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ABSTRACT

Galaxy redshift surveys are subject to incompleteness and inhomogeneous sampling due to the various constraints inherent
to spectroscopic observations. This can introduce systematic errors on the summary statistics of interest, which need to be
mitigated in cosmological analysis to achieve high accuracy. Standard practices involve applying weighting schemes based
on completeness estimates across the survey footprint, possibly supplemented with additional weighting schemes accounting
for density-dependent effects. In this work, we concentrate on pure angular systematics and describe an alternative approach
consisting in analysing the galaxy two-point correlation function where angular modes are nulled. By construction, this procedure
removes all possible known and unknown sources of angular observational systematics, but also part of the cosmological signal.
We use a modified Landy—Szalay estimator for the two-point correlation function that relies on an additional random catalogue
where angular positions are randomly drawn from the galaxy catalogue, and provide an analytical model to describe this modified
statistic. We test the model by performing an analysis of the full anisotropic clustering in mock catalogues of luminous red and
emission-line galaxies at 0.43 < z < 1.1. We find that the model fully accounts for the modified correlation function in redshift
space, without introducing new nuisance parameters. The derived cosmological parameters from the analysis of baryon acoustic
oscillations and redshift-space distortions display slightly larger statistical uncertainties, mostly for the growth rate of structure
parameter fog that exhibits a 50 per cent statistical error increase, but free from angular systematic error.

Key words: galaxies: statistics —large-scale structure of Universe.

1 INTRODUCTION

The mapping of the large-scale structure with galaxy spectroscopic
surveys is a major source of information for determining the
cosmological model. This owes to its unique sensitivity to both the
background expansion and growth of density perturbations through
gravity (e.g. Alam et al. 2021). Galaxy spectroscopic surveys have
played a crucial role in the last two decades in providing increasingly
precise measurements of the cosmological parameters (e.g. Peacock
etal. 2001; Cole et al. 2005; Tegmark et al. 2006; Percival et al. 2010;
Blake et al. 2012; Pezzotta et al. 2017; Alam et al. 2017, 2021). This
has been possible particularly thanks to the development of multiob-
jectspectrographs, whose improved multiplexing capabilities and use
in large programs have allowed a tremendous increase of the surveyed
cosmological volume (e.g. Lewis et al. 2002; Le Fevre et al. 2003;
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Gunn et al. 2006; Smee et al. 2013). None the less, extracting genuine
spatial information from those surveys can be challenging because of
the complexity of the selection function. This is particularly crucial
for cosmological inference, where a significant effort is necessary to
control all observational systematic effects and avoid degrading the
accuracy on the derived cosmological parameters (e.g. Blake et al.
2010; Ross et al. 2012; de la Torre et al. 2013; Reid et al. 2016; Ross
et al. 2020).

Galaxy spectroscopic surveys are generally exposed to incom-
pleteness for various reasons. In multislit or multifibre spectroscopic
surveys, incompleteness can be induced by missing observations
resulting from the mechanical limitations of the spectrograph. For
instance, the finite size of fibres (or slits) and their finite usable
number at each observation prevent spectroscopic observations of all
possible targets. The latter aspect also depends on the observational
strategy, particularly the number density of targets and redundancy
at observing the same patches of the sky. This incompleteness
can be strongly correlated with the intrinsic clustering of targets,
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as in the case of fibre collision for instance. Another source of
incompleteness includes varying foreground or background noises
such as stellar density or galactic extinction, which aggravate our
ability to extract redshift measurements from observed spectra, or
lead to very low signal-to-noise ratio spectra where no redshift can
be determined. Inhomogeneity in the survey sampling can also arise
in the preparation of the target sample, when for instance targeted
sources are not selected in the same way in different patches of the
sky due to limited or uneven photometry. Overall, these effects result
in systematic biases on clustering measurements, which, in turn, can
introduce biases in the inferred values of cosmological or physical
parameters.

In general, observational systematic errors are not necessarily all
known but need to be mitigated in cosmological analysis in order
to achieve high accuracy. Standard mitigation strategies involve
applying weighting schemes based on completeness estimates across
the survey footprint and additional schemes to account for projected
density-dependent effects. In the Baryon Oscillation Spectroscopic
Survey (BOSS, Dawson et al. 2013) and extended Baryon Os-
cillation Spectroscopic Survey (eBOSS, Dawson et al. 2016) for
instance, completeness weights were calculated by tessellating the
observed sky and fitting multilinear regression to residual trends
in observational parameters, such as star density or survey depth
(Ross et al. 2012). In addition, projected density-dependent effects
such as fibre collision were dealt with by up-weighting nearest-
neighbour galaxies to missed galaxy. In this work, we describe
an alternative approach that consists in analysing the galaxy two-
point statistics in configuration space, with nulled angular modes.
This is possible by modifying the standard estimator of the two-
point correlation function. This idea was first introduced by Burden
et al. (2017). They proposed an estimator similar to the standard
Landy & Szalay (1993) estimator, but that includes an additional
random catalogue where angular positions are randomly drawn from
the galaxy catalogue. This effectively permits removing the angular
clustering, as angular correlations are canceled by the new random
catalogue. The amplitude of this new statistic is suppressed with
respect to the standard two-point correlation function, but is blind to
any systematic angular selection effects. A similar method was also
developed in Fourier space in Pinol et al. (2017). The first application
to real data of such estimator was performed on the eBOSS emission-
line galaxy sample by Tamone et al. (2020).

In this work, we derive a full model for the modified two-point
correlation function in redshift space, assess its accuracy, and perform
a full analysis of baryon acoustic oscillations (BAO) and redshift-
space distortions (RSD) on luminous red galaxy and emission-line
galaxy mock samples, as a proof of concept. We will refer to
this modified statistic as the angular modes-free (AMF) two-point
correlation function.

The paper is organized as follows. The Section 2 presents the
formalism of the AMF two-point correlation function. The corre-
sponding theoretical model is presented and tested against mock
galaxy samples in Section 3. BAO and RSD analyses are performed
using the standard and AMF correlation functions in Section 4.
Section 5 discusses the results and conclude.

2 THE ANGULAR MODES-FREE
CORRELATION FUNCTION

2.1 Definition

The cosmological information in galaxy redshift surveys is com-
monly extracted from the measured two-point statistics of the galaxy
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spatial distribution. In configuration space, this is achieved using the
minimum variance (Landy & Szalay 1993) estimator:
DD(s) —2DR(s) + RR(s)

£(s) = RRG) , )]

where s is the separation vector between the objects of a pair and
DD, DR and RR are respectively the normalized number of galaxy—
galaxy, galaxy-random, and random-random pairs. The random
catalogue consists in random points uniformly distributed over the
survey footprint and with the same radial distribution as the data.
The separation vector can be decomposed into (s, p) coordinates,
where s is the norm of the separation vector s and w is the
cosine angle between the separation and line-of-sight directions. This
decomposition enables the expansion of the correlation function in
multipole moments,

204+ 1) [!
Es) = 2D ; ) / E(s, O Le(w)du, )
—1

where L, is the Legendre polynomial of order £.

In order to suppress angular modes, one can modify this estimator
by introducing an auxiliary random catalogue. The latter has exactly
the same angular clustering pattern as the data but a random
realization of the radial distribution. It is easily constructed by
randomly assigning galaxy angular positions from the data catalogue
to random points. We will refer to it as the shuffled random catalogue,
S, in the following. One can thus design a modified (Landy & Szalay
1993) estimator such that (Burden et al. 2017)

DD(s) —2DS(s) + SS(s)

£(s) = RRGs)

3

In this estimator the standard random catalogue in the numerator is
replaced by the shuffled random catalogue. By imprinting the angular
pattern of the galaxies in the random catalogue S, one suppresses the
angular clustering and associated potential systematic errors, but at
the price of removing a piece of cosmological information. Similarly
to the standard correlation function, the AMF correlation function
can be expanded in multipole moments.

The purpose of random catalogues is the estimation of the observed
volume, and for this it must contain a large number of points
(typically 20-50 times more than in the galaxy catalogue). In the
case of the shuffled random catalogue, since angular positions are
drawn from observed object positions, some angular positions will
be repeated. This leads to some SS or DS pairs with vanishing angular
separation, or equivalently with = 1. Keeping these pairs in the pair
counts can introduce additional noise and bias in the estimation of the
AMF correlation function multipole moments. In practice however,
by adopting a proper binning in p in the pair counts, the u = 1
pairs can be discarded. This effect is more problematic in Fourier
space where ;1 = 1 associated modes cannot be discarded in the
estimator and introduce an additional shot-noise term as discussed
in de Mattia & Ruhlmann-Kleider (2019).

2.2 Modelling

In order to model the AMF correlation function, we follow Burden
et al. (2017) and define the AMF overdensity field

- n(r) —a(r)

S(ry=s ———, 4

i(r)

where n(r), 7i(r), and 7i(r) correspond to the number density of
galaxies, shuffled random points, and standard random points at
comoving position r, respectively. By construction, the shuffled
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random number density is

S n(x's )y [alx, yhdy! S n(x's )y

J [ alx', yhdy'dy’ Jatx' yhdy”
where y corresponds to the two-dimensional angular coordinates
and yx to the radial coordinate. We assume that the random catalogue
is uniform across the sky in y. We can thus express the AMF
overdensity field as

J8(x. yIaGOdx
JaGodx
In the following, 7 is always normalized such that [ 7i(x)dx = 1.In

equation (6), the second term, on the right-hand side, corresponds in
fact to the projected overdensity at angular position y on the sky,

(&)

a(r) =

=n(r)

S(ry=248(r) — (6)

$(y) = /8()(, Yi(x)dx. @)

The AMF correlation function corresponds to the autocorrelation of
the AMF overdensity field,

E(s) = (5(3(r")) = (8(3(r")) = 2(8rd(y")) + (5(S(¥")®)

where we have defined s = r’ — r and (.) denotes the ensemble

average. In the latter equation, the first and third terms correspond to

the three-dimensional and angular correlation functions, respectively,

while the second term is the cross-correlation between the three-

dimensional overdensity and projected angular overdensity fields.
The angular correlation term is defined as

w(h) = </8(x,y)ﬁ(x)dx/5(x’, )/)ﬁ(x’)dx/> 9)

and is related to the three-dimensional correlation function & as
(Peebles 1980),

W(9)=/0 dx/o dx'&0, M)aGonx"), 10)

where 6 = |y — y| is the angular separation and Ay = x — x is
the radial separation. Further defining ¥ = (x + x’)/2 and changing
the variable of integration in the integrals leads to (Simon 2007)

Y (o Ax\ (. Ax
w(d) = dji dAx&E@, Apn |\ x ——— |alxi+— |-
R 2 2
(11
If we assume that 77 weakly varies over the typical Ax/2 scale
in &0, Ayx)sothatn(x — Ax/2) ~n(x + Ax/2) ~ i(y) in the
inner integral, equation (11) simplifies to the well-known Limber
approximation (Limber 1953):

w(e):/o dxﬁ2(x)/ dAx €0, Ax). (12)

The cross-correlation term can be written as (Burden et al. 2017)

<8<x,y> / 6<x’,y’>ﬁ<x/>dx’>: /0 dx A EG, M), (13)

and by adopting the same changes of variable as previously, the
right-hand side of equation (13) becomes

o0 B B AX
/ dAxn<x+7) @6, Ay). (14)

In this equation, ¥ is an undefined constant, which is related at first
order to the mean radial distance of the sample. The right-hand side of
equation (13) used to obtain this result should in reality be averaged
over the observed volume, introducing a further integral over d*x.

Clustering with nulled angular modes 1343

In fact, this approximation can be avoided by making explicit the
volume integral over the survey window function as shown in
Section 2.3. We note that if we use Limber-type approximation
in equation (14), the mean number density exits the integral and
the expression reduces to constant times the projected correlation
function.

In practice, we are seeking an expression for the anisotropic
three-dimensional correlation function that can be used to model
observed multipole moments. In the plane—parallel approximation,
the separation vector s can be decomposed in terms of the transverse
and radial comoving separations, s; and s, respectively, using for
instance the mid-point line-of-sight definition (Fisher et al. 1994).
We can thus use the previous model defined for £(6, A x) and make
the substitutions: Ax — s and & — s, . This holds when the radial
distance is large with respect to the pair separation and effectively
assumes a flat sky. In this case, we obtain that

€ (s1.5)) =& (sL,8) —2C(s1) + A(s), (15)
where
Ces) = [Todsyai (X +73) & (s1,81) (16)

AGs) = [y dx [ dsiE (sosy) a(x =) a(x+%), A7

or with Limber approximation,
Culsy) = () [To dsy& (si.sy). (18)

Ar(sy) = [0 dxa* () [7, dsyé (si.sy) - (19)

By substituting A and C by Ap and Cy. in equation (15) one defines
the simplest model, where both Limber and flat-sky approximations
are used. We note that in the analysis of Tamone et al. (2020), such
model is used where C and A;, are taken as cross-correlation and
angular terms, respectively. In those approximate models, jy is a
free parameter that can be determined empirically from simulations
for the specific galaxy sample under consideration.! Eventually, the
AMF correlation function multipole moments can be obtained by
remapping & (SJ_, SH) into £(s, ) using that s, = s+/1 — 2 and
5| = s, and integrating £(s, ) over u as in equation (2).

2.3 Full model

In fact, the flat-sky approximation and that made in equation (13) can
be avoided. Precisely, the AMF estimator in equation (3) corresponds
to the autocorrelation of the AMF overdensity times the survey
window function, divided by the survey window correlation function.
The survey window function P(r) is the probability of seeing an
object at any position r in the survey. If we define the windowed
AMF overdensity field F(r) as

F(r)= P(r)s(r)— P(r)/dr/ﬁ(r’)S(r/), (20)

where r and r’ are collinear, the AMF correlation function is

[ ErF@)F@r+s)

S = P Par ) @b
The expected value of the latter estimator is

2oy _Cl) | AG)

£(s) =4&(s) W) + W) (22)

't is denoted x mod in appendix A of Tamone et al. (2020).

MNRAS 512, 1341-1356 (2022)
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where &(s) is the standard anisotropic correlation function and
Cs) = /d3r P(r)P(r +s) [/ dr'a(re(r —r)

+ /dr”ﬁ(r”)“f (r"—r- s)] ' @)
A(s) = [ &r P)P(r +5) [ dr'alr") [ dra(rHEr —r"),  (24)

W(s) = [ & P(r)P(r +5). (25)

The geometrical configuration and details of the derivation are
given in Appendix A, we only summarize here the main results. The
integrals in the expressions for A(s) and C(s) can be simplified and
rearranged, and ultimately we find that the AMF correlation function
reads

C(s, )
W(s, )

As, 1)

"E(svli)=§(5sll)_ W(S,,U,)’

(26)

where

Clo. ) = X% (I 48 520 A& (AWeep(s, M) Li). 1)
A 1) = S22 (5 dA S50 A& (AWary(s, ) LeCa), (28)

W(s, 1) = 3272 We(s)Le(w). (29)

We refer to Appendix A for the expression of the kernels Weyp,
Waep, and W,. It is important to emphasise that these kernels
only depend on the geometry of the survey and can be computed
independently. Eventually, the multipole moments of the AMF
correlation function are obtained from (s, ) as

. 20+ 1 L
fn = 2D / E(s. i)Lo(u)dp. 30)
-1

Contrary to the approximate models presented in the previous
section, the full model does not include any approximation except
the plane—parallel one, and has no additional free parameter.

2.4 Sensitivity to angular systematics

Itis interesting to see formally that the AMF overdensity removes any
additive angular contamination. Indeed, if we write the contaminated
overdensity 6(r) + c¢(r), where ¢ is a contamination field that only
depends on the line-of-sight direction, we have for the windowed
AMF overdensity,

F(r) = P(r)(8(r) + c(r)) = P(r) [ dr'a(r’) (8(r') + c(r))  (31)

= P(r)s(r) — P(r) [ dr'ia(r")8(r"). (32)

To obtain the latter equation, we have used that, by definition of ¢
and the fact that r and r’ share the same line of sight, c(r’) = c(r).
None the less, if the contamination field modulates the observed
number of galaxies, as for instance in the case of varying survey
depth or galactic extinction (Shafer & Huterer 2015), both additive
and multiplicative components will arise, and the multiplicative one
will not be erased (it will factorize F(r)).

In order to verify the previous statements, we test the efficiency
of the AMF two-point correlation function estimator at removing
a spurious angular modulation in galaxy number using the galaxy
CMASS mocks introduced in Section 3. We instil an artificial angular
modulation in the number of galaxies N, such that N — N (1 + €),
in a similar fashion as in de Mattia & Ruhlmann-Kleider (2019). This

MNRAS 512, 1341-1356 (2022)
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Figure 1. CMASS mocks mean measurements of the standard (top figure)
and AMF (bottom figure) correlation function multipole moments with (solid
lines) and without (dashed lines) angular systematics.

is done by weighting each galaxy at angular position (RA, Dec.) by

. (21 . [2n
Wang(RA, Dec.) = 1 4 0.2sin (E X RA) sin (? X Dec.) .
(33)

We choose here a modulation amplitude of 20 per cent, which is
typical of the observed level. The standard and AMF correlation
function multipole moments are measured in each mock and later
averaged, including or not galaxy weights w . In the standard two-
point correlation function estimator, the angular weights are only
applied to the galaxy catalogue, while in the AMF estimator, they are
applied to the galaxy and shuffled random catalogues. The resulting
measurements are shown in Fig. 1. We can see for the standard two-
point correlation function that angular systematics significantly affect
all the multipole moments. On the other hand, the AMF multipole
moments are nearly unaffected by angular systematics. We only see
a negligible shift in amplitude on the small scales of the monopole
and on the hexadecapole. This demonstrates that the multiplicative
component of the angular contamination is very small, and most of
the effect of the angular modulation is removed in the AMF estimator.

€20z udy g1 uo sasn SYND Aq L068YS9/L¥EL/L/ZLS/BI0IHE/SeIuW/WOd dno dlwapede//:sdiy woly papeojumoq


art/stac560_f1.eps

3 TEST ON MOCK SAMPLES

3.1 Description of the mock samples

In order to test the AMF full model presented in the previous
section, we make use of NSeries mocks (Alam et al. 2017) and
eBOSS EZmocks (Zhao et al. 2021). These mocks are designed to
reproduce different galaxy samples of the BOSS and eBOSS surveys.
We concentrate in this analysis on the BOSS constant mass galaxy
(CMASS) and eBOSS emission-line galaxy (ELG) samples, which
cover the redshift intervals 0.43 < z < 0.7 and 0.7 < z < 1.1
respectively.

The NSeries galaxy mocks are based on an N-body simulation
populated with a single halo occupation distribution (HOD) model.
These were built to reproduce the observed North Galactic Cap
subset of the BOSS CMASS galaxy sample, which covers an area of
approximately 7000 deg? in the redshift range 0.43 < z < 0.7 and
has an effective redshift of z.;z = 0.55. There are 84 mocks in total
that have a very realistic small-scale clustering imprinted. We refer
the reader to Alam et al. (2017) for the detailed description of these
mocks.

The EZmocks were built by gravitationally evolving dark matter
particles with Zel’ dovich approximation. They include a non-linear,
non-local, and scale-dependent galaxy bias prescription allowing the
addition of galaxies on top of the dark matter field. The redshift-space
two-point statistics in these mocks agrees with N-body simulation
within 1 per cent down to 10 2~! Mpc (Chuang et al. 2015). We use
in this analysis 500 ELG EZmocks that mimic the geometry and
observed clustering of the e BOSS ELG South Galactic Cap data set.
These mocks cover an area of 350 deg? in the redshift range 0.7 < z
< 1.1 and have an effective redshift of z.;s = 0.86. We refer the reader
to Zhao et al. (2021) for the detailed description of these mocks.

We measure in all the mocks the standard and AMF correlation
functions in redshift space using the estimators in equations (1) and
(3), respectively. We used random catalogues with approximately
50 times the number of galaxies in the mock data. The shuffled
random catalogues have randomly drawn angular positions from
the mock data catalogues, but the same radial distribution as that
imprinted in the standard random catalogues.

In the analysis of the mocks, we always consider the mean
correlation function over the different realizations for both standard
and AMF estimators, that is 84 for CMASS and 500 for ELG. Given
the modest number of mock realizations at disposal for CMASS,
we do not use them to estimate the associated correlation function
covariance matrices. Instead, the latter are estimated from 2048
realizations of the same volume based on PATCHY approximated
method (Kitaura, Yepes & Prada 2014). Ultimately, the covariance
matrices associated with the mean correlation functions are obtained
by scaling the raw covariance matrices, estimated with PATCHY
CMASS mocks and ELG EZmocks, by the number of realizations
(84 and 500, respectively).

3.2 Implementation of the full model

We use a similar method as that presented in Breton & de la Torre
(2021) to calculate the full model kernels. We first build angular
HEALPIX (Gorski et al. 2005) maps from the survey footprints used
to create the mocks. These maps are used to estimate the angular
selection correlation function, ®(0), with POLSPICE code (Szapudi,
Prunet & Colombi 2001; Chon et al. 2004). The 7i() are estimated
from CMASS and ELG random catalogues and shown in Fig. 2. Red-
shifts are converted into comoving distances using the corresponding

Clustering with nulled angular modes 1345

— CMASS
— ELG

0.8 1.0

-
£

Figure 2. Galaxy number density in CMASS (red curve) and ELG (blue
curve) mock samples.

Table 1. Cosmological parameters of the EZMOCKS (EZ) and the NSERIES
(NS) simulation. For both simulation €, = 0. The effective redshift of the
EZMOCKS and NSERIES are z.ff = 0.86 and 0.55, respectively.

EZ NS
Qm 0.307 0.286
Qb 0.048 0.047
h 0.678 0.700
ns 0.961 0.960
os(z=0) 0.823 0.820
Fdrag (Mpc) 147.66 147.15
fog(z = zefr) 0.469 0.449

fiducial cosmology of the simulation, given in Table 1. From these
two ingredients, the kernels can be evaluated numerically using
multidimensional Monte Carlo integration methods. Specifically, we
use the CUBA library (Hahn 2005) in a similar way as in Breton &
de la Torre (2021) to solve numerically the kernel integrals given
in Appendix A. A code to compute those kernels for any survey
geometry is publicly available.? Once kernels are computed, the
cross-correlation and angular terms are obtained by integrating over
A the kernels times the model standard correlation function. In
practice, this integral is performed as a Riemmann sum. We find
that a A binning of 1 Mpch~! is sufficient to have a numerically
stable model estimation.

3.3 Test of the models

In order to assess the different models presented previously, we
compare their prediction to the mean AMF correlation function
measured in the CMASS mocks. The models take as input the
redshift-space galaxy correlation function and number density as a
function of radial distance. For the purpose of testing AMF models,
we fix those to their mean mocks values. We present in Fig. 3 the
comparison between the original ansatz by Burden et al. (2017), the
model used in Tamone et al. (2020), the full model presented in this
paper, and mock mean predictions.

The model considered in Burden et al. (2017) neglects the angular
term in equation (15) and approximates the cross-correlation term

Zhttps://github.com/rpaviot/ AMF_2PCF
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100 —— Full model
----- Tamone et al. model
fffff Burden et al. model
50 CMASS mocks
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Figure 3. Comparison of AMF correlation function model predictions (¢ =
0: monopole, £ = 2: quadrupole, £ = 4: hexadecapole) with the mean of
CMASS mocks AMF correlation function measurements. The black solid
line corresponds to the full model (equation 22), the green short-dashed line
to the Tamone et al. (2020) model, and the red long-dashed line to the original
Burden et al. (2017) ansatz.

such that
E(sL,5) =6 (si.5) —Z/d)( /dsﬁ 2 (x) E(SLs 5))- (34)

It was designed for interpreting DESI ELG observations (DESI
Collaboration 2016) and tested against large volume mocks covering
14000 deg? on the sky and redshift interval 0.6 < z < 1.6. In
that model, the one-dimensional integral in equation (13) for the
cross-correlation term is approximated with the Limber angular
autocorrelation approximation given in equation (19). We have
checked that neglecting the angular term in equation (15) yields
predictions similar to those with Burden et al. (2017) model given in
equation (34). Indeed, the cross-correlation and angular terms have
qualitatively similar amplitudes in the modelled scale range, which
explains the agreement between the models. However, such a model
do not reproduce in our mocks the good agreement shown in their
fig. 6. Instead, we find that it leads to significant shifts in amplitude,
with an underestimation of all AMF correlation function multipole
moments. Moreover, we find that it cannot reproduce the measured
AMEF multipoles in either CMASS or ELG (see Fig. 5) mocks. This
inconsistency might be explained by the fact that the angular term
can only be neglected for extremely wide radial distribution, as in
the DESI mocks used in Burden et al. (2017). In that case, the double
integral of the correlation function over the wide radial selection
function makes this contribution to vanish. None the less, we remark
that considering an analysis in a single redshift interval covering 0.6
< z < 1.6 as in Burden et al. (2017) is rather unrealistic. Usually,
observational samples are divided in smaller redshift intervals to
avoid intrinsic clustering evolution issues among others, and in that
case, considering the angular term might be unavoidable.

Conversely, Tamone et al.’s (2020) and full models provide similar
predictions, very close to the mock measurement. By looking closely
at the differences between these two models, we see that the full
model performs best, particularly on the smallest scales of the
monopole and on the hexadecapole. It is worth recalling that Tamone
et al. (2020) model has a free parameter, j, which we optimized here
to best reproduce the measured mocks AMF correlation function.
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Figure 4. Relative difference between the full model (black solid line in
Fig. 3) and the mean of CMASS mocks measurements as a function of Ap,x
for the monopole (top panel), quadrupole (middle panel), and hexadecapole
(bottom panel) AMF correlation function. The red shaded area represents the
lo statistical uncertainty.

In evaluating the models, we have in practice to define the limit of
integration for the integral over s or A in equations (15) and (22).
The impact of this choice on the full model accuracy is presented
in Fig. 4. The latter shows the relative difference of the full model
prediction with respect to the mocks prediction, for different values
of Apax varying from 200 to 500 Mpch™'. Apa = 500 Mpc h™!
corresponds approximately to the maximum scale possibly probed
in the mock survey volume. The red area in Fig. 4 represents
the lo deviation around the mean of the mocks. We find that,
as expected, by increasing A, the prediction converges to the
expected signal, particularly in the monopole. For the quadrupole
and hexadecapole, the prediction already converges for Ap,x = 200
Mpc h~!. We note that in this figure, the two strong departures from
zero around the BAO peak in the monopole and on small scales
in the quadrupole and hexadecapole, are artefacts due to the zero
crossing of these functions. Overall, we find in the case of the
CMASS sample that Ax = 400 Mpch~! allows the recovery of
the mocks prediction at the percent level. While the quadrupole
signal is retrieved at all scales within 1o, we can see slightly larger
shifts in the monopole and hexadecapole. The impact of these shifts
on the determination of cosmological parameters are presented in
Section 4.

We repeat the model comparison for the ELG sample, a population
of galaxies that has different intrinsic clustering properties with
respect to CMASS. In that case, the correlation function measure-
ments are less precise, mainly due to the smaller volume probed by
the ELG mocks. The mean AMF correlation function in the ELG
mocks is shown in Fig. 5 together with the prediction of the full
model. Similarly as for CMASS, the agreement is very good, with
the full model prediction falling for most of the scales within 1o
measurement errors. We note that the ELG sample selection function
is more complex than than of CMASS sample, as the sample is
made of different sky patches (Tamone et al. 2020) with slightly
different 71(z). In the modelling we use a single averaged 71(z), which
can explain the small differences seen on large scales with respect
to the mock prediction and that were not present in the CMASS
case.
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Figure 5. Same as Fig. 3 but for ELG mocks.

4 COSMOLOGICAL ANALYSIS OF CMASS AND
ELG AMF CLUSTERING

In this section, we investigate the accuracy of the AMF correlation
function model in recovering the fiducial cosmological parameters
of the mocks, as well as how this compares to the analysis of the
standard correlation function multipoles. We perform full-shape RSD
and BAO-only analyses, similarly as in Bautista et al. (2021) on the
eBOSS luminous red galaxy sample.

4.1 Redshift-space distortions modelling

The redshift-space correlation function model considered in this
work is the Taruya, Nishimichi & Saito (2010) model extended to
non-linearly biased tracers, hereafter referred to as the TNS model.
Its main features are described here and we refer the reader to Bautista
et al. (2021) for a more detailed description.

In this model, the expression for the redshift-space power spectrum
of biased tracer is

P*(k,v) = D(kvo,)[ Peg(k) 4 207 f Pog (k) + v* f* Pg (k) +
Calk,v, f. b))+ Cg(k, v, f.b1)]. (35)

where k is the norm of the wave-vector, v is the cosine angle
between the wave-vector and the line of sight, 8 is the divergence
of the velocity field v defined as & = —V-. v/(aHf), and f is the
linear growth rate parameter. Py, Pgg, and Py are the galaxy-—
galaxy, velocity divergence-velocity divergence, and galaxy—velocity
divergence power spectra, respectively. The linear matter power
spectrum is estimated with CAMB at the fiducial cosmology, while
non-linear prescriptions for the matter and velocity divergence field
are derived with RESPRESSO (Nishimichi, Bernardeau & Taruya
2017) and Bel et al. (2019) fitting function. We adopted the biasing
model of Assassi et al. (2014) to predict P,, and P,g, which depends
on three bias parameters: by, b,, br, (the additional bg, parameter is
fixed to local Lagrangian prediction). Ca(k, v, f) and Cp(k, v, f) are
the two correction terms given in Taruya et al. (2010), which reduce
to one-dimensional integrals of the linear matter power spectrum.
The phenomenological damping function D(kvo,) not only de-
scribes the Finger-of-God effect induced by random motions in viri-
alized systems, but has also a damping effect on the power spectra. We
adopted a Lorentzian form, D(k, v, 0,) = (1 + k*v202/2)72, where
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o, represents an effective pairwise velocity dispersion treated as a
nuisance parameter for cosmological inference. In total, this model
has five free parameters p = [ f, by, b2, br;, 0,,]. The normalization
of the input matter power spectrum is set to its fiducial value, og =
0.8, and because of the well-known degeneracy between f and o,
the final constraints are provided in terms of f times the fiducial og
value at the effective redshift of the sample.

The TNS correlation function multipole moments are eventually
obtained by performing the Hankel transform of the model power
spectrum multipole moments,

G20+ 1 K ! :
EMNS(s) =i T dk 5 ju(ks) / dv P(k, v)Le(v),  (36)
-1

2
where j, denotes the spherical Bessel function of order ¢. In practice,
the Hankel transform, i.e. the outer integral in the above equation,
is performed rapidly using FFTLOG algorithm (Hamilton 2000).
The model for the AMF correlation function multipole moments
is evaluated using equation (30), where £(s, @) in equations (27)
and (28) is replaced by €™S(s, ). The sum over TNS multipoles
is limited to even multipole moments up to £ = 8§, since the other
moments vanish (Taruya et al. 2010; de la Torre & Guzzo 2012).

We parametrise the Alcock—Paczyriski (AP) distortions (Alcock &
Paczynski 1979) induced by the assumed fiducial cosmology in
the measurements via two dilation parameters that scale transverse,
«, and radial, o, separations. These quantities are related to the
comoving angular diameter distance, Dy, = (1 + z)D4(z), and Hubble
distance, Dy = ¢/H(z), respectively, as

Dy (zesr)

o = ——0, 37

* D (zesr) 67
Dy (zesr)

@ =i (38)
Dy (Zetr)

where c is the speed of light in the vacuum, and z is the effective
redshift of the sample. We apply these dilation parameters to the
theoretical TNS power spectrum P*(k, v) in equation (36), so that
PS(k, v) — P5(k', v'), where

k 1 1/2
K =— {1—{—\12 (—2—1)} , (39)
oL Fip

v 1 —-1/2
v 1+v2(——1)] , (40)
Fap [ Fip

and Fap = «/a . In this way, we do not have to recompute the
kernels at each iteration of the likelihood analysis. We have checked
that this implementation gives unbiased cosmological measurements
when fitting the modelled AMF correlation function, which should,
in principle, give the exact same result as the one of the standard
correlation function, regardless of the correctness of the considered
AMF model.

In full-shape correlation function or power spectrum analyses, the
model real-space power spectrum shape is usually kept fixed at the
effective redshift of the sample. However, AP distortions will modify
the effective amplitude of the power spectrum, og, and in turn affect
the estimated fo g. Therefore, we introduce the rescaled fo g parameter
as in Gil-Marin et al. (2020), defined as
fUSrs = fJSaiso7 (41)
where o5, = af_/ 3oz|1‘/ * and O3a;, Tefers to or evaluated at scale R =
8ais, h~' Mpc. This provides more robust fo g measurements when
the dilation parameters are significantly different from unity, i.e when
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the fiducial cosmology is far from the true underlying cosmology (see
Bautista et al. 2021).

4.2 BAO modelling

In the BAO-only analysis, we follow Bautista et al. (2021) and use
the phenomenological BAO power spectrum model:

b2 [1+ B(1 = S(ow?]’
(14 k212%2)2)
X [Pno peak(k) + Ppeak(k)eikzzﬁl(‘})/z} s (42)

Pk, v) =

where b is the linear bias, 8 = f/b is the redshift-space distortions
parameter. The non-linear broadening of the BAO peak is modelled
by multiplying the ‘peak-only’ power spectrum P, by a Gaussian
with variance Zﬁl(v) = Eﬁvz + Ei(l — 1?). The non-linear random
motions on small scales are modelled by a Lorentzian distribution
parametrized by X,. The function S models the smoothing of the
density field used for the reconstrution. Since we will only consider
the pre-reconstrution correlation function here, S is set to zero. The
AP dilation parameters are applied only to the peak component of
the power spectrum such that

p2 [1+ B(1 — Stw?]’
(1 +k2v2%2/2)
X [ Pro e ) + Prea k)52 3

P, V) =

The associated correlation function multipole moments are obtained
by Hankel transforming the model power spectrum multipole mo-
ments as

20 +1
Es) = it 2+

2 1
/dijg(kS)/ dv P(k', vV')Ly(v). (44)
272 1

The final BAO model is a combination of the BAO correlation
function with a smooth function of the separation that allows
marginalizing over broadband non-linear features:

0
PA0(s) = Elar, o, )+ Y agis'. (45)

i==2

The model for the AMF BAO correlation function multipole mo-
ments is obtained from equation (30), where & (s, 1¢) in equations (27)
and (28) is replaced by £B49(s, ), and

=4

P05, ) = &) Lo(). (46)

=0

In the BAO modelling, a linear RSD model is implicitly assumed,
which only predicts non-vanishing even multipole moments up
to £ = 4. The implementation of AP dilation parameters is ex-
actly the same as previously for the RSD modelling. In order
to model the AMF BAO multipoles, we apply the broad-band
parameters in equation (45) after the AMF modelling. This is
mainly to avoid adding two extra broad-band parameters to the
model hexadecapole, which cannot be well constrained when fitting
only the BAO feature in the monopole and quadrupole moments
of the correlation function. In total, the BAO model has twelve
free parameters [o), oy, b, X,, ¥, X 1] plus the six broad-
band parameters, f being fixed to the fiducial value of the simu-
lation.
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Table 2. Absolute difference between the derived parameters in the AMF
ELG analysis of the BAO and those obtained in the standard analysis. The
results are shown for the case of the entire SGC footprint and that of only the
chunk eboss21. The provided errors correspond to the variance obtained by
summing up in quadrature the parameter variance from the AMF and standard
analyses.

Field Aa | A

ELG SGC
ELG eboss21

—0.0014 4 0.0066
0.0051 £0.0143

0.0108 £ 0.0091
0.0009 £ 0.0175

4.3 Full-shape redshift-space distortions results

We derive constraints on o, o, fog parameters by performing
likelihood analyses of both standard and AMF mean correlation
functions in the mocks. The monopole, quadrupole, and hexade-
capole moments are fitted to the TN'S model presented in Section 4.1
in the range 25 < r < 150 h~'Mpc. AMF kernels are precomputed up
to a maximum value of Ap,x = 500 Mpc hl, necessary to provide
a robust modelling of the BAO feature, as discussed in the previous
section.

The constraints on «, o | , fo'g that we obtain are given in Table 3
and the best-fitting models are shown in Fig. 6. We find that the
AMEF correlation function, when compared to the standard correlation
function, provides unbiased estimate of fog and «,. The fiducial
values lie within their lo statistical uncertainty. The recovered «
central value exhibits a small 1.4¢ shift with respect to the standard
analysis, none the less it is comparably close to the fiducial value
as is the standard analysis. The lo statistical errors obtained on
the parameters in the AMF analysis are increased by 20, 10, and
50 per cent for ||, 1, and fo g, respectively. As expected, the signal
is decreased in the AMF correlation function leading to worse
constraints, the most affected parameter being fog. The posterior
probability contours for all combinations of parameters are shown
in Fig. 7. These contours are obtained with the ensemble sampler
ZEUS (Karamanis et al. 2021). We can see that, while AMF analysis
shows larger contours compared to the standard one, the directions
of degeneracy between the parameters is the same.

For the ELG mocks, we only consider the monopole and
quadrupole in the likelihood analysis. Indeed, we found that includ-
ing the hexadecapole in the standard analysis introduces a 3o shift
on ¢ Since this shift is not present in the N-body simulation-based
CMASS mocks, we conclude that we cannot safely compare standard
and AMF cosmological measurements when the hexadecapole is
included. This is likely due to the approximated method used to
produce EZmocks. It is important to emphasise that EZmocks were
not meant to reproduce the observed ELG clustering with highest
accuracy, instead to reach an accuracy comparable to the statistical
precision of the eBOSS ELG sample, where statistical 1o relative
precision on o, a;, and fog are 9.6, 14.7, and 26.3 per cent,
respectively (Ross et al. 2020; Tamone et al. 2020; de Mattia et al.
2021; Raichoor et al. 2021). Consequently, we can hardly judge from
systematic deviations on the parameters below typically 1o in these
mocks.

The ELG constraints on o, v |, fog that we obtain are given in
Table 3. We find that the AMF analysis provides similar constraints
on o as the standard analysis. The AMF central values for ] and
fog lie within 1o of the standard analysis uncertainty. We note that
the close to 1o shift in fog almost disappear when considering fo g.
The posterior probability contours for all combinations of parameters
are shown in Fig. 8. As for CMASS mocks, the degeneracy directions
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Table 3. RSD and BAO results for the mean of NSeries (CMASS sample) and EZmocks (ELG sample). We assume in each analysis the
corresponding fiducial cosmology of the mocks. We therefore expect the AP distortions parameters o] and | to be equal to 1. For the
growth rate, we expect fog = 0.469 and 0.449 for CMASS and ELG, respectively. For full-shape analysis, we also present the statistical error

corresponding to one realization after the slash.

Method o o fo‘g fo‘ 8rs
CMASS
RSD M+Q + H standard 0.9972 £+ (0.0019/0.017)  1.0032 =+ (0.0032/0.029) 0.4700 =+ (0.0044/0.04) 0.4694 £ 0.0044
RSD M+Q + H AMF 0.9962 + 0.0023 0.9987 £+ 0.0038 0.4686 + 0.0067 0.4696 + 0.0067
BAO standard 1.0056 £ 0.0022 1.0007 £ 0.0044
BAO AMF 1.0043 £ 0.0026 1.0011 £ 0.0046
ELG
RSD M + Q standard 1.0038 £ (0.0043/0.096)  1.0089 =+ (0.0066/0.147) 0.4556 £ (0.0053/0.118) 0.4523 £ 0.0053
RSDM + Q AMF 1.0028 £ 0.0049 1.0142 £ 0.0067 0.4616 £ 0.0065 0.4567 £ 0.0065
BAO standard 1.0023 £ 0.0043 1.0063 £ 0.0062
BAO AMF 1.0009 £ 0.0051 1.0171 £ 0.0066
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I Figure 7. Posterior probability contours on ¢ , o | , and fo'g obtained when
~ -0 —— RSD model fitting the mean of the standard (blue) and AMF (red) multipole moments in
——  AMF RSD model the full-shape RSD analysis of CMASS mocks. The vertical lines in the top
100 T CMASS mock &(s) panels show the fiducial values of the mocks.
¥ CMASS mock &(s)
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s[h 1 Mpd] BAO reconstruction scheme as usually done on real data. Only the

Figure 6. Best-fitting RSD models to the mean of the standard and AMF
correlation function monopole (top panel) and quadrupole (middle panel),
and hexadecapole (bottom panel) measured on the CMASS mocks.

between the parameters are similar for the standard and AMF
analyses.

4.4 BAO-only results

We further perform a BAO-only analysis on the mean mock
AMF and standard correlation functions. We only consider pre-
reconstruction correlation functions here, i.e. we do not apply any

monopole and quadrupole are used, as the hexadecapole does not add
more constraining power in BAO-only analysis (e.g. Bautista et al.
2021). We fit the monopole and quadrupole in the range 40 < s <
150 h~'Mpc. The constraints that we obtain on o and | are given
in Table 3 for the CMASS and ELG samples, and the best-fitting
CMASS models are shown in Fig. 10. We find that we can recover
almost the same constraints in the AMF and standard analyses with
CMASS mocks. Central values on o and o, are within less than
1o of that of the standard analysis. The statistical uncertainty on the
parameters increases by less than 5 per cent. Overall, the BAO-only
analysis of the AMF correlation function is almost as efficient as
the standard BAO pre-reconstruction analysis. The joint posterior
probability contours for | and «; are shown in Figs 11 and 12
for the CMASS and ELG samples respectively. These contours were
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Figure 9. The number density of ELG in the SGC field. The blue (red) curve
corresponds to the eboss21 (eboss22) chunk, while the black dashed curve to
the average in the SGC field.

computed using the minimization algorithm IMINUIT.? In the ELG
mocks, while the AMF « is very close to that obtained in the
standard analysis, we observe a 1.60 shift on « . This shift is partially
related to the observed shift on the model AMF correlation function
shown in Fig. 5. It can be explained by the way the AMF model
accounts for the varying galaxy radial distribution in the ELG SGC
sample. Each ELG SGC mock covers 358 deg? over an effective
volume of 0.5 Gpc?. The SGC footprint is composed of two adjacent
chunks: eboss21 and eboss22, respectively covering 117 and 240
deg?®. These chunks exhibit slightly different radial distributions as
illustrated in Fig. 9. If we perform a BAO-only AMF analysis only
on the eboss21 chunk, we find that the shift on o) disappears. This is
shown in Table 2, where the absolute differences between parameters
obtained with the standard and AMF analyses are given. Therefore,

3https://iminuit.readthedocs.io/
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Figure 10. Best-fitting BAO models to the mean of the standard and AMF
correlation function monopole and quadrupole measured in the CMASS
mocks.
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Figure 11. Posterior probability contours on « |, r; when fitting standard
(blue) and AMF (red) multipole moments (monopole and quadrupole only)
in the BAO-only analysis on the CMASS mocks.

the shift on o can be attributed to the adopted methodology to
derived AMF kernels for the ELG. Overall, and given the intrinsic
uncertainty on the clustering in the EZmocks, we can conclude
that the AMF does not show any significant bias on the recovered
cosmological parameters with respect to the standard analysis.

5 DISCUSSION AND CONCLUSION

In this paper, we studied the use of a modified galaxy two-point
correlation function for cosmological inference, whose particularity
is to suppress angular modes, and in turn, any potential angular
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Figure 12. Posterior probability contours on « |, o when fitting standard
(blue) and AMF (red) multipole moments (monopole and quadrupole only)
in the BAO-only analysis on the ELG mocks.

observational systematic errors. This statistic, the AMF two-point
correlation function, was first introduced by Burden et al. (2017).
We extended the latter work and derived a full model to describe
this statistic, given a model of the standard redshift-space two-
point correlation function. We compared the model to mock galaxy
samples of luminous red and emission-line galaxies measurements
at 0.43 < z < 1.1 and found that it outperforms all previous proposed
approximate models. Moreover, it uniquely allows reproducing the
full shape of the AMF correlation function, when the underlying
correlation function is known, without introducing any new nuisance
parameter. This makes possible the performance of a full-shape
redshift-space distortions analysis with this statistic.

As aproof of concept, we performed a cosmological analysis of the
AMF correlation function in CMASS and ELG mocks, in a similar
fashion as we would do with real survey data. We found that we can
recover nearly unbiased o, o |, fog parameters with respect to the
standard approach. There is only an increase of 18—20 per cent on
a and o statistical uncertainty, and of 50 per cent on fo g for those
galaxy populations.

Current and future large spectroscopic surveys such as DESI
(DESI Collaboration 2016) or Euclid (Amendola et al. 2018) will
probe much larger universal volumes. This will allow reducing
considerably the statistical errors on cosmological parameters. For
those, it will be crucial to control the level of systematic errors at a
extremely low level. This is today a challenge and the work presented
here paves the way towards achieving this goal. By construction, the
AMF two-point correlation function is less constraining compared to
the standard correlation function. None the less, this approach can be
advantageously used in the case of inhomogeneous samples, or in the
case of surveys with a complex, poorly understood angular selection
function (e.g. Tamone et al. 2020). A direct possible application is
the cosmological analysis of early-stage data set from current or
future large redshift surveys, such as DESI or Euclid. The latter
will suffer from low completeness in the first years of observation
(Burden et al. 2017) and the AMF correlation function should allow
robust cosmological measurements from the early data.

Finally, it is important to emphasize that the AMF approach is
complementary to the standard one, in the sense that it can be used
as a cross-validation test. Indeed, it permits studying the impact
of angular systematic errors in the standard analysis and be used
as a benchmark to check whether all angular systematic errors are
well accounted for. If one finds that the recovered cosmological
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parameters are the same with the two approaches, one validates the
accuracy of the observational bias correction scheme used in the
standard analysis.
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APPENDIX A: DERIVATION OF THE AMF TWO-POINT CORRELATION FUNCTION

The modified Landy—Szalay estimator in equation (3) is sensitive to the autocorrelation of the AMF overdensity times the survey window
function, divided by the window correlation function. If we define the windowed AMF overdensity field as

F(r)= P(r)é(r)— P(r) /dr”ﬁ(r”)&(r”), (Al)

where r and r” share the same line of sight, the AMF correlation function is

. [ ErF@F@r+s)

SO = T PP+ (A2)
From the definition of F(r), we have that
F(r)F(r +s) = P(r)P(r +s)5(r)é(r +s)

—P(r)s(r)P(r —|—s)/dr’r‘z(r/)8(r’)

—P(r +8)8(r + s)P(r)/dr”ﬁ(r”)é(r”)

+P(r)P(r +s) / dr"n(r"s(r") / dr'in(r"s(r), (A3)

where r’ and r + s are colinear (as well as r and r”). By taking the volume integral of equation (A3), we can identify four terms. The first one
corresponds to the windowed correlation function, the second and third are associated to the cross-term in the following, and the fourth term
to the angular term. The denominator of equation (A2) is the window correlation function. Putting all terms together, we find that the AMF
correlation function can be written

£ C(s)  A(s)
§(s) =§&(s) — W) + W)’ (A4)
where
£(s) = (8(r)d(r +5).) (AS)
C(s) = [&Er P(r)P(r + ) [[dr'a(rHE@ —r)+ [dr'a(r"E (r" —r —s)], (A6)
A(s) = [&r P(r)P(r+s) [dr'a”) [ dr'a(re —r"), (AT)
W(s) = [ &r P(r)P(r + ). (A8)
The geometrical configuration is presented, on the left-hand side, of Fig. Al. By introducing ry, A, A’, and I' such that

rg=r-+s,

A=r—r,

AN =r"—r,,

C=r—r" (A9)
A and C simplify to

C(s) = [&rPr)P(ry) U dr'an(rH&(A) + fdr”ﬁ(r”)s(A’)] = Ci(s) + Ca(s), (A10)
A(s) = [&rPr)P(ry) [dr’"a(r") [ dr'n(rHE(D). (A11)

In order to calculate those terms we have to solve for three triangles with sides (r, A, r’), (", A', ry), and (", T', r'). We need to express 7
and 7" as a function of 7, r,, 8, A, A', and T". This involves solving the general case when two sides and a non-included angle of a triangle are
given. In this configuration, there is one or two solutions depending on the relative size of the two given sides. However, since separations are
generally smaller than the distance to galaxies, we are always in the case with two solutions. The two degenerate solutions are illustrated on
the right-hand side of Fig. A1. We thus have
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Figure Al. Left-hand panel: geometrical setting. Right-hand panel: illustration of the two solutions of the triangle defined by the vectors (r, A, r’). For given

r,0,and A = |A_| = |A4], it exists two possible lengths for # and associated included angle: y4 ory_.
r' =rcos@ £ A2 —r2sin?6, (A12)
r" =rycos6 £ /A% —r2sin? 0, (A13)

r' =r"cos £ /T2 —r"sin? 0. (Al14)

Using those relations in equations (A10) and (A11) lead to

Ci(s) = [BrPr)P(ry) [FdA —Z2—7i (rcos + /A2 —r2sin? 0 ) E(A), (A15)
r /A2—r2sin2 0

Ca(s) = [drPr)P(ry) [* dA ——E2—— i (rycos6 £ /A? — rZsin? 6 ) £(A)), (A16)
s VA2 e s

A(s) = [&ErP@)P(ry) [ dr"a(r") [, dT \/%ﬁ i (r” cosf £ /T2 — r"2 sin? 9) g(). (A17)

If we expand £ (A) in multipole moments in the local plane—parallel approximation such that £(A) = Z;io &,(A)L ,(j1p), the term C; can be
re-expressed as

+n (r cos@ £ /A2 —r2sin? 0

Cl(s):2/0 dAZAEI,(A)/d%P(r)P(rS) L,(pas). (A18)

— A2 —r2sin?2 0
p=0
By making the change of variable A — — A in equation (A15), the solution with smallest # (with minus sign) becomes

il (r cos 0 —~/ A2Z—r2 sin? 9)
\/ A2—r2sin2 6

Therefore, assuming that the two geometrical configurations are equiprobable, we can take the average contribution and

i (r 086 + VAT — 2 sin? 9) Ly(fias) +7i (r cos6 — /AL — 2 5in? 9) L,(ita_)

A2 —rZsin? 0

Cio(s) =2 [{7dA Y AE,(A) [ drP(r)P(ry) Ly(ias). (A19)

Ci(s) = / Taay o agm) / &rPr)P(r,) (A20)
0 =0

By further expanding in multipole moments, the latter read

0 0 1
Cu(s)z/ dAD AN (L;l/ dus/d—‘rP(r)P(rs)
0 =0 -1

il (r cos O + /A% — rZsin? 9) L,(pas)+ 1 (r cos @ — v/ A% — r2sin? 9) L,(pa-)
X Lo(ug) | . (A21)
A% —rZgin? 0 (s
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Carrying out in a similar fashion with the other terms, we eventually find that
Xo(s) = [T dA Y AE (A Wxey(s, A), (A22)
where X stands for C;, C,, or A and

We,ep(s, A) = 2t + ! / des /d r P(r)P(ry)

il (r cos6 + +/A? — r2sin? 9) Ly(ua)+i (r cos — v/ A% — r2sin? 9) L,(a-)
x Le(wy), A23
A% —r2sin2 @ o) (A23)

Weypls, &) = 2 / ds / &r P(r)P(ry)

il (rs cosf + /A% —rZsin? 9) Ly(pay)+1 (r.\. cos® — /A% —rZsin? 0) L,(a-)
X - L(ks), (A24)
A% —r2sin? 0

Waep(s, A) = z+1/ /d3r P(r)P(rs)/ dr'i(r')

il (r’cos@ + &/ A2 — 12 sin? 9) L,(ury) +1 (r/ cosf — /A2 — r?sin? 0) Ly(pr-)
% L(py). (A25)
A% — r2sin? 0 (s

Similarly, the window correlation function multipole moments can be written as

Wis) = 2 “ / du, / &r P()P(r)Lo(Ls). (A26)

In the above multipole expansions, we use the mid-point line-of-sight convention so that ta, ia’, i correspond to the cosine angles between
the separation vectors and their mid-point directions, e.g. s = P; - §, where p; is the position of the median point of s. Those cosine angles
can be deduced by solving the half triangle delineated by the median point direction. We thus have that

+r'cosya—A/2 r smH
Ap = ——SBVATDIE  with y, = arcsin Z2R¢ A27
® /12 HA2 J4Fr A cos ya v A ( )
+r” —A')2
Uae = ricosyy A with y, = arcsin = ““9, (A28)

\/r”2+A’2/4¥r”A’ NG
Ury = \/% with yr = arcsin = F"o. (A29)

The kernels in equations (A23)—(A26) are purely geometrical functions that depend on the window function and number density of the
sample. They are weighted integrals over the observed volume and can be evaluated with a Monte Carlo method by making use of random
catalogues as in de Mattia & Ruhlmann-Kleider (2019). The weighting of each pair is given by the functions in the inner integrands in
equations (A23)—(A26). For instance, in the case of W/, an estimate can be obtained by computing

20 +1

W -
)= —5— 27Ts2As N,

ZSD(Ir, —ril =)L), (A30)
where the sum goes over the ith and jth random objects of the catalogue, As is the bin size in s, N, is total number of pairs, and §;, denotes the
Dirac delta function. An alternative and efficient method to calculate those kernels in a realistic survey configuration, i.e. in a lightcone, is to
follow the method of Breton & de la Torre (2021). This methods uses two nested spherical volume integrals to sample all pair configurations
in the lightcone. It necessitates the a priori knowledge of the angular selection correlation function, which can be efficiently estimated with
angular maps of the survey, as well as the mean number density of galaxies as function of distance. Applying a similar approach to the case of
the above kernels involves computing the following integrals numerically:

Smax

20+ 1 o0 !
Weitpnin Smaxs &) = 2% 87 / arae) [ ds / djas DO) ()
0 Smin -1
7 (r cos6 + VAT — 2 sin? 9) Ly(tas) +7i (r 086 — AT — 2 sin? 9) L,(us)
x Lo(y), A31
—— o) (A31)

1
ds/ dus ®0) n(ry)

Smin -1

il (rS cos O + /A% — r2sin? 9) Ly(ary) +1ii (rx cos® — /A% —rZsin? 9) Ly(a-)

X Lo(uy), A32
T (1) (A32)

1 00
ds / dus <D(6)ﬁ(rx)/ dr'i(r")
Smin -1 0
il (ﬂcos@ + /A% — r25sin? 9) L,(ury) + 1 (r/cose — /A% — r2sin? 9) L,(uro)

X Lo(ps), A33
s (1) (A33)

Smax

20+ 1 o0 B
WCzZp(sminv Smaxs A) = 2 8m? / dr rzn(r)
0

Smax

20 +1 o
WA(Z];(Smins Smax» A) = ;— 87 2 / dr rzﬁ(r)
0
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where ®(0) is the angular selection function correlation function, 6 and r; can be expressed in terms of 7, s, and pi, and (Syin, Smax) defines the
s bin under consideration. These three- and four-dimensional integrals can be computed efficiently using the CUBA library (Hahn 2005), as
described in Breton & de la Torre (2021). Finally, the AMF anisotropic correlation function can be expressed as

C(s, ) | Als, )

g(s’ l’l') :s(ss/'l/)_ W(S,/J,) W(S,[L), (A34)

where

Clo ) = 20 (S5 dA 320 A6 (AWery (5, ) L), (A35)

Al = Y0 (Ji7 4B X520 A (A Wagy(s. 8)) LeG, (A36)

W(s, w) = 32720 Wels)Le(). (A37)

and

Weep(s, D) = Weep(s, A) +Weyep(s, A). (A38)

The multipole moments of the AMF correlation function are obtained from (s, i) as

- 20+ 1 L

f = 2D / E(s. L e(u)dp. (A39)
-1

This paper has been typeset from a TEX/IZTEX file prepared by the author.

MNRAS 512, 1341-1356 (2022)

€20z udy g1 uo sasn SYND Aq L068YS9/L¥EL/L/ZLS/BI0IHE/SeIuW/WOd dno dlwapede//:sdiy woly papeojumoq



	1 INTRODUCTION
	2 THE ANGULAR MODES-FREE CORRELATION FUNCTION
	3 TEST ON MOCK SAMPLES
	4 COSMOLOGICAL ANALYSIS OF CMASS AND ELG AMF CLUSTERING
	5 DISCUSSION AND CONCLUSION
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	SUPPORTING INFORMATION
	APPENDIX A: DERIVATION OF THE AMF TWO-POINT CORRELATION FUNCTION

