysregulation. *Schizophr. Bull.* **2018**, *44* (suppl_1), S132-S132.
- 42. Muller, N. When is a Trifluoromethyl Group more Lipophilic Than a Methyl Group? Partition Coefficients and Selected Chemical Shifts of Aliphatic Alcohols and Trifluoroalcohols. *J. Pharm. Sci.* **1986,** 75, 987-991.
- 43. Müller, K. Fluorination Patterns in Small Alkyl Groups: Their Impact on Properties Relevant to Drug Discovery. In *Fluorine in Life Sciences: Pharmaceuticals, Medicinal Diagnostics, and Agrochemicals*, Haufe, G.; Leroux, F., Eds. Academic Press: Cambridge MA, 2018; pp 91-139.
- 44. Touillaux, R.; Germain, G.; Declercq, J. P.; Vanmeerssche, M.; Wilante, C.; Leroy, G. Structure of Fluoroalkylbenzoates. *J. Fluorine Chem.* **1982**, 20, 3-8.
- 45. Chen, Q.-Y.; Wu, Y.-M.; Deng, J. Studies on New Strategies for the Synthesis of Oligomeric 1,2,3-Triazoles. *Synlett* **2006**, 645-647.
- 46. Sun, Q.-R.; Chen, Z.-X.; Li, S.; Wu, Y.-M.; Tian, W.-S. Studies on the Reactions of Fluoroalkylazides with Electron-deficient Alkenes. *Chin. J. Chem.* **2008**, 26, 1887-1892.
- 47. Lu, N.; Lin, K.-Y.; Kung, C.-C.; Jhuo, J.-W.; Zhou, Y.; Liu, J.; Sun, L. Intercalated Polyfluorinated Pd Complexes in α-Zirconium Phosphate for Sonogashira and Heck Reactions. *RSC Advances* **2014**, 4, 27329–27336.
- 48. Saunders, W. H. Negative Ion Hyperconjugation in Fluorocarbanions and the Nature of the Borderline Between E1cB and E2 Mechanisms. An Ab Initio Study. *J. Org. Chem.* **1999**, 64, 861-865.
- 49. Wang, Y.; Callejo, R.; Slawin, A. M. Z.; O'Hagan, D. The Difluoromethylene (CF2) Group in Aliphatic Chains: Synthesis and Conformational Preference of Palmitic Acids and Nonadecane Containing CF2 Groups. *Beilstein J. Org. Chem.* **2014**, 10, 18-25.
- 50. Pejchal, V.; Štěpánková, Š.; Pejchalová, M.; Královec, K.; Havelek, R.; Růžičková, Z.; Ajani, H.; Lo, R.; Lepšík, M. Synthesis, Structural Characterization, Docking, Lipophilicity and Cytotoxicity of 1-[(1R)-1-(6-Fluoro-1,3-Benzothiazol-2-yl)ethyl]-3-Alkyl Carbamates, Novel Acetylcholinesterase and Butyrylcholinesterase Pseudo-Irreversible Inhibitors. *Biorg. Med. Chem.* **2016**, 24, 1560-1572.


- 51. Mannhold, R.; Poda, G. I.; Ostermann, C.; Tetko, I. V. Calculation of Molecular Lipophilicity: State-of-the-Art and Comparison of Log P Methods on More Than 96,000 Compounds. *J. Pharm. Sci.* **2009**, 98, 861-893.
- 52. Giaginis, C.; Tsantili-Kakoulidou, A. Alternative Measures of Lipophilicity: From Octanol–Water Partitioning to IAM Retention. *J. Pharm. Sci.* **2008**, 97, 2984-3004.
- 53. Nedyalkova, M. A.; Madurga, S.; Tobiszewski, M.; Simeonov, V. Calculating the Partition Coefficients of Organic Solvents in Octanol/Water and Octanol/Air. *J. Chem. Inf. Model.* **2019**, 59, 2257-2263.
- 54. Carrupt, P. A.; Testa, B.; Gaillard, P. Computational Approaches to Lipophilicity: Methods and Applications. In *Rev. Comput. Chem.*, Lipkowitz, K.; Boyd, D. B., Eds. VCH: New York, 1997; Vol. 11, pp 241-345.
- 55. Michalík, M.; Lukeš, V. The Validation of Quantum Chemical Lipophilicity Prediction of Alcohols. *Acta Chim. Slov.* **2016**, 9, 89-94.
- 56. Kundi, V.; Ho, J. Predicting Octanol-Water Partition Coefficients: Are Quantum Mechanical Implicit Solvent Models Better than Empirical Fragment-Based Methods? *J. Phys. Chem. B* **2019**, 123, 6810-6822.
- 57. Lang, B. E. Solubility of Water in Octan-1-ol from (275 to 369) K. *J. Chem. Eng. Data* **2012,** 57, 2221-2226.
- 58. Iwahashi, M.; Hayashi, Y.; Hachiya, N.; Matsuzawa, H.; Kobayashi, H. Self-Association of Octan-1-ol in the Pure Liquid State and in Decane Solutions as Observed by Viscosity, Self-diffusion, Nuclear Magnetic Resonance and Near-Infrared Spectroscopy Measurements. *J. Chem. Soc., Faraday Trans.* **1993,** 89, 707-712.
- 59. Yin, J.; Zarkowsky, D. S.; Thomas, D. W.; Zhao, M. M.; Huffman, M. A. Direct and Convenient Conversion of Alcohols to Fluorides. *Org. Lett.* **2004**, 6, 1465-1468.
- 60. Takamatsu, S.; Katayama, S.; Hirose, N.; De Cock, E.; Schelkens, G.; Demillequand, M.; Brepoels, J.; Izawa, K. Convenient Synthesis of Fluorinated Nucleosides with Perfluoroalkanesulfonyl Fluorides. *Nucleosides, Nucleotides Nucleic Acids* **2002**, 21, 849-861.
- 61. Caddick, S.; McCarroll, A. J.; Sandham, D. A. A Convenient and Practical Method for the Selective Benzoylation of Primary Hydroxyl Groups Using Microwave Heating. *Tetrahedron* **2001**, 57, 6305-6310.
- 62. Guo, S.-H.; Xing, S.-Z.; Mao, S.; Gao, Y.-R.; Chen, W.-L.; Wang, Y.-Q. Oxa-Michael Addition Promoted by the Aqueous Sodium Carbonate. *Tetrahedron Lett.* **2014,** 55, 6718-6720.
- 63. Das, T.; Nanda, S. Chemoenzymatic Total Synthesis of Stagonolide-E. *Tetrahedron Lett.* **2012,** 53, 256-258.
- 64. Kubota, K.; Yamamoto, E.; Ito, H. Copper(I)-Catalyzed Enantioselective Nucleophilic Borylation of Aldehydes: An Efficient Route to Enantiomerically Enriched α-Alkoxyorganoboronate Esters. *J. Am. Chem. Soc.* **2015**, 137, 420-424.
- 65. Paterson, I.; Wallace, D. J.; Cowden, C. J. Polyketide Synthesis Using the Boron-Mediated, anti-Aldol Reactions of Lactate-Derived Ketones: Total Synthesis of (-)-ACRL Toxin IIIB. *Synthesis* **1998**, 1998, 639-652.
- 66. Levin, V. V.; Zemtsov, A. A.; Struchkova, M. I.; Dilman, A. D. Reactions of Organozinc Reagents with Potassium Bromodifluoroacetate. *J. Fluorine Chem.* **2015**, 171, 97-101.
- 67. O'Reilly, M. C.; Lindsley, C. W. A General, Enantioselective Synthesis of Beta- and Gamma-Fluoroamines. *Tetrahedron Lett.* **2013**, 54, 3627-3629.
- 68. Caputo, R.; Ciriello, U.; Festa, P.; Guaragna, A.; Palumbo, G.; Pedatella, S. Stereoselective Synthesis of Fully Protected (S)-1,7-Dioxaspiro[5,5]undec-4-ene Derivatives of Sugars. *Eur. J. Org. Chem.* **2003**, 2617-2621.

- 69. Beeson, T. D.; MacMillan, D. W. C. Enantioselective Organocatalytic α-Fluorination of Aldehydes. *J. Am. Chem. Soc.* **2005**, 127, 8826-8828.
- 70. Steiner, D. D.; Mase, N.; Barbas, C. F. Direct Asymmetric α-Fluorination of Aldehydes. *Angew. Chem. Int. Ed.* **2005**, 44, 3706-3710.
- 71. Molnar, I. G.; Gilmour, R. Catalytic Difluorination of Olefins. *J. Am. Chem. Soc.* **2016**, 138, 5004-5007.
- 72. Banik, S. M.; Medley, J. W.; Jacobsen, E. N. Catalytic, Diastereoselective 1,2-Difluorination of Alkenes. *J. Am. Chem. Soc.* **2016**, 138, 5000-5003.
- 73. Scheidt, F.; Schäfer, M.; Sarie, J. C.; Daniliuc, C. G.; Molloy, J. J.; Gilmour, R. Enantioselective, Catalytic Vicinal Difluorination of Alkenes. *Angew. Chem. Int. Ed.* **2018**, 57, 16431-16435.
- 74. Haj, M. K.; Banik, S. M.; Jacobsen, E. N. Catalytic, Enantioselective 1,2-Difluorination of Cinnamamides. *Org. Lett.* **2019**, 21, 4919–4923.
- 75. Desai, L. V.; Sanford, M. S. Construction of Tetrahydrofurans by PdII/PdIV-Catalyzed Aminooxygenation of Alkenes. *Angew. Chem. Int. Ed.* **2007**, 46, 5737-5740.
- 76. Aversa, R. J.; Burger, M. T.; Dillon, M. P.; Dineen Jr., T. A.; Lou, Y.; Nishiguchi, G. A.; Ramurthy, S.; Rico, A. C.; Rauniyar, V.; Sendzik, M.; Subramanian, S.; Setti, L. Q.; Taft, B. R.; Tanner, H. R.; Wan, L. Compounds and Compositions as RAF Kinase Inhibitors. WO 2016/038582 Al, 2016.
- 77. Watanabe, A.; Sato, Y.; Ogura, K.; Tatsumi, Y. Biaryl Derivative and Medicine Containing Same. EP 3 351 533 A1, 2018.
- 78. Scheidt, F.; Neufeld, J.; Schäfer, M.; Thiehoff, C.; Gilmour, R. Catalytic Geminal Difluorination of Styrenes for the Construction of Fluorine-rich Bioisosteres. *Org. Lett.* **2018**, 20, 8073–8076.
- 79. Bordwell, F. G.; Brannen, W. T. The Effect of the Carbonyl and Related Groups on the Reactivity of Halides in SN2 Reactions. *J. Am. Chem. Soc.* **1964**, 86, 4645-4650.
- 80. Wong, C.; Griffin, R. J.; Hardcastle, I. R.; Northen, J. S.; Wang, L.-Z.; Golding, B. T. Synthesis of Sulfonamide-Based Kinase Inhibitors from Sulfonates by Exploiting the Abrogated SN2 Reactivity of 2,2,2-Trifluoroethoxysulfonates. *Org. Biomol. Chem.* **2010,** 8, 2457-2464.
- 81. Hine, J.; Brader, W. H. The Effect of Halogen Atoms on the Reactivity of Other Halogen Atoms in the Same Molecule III. The SN2 Reactivity of Ethylene Halides. *J. Am. Chem. Soc.* **1953**, 75, 3964-3966.
- 82. Chambers, R. D.; Gilani, A. H. S.; Gilbert, A. F.; Hutchinson, J.; Powell, R. L. Free-Radical Chemistry: Part XII: Radical Reactions of Trifluoroethene. *J. Fluorine Chem.* **2000**, 106, 53-67.
- 83. Shirataki, H.; Ono, T.; Ohashi, M.; Ogoshi, S. Ni(0)-Catalyzed Three-Component Coupling Reaction of Tetrafluoroethylene and N-Sulfonyl-Substituted Imines with Silanes via Aza-Nickelacycles. *Org. Lett.* **2019**, 21, 851-856.
- 84. Perlmutter, P.; Selajerern, W.; Vounatsos, F. Enantioselective Synthesis of the Dioxabicyclo[3.2.1]octane Core of the Zaragozic Acids via Intramolecular Wacker-type Cyclisation Reactions. *Org. Biomol. Chem.* **2004**, 2, 2220-2228.
- 85. Prakash, G. K. S.; Yudin, A. K. Perfluoroalkylation with Organosilicon Reagents. *Chem. Rev.* **1997**, 97, 757-786.
- 86. Yu, W.; Xu, X. H.; Qing, F. L. Silver-Mediated Oxidative Fluorotrifluoromethylation of Unactivated Alkenes. *Adv. Synth. Catal.* **2015**, 357, 2039-2044.
- 87. Morandi, B.; Carreira, E. M. Synthesis of Trifluoroethyl-Substituted Ketones from Aldehydes and Cyclohexanones. *Angew. Chem. Int. Ed.* **2011**, 50, 9085-9088.
- 88. During revision of this manuscript, multi-vicinal tetrafluoropentanols were described, including lipophilicity of their corresponding Gilenya® analogues: Bentler, P.; Erdeljac, N.;

- Bussmann, K.; Ahlqvist, M.; Knerr, L.; Bergander, K.; Daniliuc, C. G.; Gilmour, R. Stereocontrolled Synthesis of Tetrafluoropentanols: Multivicinal Fluorinated Alkane Units for Drug Discovery. *Org. Lett.* **2019**, 21, 7741-7745.
- 89. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. B.01, Wallingford, CT, 2016.
- 90. Yu, H. S.; He, X.; Truhlar, D. G. MN15-L: A New Local Exchange-Correlation Functional for Kohn-Sham Density Functional Theory with Broad Accuracy for Atoms, Molecules, and Solids. *J. Chem. Theory Comput.* **2016**, 12, 1280-1293.
- 91. Yu, H. Y. S.; He, X.; Li, S. H. L.; Truhlar, D. G. MN15: A Kohn-Sham Global-Hybrid Exchange-Correlation Density Functional with Broad Accuracy for Multi-Reference and Single-Reference Systems and Noncovalent Interactions. *Chem. Sci.* **2016**, 7, 6278-6279.
- 92. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B* **2009**, 113, 6378-6396.
- 93. Ribeiro, R. F.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. The Solvation, Partitioning, Hydrogen Bonding, and Dimerization of Nucleotide Bases: a Multifaceted Challenge for Quantum Chemistry. *PCCP* **2011**, 13, 10908-10922.
- 94. Killen, J. C.; Axford, L. C.; Newberry, S. E.; Simpson, T. J.; Willis, C. L. Convergent Syntheses of 3,6-Dihydroxydec-4-enolides. *Org. Lett.* **2012**, 14, 4194-4197.
- 95. Arikan, F.; Li, J.; Menche, D. Diastereodivergent Aldol Reactions of β-Alkoxy Ethyl Ketones: Modular Access to (1,4)-syn and -anti Polypropionates. *Org. Lett.* **2008,** 10, 3521-3524.
- 96. Tokuyasu, T.; Kunikawa, S.; McCullough, K. J.; Masuyama, A.; Nojima, M. Synthesis of Cyclic Peroxides by Chemo- and Regioselective Peroxidation of Dienes with Co(II)/O2/Et3SiH. *J. Org. Chem.* **2005**, 70, 251-260.
- 97. Graton, J.; Compain, G.; Besseau, F.; Bogdan, E.; Watts, J. M.; Mtashobya, L.; Wang, Z.; Weymouth-Wilson, A.; Galland, N.; Le Questel, J. Y.; Linclau, B. Influence of Alcohol beta-Fluorination on Hydrogen-Bond Acidity of Conformationally Flexible Substrates. *Chem. Eur. J.* **2017**, 23, 2811-2819.
- 98. Stok, J. E.; Lang, C.-S.; Schwartz, B. D.; Fletcher, M. T.; Kitching, W.; De Voss, J. J. Carbon Hydroxylation of Alkyltetrahydropyranols: A Paradigm for Spiroacetal Biosynthesis in Bactrocera sp. *Org. Lett.* **2001,** 3, 397-400.
- 99. Choi, Y. H.; Kwak, J.; Jeong, N. Solvent Effects on the Asymmetric Pauson–Khandtype Reaction by Rhodium. *Tetrahedron Lett.* **2009**, 50, 6068-6071.
- 100. Liskey, C. W.; Hartwig, J. F. Iridium-Catalyzed Borylation of Secondary C–H Bonds in Cyclic Ethers. *J. Am. Chem. Soc.* **2012**, 134, 12422-12425.
- 101. Lee, S.-F.; Sathe, G. M.; Sy, W. W.; Ho, P.-T.; Wiesner, K. The Synthesis of Chasmanine: Aromatic Intermediate. *Can. J. Chem.* **1976,** 54, 1039-1051.
- 102. Harrowven, D. C.; Curran, D. P.; Kostiuk, S. L.; Wallis-Guy, I. L.; Whiting, S.; Stenning, K. J.; Tang, B.; Packard, E.; Nanson, L. Potassium Carbonate-Silica: a Highly

Effective Stationary Phase for the Chromatographic Removal of Organotin Impurities. *Chem. Commun.* **2010,** 46, 6335–6337.

Table of Contents Graphic:

