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Abstract The representation of stratocumulus by the atmospheric component of the Centre National
de Recherches Météorologiques model version 6 (CNRM-CM6-1) is assessed. An Atmospheric Model
Intercomparison Project-type simulation is first used to document the main model errors, namely, a large
lack of stratocumulus over the eastern part of tropical ocean basins. Short-term hindcasts, following the
Transpose-Atmospheric Model Intercomparison Project framework, are then used to better assess the
timescales associated with the cloud bias growth and to highlight the processes leading to them. These
biases are shown to appear within only a few hours, independently of errors in the large-scale circulation
that set up within a few days. Key processes underlying the low-cloud formation are thus mainly local and,
to the first order, do not imply any feedback between the model physics and the large-scale dynamics.
As a consequence, short-term hindcasts provide a relevant framework to investigate whether the
low-cloud underestimate is related to errors in the large-scale state variables or to errors in the model
parameterizations. Sensitivity tests highlight that the involved processes arise (1) mostly from
misrepresentation of subgrid effects on cloud formation and (2) partly from biases in drying induced by
cloud-top entrainment mixing. Improvements in the representation of stratocumulus in the CNRM-CM6-1
model might thus be expected by including a more realistic subgrid-scale temperature and moisture
distribution, that would link convective and turbulence processes. Finally, this study confirms the potential
of short-term hindcasts, which provide a trustworthy framework to evaluate and develop climate model
parameterizations.

1. Introduction

Stratocumulus clouds prevail over the eastern parts of tropical ocean basins, where the large-scale subsiding
atmosphere flow brings dry and warm air downward and ocean upwellings bring cold water upward. This
generates stable atmospheric conditions associated with sharp inversions of humidity and temperature at the
top of the boundary layer, which favor condensation and thus cloud formation within the first few kilometers
(Klein & Hartmann, 1993; Lilly, 1968; Wood & Bretherton, 2006). These low clouds cover large oceanic areas
and reflect large amounts of incoming solar radiation back to space. This makes them play a significant role
on the global energy budget (Chen et al., 2000; Hartmann et al., 1992).

The formation of marine stratocumulus results from a subtle equilibrium between surface sensible and latent
heat fluxes, boundary-layer mixing of humidity and temperature, microphysical processes, precipitation,
cloud-top radiative cooling, and entrainment (Wood, 2012). The westward offshore increase in surface tem-
perature and weakening of the large-scale subsidence amplify the vertical mixing and deepen the planetary
boundary layer (PBL), which induce a transition from stratus and stratocumulus to trade-wind shallow cumu-
lus cloud regimes (Bretherton & Wyant, 1997). The latter cloud regime is mainly driven by the surface buoyancy
flux, while the first regime arises mostly from downward motions driven by cloud-top entrainment associ-
ated with radiative and evaporative cooling processes (Caldwell et al., 2005; Nicholls, 1984, 1989). The subtle
boundary-layer interactions between the dynamics, the condensation, and the radiation need to be properly
captured by climate models to accurately simulate marine low clouds.

The difficulty in representing subtropical stratocumulus in climate models has been pinpointed for a long
time (Dal Gesso et al., 2015; Mechoso et al., 2014; Nam et al., 2012). Most climate models suffer from a
lack of stratocumulus, which leads to overestimate the amount of solar radiation reaching the surface over
the eastern part of tropical oceans (De Szoeke et al., 2012). This error has been highlighted as one of the
causes of the systematic warm surface bias of climate models (De Szoeke et al., 2010; Hourdin et al., 2015;
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Richter, 2015). Furthermore, errors in representing low clouds drive uncertainties in cloud feedbacks to global
warming and thus in climate change projections (Brient et al., 2016; Bony & Dufresne, 2005; Tsushima et al.,
2016). Any improvement in the representation of stratocumulus clouds would significantly improve the
realism of ocean-atmosphere coupled climate simulations.

This difficulty in representing marine stratocumulus lies in the inability of climate models to accurately rep-
resent turbulent and cloud processes located within the few tens of meters below the top of the boundary
layer and their interactions with the subcloud mixed layer. The coarse horizontal resolution of climate models
calls for empirical formulations (parameterizations) to represent the effect of subgrid-scale cloud processes
(turbulence, convection, microphysics) on the larger scales. These assumptions are often not appropriate to
fully capture the balance of processes within stratocumulus-capped boundary layers (Moeng & Stevens, 2000;
Siebesma et al., 2003), as well as their interaction with the model numerics (Bretherton et al., 2004). The vertical
grid resolution of climate models is also often too coarse (50–100 m) to allow them to capture the strong inver-
sion of the moisture and temperature profiles and the small-scale processes occurring there (Mellado, 2017).
Numerical assumptions are sometimes used to reconstruct these inversions for use in parameterizations (e.g.,
Grenier & Bretherton, 2001).

Despite these difficulties, significant improvements have been made in the past two decades in the rep-
resentation of stratocumulus processes in climate models. For instance, Lock et al. (2000) developed a
boundary-layer scheme, which accounts for local and nonlocal turbulence productions (driven by both sur-
face fluxes and cloud-top processes) in a set of cloud situations. Each of them are related to prescribed
assumptions of turbulence exchange coefficients defined by the atmosphere stability and induce different
subgrid turbulent fluxes. Additionally, a first-order turbulence closure involving parameterization of cloud-top
entrainment is added (Lock, 1998). Implementing this boundary-layer scheme has led to significant improve-
ments in the representation of clouds in the HadGEM model (Martin et al., 2006). More recently, Bretherton
and Park (2009) proposed a boundary-layer scheme that also uses local and nonlocal turbulence assumptions
for diffusivity profiles, but based on turbulent kinetic energy (TKE) equations. Particular care has been taken to
accurately identify the height of the boundary layer. As in Lock et al. (2000), nonlocal cloud-top turbulence is
also calculated by a parameterization of cloud-top entrainment (Bretherton et al., 2004; Grenier & Bretherton,
2001). These modifications also suggest better simulations of low-cloud transitions. Additionally, interactions
between the subgrid turbulent processes and other parameterizations need to be addressed with care (e.g.,
Lock, 2001). In this regard, recent attempts have been undertaken to develop unified approaches for the rep-
resentation of the boundary-layer mixing by both turbulent and convective processes and its coupling with
cloud and condensation processes (Köhler et al., 2011; Siebesma et al., 2007; Sušelj et al., 2013; Tan et al., 2018).

To assess and improve parameterizations, single-column models (SCMs) are widely used (Betts & Miller, 1986;
Lock et al., 2000; Randall et al., 1996). SCMs are usually run using idealized initial states and large-scale forcings
(e.g., Duynkerke et al., 2004). While the SCM approach might be able to reproduce a diversity of cloud regimes,
it does not allow to address the interactions between the model physics and the larger scales. This requires
intermediate model configurations to fill the gap between the few available SCM configurations and the full
3-D model.

Here we propose to use short-term atmospheric hindcasts to address this gap. In the climate modeling com-
munity, this approach is often referred to as Transpose-Atmospheric Model Intercomparison Project (AMIP;
Ma et al., 2014; Phillips et al., 2004; Williams et al., 2013). The hindcasts are initialized from realistic conditions,
and their drift toward the model climatology can be analyzed to highlight mechanisms responsible for model
errors (Toniazzo & Woolnough, 2014; Vannière et al., 2014; Voldoire et al., 2014; Wan et al., 2014) and identify
physical processes that explain them (Ahlgrimm et al., 2018; Hannay et al., 2009; Morcrette et. al 2012; Zheng et
al., 2016, 2017). The drift analysis also helps to disentangle the role of various processes and of their interaction
with the large-scale dynamics, as they often have different time scales. Short-term hindcasts are an interme-
diate tool between SCM and long-term 3-D simulations: as in SCM, they allow us to focus on the local biases
before the large-scale feedbacks start acting, while remaining cheaper than AMIP-type simulations. Addition-
ally, this framework provides a wide set of atmospheric conditions to assess parameterizations, much larger
than the few case studies available for SCMs. Despite these advantages, it seems that only a few studies have
used the Transpose-AMIP framework to investigate in detail the physical processes leading to the stratocu-
mulus biases. For instance, Hannay et al. (2009) and Medeiros et al. (2012) provide a process-oriented analysis
of the diurnal cycle of marine stratocumulus. Using a cloud liquid water budget, the latter attributes the 5-day
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evolution of the CAM4 and CAM5 models stratocumulus bias to the boundary-layer parameteriza-
tion (cloud-top radiative cooling, entrainment, and detrainment). They prove the usefulness of the
Transpose-AMIP framework to disentangle structural and parametric uncertainties leading the stratocumulus
biases (e.g., critical relative humidity threshold, entrainment efficiency).

In the present analysis, we aim to evaluate stratocumulus clouds simulated by the new version of the Centre
National de Recherches Météorologiques (CNRM) model (CNRM-CM6-1) and further address the origin of their
biases. The previous version of the climate model (CNRM-CM5) suffered from one of the largest underestima-
tion in subtropical low clouds among climate models (Nam et al., 2012), which partly drives the strong warm
surface biases over the ocean, seen in its coupled version (Voldoire et al., 2014). Compared to CNRM-CM5, an
almost fully revised physical package has been developed and introduced in CNRM-CM6-1 (Abdel-Lathif et
al., 2018). In particular, CNRM-CM6-1 has now a new scheme for the turbulence, which includes the cloud-top
entrainment parameterization of Grenier and Bretherton (2001). Several of these developments are expected
to influence the representation of stratocumulus, and needs to be assessed in detail.

We first describe the model characteristics in section 2, with a detailed description of both the turbulence
and cloud schemes. Then, the data sets used in the model analysis are introduced in section 3. The low-cloud
climatology, the stratocumulus annual cycle, and the associated CNRM-CM6-1 biases are documented for an
AMIP simulation in section 4. The rest of the paper uses the Transpose-AMIP approach. Section 5 analyzes the
drift of the model stratocumulus, to assess the usefulness of the framework and the time scales associated
with the low-cloud errors. Finally, process-oriented sensitivity tests are performed to provide insight in the
physical origins of the CNRM-CM6-1 stratocumulus biases, in particular to better disentangle whether they
are associated to errors in the cloud parameterization input parameters or to structural errors of the param-
eterization itself (section 6). Section 7 summarizes the main findings of the present study and emphasizes
some prospects to improve the representation of stratocumulus in the CNRM climate model

2. The CNRM-CM6-1 Climate Model
2.1. Overview
In this study, we use the atmospheric component of the CNRM climate model version 6 (CNRM-CM6-1
ARPEGE-Climat version 6.3 Its horizontal resolution corresponds to T127 spectral truncature (approximately
1.4∘ at the Equator). It has 91 vertical levels extending from the surface to about 80 km, 17 of them being
within the marine boundary layer, below about 2 km. The model time step is 15 min. This new version
mostly differs from that used in CNRM-CM5 (Voldoire et al., 2013), by an almost fully revisited atmospheric
and surface physics. The turbulence and cloud schemes are detailed in the next section. The microphysics
scheme is based on the work of Lopez (2002) and prognostically describes the mass fractions of cloud liq-
uid and ice water, rainfall, and snow. The new convective scheme follows a mass-flux approach and aims
at representing dry, shallow, and deep convection in a continuous way (Guérémy, 2011). The convective
scheme’s closure is based on a CAPE decaying equation with a relaxation time scale proportional to the
time needed by a buoyant parcel to travel from the base to the top of the convective cloud. The convec-
tive microphysics is fully consistent with the large-scale microphysics, following the ideas of Piriou et al.
(2007): it describes the same set of microphysical condensates. Entrainment and detrainment of the con-
vective and large-scale condensates are taken into account. The longwave radiation scheme is based on the
Rapid Radiation Transfer Model (Mlawer et al., 1997), issued from the cycle 37 of the ECMWF model. The
shortwave component was developed by Fouquart and Bonnel (1980) and corresponds to the 6-band short-
wave scheme used in the cycle 28r3 (https://www.ecmwf.int/en/elibrary/9198-part-iv-physical-processes) of
the ECMWF model (Morcrette, 1991). Both the longwave and shortwave schemes are called every hour. The
calculation of surface properties and surface fluxes is externalized via the SURFEX version 8 model (Masson
et al., 2012). Over ocean, turbulent fluxes are computed using the ECUME iterative bulk parameterization
(Belamari & Pirani, 2007). This parameterization is based on an optimization of neutral exchange coefficients
under a wide variety of conditions, using measurements from several field campaigns.

2.2. The CNRM-CM6-1 Turbulence and Cloud Schemes
The CNRM-CM6-1 boundary-layer scheme describes the time evolution of the TKE with a 1.5-order prognos-
tic equation (Cuxart et al., 2000). It is coupled to the cloud scheme following Ricard and Royer (1993; see
below). The scheme makes use of the conservative variables of Betts (1973), that is the total cloud water qt

and the liquid potential temperature 𝜃l . The first-order turbulent fluxes of these variables (generically noted
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𝜓 ) are written in terms of their grid-scale vertical gradients and an eddy diffusivity coefficient K𝜓 defined by
Redelsperger and Sommeria (1981) and Cuxart et al. (2000):

𝜔′𝜓 ′ = −K𝜓
𝜕𝜓

𝜕z
,with K𝜓 = C𝜓Lm

√
e𝜙3, (1)

with C𝜓 a tunable constant, Lm the mixing length defined in Bougeault and Lacarrère (1989), e the TKE, and𝜙3

a stability function which allow to enhance turbulent mixing in unstable conditions and to reduce it in stable
conditions (Cuxart et al., 2000).

An entrainment eddy diffusivity coefficient Kinv has been introduced to mimic PBL-top turbulence induced
by vertical entrainment. This entrainment coefficient links subgrid turbulent fluxes of buoyancy to the mean
buoyancy jump at the height of inversion (zinv). Following the assumptions of Grenier and Bretherton (2001),
this coefficient is defined as

Kinv = Ainv

e
3
2

inv

LinvN2
inv

, (2)

where Linv , einv , and Ninv are the PBL-top entrainment mixing length, TKE, and the Brunt-Väisälä frequency at
the inversion, respectively. The nondimensional tunable coefficient Ainv is empirically defined to reproduce
the observed sharp weakening of PBL-top entrainment. Ainv depends on the cloud-top inversion strength to
capture that PBL-top entrainment strengthens moving from stratocumulus to shallow cumulus regimes (e.g.,
Kawa & Pearson Jr. 1989). This eddy diffusivity coefficient Kinv is only computed at the height of the inversion
defined as the first model layer from the surface where the TKE is lower than a minimal threshold emin (here
emin = 0.01 m2/s2). At this model level, the turbulence coefficient K is then taken as the maximum between the
eddy diffusivity coefficient K𝜓 and the entrainment coefficient Kinv . Over subtropical regions, the entrainment
coefficient is active more than 95% of the time (not shown).

The cloud scheme is based on a statistical joint distribution of qt and 𝜃l following the paradigm originally
defined by Sommeria and Deardorff (1977) and modified by Bougeault (1981) and Ricard and Royer (1993).
Assuming that the subgrid fluctuations of qt and 𝜃l are weak, the treatment can be simplified using a unique
variable s, which quantifies the distance to saturation in the qt-𝜃l space (Mellor, 1977). s is thus equivalent to
a local saturation deficit, generalized to account for 𝜃l fluctuations. s reads:

s = a
2
(q′

t − 𝛼1𝜃
′

l ), (3)

with a =

[
1 +

Lv

Cp

(
𝜕qsat

𝜕T

)
T=Tl

]−1

(4)

and 𝛼1 = T
𝜃

(
𝜕qsat

𝜕T

)
T=Tl

, (5)

where primes indicate departure from the grid-scale variables, Lv is the latent heat of vaporization at 0 ∘C, Cp

is the specific heat at constant pressure, qsat is the saturated specific humidity, and Tl is the liquid temperature.
This generalized saturation deficit is then normalized by its variance 𝜎s:

t = s
𝜎s

(6)

with 𝜎s =
a
2

[
(q′

t)2 − 2𝛼1(q
′
t𝜃

′

l ) + (𝛼1)2(𝜃′

l )2
]1∕2

. (7)

From Cuxart et al. (2000), the second-order fluxes (q′
t)2, (q′

t𝜃
′

l ), and (𝜃′

l )2 are related to the mixing length Lm,
the temperature eddy diffusivity coefficient KT (as defined in equation (1)) and the TKE. This leads to the
parameterized turbulence variance :

𝜎s =
a
2

1
C

√
LmKT√

e

|||||
𝜕qt

𝜕z
− 𝛼1

𝜕𝜃l

𝜕z

||||| (8)

with
1
C

= 0.833. (9)
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Figure 1. (a) Relationship between the normalized saturation deficit Q1 and the large-scale cloud fraction as
parameterized in the CNRM-CM6-1 model. (b) Parameterized cloud fraction (%) as a function of the turbulence variance
(𝜎s) and the saturation deficit 𝛿qt for a = 0.35 (see equations (11) and (12)). CNRM = Centre National de Recherches
Météorologiques.

Typical values for 𝜎s range between 0.08 and 0.2 g/kg for in situ measurements within stratocumulus and
shallow cumulus, respectively (Wood et al., 2002).

The cloud fraction is then defined as the saturated part of the distribution of t:

CF = ∫
+∞

−Q1

G(t)dt, (10)

where Q1 = a

[
𝛿qt

2𝜎s

]
(11)

and 𝛿qt = qt − qsat(Tl). (12)

G is assumed to follow a mix between a symmetric (Gaussian) and an asymmetric (exponential) probability
distribution function (Bechtold et al., 1995; Bougeault, 1981). Figure 1a shows the precomputed relationship
between Q1 and cloud fraction used in the CNRM model. The sensitivity of the simulated cloud fraction to
the internal variables of Q1, that is, to the subgrid variability 𝜎s (equation (7)) and the saturation deficit 𝛿qt

(equation (12)) is further highlighted on Figure 1b. The value of a ranges from 0.32 to 0.42 in subsiding regions,
in relation with changes in temperature and liquid water content profiles. To illustrate the sensitivity of the
cloudiness to the other parameters, a is fixed to 0.35 (the overall behavior does not depend much on a).
Figure 1b shows that a cloud fraction larger than 50% only occurs for oversaturated grid boxes (Q1 > 0) and
increases with decreasing standard deviation 𝜎s (i.e., increasing KT or Lm or decreasing e—equation (8)). If
the grid box is unsaturated (Q1 < 0), cloud fraction remains lower than 50% and decreases with decreasing
turbulence.

2.3. Model Configurations
Two configurations of the CNRM model are used in the present analysis. The first one consists in an AMIP
configuration, in which the sea surface temperatures (SSTs) and sea ice cover are prescribed from the obser-
vations (Gates, 1992). This simulation covers the period from 1979 to 2016. The second configuration is based
on a series of short-term initialized hindcasts following the Transpose-AMIP framework (Williams et al., 2013).

In the Transpose-AMIP configuration, the model is initialized every day at 00:00 UTC over the period covering
1–30 August 2013, leading to an ensemble of 30 hindcasts. Each hindcast is run over 30 days. The initial states
(horizontal wind, surface pressure, temperature, specific humidity) come from the ERA-Interim reanalysis (Dee
et al., 2011). Other model prognostic variables (in particular microphysics variables) are crudely initialized to
zero, which may induce a spin-up of the model. The observed SSTs and sea ice cover are provided by the NCEP
Optimally Interpolated weekly SST and Sea Ice data sets (Kanamitsu et al., 2002) and remain constant over
the 30 days of each hindcast. Land surface conditions are initialized from an offline simulation of the SURFEX
scheme forced by ERA-Interim data, for which surface precipitation has been rescaled so that their monthly
mean equals the equivalent monthly mean of GPCC (Boisserie et al., 2016). Finally, note that aerosol concen-
trations are from the same data set as in the AMIP simulations, but remain constant across all the hindcasts
(values from August 2013).
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Figure 2. (a) Observed GOCCP annual-mean low-cloud fraction (%). (b) Low-cloud bias of the CNRM-CM6-1 AMIP
simulation relative to the GOCCP climatology (%). Data are averaged between 2007 and 2015. Red boxes represent the
three major stratocumulus regions used in the present study and the red dashed line indicates the South-East Atlantic
low-cloud transect used in Figure 3. GOCCP = GCM Oriented CALIPSO Cloud Product; CNRM = Centre National de
Recherches Météorologiques; AMIP =Atmospheric Model Intercomparison Project.

The hindcast period is defined such that the corresponding cloud biases of the reference AMIP simulation are
representative of its climatological biases. Besides, August and September are chosen as cloud biases in the
regions of interest are maximum during this season (see section 4.3). The period also allows to use space-based
active measurements from the Lidar onboard the CALIPSO satellite (section 4.2) and the radiosoundings from
the MAGIC field campaign (Lewis et al., 2012, see also Appendix A).

3. Reference Data Sets

ERA-Interim is used to characterize atmospheric conditions such as temperature and humidity (Dee et al.,
2011). As a reference for clouds, we use the GCM Oriented CALIPSO Cloud Product (GOCCP) data set (Chepfer
et al., 2010) based on measurements from the active sensor onboard the CALIPSO satellite (Winker et al., 2010).
Vertical profiles of clouds are provided along its track, twice a day at a given location. The GOCCP product
adjusts the raw data to allow direct comparison with climate models. Monthly and daily vertical profiles of
cloud cover and horizontal distributions of low clouds (cloud-top pressure greater than 680 hPa) from January
2007 to December 2015, on a 2∘ × 2∘ horizontal grid, are used in the following. The use of a simulator would
provide a more consistent comparison between model and observations (Klein & Jakob, 1999). However, on
the one hand, simulators also have large uncertainties, in particular due to high-cloud attenuation and, on
the other hand, given the large model biases, we expect our results to be rather insensitive to the use of a
simulator. ERA-Interim cloud fraction and liquid water content will also be used, keeping in mind that this
remains model variables. Hereafter, the analysis is performed on the CNRM model 1.4∘ × 1.4∘ horizontal grid,
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Figure 3. Zonal transition of the cloud vertical profile (%) averaged over a
narrow meridional band (15 ± 2∘S—Figure 2) in the South-East Atlantic
ocean for (a) observations (as provided by GOCCP) and (b) the CNRM-CM6-1
AMIP model. Data are averaged between 2007 and 2015. GOCCP = GCM
Oriented CALIPSO Cloud Product; CNRM = Centre National de Recherches
Météorologiques; AMIP = Atmospheric Model Intercomparison Project.

using a bilinear interpolation for ERA-Interim and GOCCP data sets. The
results are not sensitive to the choice of this grid. Note that no vertical
interpolation has been performed.

4. Stratocumulus Clouds in the CNRM Model
4.1. Climatology
The model and observed climatologies are computed over the 9-year
period from 2007 to 2015. GOCCP observations indicate that large
low-cloud cover prevails mostly over the eastern parts of subtropical
oceans and in the midlatitudes of both hemispheres (Figure 2a). In the fol-
lowing, we focus on subtropical areas where the largest cloud fractions
(reaching 70–80%) are found and referred to as stratocumulus decks. The
CNRM-CM6-1 AMIP simulation has fractions lower than 20% along the
coast and lower than 30% offshore, leading to negative biases larger than
40% (Figure 2b). Regions of maximum low-cloud fractions are located fur-
ther west than the observed one, suggesting that the model misses most
of the stratus and stratocumulus regimes. As a result, shortwave cloud
radiative effects, which, to the first order, scales with the low-cloud fraction
in these regimes, are strongly underestimated and yield a large overes-
timation of the incoming solar radiation at the surface (not shown). The
low-cloud spatial pattern of the CNRM-CM6-1 coupled simulations is very
similar to their AMIP counterpart, albeit the biases are globally amplified
(not shown). Thereafter, our analysis mostly focuses on the southeastern
Atlantic region, which is one of the most biased region in low cloudiness.

4.2. Stratocumulus to Shallow Cumulus Cloud Transition
Figure 3a shows the zonal transition of the cloud vertical profiles observed
over the southeastern Atlantic ocean (15 ± 2∘S). The observed cloud frac-
tion reduces from 50% near the coast to less than 25% offshore (westward
to 10∘W). The level of maximum cloudiness rises from 0.8 km to around
1.5 km, as moving away from the coast. The cloud base also elevates west-
ward, following the deepening of the boundary layer. The CNRM-CM6-1
cloud fraction increases from less than 5% near the coast to 20% over
the open ocean, between 10 and 5∘W (Figure 3b). The boundary layer
only slightly deepens westward. The model thus does not capture well the
low-cloud transition. It misses a large part of stratus and stratocumulus
clouds and simulates a too shallow boundary layer on average.
4.3. Annual Cycle
Figure 4a shows the annual cycle of the southeastern Atlantic low-cloud
transect, computed over the 2007–2015 period. The GOCCP observations

indicate that low-cloud fractions maximize around 5∘E from August to October with values up to 90%. This
maximum is explained by the northward migration of the Intertropical Convergence Zone that enhances
the south hemisphere large-scale subsidence over the area, where it favors low-cloud formation and main-
tenance (Adam et al., 2017; Mechoso et al., 1995). The CNRM-CM6-1 atmospheric model exhibits a different
annual cycle, maximizing low-cloud fractions further west (between 10 and 5∘W) in December and January
(Figure 4b). Finally, the region of weak low-cloud amount close to the coast expands much westward in the
model. The low-cloud fraction bias is the largest in August and September, reaching errors up to 70%. In the
following, the analysis focuses only on these 2 months.

4.4. Consistency Across Subsiding Regions
In situ data in the subtropical Atlantic are sparse. Using observations in regions with similar cloud regimes
can be useful to evaluate more in depth the model errors. To assess to what extent cloud regimes and prop-
erties are similar across stratocumulus regimes, we identify three main regions of marine stratocumulus : the
South-East Atlantic, the North-East Pacific, and the South-East Pacific (Figure 2a). Cloud biases simulated by
the CNRM-CM6-1 atmospheric model over these areas are rather similar (Figure 2b). To get rid of regional
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Figure 4. Longitude-Time evolution of low-cloud cover (%) along the South-East Atlantic zonal transect (15 ±
2∘S—Figure 2) for (a) observations (GOCCP) and (b) the CNRM-CM6-1 AMIP simulation Data are averaged between 2007
and 2015. GOCCP = GCM Oriented CALIPSO Cloud Product; CNRM = Centre National de Recherches Météorologiques;
AMIP= Atmospheric Model Intercomparison Project.

specificities, we relate low-cloud cover to the index of Klein and Hartmann (1993), characterizing the strength
of the inversion at the top of the PBL.

This low-tropospheric stability (LTS) index is defined as the difference between the potential temperature at
700 hPa and at 1,000 hPa (Klein & Hartmann, 1993; Wood & Bretherton, 2006). It includes the adjustment
of the free troposphere above the low clouds to deep convection in remote areas, through the propagation
of gravity waves (e.g., Qu et al., 2015). As a consequence of these adjustments (which heats the free tropo-
sphere) and of the low SSTs, the eastern parts of ocean basins exhibit the highest LTS values (Figure 5). The
CNRM-CM6-1 AMIP simulation captures quite well the LTS spatial pattern, albeit with a systematic underes-
timation of the LTS by about −3.0 K (Figure 5b), slightly stronger near the coasts. As the model is forced by
observed SSTs, it emphasizes a significant cold bias of the tropical free troposphere, possibly associated with
a deficit of convective heating in the Intertropical Convergence Zone.

The relationship between low-cloud cover and LTS provides an assessment of the ability of the model to simu-
late realistic cloud fractions for given large-scale conditions (as monitored by the LTS) and how the associated
processes change from low LTS (shallow cumulus) to large LTS (stratocumulus and stratus) values. This rela-
tionship is determined for each of the three regions, using August-only daily mean fields over the 2007–2015
period. As a reference, we combine the GOCCP low-cloud cover and the ERA-Interim LTS, interpolated onto
the coarser GOCCP 2∘ × 2∘ horizontal grid. Model data are also interpolated onto the same grid. The three
regions of marine low-cloud transition are defined as: the South-East Atlantic (10–30∘S, 10∘W–10∘E), the
South-East Pacific (10–30∘S, 80–110∘W) and the North-East Pacific (15–40∘N, 110–150∘W). For each of these
three regions, low-cloud cover is composited in LTS 1 K bins, ranging from 12 to 28 K.

Figure 6a shows the mean relationship between low-cloud fraction and LTS with uncertainties estimated as
one interannual standard deviation (shading around each line). Observations show a rather linear increase
of the low-cloud fraction with the boundary-layer stratification (∼+4% K−1), reaching fraction up to 90% for
LTS above 23 K (black lines on Figure 6a). This relationship is in agreement with previous studies (e.g., Klein
& Hartmann, 1993; Sun et al., 2011). It is remarkably consistent across the three regions, except for low LTS
values where cloud cover is weaker over the Northern Pacific than over the other regions. The model fails in
capturing the observed mean slope. Cloud fraction is rather independent of LTS, near 35% from 15 to 21 K and
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Figure 5. (a) LTS (in K) for August months averaged between 2007 and 2015 as given by ERA-Interim reanalysis.
(b) LTS bias of the CNRM-CM6-1 AMIP simulation relative to the ERA-Interim climatology. Data are averaged between
2007 and 2015. CNRM = Centre National de Recherches Météorologiques; LTS = low-tropospheric stability.

then slightly decreases up to almost 20% near 24 K (red lines on Figure 6a). The model relationships between
cloud fraction and LTS are also fully consistent across the three selected regions.

Figure 6b shows the LTS distributions of the reanalysis and the model. The reanalysis distribution strongly
depends on the ocean basin. These differences mostly explain the cloud fraction differences between the
three stratocumulus decks (e.g., higher in the South-East Atlantic, lower in North-East Pacific), as the relation-
ship between the cloud fraction and the LTS remains mostly independent of the region considered (Figure 6a).
The model captures to some extent these regional differences, although its distributions are systematically
shifted toward lower LTS values by about 3–4 K, consistently with the systematic LTS underestimate men-
tioned earlier. Given that the model cloud fraction-LTS relationship does not depend on the region, the
model average low-cloud fraction remains mostly constant across the three regions, with average fraction of
about 32%.

These results suggests that the basic mechanisms underlying the subtropical marine low-cloud transitions
are similar across the three basins. It implies that (1) the physical interpretation of model biases in a given
low-cloud transition region is of relevance to what happens in other transition regions and (2) observed
measurements in one low-cloud transition region are relevant to evaluate the model behavior in the con-
text of these transitions. Besides, it also suggests that the model cloud biases are likely to be independent
of the large-scale dynamics to the first order. The analysis of realistically initialized hindcasts will help us to
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Figure 6. (a) Low-cloud fraction as a function of LTS (in K) and (b) PDF (in %) for the three major marine low-cloud
regions. Black and red lines and shades represent time average and standard deviation over August months between
2007 and 2015 for observations (ERA-Interim + GOCCP) and the CNRM-CM6-1 AMIP simulation respectively. Full, dashed,
and dotted lines represent the South Atlantic, South Pacific, and North Pacific regions, respectively (see Figure 2). GOCCP
= GCM Oriented CALIPSO Cloud Product; CNRM = Centre National de Recherches Météorologiques; AMIP = Atmospheric
Model Intercomparison Project; PDF = Probability Density Function; LTS = Low Tropospheric Stability.

characterize how these cloud biases settle and to further disentangle the role of the large-scale dynamical
and thermodynamical conditions versus that of the local processes (i.e., the model parameterizations).

5. Stratocumulus Clouds in Short-Term Hindcasts

To analyze the setup of low-cloud biases, we conduct a 30-member ensemble of short-term hindcasts for
August 2013 (section 2.3). The 30 members are averaged according to the lead time on a daily basis to assess
the model drift from realistic initial conditions to its climatology. The ensemble mean is thus compared to
monthly mean observations and AMIP outputs. Figure 7 shows the evolution of the low-cloud bias spatial
pattern for 1-, 5-, and 30-day lead times. The daily GOCCP data set is used as a reference for clouds. For a given
Day-N lead time, the observation reference is obtained as the average over the 30 days starting from August
Nth (e.g., the 5-day lead-time reference spans 5 August to 3 September). After 1 day, large negative biases
already exist over the whole tropical area, with maximum over the eastern part of the subtropical oceans.
After 5 days, the low-cloud bias slightly reduces in the trade-wind regions, but remains strongly negative in
stratocumulus regions. This is related to the longer adjustment of the liquid water content (∼2 days) in shallow
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Figure 7. Evolution of spatial pattern of biases in low-cloud cover (%) for 1- (a), 5- (b), and 30-day (c) lead times averaged
over the 30 members of the short-term hindcast ensemble. The last row represents the climatological bias averaged
using the CNRM-CM6-1 AMIP simulation (d). Biases are computed relative to observations (GOCCP) averaged over the 30
days starting from August Nth for the Day-N lead time (e.g., the 5-day lead time GOCCP reference spans 3 August to 3
September). Observations are also averaged over the years 2007-2015. GOCCP = GCM Oriented CALIPSO Cloud Product;
CNRM = Centre National de Recherches Météorologiques; AMIP = Atmospheric Model Intercomparison Project.
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Figure 8. (a) and (b) as Figure 6a and 6b, respectively, for the South Atlantic
region only (Figure 2). The 30-member ensemble of short-term hindcasts are
represented as full, dotted, and dashed blue lines averaged for 1-, 5-, and
30-day lead time, respectively. Black and red lines correspond to observed
and model distributions for climatological August between 2007 and 2015
(as seen on Figure 6). GOCCP = GCM Oriented CALIPSO Cloud Product;
CNRM = Centre National de Recherches Météorologiques; AMIP =
Atmospheric Model Intercomparison Project; T-AMIP = Transpose-AMIP; PDF
= Probability Density Function.

cumulus regions. The spatial pattern of the low-cloud bias is rather similar
for longer lead times (Figure 7c), suggesting that most of the climatolog-
ical low-cloud biases are reached in about 5 days. Finally, the low-cloud
bias spatial pattern after 30 days lead time is also very similar to the
climatological spatial pattern (Figure 7d).

Figure 8a shows the low-cloud fraction as a function of LTS over the
southeastern Atlantic region for different lead times. It is compared to
the relationship found in the AMIP simulation and in the observation (see
also Figure 6a). The hindcast ensemble shows an approximately constant
low-cloud fraction (∼35%) for most LTS values. This relationship does not
depend much on the lead time. It is remarkably similar to that in the AMIP
simulation, although the low-cloud fraction is slightly higher for the largest
LTS (∼+5%). Figure 8b shows the LTS distribution for the same lead times.
As expected, the model LTS distribution resembles the reanalysis distribu-
tion at 1-day lead time. The model LTS distribution then evolves slowly
toward its AMIP climatology. The large-scale dynamics drift thus involves
processes slower than those of the low clouds. This also confirms that the
CNRM-CM6-1 low-cloud biases are to the first order independent of the
large-scale biases.

The Transpose-AMIP framework is relevant to further understand the ori-
gins of the CNRM-CM6-1 low-cloud biases. Given that Transpose-AMIP
simulations at short lead times (∼1 day) already exhibit low-cloud biases
despite realistic temperature and humidity profiles (see Appendix A for
a validation of the hindcast states using the MAGIC radiosoundings), we
focus hereafter on the 24-hr lead time of the hindcast ensemble to address
this question. Note that the spin-up in the regions of our interest is only a
few hours (not shown).

6. Process-Oriented Analysis of the Low-Cloud Bias
6.1. Low-Cloud Decomposition in Relative Humidity
The LTS distribution has been shown reasonable during the first days of the
Transpose-AMIP hindcasts. The LTS index however characterizes mainly
the larger scales of the atmosphere, while the origin of the cloud cover
underestimate is probably more local. Indeed, the CNRM-CM6-1 strati-
form cloud fraction is a function of one predictor Q1, defined as the ratio
between the grid-scale saturation deficit and its subgrid variability (section
2 and Figure 1). Q1 involves four variables (Appendix B): the grid-box aver-
aged relative humidity RH, temperature T and liquid water content ql , and
the standard deviation 𝜎s of s, which is related to the strength of turbu-
lence. The sensitivity of the cloud parameterization to these four input
parameters is investigated. Therefore, in the following, we focus on the

relationship between the maximum cloud fraction below 3 km (CF) and its associated relative humidity
(RH), which explains the CF variability to the first order. Note also that the spatial and temporal variability
of CF within the southeastern Atlantic region is highly correlated with that of the low-cloud cover, as used
hereabove (correlation around 0.96).

The cloud fraction CF is stratified according to RH, so as to compare the link between RH and cloud fraction in
the model, in the ERA-Interim reanalysis and between the reanalyzed RH and GOCCP CF. We focus here on the
southeastern Atlantic region. From the 30-member Transpose-AMIP ensemble, the maximum cloud fraction
is computed using instantaneous fields of cloud profiles at the first time step and at 24-hr lead time (i.e., 00
UTC). For ERA-Interim, we also use instantaneous fields at 00 UTC. For GOCCP, we use the nighttime daily data
set, as it is very close to 00 UTC over the South-East Atlantic. The domain-average maximum cloud fraction CF
thus reads

CF =
∑

i

Pi CFi with i as RH bins. (13)
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Figure 9. (a) PDF of the relative humidity RH associated with the maximum cloud fraction below 3 km CF. (b) Composite
of the cloud amount CF as a function of RH. ERA-Interim reanalysis on August 2013 at 00 UTC is represented as a black
line, the short-term hindcast ensemble at initialization as a dashed blue line and at 1-day lead time as a solid blue line.
Here short-term hindcasts CF at 0 lead time is computed using ERA-Interim initial states during the first time step. CF
uncertainties (shade) used ±1 standard deviation of CF within each bin. Maximum observed cloud fraction (GOCCP) is
also plotted against ERA-Interim RH as black crosses and vertical lines for mean values and standard deviation (within
bin values), respectively. PDF = Probability Density Function; T-AMIP = Transpose-Atmospheric Model Intercomparison
Project; GOCCP = GCM Oriented CALIPSO Cloud Product.

CFi refers to the mean value of CF in the dynamical regime i defined by RH and Pi the frequency of occurrence

of the ith bin of RH.

Figure 9 shows the components of equation (13), namely, the RH distribution (Pi) and the composite cloud

fraction CF as a function of RH (CFi). ERA-Interim RH distribution is negatively skewed, the highest frequency

of occurrence being for RH ∼97% (Figure 9a). The low-level cloud fraction increases with relative humidity

(∼+6% per percent for RH between 91% and 99%—Figure 9b). The relationship between the GOCCP maxi-

mum cloud fraction CF and the ERA-Interim RH (black dots) also indicates an increase of CF with RH. GOCCP

and ERA-Interim cloud distribution are very consistent with each other. It suggests that ERA-interim accurately

represents maximum values of low-cloud fraction.

By construction, the CNRM-CM6-1 hindcast initial RH distribution is close to that of ERA-Interim (dashed blue

line on Figure 9a). At the first time step, simulated cloud fraction is around 20% when RH is lower than 98%

and is high only over almost-saturated grid cells (Figure 9b). After 24 hr (solid blue lines), the RH distribution

maximum has shifted toward higher values relative to the reanalysis distribution. The model overestimates the

frequency of occurrence of low RH values below 93% and underestimates that of moderate RH values between

93% and 98%. The RH distribution remains unchanged for lead time up to 5 days (not shown). The composite

cloud fraction CFi has increased in all RH bins, suggesting a cloud fraction dependence on RH similar to that in

ERA-Interim below 96%. For the highest RH values, the model cloud fraction sharply increases reaching cloud

fractions close to observations and ERA-Interim. Overall, the model has a negative offset of about 30%. The

relationship between CF and RH is markedly altered during the first day and remains unchanged for longer

lead times (not shown). This is probably due to the crude initialization of the liquid water content and subgrid

variability to zero. Their relative role will be discussed in the next section.

6.2. Sensitivity of Clouds to Errors in Input Parameters
The relative influence of the cloud parameterization input parameters on the CF-RH relationship is estimated

using offline calculations of the averaged cloud fraction within each RH bin. Using 1-day lead-time outputs, we

use bin-averaged hindcast parameters (i.e., T , ql, 𝜎s) to calculate the cloud fraction, following equation (B4)

(Appendix B). The CF-RH relationship obtained with these offline calculations is roughly similar to that diag-

nosed directly from the hindcast outputs (purple dashed line with squares on Figure 10b) in the range

93–98%. CF is underestimated outside this range of RH. Nevertheless, this offline approach seems relevant to

quantify the CF sensitivity to input parameters.
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Figure 10. As Figure 9b for ERA-Interim (black line) and CNRM-CM6-1 (blue line) along with various sensitivity tests to
cloud parameterization input parameters. Reference offline computations of cloud fraction (equation (B4)) using
bin-averaged input parameters from hindcasts after 1-day lead time are plotted as purple squared dotted lines.
Sensitivity tests to ERA-Interim liquid water content (cyan), temperature (green), or to the strength of 𝜎s (by adding
[yellow] or subtracting [red] one standard deviation [s.t.d.] of 𝜎s to its grid-mean value 𝜎s) are plotted as dotted lines.
Numbers correspond to domain-average change of cloud fraction relative to Control weighted by the 1-day lead time
RH distribution for each sensitivity test.

Several sensitivity tests are thus performed:

1. The role of the liquid water content is addressed using the values from ERA-Interim (Note that the
CNRM-CM6-1 cloud parameterization is implemented such that the input liquid water is that obtained at
the end of the previous time step, which thus was impacted by both model microphysics and advection.
Thus, no a priori consistency between this input liquid water and other input parameters of the parameter-
ization is expected in the model). The resulting CF-RH relationship shows an increase of CF for RH greater
than 94% (cyan dashed lines on Figure 10) but CF still remains significantly underestimated. Correcting the
model liquid water underestimate contributes to reduce the domain-average low-cloud bias by 7% relative
to the control calculation (mostly due to the moistest grid cells).

2. The role of temperature is then tackled, also using ERA-Interim. As the offline computations are done
within each RH bin and thus imply to keep RH constant, the specific humidity is implicitely adjusted. As
expected from the weak evolution of temperature within the first 24 hr of the hindcasts, the resulting CF-RH
relationship is very close to the original offline calculation (green dashed lines on Figure 10).

3. The sensitivity to the subgrid standard deviation 𝜎s is crudely quantified by systematically adding or sub-
tracting one standard deviation (s.t.d.) of 𝜎s to its grid-mean value. These two offline calculations (yellow
and red dashed lines on Figure 10, respectively) mostly changes the steepness of the CF-RH relationship,
yet not enough for compensating the general underestimate of low clouds. Note that the model turbu-
lence strength 𝜎s is around 0.1 g/kg, which is consistent with observations within stratocumulus (Wood
et al., 2002).

This analysis suggests that some improvements in the representation of low clouds by the CNRM model might
be expected by improving the representation of its input parameters. However, the cloud bias sensitivity to
these parameters remains small. Note that these offline calculations does not take into account the positive
feedback between liquid water content and cloud fraction, which may enhance cloud cover independently
of RH (Appendix B). Nevertheless, the results of this section call for a better understanding of how structural
aspects of the cloud parameterization shape the model low clouds.

6.3. Impact of Two Turbulence-Cloud Parameterization Structural Choices on the Low-Cloud Bias
In the present section, we examine the impact of two structural choices associated with the turbulence-cloud
parameterizations: the activation of the enhanced entrainment at the top of the PBL (equation (2)), and the
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Figure 11. As Figure 9 but with only ERA-Interim (black) and the short-term hindcast ensemble at 1-day lead time
(solid blue), to be compared to sensitivity tests with no cloud-top entrainment (dotted blue lines) and with modified
subgrid distribution of cloud predictors (dashed blue lines). PDF = Probability Density Function; T-AMIP =
Transpose-Atmospheric Model Intercomparison Project.

probability density function used to describe the subgrid distribution of s (equation (10)). The objective is
here to assess whether these structural choices need to be revisited in the CNRM model in a near future.

A first sensitivity experiment is conducted by switching off the entrainment parameterization at the top
of the PBL (i.e., no use of Kinv , see section 2.2). The RH distribution radically changes (Figure 11a): the dry
PBL events are now not frequent enough, while the very moist PBL events (RH> 97%) become overly fre-
quent and promote the occurrence of large low-cloud fraction. In contrast, the CF-RH relationship remains
almost unchanged with respect to the reference hindcasts (Figure 11b). As a result, the regional cloud fraction
(Table 1) is increased, but at the expense of an error compensation, with a strongly unrealistic RH distribution.
The PBL-top entrainment thus does not play much on the CF-RH relationship, but this process significantly
controls the RH distribution, at least in the CNRM-CM6-1 model. A better calibration of its parameterization
might help to improve the RH distribution realism.

The role of the chosen subgrid distribution of s is now addressed. The paradigm of Bougeault (1981) sup-
posed that the cloud fraction is a simple, precomputed function of Q1 (equation (10) and Figure 1a). Several
studies have suggested that the saturation deficit subgrid-scale distribution exhibits a significant asymme-
try, often associated with different modes. In the case of cumulus clouds, this asymmetry has been argued
to describe both the region impacted by shallow convective updrafts, and its environment, using either

Table 1
Decomposition of the Average Bias (ΔCF) of Maximum Cloud Fraction Below 3 km (CF in
%) Over the Southeastern Atlantic Region

ΔCF
∑

CFiΔPi
∑

PiΔCFi
∑

ΔPiΔCFi

AMIP −39 −3.3 −37 1.3

T-AMIP (Day 0) −49 1.1 −50 0.1

T-AMIP (Day +1) −30 0.1 −31 0.8

T-AMIP (Day +5) −33 1.7 −35 0.2

T-AMIP (No Kinv) −13 9.8 −28 5.6

T-AMIP (G′) −11 2.0 −14 0.9

Note. The mean cloud bias in the CNRM-CM6-1 model with respect to the reanalysis
is decomposed in contributions related to biases in the RH distribution (ΔPi), struc-
tural cloud biases (ΔCi), and the covariance between them (see equation (14)). For
the AMIP simulations, values have been averaged over August 2013. For the control
hindcast ensemble (Transpose-AMIP), errors are indicated at initialization (Day 0), and
for 1- and 5-day lead times (Day +1 and Day +5). Two sensitivity tests applied in the
hindcast ensemble are also listed for 1-day lead time: without PBL-top entrainment
(No Kinv ) and with a modified subgrid distribution of cloud predictors (G′). AMIP =
Atmospheric Model Intercomparison Project; T-AMIP = Transpose-AMIP.
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large-eddy simulations (e.g., Jam et al., 2013; Neggers, 2009; Perraud et al., 2011) and or in situ observations
(Wood & Field, 2000). This asymmetry remains unclear in the context of stratocumulus (Wood & Field, 2000).
The combination of at least two subgrid-scale distributions has been shown to improve the representation
of low clouds in atmospheric models (Larson et al., 2002). The statistical moments of the updraft distribution
are usually derived from the shallow convection scheme, while the moments of the environment distribution
remain diagnosed from grid-scale properties. In a simple and crude attempt to mimic this bimodal distri-
bution, we add to the original subgrid distribution a second Gaussian distribution. This latter is positioned
such that its mean is +1 (0 for the environment distribution), to provide more favorable conditions for cloud
formation. Furthermore, we assume that thermal characteristics influences the distribution of s over about
70% of the grid cell (the remaining 30% would correspond to the environment). This leads to a negatively
skewed bi-Gaussian distribution and a new relationship between Q1 and CF relative to the original distribution
(Figure 1). A skewed distribution increases cloudiness when the saturation excess is weak but positive, which
seems more consistent with observations (Wood & Field, 2000). The ratio between the two Gaussian distribu-
tions and the mean of the second one have been rather arbitrarily chosen to reveal the effect of the thermal
distribution. A more physically based approach is of course needed. At the 1-day lead time, the RH distribu-
tion is slightly shifted toward higher RH values but remains rather similar to that in the reference hindcasts
(Figure 11a). However, the CF-RH relationship is improved in all RH bins reducing the low-cloud underestimate
by around 50% (Figure 11b). This crude test thus calls for a revisit of the cloud parameterization subgrid-scale
distribution, and in particular to better account from other sources of moisture subgrid-scale variability.

6.4. Impact of Parameterization Structural Choices on the Regional Low-Cloud Biases
Using equation (13), we now quantify the impact of structural errors of the domain-mean cloud bias. This
leads to the following decomposition:

ΔCF =
∑

i

CFiΔPi +
∑

i

PiΔCFi +
∑

i

ΔPiΔCFi, (14)

where Δ indicates the difference between the model and the reanalysis. The first term in the right hand side
quantifies the contribution of errors in the RH distribution to the domain-average cloud bias. The second term
arises from biases in the CF-RH relationship. The last term corresponds to covariations between cloud and
relative humidity errors and is generally smaller than the first two terms.

Table 1 summarizes these different terms for different configurations and experiments of the CNRM model.
It confirms the large underestimate of low clouds in the southeastern Atlantic region in the AMIP simulation
climatology (∼40%), as previously suggested in Figure 7d. This underestimate is mainly related to errors in the
CF-RH relationship.

Low-cloud biases in the hindcast ensemble are large. They decrease with lead times (see Figure 7). As in the
AMIP simulation, the domain-average cloud bias is largely related to errors in the sensitivity of CF to RH (Table 1
and Figure 9b). The domain-average cloud biases in sensitivity tests to parameterization structural choices are
significantly reduced from −30% to around −12% relative to ERA-Interim cloud fraction (Table 1). However,
this improvement is mostly related to amplified biases in RH distribution when the entrainment parameteri-
zation has been switched off (No Kinv), whereas it is related to improved sensitivity of CF to RH with modified
subgrid distribution of cloud predictors (G′).

7. Conclusions

In this study, we investigate the physical origins underlying the lack of low clouds over the eastern parts
of tropical ocean basins simulated by the CNRM-CM6-1 model. In simulations forced by observed SST, this
low-cloud bias can be larger than 40% in stratocumulus and stratus cloud regimes. Short-term hindcasts,
initialized by ERA-Interim reanalyses and following the Transpose-AMIP framework (Williams et al., 2013),
reproduce these climatological errors, so that they are useful to quantify the timescales associated with the
low-cloud bias growth. The model reaches its climatological bias within about 5 days. Despite realistic tem-
perature and humidity profiles in the hindcast initial state, the lack of stratocumulus appears after only a few
time steps. This fast response of the low-cloud bias is attributable to the model physics and involves errors
both in the input parameters of the cloud parameterization and in the turbulence-cloud parameterization
itself. The large-scale dynamical adjustments are weak during the first few days.

Process-oriented sensitivity tests are conducted using this short-term hindcast framework, to further iden-
tify the low-cloud systematic error origin. The cloud underestimate in the CNRM-CM6-1 model is partly
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attributable to the cloud parameterization input variables, mostly through underestimation of liquid water
content. This error influences cloud fraction by underestimating the saturation deficit, which is estimated
with the liquid temperature. The cloud bias is also critically linked to turbulence and cloud parameterization.
The deactivation of the parameterization of PBL-top entrainment increases cloud fractions, but at the cost
of too moist marine PBLs. The cloud bias is reduced but for wrong reasons. On the contrary, modification of
the subgrid-scale saturation deficit distribution is able to increase the low-cloud cover, while keeping similar
boundary layers.

Our results thus suggest that the CNRM-CM6-1 turbulence-cloud parameterization requires improvements,
at least in two ways:

1. The parameterization of PBL-top entrainment originally described in Grenier and Bretherton (2001) needs
to be revised to improve the distribution of the relative humidity in the stratocumulus boundary layer. A
better calibration of the parameterization is likely to be needed. Numerical artifacts might also be involved,
such as the difficulty to define a robust criterion to detect the PBL top or to represent large inversion
strengths for current vertical resolutions (Bretherton et al., 2004; Bretherton & Park, 2009).

2. The cloud scheme should better represent the subgrid-scale variability of temperature and humidity, and
especially should account for boundary-layer features that organizes it, such as updrafts and downdrafts.
For instance, a number of studies have highlighted the importance of using bimodal distributions to charac-
terize and reproduce boundary-layer clouds (Jam et al., 2013; Neggers, 2009; Wood & Field, 2000). Following
this idea, the CNRM-CM6-1 convection scheme can provide relevant information (updraft area fraction,
temperature, and moisture) that may be used to modify the subgrid turbulence assumptions (e.g., Qin
et al., 2018). Note also that the paradigm of Bougeault (1981) was originally developed for trade-wind cumu-
lus layers, and there is a need to assess which distribution law is most appropriate for stratocumulus cloud
layers.

Input variables to the cloud parameterization have also been found to impact the cloud fraction, but to a lesser
extent than a few structural choices in the turbulence-cloud parameterization. In particular, the subgrid-scale
variance of the saturation deficit 𝜎2

s requires further investigations using for instance observations (Wood et
al., 2002) and large-eddy simulations of stratocumulus (e.g., Duynkerke et al., 2004). Such simulations will also
be useful to better constrain or revise the PBL-top entrainment parameterization in CNRM-CM6-1.

From a more methodological point of view, our study confirms that the use of short-term hindcasts with
a climate model (i.e., the Transpose-AMIP framework) provides a powerful approach to investigate root
causes of atmospheric biases, as already emphasized in previous studies (Ma et al., 2014; Medeiros et al.,
2012; Zheng et al., 2017). On the one hand, it allows to disentangle processes that have different timescales
(e.g., boundary-layer processes versus the large-scale dynamics). On the other hand, it nicely complements
more traditional ways used to develop and test parameterizations (e.g., SCMs): it provides a testbed for
these parameterizations over a wide set of atmospheric conditions, while keeping the computational cost
reasonable.

Appendix A: Assessment of ERA-Interim and CNRM-CM6-1 Boundary-Layer

Inversions in the North-Eastern Pacific
The goal of this appendix is twofold : (1) assessing the realism of the Transpose-AMIP framework in the very
first step of the hindcasts and (2) evaluating vertical profiles of cloud fraction simulated by the CNRM-CM6-1
model to both ERA-Interim and space-based observation profiles. This evaluation reinforce our trust in the
hindcast framework and guide us for building sensitivity tests described in the main text.

Boundary-layer characteristics in ERA-Interim and in CNRM-CM6-1 short-term hindcasts are assessed using
sounding measurements, which provide high-resolution vertical profiles of humidity and temperature. Only a
few campaigns provide a significant number of measurements in marine stratocumulus regions. One of them
is the Marine Atmospheric Radiation Measurement (ARM) GEWEX/WGNE Pacific Cross-section Intercompari-
son (GPCI) Investigation of Clouds (MAGIC) campaign that took place from October 2012 to September 2013
(Lewis et al., 2012) over the northeastern Pacific region. The consistency across subtropical stratocumulus
regions highlighted in section 4.4 suggests that the conclusions that can be derived for this region are very
likely relevant for other stratocumulus regions. Sixty balloon-borne soundings are available during August
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Figure A1. Vertical profiles of potential temperature, specific humidity, and cloud fraction. Temperature and humidity profiles arise from a specific balloon-borne
sounding launched during the MAGIC campaign (located 30.75∘N–231.75∘E, at 23:29 UTC on 18 August 2013) with the closest cloud profile from the GOCCP
day-night data set. Red and blue profiles correspond to ERA-Interim and the short-term hindcast ensemble taken as being the closest point in time and space to
the sounding, using native horizontal and vertical resolution and 4X daily outputs. MAGIC = Marine ARM GPCI Investigation of Clouds; T-AMIP =
Transpose-Atmospheric Model Intercomparison Project; CNRM = Centre National de Recherches Météorologiques; GOCCP = GCM Oriented CALIPSO Cloud
Product.

2013 and inside the North-East Pacific region (15–40∘N, 110–150∘W—see Figure 2). The soundings are
collocated with ERA-Interim and CNRM-CM6-1 short-term hindcasts using the nearest grid point and the
closest time instant (using 6-hourly output) to each of these radiosoundings. An example for potential tem-
perature and specific humidity profiles is shown on Figures A1a and A1b. Native vertical resolutions is used for
each data set. Reanalysis and model heights of the boundary-layer and inversion strengths are in agreement
with each other (as expected from the initialization by ERA-Interim). However, the sharpness and the height
of the boundary-layer top are underestimated relative to the sounding measurement. This misrepresentation
is seen in a majority of locations within the defined region. The too weak inversion strength may be related
to the coarser vertical resolution in models.

To evaluate models more robustly, inversion strengths and altitudes are further characterized. The ERA-Interm
reanalysis and observed humidity and temperature profiles are interpolated on the CNRM vertical levels. Then
we detect the maximum vertical gradient of either potential temperature or specific humidity and its alti-
tude, which are supposed to define the inversion strength and altitude, respectively. Their bidimensional
probability density distributions are finally computed on and shown on Figure A2. This figure confirms that
the boundary-layer height decreases in accordance with the inversion strength. Model vertical gradients of
potential temperature are often too strong, for shallower PBL. The moisture inversion distributions are more
consistent across the three data sets. Note, however, that the vertical interpolation significantly weakens inver-
sion strengths in the sounding data set. This confirms that boundary-layer characteristics in ERA-Interim, and
thus for hindcast initialization, are rather realistic when interpolated on the same coarse vertical grid.

Figure A1c also shows the cloud profile for ERA-Interim and the CNRM-CM6-1 corresponding hindcast. The
nearest GOCCP cloud profile from the sounding is also plotted. ERA-Interim is able to reproduce the right loca-
tion and amount of low clouds at this location, explaining the consistency among data set seen on Figure 9b.
On the contrary, CNRM-CM6-1 simulates the right altitude of cloud fraction maximum but underestimates it
by 50%.

Appendix B: Offline Calculation of Cloud Fraction

Offline calculation of the cloud fraction is powerful to assess its sensitivity to the cloud parameterization input
parameters. In the CNRM-CM6-1 model, stratiform cloud fraction is related to the Q1 variable, which is the ratio
between 𝛿qt and 𝜎s (equation (7)). While the latter is calculated by the model turbulence scheme, the former
is linked to grid-scale averaged thermodynamical fields. The saturation deficit 𝛿qt is defined as qt − qs(Tl, P)
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Figure A2. Mean altitude-strength probability density functions. Instantaneous outputs of ERA-Interim (red) and
short-term hindcast (blue) outputs over the north-east Pacific region are used. Height and strength of inversion are
defined as the altitude where lies the maximum vertical gradient of (top) potential temperature and (bottom) specific
humidity below 3 km. The black distribution are based on the 60 sounding measurements launched during the MAGIC
campaign during August 2013 inside the north-east pacific region (15–40∘N, 110–150∘W). Data are extracted at 00 UTC
for ERA-Interim and for 1-day lead time for the short-term hindcast ensemble. Before computation, ERA-Interim data
have been interpolated on the CNRM-CM6-1 horizontal grid and each of both selected ERA-Interim output and
sounding measurements have been interpolated vertically on the CNRM-CM6-1 vertical levels. MAGIC = Marine ARM
GPCI Investigation of Clouds; CNRM = Centre National de Recherches Météorologiques; T-AMIP =
Transpose-Atmospheric Model Intercomparison Project.

with

qt = RH qs(T , P) + ql, (B1)

Tl = T − L
cp

ql. (B2)

RH and ql are the grid-scale relative humidity and liquid water content, respectively. With the assumption that
second-order terms can be neglected (Bougeault, 1981), one can simplify the liquid water saturation specific
humidity:

qs(Tl, P) = qs(T , P)

[
1 + L

Rv Tl

2
(T − Tl)

]−1

. (B3)

Using equations (B1), (B2), and (B3), the 𝛿qt difference can be rewritten as:

𝛿qt = (RH − 𝜖) ⋅ qs(T , P) + ql, (B4)
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with

𝜖 = 1

1 + L2ql

Rv cp(T−
L

cp
ql)2

. (B5)

In the case without condensate (ql = 0, 𝜖 = 1), equation (B4) is reduced to the more classic saturation deficit
and the cloud fraction is simply a function of relative humidity and temperature. For a given relative humidity
value, 𝛿qt increases with condensates (ql >0). Since 𝛿qt is linearly related to Q1 and cloud fraction (equation
(11)), this suggests that cloud condensates help cloud maintenance.

Equation (B4) can be used to calculate Q1 (equation (11)) and cloud fraction (equation (10)), knowing
grid-scale values of RH, T , P, ql , and 𝜎s. The sensitivity of cloud fraction to each of these variables can then be
quantified (section 6.2).
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