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Abstract: Smart agriculture technologies are effective instruments for increasing farm sustainability
and production. They generate many spatial, temporal, and time-series data streams that, when
analysed, can reveal several issues on farm productivity and efficiency. In this context, the detection
of anomalies can help in the identification of observations that deviate from the norm. This paper
proposes an adaptation of an ensemble anomaly detector called enhanced locally selective combi-
nation in parallel outlier ensembles (ELSCP). On this basis, we define an unsupervised data-driven
methodology for smart-farming temporal data that is applied in two case studies. The first considers
harvest data including combine-harvester Global Positioning System (GPS) traces. The second is
dedicated to crop data where we study the link between crop state (damaged or not) and detected
anomalies. Our experiments show that our methodology achieved interesting performance with Area
Under the Curve of Precision-Recall (AUCPR) score of 0.972 in the combine-harvester dataset, which
is 58.7% better than that of the second-best approach. In the crop dataset, our analysis showed that
30% of the detected anomalies could be directly linked to crop damage. Therefore, anomaly detection
could be integrated in the decision process of farm operators to improve harvesting efficiency and
crop health.

Keywords: anomaly detection; data streams; precision farming; unsupervised learning

1. Introduction

Agriculture is an industry that has greatly benefited from recent advances in sensor
technology, data science, and machine-learning approaches. These innovations are in
response to the environmental and population challenges that our society is facing where
large global agriculture production increases are required to feed a growing population.
Agricultural crop production is dependent on the management of elements such as soil,
water, and pests, and climate conditions and unforeseen hazards for sustainable agricultural
output [1]. Pesticide usage in agriculture is a major issue on a global scale both in terms of
the environment, and the health and safety of farmers [2]. Precision agriculture is a strategic
approach that collects, processes, and evaluates temporal, spatial, and individual data,
and other types of information in order to support managerial decisions on the basis of
estimated variability for increased the resource-utilisation efficiency, productivity, quality,
profitability, and stability of agricultural production.

Anomalies are data points or patterns in data that do not correspond to normal
behavior. Anomaly detection is a crucial approach for detecting significant occurrences in
a variety of applications. It is the process of identifying observations that deviate from the
norm. Anomalies can be classified as point anomalies, contextual anomalies, or collective
anomalies [3]. Individual data elements that are inconsistent or anomalous in comparison
to all other data elements are called point anomalies. Data elements that are regarded to be
odd or abnormal in a given context are referred to as contextual or conditional anomalies.
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A data element is a contextual anomaly if its behavior attributes differ from the behavior
attributes of a selection of data elements with the same contextual attributes (e.g., time
of day, season, or location). A collection or sequence of linked data elements that are
inconsistent with the rest of the dataset is referred to as a collective or group anomaly.
Individual data elements in collective anomalies may not be anomalous on their own, but
when joined with additional elements, they constitute a group anomaly.

Anomalous conditions in a farm environment were detected in [4] by the application
of linear regression to sensor data (soil temperature, humidity, and electrical conductivity,
light intensity, and air temperature and humidity). Anomalous data may indicate that
the agricultural environment is not conducive for crop growth. Slopes of the regression
line were used to determine the trends of each sensor datum over time. The outlier
detection threshold was set using the interquartile range (IQR) technique, which was
used to calculate the upper and lower bounds, such that any slopes exceeding the set
thresholds were classified as anomalies. The proposed technique can be improved by
combining environmental data with real-time images of the farm environment in the
anomaly detection process. Comparing image variations obtained at different time periods,
or recognising particular pest and disease features can also help to enhance the accuracy
of evaluating abnormal agricultural conditions. This study differs from ours, in that we
consider anomaly detection at the tail end of the production cycle during harvest, with
our focus being the crop state and harvest efficiency of farm machinery. We also apply
geometric mean and F1 measure as thresholds for the optimal performance of our model,
as opposed to IQR techniques used in this study.

Deep-learning techniques were applied in agriculture with DeepAnomaly being
proposed in [5]. DeepAnomaly uses a combination of background subtraction and deep
learning for detection of obstacles and anomalies in an agricultural field. It takes advantage
of the fact that the visual characteristics of an agricultural field are uniform, and obstacles
are uncommon. The major goal is to find things that are far away and severely obscured,
and unknown object categories. People, barrels, wells, and a distant home were among the
observed obstacles. At greater distances, DeepAnomaly identified persons more precisely
and in real time. DeepAnomaly applies image data in anomaly detection and is suitable
for real-time applications, running on an embedded Graphics Processing Unit (GPU). Our
approach, on the other hand, analyses numerical time-series data with the purpose of
developing an approach that could be applied in general-purpose computing systems
where memory and processing power are constrained.

Support vector machine (SVM) and artificial neural networks (ANNs) were applied
in [6] in the detection of the occurrence of regional frost disasters using tea frost cases. The
study forecast multiple degrees of hazard for tea tree frost catastrophes, so that producers
may both detect frost incidence and nonoccurrence using the model, and respond to
varying levels of hazard. In [7], two machine-learning models, autoregressive integrated
moving average model (ARIMA) and long short-term memory (LSTM), were used to find
anomalies in time-series data. The temporal linkages between digital farm sensor data
were considered in the development of a temporal anomaly detection technique. With
the goal of finding abnormal data readings, LSTM and ARIMA models were evaluated
on actual data gathered from deployed agricultural sensors. Employing LSTM improved
anomaly detection prediction while also necessitating additional training time. LSTM and
ARIMA approaches consider important training datasets and time for each application;
therefore, they are not always usable in the case of spatial multivariate data streams with
limited allowed computational power.

Precision agriculture grapples with the automated detection of crop plots with aberrant
vegetation growth. Detecting crop patches that have significantly different phenological
patterns than those of the rest of the crop might help farmers and agricultural cooperatives
improve their agricultural practices, disease detection, and fertiliser management. The
isolation forest unsupervised outlier detection algorithm was used in [8] to detect the
most abnormal wheat and rapeseed crop parcels within a growing season using synthetic



Agriculture 2021, 11, 1083 3 of 17

aperture radar (SAR) and multispectral images acquired using Sentinel-1 and Sentinel-2
satellites. Heterogeneity problems, growth anomalies, database inaccuracies, and nonagro-
nomic outliers were the four major categories of studied anomalies. Experiments revealed
that using both Sentinel-1 and Sentinel-2 characteristics in anomaly detection resulted in
the discovery of more late-growth abnormalities and heterogeneous parcels. Our approach
adopts the use of isolation forest as one of the base detectors in the ensemble technique
with a focus on detecting local and contextual anomalies during crop harvest.

Yield maps are crucial in farmers’ decision making when it comes to precision farming,
with many farmers having multiyear yield maps [9]. The use of spatial-trend and temporal-
stability maps can give valuable information on the spatial and temporal variability of a
field. In [9], a contour yield map was generated by interpolating the data into a regular
grid using a Kriging [10] linear unbiased estimator. Classification management maps were
generated which highlighted homogeneous zones that could be targets for investigation,
or sections where inputs might need to be increased or reduced on the basis of yield
performance. To identify spatial and temporal trends, a quantitative analysis of yield
data from four fields over a six-year period was conducted in [11] . Their previous work
in [9] was modified to separate the temporal effects into two parts: interyear offset (total
variations in yield from one year to the next ) and temporal variance (the degree of change
across time). On the basis of obtained results, interyear variability had the greatest influence
on overall yield, with spatial variability being significant within each year and cancelling
out over time.

Precision farming benefits from the integration of high-accuracy GPS technology into
farm machinery such as combine harvesters, grain carts, tractors, and trucks. Machine data
generated by modern agricultural machinery provide crucial information that may be used
to obtain valuable insights and forecasts about a farm’s operating plan, present status, and
productivity. Additionally, on the basis of predictive analytics, farm operators could make
adaptive logistical decisions. Visualisation of GPS data from farm machinery can provide
vital information on the operational status and efficiency of a machine. As an example,
Figure 1 presents the movement trajectory of a tractor as it worked on a citrus field, and
the followed path to and from the field. From the image, it is clear that a row was skipped
during the working of the tractor, which can be detrimental to plant growth, especially
during spraying and fertiliser application.

Figure 1. Movement trajectory of a tractor in a citrus grove [12].

A Kalman filter and the Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm were used to detect abnormal activity movement of combine har-
vesters in [13]. Easting and northing coordinates from GPS logs are iteratively applied
to a Kalman filter on the basis of a constant velocity dynamical model. The amount of
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divergence of the filter estimations from actual data is calculated by using the Kalman
filter residual. The Kalman filter residual is a measure of the smoothness of the combine-
harvester motion, with a greater residual value indicating a rapid shift in motion. The
DBSCAN algorithm method is then applied to the engine load, vehicle speed, and calcu-
lated Kalman filter residual, which creates indicative clusters of the combine harvester’s
activity. It was feasible to identify clusters for uniform motion on the road, stationary spots,
and nonuniform movements on the basis of the findings. Our approach focuses on infield
harvest efficiency with special emphasis on local contextual anomalies, which differ from
activity detection in this study.

Much effort has gone into developing a variety of anomaly-detection algorithms,
which include: distance-based models such as k-nearest neighbours detector (kNN) [14],
local outlier factor (LOF) [15]; linear models such as one-class SVM detector [16]; covariance-
based models such as minimum covariance determinant (MCD) [3]; ensemble-based mod-
els such as locally selective combination of parallel outlier ensembles (LSCP) [17], isolation
forest [18], lightweight online detector of anomalies (LODA) [19]; statistical techniques such
as histogram-based outlier score (HBOS) [20]; clustering-based models such as clustering-
based local outlier factor (CBLOF) [21]; and copula-based models such as the recent
copula-based outlier detector (COPOD) [22].

Unsupervised anomaly-detection algorithms automatically identify deviating obser-
vations from unlabelled datasets, under some assumptions. Thus, model performance is
determined by the different characteristics present in a dataset. Due to this specialisation
of the models to different characteristics of observations and resulting in varying detection
rates, it is a good idea to integrate the different detection abilities to produce a consen-
sus judgement through the implementation of an ensemble. The combination of these
individual abilities is more robust than relying on just one of them [23].

It is also possible that some anomaly-detection algorithms succeed at detecting certain
subspaces while others may present poor detection performance [24], although the former’s
total accuracy may be lower than that of the latter. This implies that an algorithm can have
a domain of expertise in a local domain, yet perform poorly over the entire feature space. It
is critical to merge the domains of knowledge of each algorithm in order to reduce overall
error [25]. The notion of data locality was first presented by the authors of [26], and it was
later enhanced in [27] to perform dynamic classifier selection in local spaces of training
points. In comparison to static strategies, such as those that simply vote on the basis of
all base classifier outputs, strategies that dynamically pick and combine base classifiers
produced better results.

The focus of this research is the identification of anomalies that impact harvest effi-
ciency and those that can be linked to crop state and health during harvest. This study
examines anomaly detection in agricultural fields by analysing GPS logs where techniques
based on hypothesis testing on the occurrence of an anomalous movement pattern during
infield harvesting are utilised. We propose the following contributions:

1. we present a detailed state of the art on anomaly-detection techniques with a focus
on smart agriculture;

2. we propose a robust ensemble-based methodology for the detection of anomalies
from data streams in smart agriculture context;

3. we apply the proposed technique to a data stream of combine-harvester GPS logs with
the aim of identifying anomalies that impact harvest efficiency of farm machinery;
and

4. we apply the proposed technique to crop data with the aim of identifying anomalies
that reveal the state of the crop during harvest.

This paper is structured as follows. Section 2 presents the temporal datasets cor-
responding to our two cases of study (the first for harvest GPS logs, the second for the
crop-damage dataset) and the preprocessing steps. They correspond to the used materials.
It also introduces our anomaly-detection approach, called enhanced LSCP (ELSCP) and
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the performance indicators that we use. Section 3 shows the experiment results on the two
datasets. Section 4 is dedicated to the conclusion.

2. Materials and Methods

In this study, we investigate anomaly detection in two fronts: application to the GPS
logs of combine harvesters and detection of crop damage in crop dataset.

2.1. Data Preprocessing and Transformation
2.1.1. Scenario A: Combine Harvester GPS Logs

We used a GPS dataset [28], collected using Nexus 7 tablets on a farm in Colorado
USA during the 2019 wheat-harvesting season. A GPS recorder application was kept
running for each involved vehicle (combine harvesters, grain carts, and trucks) during
harvesting. The combine harvester moved in a straight line at a near constant speed in a
normal combine harvester operation (whether harvesting or traveling between fields). The
sampling frequency of the data was 1 sample (GPS log) per second. In a typical harvesting
scenario, there are more than one harvester working simultaneously in the field. This
results in an overlap of the trajectories of the vehicles. A single trajectory is considered as
the consolidation of all collected GPS logs belonging to a single combine harvester. For
the purpose of this study, we used the movement trajectory of a single combine harvester
recorded over a period of three days.

Definition 1. GPS log: Each GPS log li is defined by < cid, t, x, y, s, b, a > where:

• cid is the combine harvester identifier,
• t is the timestamp of the GPS log,
• x is the longitude of the combine ck at time t,
• y is the latitude of ck at time t,
• s is the speed of ck at time t in miles/hour,
• b is the bearing of ck at time t in degrees
• a is the accuracy of the captured GPS location of ck at time t

Definition 2. Trajectory: A raw trajectory consists of time-ordered sequence of n GPS logs of a
specific combine harvester such that T = [p1, p2, . . . , pn].

Trajectory mining was performed using Quantum GIS (QGIS), an open-source cross-
platform desktop geographic information system application that supports viewing, edit-
ing, and visualising geospatial data. The key focus was on data points generated in the
field during harvesting; therefore, visualisation and map matching were conducted using
QGIS to ensure that GPS points were mapped onto a field. The second step was to extract
only those points within a specific field using a bounding box. The extracted data exhibited
normal harvesting behaviour with all data points below 4 mph, which is the maximal
harvesting speed [29]. The data were further processed by removing all data points with
zero speed, since our interest was on GPS points associated to actual grain harvest. To
create an evaluation dataset, anomalies were introduced in the original dataset by varying
the vehicle speed at specific points along the trajectory, such that, for specific sections of the
trajectory, a sequential number of points had their speed increased by a random number
between a given range of values above 4 mph. Figure 2 presents the trajectory of a combine
harvester after the introduction of anomalies, with normal points in green and anomalies
in red. To visualise the effect of the introduced anomalies, outlier analysis was performed
using box plots (as shown in Figure 3) that show the presence of outliers in speed and
accuracy attributes.

Further data analysis was conducted to establish the existence of any correlation
among data attributes through the generation of a correlation heat map (as shown in Figure
4). The map shows a correlation between latitude and longitude, which was expected since
these are spatial coordinates. There was also a high positive correlation between speed and
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class attribute, which is a true representation since introduced anomalies in the data affect
the speed attribute.

Figure 2. Field of interest: trajectory of a combine harvester showing normal points in green and
anomalies in red.

Figure 3. Attribute-based box plots showing presence of outliers in combine harvester GPS logs.

latitude longitude  speed  bearing  accuracy Class

latitude

longitude

 speed

 bearing

 accuracy

Class

1 0.13 -0.034 -0.031 -0.027 -0.062

0.13 1 -0.044 -0.053 -0.05 0.0012

-0.034 -0.044 1 0.0048 0.0015 0.9

-0.031 -0.053 0.0048 1 0.021 -0.025

-0.027 -0.05 0.0015 0.021 1 0.01

-0.062 0.0012 0.9 -0.025 0.01 1 0.0

0.2

0.4

0.6

0.8

1.0

Figure 4. Heat map showing correlation between attributes of combine harvester GPS log dataset.

2.1.2. Scenario B: Crop Dataset

The second scenario considers anomalies in crop data, where the aim was to link
the detected anomalies to the state of the crop at the end of the harvest season (i.e., alive
or damaged). The crop dataset [30] was collected by various farmers at the end of the
harvest season spanning a period of three seasons. To simplify analysis, we assumed that
all other factors such as variations in farming technique were controlled. This dataset has
10 variables as summarised in Table 1.
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Table 1. Crop Data Description.

Column Name Description

Id UniqueID
Estimated_Insects_Count Estimated insects count per square meter

Crop_Type Category of Crop(0,1)
Soil_Type Category of Soil (0,1)

Pesticide_Use_Category Type of pesticides used (1, never; 2, previously used; 3, currently using)
Number_Doses_Week Number of doses per week
Number_Weeks_Used Number of weeks used
Number_Weeks_Quit Number of weeks pesticide not used

Season Season Category (1,2,3)
Crop_Damage Crop damage category (0 = alive, 1 = damage due to other causes, 2 = damage due to pesticides)

In this study, we consider data for crop type zero (0), which we extracted from the
global dataset. The first preprocessing step was to check for missing values in the data,
which revealed 6397 missing values in the Number_Weeks_Used variable.The missing data
are a result of farmers not recording data for the total number of weeks of pesticide use.
Missing values were filled using an iterative imputation technique [31], which performs
multivariate imputation by chained equations. In iterative imputation, each feature is
modeled as a function of other features. Each feature is imputed one after the other,
allowing for previously imputed values to be utilised as part of a model to predict future
features.The next step was to check for the distribution of the data per attribute, which is
summarised in Figure 5.

Figure 5. Histograms showing data distribution per attribute in crop dataset.

Exploratory data analysis was performed on the crop data, so as to gain a better
understanding of the data through the generation of a correlation heat map (as shown in
Figure 6). On the basis of the heat map, Estimated_Insects_count, Pesticide_use_category,
and Number_weeks_used were positively correlated with crop damage. This indicates
that the state of the crop at harvest time was greatly impacted by the presence and number
of insects, the type of pesticides used to control these insects, and the duration of exposure
to the pesticides. On the other hand, Number_weeks_used was positively correlated with
Estimated_Insects_count and Pesticide_use_category. High negative correlation existed,
where Number_weeks_Quit was negatively correlated with Pesticide_use_category and
Number_weeks_used. Further analysis was also performed to establish the presence of
outliers in the dataset. Figure 7 shows that, except for soil type and season, all other
attributes had outliers.
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Figure 6. Heat map showing correlation between attributes of the crop dataset.

Figure 7. Attribute-based box plots showing presence of outliers in the crop dataset.

2.2. Proposed Approach

The previous section presented the data and preprocessing steps that were performed
on them to prepare them for experiments. This section first presents our adaptation and
extension of the LSCP approach, which was applied in our experiments on the preprocessed
datasets, and, second, the performance indicators that we use.

2.2.1. Enhanced LSCP Algorithm (ELSCP)

Locally selective combination in parallel outlier ensembles (LSCP) [17] is an unsuper-
vised detector that defines a local region around a test instance by using the consensus
of its nearest neighbours in randomly selected feature subspaces. The implementation of
LSCP uses an average of maximum strategy where a homogeneous list of base detectors
is fitted to the training data; then, pseudo-ground truth is generated for each instance by
selecting the maximal outlier score. By training base detectors on the entire dataset and
emphasising data locality during detector combination, LSCP examines both global and
local data relationships.The process flow of LSCP is summarised in Figure 8.
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Figure 8. LSCP flowchart. Steps requiring recomputation highlighted in yellow; cached steps in
grey [17].

We propose ELSCP, which is an extension of LSCP with improvements on how the
local-region definition is extracted, and competent detectors are selected. To improve
local-region definition, we propose to implement local neighbour search by using a ball
tree k-nearest neighbours (kNN) algorithm with Harvesine distance metric. We also
implemented Kendall correlation in the model selection and combination phase. The
procedure for ELSCP starts with a heterogeneous list of base detectors being fitted to the
training data. A pseudo-ground truth for each train instance is generated by taking the
maximal outlier score from all the base detectors. For each test instance:

1. Using a ball tree nearest neighbour algorithm with Haversine distance metric, the
local region is defined to be the set of nearest training points in randomly sampled
feature subspaces that occur more frequently using a defined threshold over multiple
iterations.

2. Using the local region, a local pseudo-ground truth is defined, and Kendall correlation
is calculated between each base detector’s training outlier scores and the pseudo-
ground truth.

3. A histogram is built out of Kendall correlation scores, and detectors in the largest bin
are selected as competent base detectors for the given test instance.

4. Using the correlation scores, the best detector is selected. The final score for the test
instance is computed by using the average of the best detector’s local region scores.

One of the inherent challenges in detection algorithms is how to handle variance
and bias, especially in ensemble techniques. According to [32], variance is reduced by
integrating heterogeneous base detectors by using techniques such as averaging, maximum
of average, and average of maximum. A combination of all base detectors, on the other
hand, may contain inaccuracies, resulting in greater bias. As described in Aggarwal’s bias-
variance framework, ELSCP combines variance and bias reduction. It improves variance
reduction by introducing diversity through the initialisation of numerous base detectors
with different hyperparameters. ELSCP also focuses on detector selection based on local
competency, which helps identify base detectors with conditionally low model bias.

ELSCP implementation applies three base detectors, HBOS, MCD, and isolation forest
(IForest). Histogram-based outlier score (HBOS) [20] is based on the assumption that
features are independent, and hence computes outlier scores by creating histograms for
each feature. Modelling the precise features of produced histograms and identifying
deviations are used to identify anomalies. HBOS does not require data labeling and does
not require any training or learning phase. With scoring-based detection, it also provides
quick computation, which is important in our context since we process data streams. The
isolation forest [18] anomaly-detection algorithm is unsupervised, does not assume the
distribution of the data, and does not require labelled data. It also performs well on normal
unbiased data with few noise points and is nonparametric [33]. IForest is constructed from
a forest of random distinct isolation trees (itrees). IForest properties inform the choice for
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application in this study because anomalies are rare and different from normal instances;
therefore, a tree can be constructed to isolate every instance.

Diagnostics are frequently used in combination with a standard fitting technique to
detect outliers. Outliers, on the other hand, can impact these methods, causing the fitted
model to miss deviating observations (masking effect) [34]. Robust statistics is a useful
technique for discovering these deviating observations since it fits the majority of the data
to the fitted model and then identifies data points that differ from the fitted model. In this
study, we mitigate the masking effect by implementing minimum covariance determinant
(MCD) [35], which is a very reliable estimate for multivariate anomaly identification as one
of the base detectors in ELSCP. The determinant of a matrix and Mahalanobis distances
are two multivariate feature statistics on which MCD relies. It searches the dataset for
observations with the lowest possible determinant in the classical covariance matrix.

2.2.2. Performance Indicators

The balance between false positives and false negatives in anomaly-detection tasks is
determined by the application case. False negatives (when no anomaly is discovered while
one exists) are usually penalised far more severely than false positives are (a false warning).
We use receiver-operating-characteristic (ROC) curves—that is, the true positive rate as a
function of the false positive rate—to allow a complete evaluation that is independent of
these application-specific trade-offs.

In order to evaluate the performance of the different approaches, we use the area
under the curve of the receiver operating characteristic (AUC-ROC) [36] and the area under
the curve of precision–recall (AUCPR) [37]. Both indicators are based on the following
concepts:

• True positive (TP): true positives are correctly identified anomalies.
• False positive (FP): false positive are incorrectly identified normal data.
• True negative (TN): true negative are correctly identified normal data.
• False negative (FN): false negative are incorrectly rejected anomalies.

True-positive rate (TPR) or recall is

TPR =
TP

TP + FN
.

False-positive rate (FPR) is

FPR =
FP

FP + TN
.

AUC-ROC receiver operating characteristics are TPR and FPR. The higher the AUC-
ROC is, the better the detection is. AUC-ROC is the most popular evaluation measure for
unsupervised outlier-detection methods [38].

AUCPR uses precision and recall. Precision is the fraction of retrieved instances that
are relevant [39]. Recall or sensitivity is the ability of a model to find all relevant cases
within a dataset.

Precision =
TP

TP + FP

Recall =
TP

TP + FN
The AUCPR baseline is equivalent to the fraction of positives [40]:

AUCPR – baseline =
TP

TP + FP + FN + TN
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The F1 score (F measure) is the weighted average of precision and recall, and considers
both precision (P) and recall (R) rates:

F1 =
2 ∗ P ∗ R

P + R

AUCPR is a very robust assessment measure that works well for a wide range of
classification tasks. It is particularly useful when dealing with imbalanced data when
the minority class is more significant, such as in anomaly detection. Therefore, for the
purpose of this study, we evaluate the performance of anomaly-detection algorithms using
these indicators.

3. Results

In this section, we present obtained results by experimenting with anomaly-detection
techniques on GPS logs and crop data. The algorithms were implemented in Python
programming language by using the PyOD framework [41]. Since ELSCP is an ensemble
framework, and we used three base detectors in its implementation: HBOS, MCD, and
IForest. The reason for using heterogeneous base detectors was to attain unbiased over-
all detection accuracy with little variance by incorporating the capabilities of different
base detectors while carefully combining their outputs to form a robust detector. ELSCP
performance ofwas also compared against state-of-the-art anomaly-detection techniques.

3.1. Scenario A: Combine Harvester GPS Data

Preprocessed data were then applied to ELSCP, where the aim was to evaluate its
performance by looking at the true-positive and false-positive rates by using a ROC curve.
AUC-ROC was also computed as an evaluation measure of the model. The baseline AUC-
ROC is usually set at a value of 0.5 which suggests that the detector does not discriminate
between normal and anomalous data, 0.7 to 0.8 is considered to be acceptable, 0.8 to 0.9 is
considered to be excellent, and more than 0.9 is considered to be outstanding [42]. ELSCP
was trained with 67% of the data, and prediction performance tested with 33% of the data.
ELSCP achieved a global AUC-ROC value of 0.998, which is outstanding performance
(as shown in Figure 9). We also evaluated ELCSP performance in terms of precision and
recall. The baseline AUCPR for the dataset was 0.0199 (based on a sample size of 51580
with 1026 true-positive anomalies). On the basis of obtained results, ELSCP achieved a
global AUCPR of 0.972, which is very good performance (as shown in Figure 10).

Figure 9. ELSCP ROC curve performance evaluation for combine-harvester GPS dataset.



Agriculture 2021, 11, 1083 12 of 17

Figure 10. ELSCP precision–recall performance evaluation combine-harvester GPS dataset.

In the second set of experiments, we identified the anomaly-detection algorithm
that best estimated anomalous instances within GPS logs. We applied the data to ELSCP,
baseline LSCP with variants of LOF as base detectors, LODA, COPOD, OCSVM, LOF,
and CBLOF. Performance was evaluated by considering each detector’s performance in
terms of AUC-ROC, AUCPR, and F1 score. Obtained results from the experiments are
summarised in Table 2. According to the results, our approach obtained the best scores
with an AUC-ROC that was 6.4% better than that of the second-best approach COPOD
(99.8% vs. 93.4%); an AUCPR of 97.2%, when the best scores of the other approaches (the
one of OCSVM) were only 38.5%. The F1 score reflected the same conclusion (92.1% vs.
22.8%). Therefore, our approach was clearly the best, and could help farmers in real time
during harvest in detecting potential issues.

Table 2. Performance comparison of various detectors on combine harvester GPS logs.

Model AUC-ROC AUCPR F1 Score

ELSCP 0.998 0.972 0.921
OCSVM 0.897 0.385 0.167
LODA 0.913 0.215 0.078

COPOD 0.934 0.173 0.228
CBLOF 0.756 0.038 0.014
LSCP 0.533 0.022 0.032

3.2. Scenario B: Crop Damage

Preprocessed data were then applied to ELSCP where the aim was to evaluate per-
formance by looking at the true-positive and false-positive rates using a ROC curve.
AUC-ROC was also computed as an evaluation measure of the model. In the unsupervised
outlier-detection setting, it is often problematic to rigorously judge the effectiveness of the
algorithms, especially when it outputs an outlier score that is converted into a label on the
basis of a threshold. If the threshold selection is too restrictive (to minimise the number
of declared outliers), then the algorithm misses true outlier points (false negatives). On
the other hand, too many false positives are generated if the algorithm declares too many
data points as outliers. To deal with this issue, we performed threshold selection with the
aim of the identifying the threshold on the ROC curve that resulted in the best balance
between true-positive and false-positive rates for our imbalanced dataset. The Geometric
mean (G-mean) was used to compute the optimal threshold, such that the best threshold
was the one with the largest G-mean value. The slope of the ROC curve does not affect
the performance of an algorithm, since ROC curves are used to make it easier to identify
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the best threshold from computed probabilities when making a decision on whether an
instance is an anomaly or not.

ELSCP was trained with 67% of the data, and prediction performance tested with
33% of the data. The baseline area under the ROC curve is usually set at a value of
0.5, which represents a random guess scenario where the detector does not discriminate
between normal and anomalous data. Figure 11 represents the ROC curve showing the
best threshold value for ELSCP model. ELSCP achieved 0.641 AUC-ROC, G-mean value
of 0.605, and the best threshold ROC value of 0.1404, which shows that it is able to detect
anomalies resulting in crop damage. We also evaluated ELCSP performance in terms of
precision and recall. The optimal threshold for the precision–recall curve, which focuses
on the performance of a model on the positive (minority class/anomalies), was computed
by optimising the F measure. The baseline AUCPR for the dataset was 0.17 (based on a
sample size of 63589 with 10811 true-positive anomalies). On the basis of obtained results
from the precision–recall curve, ELSCP achieved an AUCPR of 0.277 with an F1 score of
0.343 and the best threshold value of 0.1404 (as shown in Figure 12). The obtained AUCPR
value is acceptable since it is above the acceptable baseline for the crop dataset.

Figure 11. ELSCP ROC curve indicating best prediction threshold for the crop dataset.

Figure 12. ELSCP precision–recall curve indicating best prediction threshold for the crop dataset.
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The second phase of analysis determined if the detected anomalies were linked to the
state of the crop being damaged at the end of the harvest season. We extracted all data
that had been labelled as anomalies by the model and compared them to the actual ground
truth. The model detected 6324 samples as anomalies, of which 1922 (30%) were actual
anomalies that were linked to crop damage. In the dataset, the crop state at the end of the
harvest could be categorised as alive, damaged due to other causes, or damaged due to
pesticides. On the basis of 30% of the actual anomalies, we categorised them according
to the cause of damage, where we established that 1641 samples (85.47%) were damage
caused by other sources, and 281 samples (14.62%) were damage as a result of pesticide
use.

The third phase identified the anomaly-detection algorithm that best estimated the
anomalous instances within the crop dataset. We applied the data to ELSCP, baseline
LSCP with variants of LOF as base detectors, LODA, COPOD, OCSVM, LOF, and CBLOF.
Performance was evaluated by considering each detector’s performance in terms of AUC-
ROC, AUCPR, and F1 score. Obtained results from the experiments are summarised in
Table 3. According to the results, our approach obtained competitive results where it came
second to COPOD with an AUC-ROC margin of 5.4% (64.1% vs. 67.5%) and an AUCPR of
27.7% vs.29.7% of COPOD, which gives a margin of 3.0%. It achieved the highest F1 score,
which was 5.2% (34.3% vs. 29.1%) better than that of the second-best detector, OCSVM.
Therefore, our approach is clearly very competitive in this context, and can help farmers in
real-time to detect potential issues on crop health.

Table 3. Performance comparison of various detectors on drop dataset.

Model AUC-ROC AUCPR F1 Score

ELSCP 0.641 0.277 0.343
OCSVM 0.595 0.253 0.291
LODA 0.580 0.200 0.122

COPOD 0.675 0.297 0.282
CBLOF 0.636 0.226 0.212
LSCP 0.452 0.169 0.135

4. Conclusions

Improving agricultural productivity is critical for increasing farm profitability and
fulfilling the world’s fast expanding food demand, which is fuelled by rapid population
increase. Precision farming seeks to reduce waste and negative outcomes by precisely
focusing agricultural inputs. It has benefited from the integration of high-accuracy GPS
technology into farm machinery. Several factors such as water availability, soil fertility, pest
protection, timely pesticide application, and nature all contribute to a healthy yield. The
precise application of pesticides protects crops from pests, while wrong dosages can result
in crop damage or even death. The most versatile and most errorprone anomaly-detection
technique is unsupervised anomaly detection. In this case, no data assumptions are made,
i.e., the data comprise both normal and anomalous records, and algorithms should be able
to distinguish between the two without any prior training. Unsupervised learning is highly
preferred for real-life applications, especially in anomaly detection since there are many
data without labels in this scenario.

In this study, we performed unsupervised anomaly detection in obtained data streams
from movement tracks of combine harvesters during wheat harvest, and data for crop
damage recorded by farmers over a period of three harvest seasons. On the basis of our
results, deviant combine-harvester behavior could be effectively detected by using machine
learning. It was also possible to link anomalies extracted from multivariate analysis of
various features to damaged crop state at the end of harvest. Therefore, anomaly detec-
tion could be integrated in the decision process of farm operators to improve harvesting
efficiency and crop health.
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Limitations and Future Work

The first limitation of ELSCP is on the extraction of neighbouring data points that
constitute the local region of a test instance using distance metrics applied to KNN Ball
Tree algorithm. This approach brings two challenges: (a) it takes much time to determine
the nearest neighbours of the test instance; and (b) the performance in a multidimensional
space may be affected, especially when many features or attributes are irrelevant. To
mitigate this challenge, local-region definition can be solved by clustering [43], the use of
fast approximate methods [44] or by prototyping [45], which can significantly reduce the
required time to set up the local domain because not all data points are required by these
techniques. The second limitation is on the generation of the pseudo-ground truth, where
we applied a simple maximisation technique. This could be improved by considering exact
strategies, for instance, with the active pruning of base detectors [46].

Our future work will focus on addressing model calibration and hyperparameter
tuning to improve on outlier scoring since a false negative in smart agriculture can induce
uncomfortable issues in crop production and farm efficiency. The configuration of local
subspaces can also be improved to decrease the amount of time spent locating a test
instance’s nearest neighbours by replacing the kNN search strategy with a clustering
technique. We also propose to develop the methodology into a tool that can be used by
farmers and experts for the real-time detection and analysis of farming data streams.
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Abbreviations
The following abbreviations are used in this manuscript:

ANNs Artificial neural networks
AUC-ROC Area under the curve of the receiver operating characteristic
AUCPR Area Under the Curve of Precision-Recall
ARIMA Autoregressive integrated moving average model
CBLOF Clustering-based local outlier factor
COPOD Copula-based outlier detector
DBSCAN Density-based spatial clustering of applications with noise
ELSCP Enhanced locally selective combination in parallel outlier ensembles
FP False positive
FPR False-positive rate
FN False negative
GPS Global positioning system
GPU Graphics processing unit
HBOS Histogram-based outlier score
IQR Interquartile range
kNN k-nearest neighbours detector
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LOF Local outlier factor
LODA Lightweight online detector of anomalies
LSTM Long short-term memory
LSCP Locally selective combination in parallel outlier ensembles
MCD Minimum covariance determinant
OCSVM One-class support vector machines
P Precision
PyOD Python outlier detection
QGIS Quantum geographic information system
R Recall
SAR Synthetic aperture radar
SVM Support vector machine
TP True positive
TPR True positive rate
TN True negative
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