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Mode Recovery by S? Imaging Without
a Fourier Transform

Yves Quiquempois , Benoit Sévigny

Abstract—In its standard implementation, spatially and spec-
trally resolved (S2) imaging consists in recording near field inten-
sity patterns as a function of the wavelength, followed by a Discrete
Fourier Transform (DFT) to assess differential group delays, as well
as optical power distribution between modes for the given injection
as long as the higher-order mode powers are low. Here we present a
variant of S?-imaging which does not make use of DFT. The method
is more robust to wavelength jitter of the laser source. Furthermore,
in special cases, the method allows retrieving relative modal powers
without constraints on HOM power.

Index Terms—Optical fiber, guided modes, mode content.

1. INTRODUCTION

PATIALLY and spectrally resolved (S?) imaging is a power-
S ful technique for characterizing mode content in an optical
fiber. Indeed, with a very simple experimental setup (a camera,
a tunable laser, and basic optical components) [1], beating be-
tween modes resulting from the difference in their group delays
as they propagate through the fiber, can be recorded at its output
end as a function of the wavelength, A. In many cases, a simple
DFT allows beating between only two modes (the fundamental
one — in general — and a Higher-Order Mode (HOM)) to be
isolated [2], leading to the determination of their group delay
difference, and their power distribution. This method, which we
will refer to as “standard S? imaging.” has been first developed
by J. W. Nicholson et al. [2], [3], and is now a common tool
for assessing the mode content of fibers used, for example,
in the field of fiber lasers where the presence of HOMs is
detrimental to beam quality [4], or in the field of multimode
telecommunications where several modes can be used to carry
information [5].
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In 2014, our group developed an advanced S? (A-S?) imaging
method to recover the modal content in few-mode fibers [6].
The difference as compared to the standard S? imaging lies
in a specific data processing of the recorded images. Instead
of analyzing the data directly in the Fourier domain, spatial
correlations are first analyzed between images obtained at dif-
ferent wavelengths; Principal Component Analysis (PCA) and
Independent Component Analysis (ICA) are thus applied to
the data set. A-S? allows some mixed beatings that cannot be
recovered otherwise to be extracted from the mixed signals.
PCA and ICA are well-known statistical methods used in the
domain of deep-learning and multivariate analysis for blind
source reconstruction.

To measure the differential group delays between modes, a
trade-off has to be found (as in the standard S? method) between
the length L of the Fiber Under Test (FUT), the tuning step
in wavelength (61), and the total wavelength span of the laser
source. This limitation comes naturally from the sampling rate
of the DFT and the Nyquist criterion. Assuming that the central
wavelength is A and that the total wavelength range over which
images are recorded is Ax = Ndor, N being the number of
samples, the relative group index difference An, that can be
measured is approximately in the range:

1 A3 - - 122
AU n., < 20
LNox» — 9= 2L6x

Moreover, from a practical point of view, the tuning step JA
should be accurate enough (i.e. constant) as A varies otherwise
peaks in the Fourier domain may be completely washed out,
meaning that, depending on the laser type, a wavelength meter
should be used in parallel.

In this present paper, we show that the sole analysis of cor-
relations between images recorded at different wavelengths can
be sufficient to identify the modal content without performing
a DFT, meaning that a constant wavelength step size is not
mandatory in this case. If we assume that one mode is dominant
(in terms of optical power), or if beatings between excited modes
are mutually orthogonal, Multi-Path Interferences (MPI) can be
obtained.

The paper will be organized as follows: in Section II, basic
equations describing the evolution of beatings in the fiber will
be recalled. Section III will be devoted to the description of
matrix notation and analysis of beating orthogonality. Section IV
corresponds to the mathematical development at the heart of
our approach: it shows how beatings and modal powers can be
extracted for different configurations. In Section V, a study of

()



TABLE I
BEATING NOTATION

Reduced variable
M=N(N-1)/2

Expression

Total number of beatings

i kl
Bz(x-y) Fk(I7y)Fl(I,y)
I, NN

i cos (wTg1 + 1)

>

wavelength jitter will be presented through a numerical example,
and finally some conclusions will be drawn.

II. BASIC EQUATIONS GOVERNING MODAL INTERFERENCE IN
A MULTIMODE FIBER

The electric field associated to guided mode & of a fiber that is
translationally invariant can be expressed as follows (assuming
linearly polarized fields):

Ey(z,y,2,w) = v P]ﬁka(ar,y)ethe*iﬂW )

where F}, is the mode envelope, [ the propagation constant,
w the angular frequency and /P, the amplitude of the corre-
sponding electric field.

Scalar product in space can be defined by :

(Fi|F;) = /A FiF;dA = A6 3)

where A; is the normalization constant for field 7, A, is the area
of the cross-section and 9;; is the Kronecker delta.

Assuming N guided modes, the near field intensity I recorded
after a length L of the FUT can be expressed as [6]:

N-1 N
[=7+Z Z 2\ Py P EyFy cos(Trw + ¢r) (4

k=1 l=k+1

where 7y is the relative time delay between mode & and mode [,
and ¢y is a phase constant.  is the constant part of the intensity
(mean value over A).

Ty 18 related to the fiber length L and the group index
difference An, by:

L
Tkl = ;Anng (5)

c being the speed of light in vacuum.

After removing the constant component I from the total
intensity, Eq. (4) can be re-written by using the beating notation
described in Tab. (I).

M
f:[—T:ZHiBiéi (6)
=1

Eq. (6) is the starting point of the A-S? analysis.

We will use hereafter the bra-ket notation for transverse fields
and beatings: | B;) = |F). F}). I1; will be called “beating power”
to avoid confusion with power P, carried by guided mode k.

Two remarks can be made at this point in light of this the-
oretical framework: (i) we can define a scalar product in the

LPo1

(a) Example of excited modes in a multimode step-index fiber
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(b) Resulting beating figures
Fig. 1. Ten beating patterns of a low contrast step-index multimode fiber

having 5 excited modes LP g1, LP{%, LPQEl, LP3El, and LPg2. First row: beatings
| B1) to | Bs), second row, beatings | Bg) to |B1g). For example, | Bs) is LPq2|
LPE.

wavelength domain for the cosines:

A 1 .
(ei,ej) = E/A /iejdw (7)

meaning that 2(¢;, ¢;) = d;; if Aw (which corresponds to the
total range in wavelengths in the experiment) is sufficiently
large and if we assume that each relative time delays 7; are
different, and (ii) while field envelopes are orthogonal to each
other, i.e. (F;|F;) =0, Vi # j, figures of beatings are not in
general: (B;|B;) # 0 for some i # j.

In the following, we will demonstrate our results using, as
an example, an ideal step-index fiber having a refractive index
contrast An of 30-1073 and a core radius of 10 um. The
refractive index is assumed to be non-dispersive. Fig. 1(a) shows
examples of excited modes, together with resulting beating
patterns (Fig. 1(b)). Only even modes (superscript F) are used
in this example since odd modes show the same group index in
the weak guidance approximation.

Numerical results have been obtained using a home-made
scalar mode solver based on higher-order finite elements
method.

As per [2], we define the Multi-Path Interference MPI of mode
k as being:

Py

MPI,, = 10log [dB] ()

major

P ajor corresponds to the dominant mode guided in the fiber
with highest power (usually the fundamental mode LPg;).



III. MATRIX NOTATION

We will assume in the following that beating patterns will not
change significantly as a function of wavelength. This assump-
tion is not a strong condition since generally the wavelength
scanning range for an S? method is small (typically 1-2 nm
depending on the fiber length L used). Images contain a num-
ber of pixels P. Pixels basis |p) is orthonormal meaning that
(plp") = Opp'.

Each beating |B;) is decomposed onto the pixel basis |p)
through:

P
B =3 by p) ©)
p=1

b,; representing the intensity recorded on pixel p.

Matrix B (dimension P x M) is defined as being the ma-
trix of beatings where each column corresponds to |B;), i €
{1,..., M} in pixel basis:

B = (|B1),|B2),...,|Bi),....|Bum)) (10)

We define also matrix P (dimension M x M) where element
on row 4 and column j is equal to II;11;(é;|é;). According to
Eq. (7), we can assume that this matrix is diagonal:

1z o0 --- 0

ol om0

p—- : (11)
: .0
0 0 .- 113

Similarly, intensity patterns recorded for each X; can be
shaped into a matrix called X (dimension P x N), each column
being an image taken at wavelength 4; where the mean intensity
value is removed to obtain I (Eq. (6)). AV is the total number of
images.

A-S? imaging consists first of calculating the variance-
covariance matrix C. C is obtained directly from X by:

C=N"1xx" (12)

Dividing by N ensure equality with Eq. (13). After simple
linear algebra calculation, apd using Eq. (6), we can demonstrate
that C is related to B and P by:

C = BPB” (13)

C is a real symmetric matrix meaning that it can be diagonal-
ized and eigenvectors are orthogonal to each other. Each eigen-
vector |V;) of the variance-covariance matrix C corresponds to
the Principal Components (PCs) of X:

C =vVvDVT (14)

with V.= (|V1),|Va2),...,|Vp)) the matrix of eigenvectors,
and D a diagonal matrix.

By definition, V is an orthonormal matrix, meaning that
VVT = VI'V =TI where I is the identity matrix. However, B
is not in general. Indeed Fig. 2 shows a 2D plot of matrix B'B
where the element at row ¢ and column j corresponds to the
scalar product (B;|B;). Off-diagonal elements can be observed
except for beating |By) in this example.

(,g (,g (,g (,g (,g (,g (,(0) (,o& (,o&(/o@
2, O,
K \)/Co@\)/(,o@{/(,o@e/(,o@e/(,o@e/(o@z/(/ox/(/o@ oe
KN N N AN AN N NN &z\\’:’\.
o s o s o s B s S
LA A X N N X XY

Fig. 2. Matrix showing results of scalar product between beating patterns
considered previously. In this figure, beatings have been normalized to unity
((B;|B;) = 1)toreveal noticeable off-diagonal values. Presence of off-diagonal
terms means that beatings patterns are not orthogonal to each other. For example,
beating |Bg) overlaps with | Bs), |Bg) and | B1o).

IV. ANALYSIS OF PRINCIPAL COMPONENTS AND EXTRACTION
OF BEATING POWERS 11;

The purpose of S? imaging methods is generally twofold:
determine whether HOMs exist in the FUT, and obtain at least
beating powers, i.e. P,or eventually powers P; of excited modes.

Diagonal elements in D, and corresponding PCs |V;) can be
obtained easily using standard numerical linear algebra pack-
ages knowing experimental matrix C deduced from Eq. (12).
Reconstructing P from D is however not straightforward. While
P and D are diagonal, they do not share the same dimensions:
P x PforD and M x M for P.

B is also different from 'V since, (i) they do not have the same
dimensions, and (ii)) BB isin general different from I as shown
before. The difficulty presented by point (i) can be overcome
by extending matrix B of dimensions P x M to P x P with
P — M column vectors constituted by random noise so that
its inverse can be calculated. The issue presented in point (ii)
however is more problematic, meaning that eigenvectors |V;)
obtained by diagonalizing C are not stricto sensu figures of
beating | B;).

We will discuss in the next sections how to reconstruct beating
figures and beating powers in some particular cases.

A. General Case - No Constraint on MPI

With the knowledge of D and V from X, matrix P can be

reconstructed using Eq. (15) below:
P=B!'cBY) ' =B 'VDVI(B)! (15

where B corresponds to matrix B extended with extra columns
made of random noise as written above.
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Fig. 3.  Example of PC patterns obtained by diagonalizing C. Top Row: First
four eigenvectors when MPI values for HOMs is -30 dB. Bottom Row: PCs for
HOM having MPI of - 3 dB. While at low powers |V;) correspond to beatings,
at higher powers, PCs are clearly deformed except for |V7).

This point has been numerically verified in the context of a
fiber excited with modes shown in Fig. 1(a) up to a maximal
MPI value of -3 dB for HOMs. Exact beating powers II; have
been correctly obtained.

While very simple at first glance, this general method is in
reality not straightforward when dealing with experimental data.
Indeed, experimental PCs are not generally oriented along the
2- or y-axis of the camera, meaning that the right orientation of
guided modes and thus of beatings figures should be determined
(it is noticeable here that theoretical guided modes of the FUT
can be calculated using the experimental refractive index of the
fiber). Nonetheless, this orientation can be directly extracted
from the experimental PCs. Most importantly, care should also
be taken to sort PCs in the same order than corresponding beating
figures which can be tricky if PCs are very different from |B;),
i.e. in the case of high MPI.

B. Case of Low MPI

In the case of low MPI, we will see that simplifications can be
made. To start with, let us assume that all guided modes shown in
Fig. 1(a), i.e. LPo;, LPY, LPZ, LPoy, and LP4,, are excited. We
will consider that the fundamental mode LPg; is mainly guided
with a power normalized to 1.0. Power P of all other above-cited
modes is increased from 0.001 to 0.5, meaning that the lowest
considered MPI is equal to -30 dB, and the highest is -3 dB.

Matrix P is determined using Eq. (11). Matrix C is calculated
from Eq. (13) to avoid fixing arbitrarily the wavelengths range
and the fiber length.

We expect in this example four major beatings (between
the fundamental mode and HOMs) with beating powers equal
to Inajor = 2/P, and six minor beatings (between HOMs)
carrying beating powers equal to I ninor = 2P < Iinajor-

The first four PCs |V;) sorted in the same order as beatings
figures are displayed in Fig. 3. Top row corresponds to the
situation with the lowest and bottom row to the highest MPIs.
Comparison of Fig. 1(b) and Fig. 3 shows that beatings patterns
and PCs are very similar at low MPI. However, at higher MPI,

Vs > [Ve > V7>
& 8 - .
, L] -
LAl J AU “H»
[Vg > [Vo > [Vio>
‘ 1 ! \
O o o} ()

Fig. 4. Last six eigenvectors for an MPI of -30 dB. One can observe that
these eigenvectors differ completely from beating patterns except for | Vo) which
corresponds to beating | B7).

PCs differ strongly from beatings except for |V ) which has no
overlap with over beatings (see Fig. 2).

Fig. 4 display all the other PCs with smallest eigenvalues in
the case of an MPI of -30 dB (sorted by decreasing eigenvalues).
Generally, these minor PCs are nearly identical for all values of
MPIs explored in this study. As can be seen, these PCs are very
different from beating patterns (Fig. 1(b)), except for | V) which
corresponds to beating |B7) at this level of power.

To be more quantitative, the PCs |V;) can be projected onto
the beatings as:

k=M

Vi) = D awi| Bi)

k=1

(16)

The evolution of v;; (corresponding to associated beating | B; )
for low MPI) is reported in Fig. 5 as a function of power in
HOMSs. To obtain this figure, beatings have been normalized
to unity ((B;|B;) =1, Vi € {1,...,M}). As can be seen, the
observations made above are confirmed: at low power in higher-
order modes, beatings are well approximated by eigenvectors of
C (ay; =~ 1), but for higher powers P, PCs become combinations
of beatings. For example, projection coefficient cao of |V2) along
beating |Bs) = LP 1| LPY is equal to 0.99 for an MPI of
-30 dB but decreases monotonously to 0.54 for an MPI of -3 dB,
meaning that vector |V5) is similar to | B2) by only 54%.

Fig. 6 shows the evolution of |ayo| in the beating fig-
ures basis for increasing power in HOMs. For the high-
est MPI, |V5) for example is a combination of beatings in
the following proportion: 0.54 |By) + 0.15 |By) — 0.08 | Bs) —

Fig. 7 depicts the evolution of the four first eigenvalues divided
by the corresponding quantity (B;|B;) as a function of power
P; = P in HOM number i (see Eq. (17)). This normalization
of eigenvalues is used to compare them directly with diagonal
elements of matrix P which should be equal in the case of
these major beatings i to 0.5 [T? = 2P, meaning that if diagonal
elements of P are equal to normalized eigenvalues of C, curves
will be superposed to red circles in Fig. 7.
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Fig. 5. Percentage of major beating |B;) found in eigenvector |V;) as the
power in HOMs (LPg2, LP¥,, LPY), LP)) increases from 0.001 to 0.5. Only
the 4 first eigenvectors with the highest eigenvalues are shown. Power in mode
LPo; is set constant to 1. Beating figures have been normalized to 1.0. For
example, eigenvector | V7 ) is always equal to beating | By ), but the coordinate of
|V2) onto | Ba) varies from 0.99 | Ba) to 0.54 | Ba) as the power in extra-modes
increases, meaning that |V5) is a mix of some beating figures when the power
in each mode becomes important (see Fig. 6).
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Fig. 6. Evolution of absolute value of coordinates of |V2) in the basis of
beating figures.
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Fig. 7. Major eigenvalues of C normalized to corresponding (B;|B;) scalar

product as a function of power P in each HOMs (see Eq. (17)). Corresponding
diagonal elements of P are displayed with red circles.

The blue curve corresponds to beating | B1) = a1 |V1). Other
colors represent the 3 other PC eigenvalues. Two remarks can be
drawn here: as expected, for low power in HOMs, normalized
eigenvalues are close to diagonal elements of matrix P. More-
over, when a beating is orthogonal to the set of all other beatings,
its normalized eigenvalue is equal to 0.5 [1? which corresponds
to the diagonal element of matrix P (see blue curve).

Through this example, we can conclude that major PCs of
X are beating figures |B) in the low-MPI case. Diagonalizing
C allows then to extract major beating figures, and also corre-
sponding beating powers, as diagonal elements of D are similar
to diagonal elements of matrix P, provided that eigenvalues are
normalized to corresponding scalar products (B;|B;).

C. Case of a 3-Mode Fiber

In the case of a fiber guiding the fundamental mode LP
and two higher-order modes LP;;, and LPs;, 3 beatings are
expected: |B2> (LP01| LPll)v |B3> (LP 01| LPQl), and |B8> (LP
11| LP21) as indexed in Fig. 1. In such a case, only 2 beatings
overlap (| By) and | Bg)). Using Eq. (13) and Eq. (14) together
with numerical values of matrix BY B that can be obtained from
a mode solver knowing the experimental RIP, one can obtain
PCs and corresponding eigenvalues (see Appendix).

If we note o9, 03, and og the three eigenvalues associated
respectively o |V1> = (91 |B2> —+ o’y |B8>, |Vv2> = (¥32 |B3>,
and |V3) = a3 |Ba) + ass | Bs), simple linear algebra shows
that, in the case where the LPy; is mainly excited:

oy =~ 0.5113 (Bs|Bs)

(17)
o ~ 0.5 112 (Bs|Bs) (1 -

(B2|Bs)® )
(Bs|Bs)(Bz2|Bz)

All the coordinates a1, g1, (o3, and aigs can be also deduced
from o’s so that real beatings can be extracted from PCs.

In this simple case, MPI of the two HOMs can be obtained
from Eq. (17). The set of equations (18) recall hereafter how to
extract ratios of powers:

Py _ os (Bs|Bs)

Poy — o3 (Bo|Bg)?
<Bg‘BB><1’<Bs\Bg><Bszz> (18)

Py _ o8 (B2|Ba)

Pos (Ba|Bg)?

o2
(Bs|Bs) (1’7@8\3@@2\320

In the case of high MPI, a similar development can be obtained
from equations shown in the Appendix. Note that the case of
3-mode fiber can be also extended to a fiber supporting more
cuided modes but has not been developed in this present paper.

V. EXTRACTION OF BEATINGS IN THE PRESENCE OF
WAVELENGTH JITTER

In the mathematical development above, the wavelength scan
has not been considered so far since Eq. (13) was used to
construct matrix C (no DFT was performed to deduce the
presence of beatings, so the presence of HOMs). Equality be-
tween Eq. (12), which holds the information on the wavelength
scan, and Eq. (13) is indeed fulfilled provided that cosines are
orthogonal to each other ((&;,€;) = d;;). A legitimate question
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Fig.8. Standard S? analysis. Red curve: DFT obtained with precise values of
wavelengths. Three beatings were found (2 major and 1 minor corresponding
to LP11| LP21). Other curves: DFT with wavelengths having random values.
Minor peak disappears for a noise greater than 10 pm (green curve), and major
peaks are hardly defined when the random noise is greater than 100 pm.

therefore arises concerning the accuracy of the wavelength scan:
can we get around the wavelength jitter of the laser source using
spatial correlations only?

To do so, we have simulated beatings at the output-end of
the 10-m-length 3-mode fiber. Two cases were considered, i.e.
constant wavelength step size and non-constant wavelength step
(jitter), in order to simulate a laser source with poor scanning
precision. LPy; is assumed to be the dominant mode with a nor-
malized power of 1.0. A theoretical MPI of -30dB is considered
for LP}, and LP%) as it allows beatings to be obtained directly
without significant error and can be extracted accurately from
the standard S2 analysis [3]. For this example, we did not take
into account odd modes since they have the same effective index
as the even modes. Other HOMs were not taken into account
in this example. Eight hundred and one beating figures (801
wavelengths) are generated between 1030 nm and 1050 nm. To
simulate the jitter in wavelength, a random noise was added to
each value. We have considered jitter values of O pm (ideal scan),
I pm, 10 pm, 100 pm, and 1000 pm (extreme case) with uniform
random noise distribution. Fig. § shows the sum of DFTs powers
calculated for each pixel (array of 81 x 81 pixels) as would be
done for standard S? analysis. The red curve corresponds to
the ideal case (no wavelength jitter). The orange, green, blue
and black curves correspond respectively to the increasing jitter
values. As expected, three peaks can be seen for the expected
beatings: two major peaks corresponding to LPy; | LPy; and LP
01| LP21, and one minor for LP 11| LP2;. While these peaks are
clearly defined in the perfect case, they completely disappear
when the jitter is greater than 0.1 nm. For a jitter of 0.01 nm, the
minor peak is drowned at the noise level.

The standard S? imaging consists in applying a filter in
the Fourier domain when peaks appear; each beating is then
extracted with its corresponding MPI [3].

Fig. 9. Standard S? analysis. Beating figures are extracted from the S? data
set using a filter in the Fourier domain. Beatings appear in the order of peaks of
Fig. 8 (from left to right). Top: no noise. Bottom: 1 nm of random noise.

MPI is obtained with the formula:

wa Inom(z,y)dA
Ja iz, y)dA

where as per [3], Iyon is the beating pattern obtained by filtering
each peak in the Fourier domain, and 7 is the pattern obtained
for the central peak.

Fig. 9 shows the reconstructed beatings as they appear in the
DFT in Fig. 8 using standard S? analysis. From top to bottom,
the jitter noise increases. MPI obtained from this method are
summarized in Table II.

Table II shows that the values of MPI are accurately measured
when the jitter is low, but for jitter greater or equal to 100 pm,
the difference becomes significant. Moreover, beating figures
are not correctly reconstructed even for a low jitter of 10 pm as
can be seen in Fig. 9, where the second column demonstrates that
beating LP 11| LP»; is not correctly displayed. This illustrates




TABLE II
VALUES OF MPI OBTAINED WITH THE STANDARD S2 METHOD

Jitter (in pm) | MPI for LP1; MPI for LPoq

0 -30.02 -30.04
1 -30.02 -30.05
10 -30.08 -30.21
100 -34.35 -37.58
1000 -39.45 -36.99

“’
’h

Kl 1,
..0 0”0

Fig. 10. Three first PCs obtained after diagonalizing variance - covariance
matrix. From left to right: the 3 PCs corresponding to LP 91 | LP11, LP o1| LP2y
and LP 11| LP21) can be recognized. Top: no jitter. Bottom: jitter of 1 nm.

TABLE III
VALUES OF MPI OBTAINED FROM EIGENVALUES OF VARIANCE
- COVARIANCE MATRIX

Jitter (in nm) | MPI for LP1; | MPI for LP2;

0 -30.00 -30.00
1 -29.99 -30.00
10 -30.05 -29.94
100 -29.83 -30.23
1000 -30.21 -30.21

that the wavelength jitter can be detrimental when performing a
standard S? imaging.

The procedure described in Section I'V is now applied. Fig. 10
shows the three first PCs after diagonalizing the variance-
covariance matrix obtained from the 801 generated figures. No
DFT is performed at this stage. The top row corresponds to
no wavelength jitter, while the bottom raw corresponds to the
maximal jitter (I nm). One can see that major beatings are
accurately extracted without the need to use a DFT, even for
the high jitter value. The minor PC pattern (right figure) is close
to beating LP 11| LPy;.

From Eq. (17), MPI are calculated and displayed in Table III.
Values obtained with this method are in good accordance with
the theoretical ones, even when a jitter as large as 1000 pm
was applied.

VI. CONCLUSION

We have demonstrated that beatings can be reconstructed
without the use of a DFT by diagonalizing only the variance
- covariance matrix C which can be easily obtained by stacking
images of intensities recorded at the output end of the fiber
similarly to what is done for a S? data acquisition. When the
power carried by HOMs is low in comparison to the one carried
by the dominant guided mode (usually the LPg;), figures of
major beatings correspond directly to Principal Components of
X, i.e. eigenvectors of matrix C. MPI in each mode are then
correctly extracted even in the case of a tunable laser with high
wavelength jitter values. In the general case, when no guided
mode is mainly excited, MPIs can be theoretically extracted by
an optimization method developed to solve general Eq. (15). We
believe that this analysis method permits to extend the possibility
to perform S? analysis even in a wavelength range where no
accurate tunable lasers are available (mid-IR or visible range).

APPENDIX

We will assume a fiber supporting 3 guided modes (called
LP ;, LP5, and LP35 to be more general with respective powers
Pi, P, and P3). Three beatings are then expected, which will
be called hereafter for sake of clarity: |B1) = LP{| LPs, |B2) =
LP ;| LP3 (major beatings), and | Bs) = LP 5| LP3, which is the
beating supposed to carry less power.

Eq. (13) recalled hereafter:

C = BPB?

leads to:
M

C|Bi) =Y _ M (Bx|Bi) |B)
k=1

(20)

where 2;, = $117 is a diagonal element of matrix P.

We will use the notation (B;|B;) = b;; to avoid too long
equations.

We will assume that 2 beatings are not orthogonal to each
other: |By) and |B3) while |B2) does not couple to |[B;) and
| Bs).

FromEq. (14), 3PCsnamely |V1),|V2),and |V3) are expected,
which can be decomposed onto the beating basis:

V1) = aq1|B1) + asz1 |Bs)
[Va) = ags |Ba)
|V3) = aq3 |B1) + as3 |Bs)

Diagonalizing matrix C implies that PCs (eigenvectors) are
orthogonal to each other and also are normalized to unity. In this
case, each PC should follow:

{<v1|v1> = (ValVa) = (Va|Va) =1
(Vi[Va) = (Vi[Va) = (ValVa) = 0

21

(22)

Having in mind Eq. (20), one can then calculate each coor-
dinate «rj; and each eigenvalue o; knowing the power in each
mode. Starting for example from the definition of |V}):

C|V1> :O'1|V1> (23)



and using Eqgs. (19)—(21), we can obtain the two following
equations:

{ (1111 + asrbiz)asy = %(a11b13 + agibsz)agg
Aoy = ri(ai1bir + asibiz)ass — As(ai1bis + azibss)ais

where A = aq1a33 — az1aqs.
The first equation of this system leads to:

b13B? + (b11 — baze) 3 — bize =0 (24)

where = as;/ay; and € = A3/Ay = P53/ P < 1, if we as-
sume that LPq is mainly excited.
Thus one can obtain for PC |V;):

_ —by1 + baze + \/(bll — 6b33)2 + 41){36

5
From (V7|V4) = 1, we obtain expression of «1:
1

Q11

a Vb1t + 2b13f3 + b3z 32
A Taylor expansion assuming € < 1 gives:

oy = —— |1 =5 : ——=¢€" | +o(€”)
Vb1 ( bty 2bt,
(25)
From definition of (3, cr3; can be determined:
L (bis bz, o 2 3
= —— | —e— —==(2b73 — by1b : 2
a3y T (5116 b;ljl( 13 — bi1bsz)e” | +o(e’) (26)

From Eq. (25), one can deduce thatat low power in HOMS, the
major eigenvector | V1) is approximately proportional to |B1):

1
V1) ® ——= |B1)
Vb1t
Of course, Egs. (20) and (21) tell us that the second major
PC, orthogonal to the other ones, is given by:

1
This development corresponds to the numerical results shown
in Section IV-A.
Similarly, C|V3) = o3 |V3) gives a set of similar equations.
Assuming that v = a3 /ay3, we obtain:

o —by1 + baze — \/(bll — 6b33)2 + 41){36
= 213

(V3]V3) = 1 leads to:
1
V/bi1 + 2b137y + bazy?

A Taylor expansion yields:
b biibss — b3 ‘
L (1 NRES L g 332 13 6) + o(€?)
b1y
(27

Q13 =

13

B 3
Vb111/b11b3s — b3,
and

B Vb1
3 = e
v/ b11b3z — bi;

b? o
(—1 + Qb%(bllbgg — bf3)62> + 0(63)
11
(28)

This resultimplies that the minor PCs are not beating figures, but
a combination of them, since «r13 and ag3 have similar orders of
magnitude, even at low MPIs, which is coherent with the results
of Section I'V-A. Moreover, when € is not too high, coordinates
a3 and aigg are approximately constant to the order of e. This
is coherent with the fact that minor PC patterns do not change
significantly when power P in HOMs is not too high.

Using Eq. (20), and after some calculations, we can get for
the eigenvalues o1, o2, and o3:

o1 = Ai(b11 — bize/y)
02 = Agbao
o3 = Ai(bsze — b113)

A Taylor expansion of oy and o3 gives:

bis 2
o1~ by (1+ Ee) + o(€?)

% habga (1 — 505) + ofe?)
03 ~ A3033 bsszbi1 ole
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