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ASYMPTOTICS OF THE DISTRIBUTION AND HARMONIC
MOMENTS FOR A SUPERCRITICAL BRANCHING PROCESS IN

A RANDOM ENVIRONMENT

ION GRAMA, QUANSHENG LIU, AND ERIC MIQUEU

Abstract. Let (Zn) be a supercritical branching process in an independent and
identically distributed random environment ξ. We deduce the exact decay rate
of the probability P(Zn = j|Z0 = k) as n → ∞, for each j > k, assuming that
P(Z1 = 0) = 0. We also study the existence of harmonic moments of the random
variable W = limn→∞

Zn

E(Zn|ξ) under a simple moment condition.

Résumé. Soit (Zn) un processus de branchement surcritique en environnement
aléatoire ξ indépendant et identiquement distribué. Nous donnons un équivalent
de la probabilité P(Zn = j|Z0 = k) lorsque n → ∞, pour tout j > k, sous la
condition P(Z1 = 0) = 0. Nous étudions également l’existence des moments har-
moniques de la variable aléatoire limite W = limn→∞

Zn

E(Zn|ξ) , sous une hypothèse
simple d’existence de moments.

1. Introduction

A branching process in a random environment (BPRE) is a natural and impor-
tant generalisation of the Galton-Watson process, where the reproduction law varies
according to a random environment indexed by time. It was introduced in Smith
and Wilkinson [19] to model the growth of a population in an unknown exogenous
environment. For background concepts and basic results concerning a BPRE we re-
fer to Athreya and Karlin [5, 4]. In the critical and subcritical regime the branching
process gets extinct and the research interest is mostly concentrated on the survival
probability and conditional limit theorems, see e.g. Afanasyev, Böinghoff, Kersting,
Vatutin [1, 2], Vatutin [21], Vatutin and Zheng [22], and the references therein. In
the supercritical case, a great deal of current research has been focused on large de-
viations, see Bansaye and Berestycki [7], Bansaye and Böinghoff [8, 9, 10], Böinghoff
and Kersting [12], Huang and Liu [15], Nakashima [18]. In the particular case when
the offspring distribution is geometric, precise asymptotics can be found in Böinghoff
[11], Kozlov [16].

An important closely linked issue is the asymptotic behavior of the distribution
of a BPRE (Zn), i.e. the limit of P(Zn = j|Z0 = k) as n → ∞, for fixed j > 1
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when the process starts with k > 1 initial individuals. For the Galton-Watson
process, the asymptotic is well-known and can be found in the book by Athreya
and Ney [6]. Concerning the lower large deviation principle of a BPRE, Bansaye
and Böinghoff have shown in [10] that, for any fixed j > 1 and k > 1 it holds
n−1 logP(Zn = j|Z0 = k) → −ρ as n → ∞, where ρ > 0 is a constant. This
result characterizes the exponential decrease of the probability P(Zn = j|Z0 = k)
for the general supercritical case, when extinction can occur. However, it stands
only on a logarithmic scale, and the constant ρ is not explicit, except when the
reproduction law is fractional linear, for which ρ is explicitly computed in [10].
Sharper asymptotic results for the fractional linear case can be found in [11]. In
the present paper, we improve the results of [10] and extend those of [11] by giving
an asymptotic equivalent of the probability P(Zn = j|Z0 = k) as n→∞, provided
that each individual gives birth to at least one child. These results are important
to understand the asymptotics of the process, and are useful to obtain sharper
asymptotic large deviation results. We also improve the result of [15] about the
existence of the harmonic moment of the limit variable W = limn→∞

Zn
E(Zn|ξ) , and

closes a gap in [13] on this topic.
Let us explain briefly the findings of the paper. Assume that P(Z1 = 0) = 0.

From Theorem 2.4 of the paper it follows that when Z0 = 1,
P (Zn = j) ∼

n→∞
γnqj with γ = P(Z1 = 1) > 0, (1.1)

where qj ∈ [0,+∞) can be computed as the unique solution of some recurrence
equations, and qj > 0 if and only if P (Zn = j) > 0 for some n > 0; moreover, the
generating function Q(t) = ∑∞

j=1 qjt
j has the radius of convergence equal to 1 and

is characterized by the functional equation
γQ(t) = EQ(f0(t)), t ∈ [0, 1), (1.2)

where f0(t) = ∑∞
i=1 pi(ξ0)ti is the conditional generating function of Z1 given the

environment. These results extend the corresponding results for the Galton-Watson
process (see [6]). They also improve and complete the results in [10] and [11]: it was
proved in [10] that 1

n
logP (Zn = j) → log γ, and in [11] that P (Zn = 1) ∼

n→∞
γnq1

in the fractional linear case.
In the proofs of the above results we make use of Theorem 2.1 on the harmonic

moments of W , which shows that: a) for any integer k > 1, E[W−a|Z0 = k] < ∞
for some a > 0 under a simple moment condition on m(p)

0 = ∑∞
i=1 i

ppi(ξ0) for some
p > 1, b) for any fixed a > 0,

E[W−a|Z0 = k] <∞ if and only if E
[
pk1(ξ0)ma

0

]
< 1, (1.3)

under a boundedness condition on m0 = ∑∞
i=1 ipi(ξ0) and m(p)

0 . Part a) corrects an
error in an earlier work [13, Theorem 1.2] where the case Z0 = 1 was considered,
and improves the corresponding result in [15] where a boundedness condition on m0

and m
(p)
0 was required; part b) extends Theorem 1.4 in [15] where the case k = 1

was treated.
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The proof of Theorem 2.1 is based on the method developed in [17, Lemma 4.1]
which enables to obtain the decay rate of the Laplace transform φk(t) = E[e−tW |Z0 =
k] as t→∞, from a functional inequality of the form

φ(t) 6 qEφ(Y t) + Ct−a, (1.4)
where Y is a positive random variable. Such an equality is obtained by a careful
analysis using a recursive procedure and a bound of the quenched p-th moment
E[W p|ξ].

In the proof of Theorem 2.4, the equivalence relation (1.1) and the recursive
equations for the limit values (qj) come from simple monotonicity arguments. The
difficulty is to characterize the sequence (qj) by its generating function Q. To this
end, we first calculate the radius of convergence of Q by determining the asymptotic
behavior of the normalized harmonic moments EZ−rn /γn as n→∞ for some r > 0
large enough and by using the fact that ∑∞j=1 j

−rqj = limn→∞ EZ−rn /γn. We then
show that the functional equation (1.2) has a unique solution subject to an initial
condition.

The rest of the paper is organized as follows. The main results, Theorems 2.1 and
2.4, are presented in Section 2. Their proofs are given respectively in Sections 3 and
4.

2. Main results

A BPRE (Zn) can be described as follows. The random environment is repre-
sented by a sequence ξ = (ξ0, ξ1, ...) of independent and identically distributed ran-
dom variables (i.i.d. r.v.’s), whose realizations determine the probability generating
functions

fn(t) = f(ξn, t) =
∞∑
i=0

pi(ξn)ti, t ∈ [0, 1], pi(ξn) > 0,
∞∑
i=0

pi(ξn) = 1. (2.1)

The branching process (Zn)n>0 is defined by the relations

Zn+1 =
Zn∑
i=1

Nn,i, for n > 0, (2.2)

where Nn,i is the number of children of the i-th individual of the generation n. Con-
ditionally on the environment ξ, the r.v.’s Z0, Nn,i (n > 0, i > 1) are all independent
of each other, each Nn,i has the probability generating function fn. For simplicity,
we only consider the case where Z0 is a constant.

In the sequel we denote by Pξ the quenched law, i.e. the conditional probability
when the environment ξ is given, and by τ the law of the environment ξ. Then
P(dx, dξ) = Pξ(dx)τ(dξ) is the total law of the process, called annealed law. The
corresponding quenched and annealed expectations are denoted respectively by Eξ
and E. When Z0 = 1, for n ∈ N, the quenched and annealed probability generating
function of Zn are respectively

gn(t) := f0 ◦ . . . ◦ fn−1(t) = Eξ(tZn| Z0 = 1),
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Gn(t) = E[tZn| Z0 = 1] = E [f0 ◦ . . . ◦ fn−1(t)] = E [gn(t)] , (2.3)
with the convention that g0(t) = t. When the process starts with k individuals, we
denote by Pk and Ek the annealed probability and expectation, that is,

Pk(·) = P(·|Z0 = k) and Ek(·) = E(·|Z0 = k), k ∈ N∗.
It follows from (2.2) that the annealed probability generating function of Zn starting
with k individuals is

Gk,n(t) = EktZn = E
[
gkn(t)

]
, k ∈ N∗, n ∈ N. (2.4)

Define, for any environment sequence ξ = (ξ0, ξ1, · · · ), any integer n > 0 and any
real number p > 0,

m(p)
n = m(p)

n (ξ) =
∞∑
i=0

ippi(ξn), mn = mn(ξ) = m(1)
n (ξ),

Π0 = 1 and Πn = Πn(ξ) = Πn−1
k=0 if n > 1.

Then m(p)
n = Eξ[Np

n,i] is the conditional p-th moment of the offspring distribution at
generation n, when the environment ξ is given, and Πn = Πn(ξ) = Eξ[Zn|Z0 = 1].
Let

Wn = Zn
Πn

, n > 0, (2.5)

be the normalized population size. It is well known that under Pξ, as well as under
P, the sequence (Wn)n>0 is a non-negative martingale with respect to the filtration

Fn = σ (ξ,Nj,i, 0 6 j 6 n− 1, i = 1, 2 . . .) ,
where by convention F0 = σ(ξ). Then the limit W = limn→∞Wn exists P - a.s. and
EW 6 1.

We shall assume that
µ := E logm0 ∈ (0,∞),

which implies that the BPRE is supercritical (see e.g. [19, 5, 6]) and that
γ := P(Z1 = 1) ∈ [0, 1). (2.6)

With the extra condition E| log(1−p0(ξ0))| <∞, the population size tends to infinity
with positive probability (see [19]). We also assume in the whole paper that each
individual gives birth to at least one child, i.e.

p0(ξ0) = 0 a.s. (2.7)
In particular, m0 > 1 a.s., and P(m0 = 1) < 1. Consequently, under the condition

E
Z1

m0
log+ Z1 <∞, (2.8)

the martingale (Wn) converges to W in L1(P) (see e.g. [20]) and
P(W > 0) = P(Zn →∞) = 1.

Our first result concerns the harmonic moments of the r.v. W . As usual, we write
‖p1‖∞ = ess sup p1 for the essential supremum of p1 = p1(ξ0).



ASYMPTOTICS OF THE DISTRIBUTION FOR BPRES 5

Theorem 2.1. a) Assume that there are some constants p > 1 and ε > 0 such that

Emε
0 <∞ and E

(m(p)
0
mp

0

)ε
<∞ (2.9)

Then there exists a > 0 such that
EkW−a <∞.

b) Assume that there are some constants p̄1 ∈ (0, 1) and c1, p, cp > 1 such that
p1(ξ0) 6 p̄1, c1 6 m0 and m0(p) 6 cp a.s. (2.10)

Then for any a > 0,
EkW−a <∞ if and only if E

[
pk1(ξ0)ma

0

]
< 1.

Notice that the two moments conditions in (2.9) are implied by the single one
E(m(p)

0 )ε < ∞; in practice it is in general easier to verify the condition on the
normalized p-th conditional moment m

(p)
0
mp0

of the offspring distribution, rather than
on the non-normalized one m(p)

0 .
Part a) improves Theorem 2.2(i) of [15], which states that E[W−a|Z0 = 1] < ∞

for some a > 0 if the boundedness conditions on m0 and m(p)
0 in (2.10) hold. Instead

of these boundedness conditions, here only a simple moment condition is used. Part
b) gives the critical value for the existence of harmonic moments of W under the
boundedness condition 2.10; it extends the corresponding result in [15, Theorem
1.4] where the case k = 1 was treated. Proving the critical value without the
boundedness condition 2.10 seems very delicate. Fortunately, for the usual study
of large and moderate deviations as we studied in [15, 13, 23], the existence of the
harmonic moment of some order is enough.

Remark 2.2. It is stated in Theorem 1.2 (or Theorem 3.1) of [13] that E[W−a|Z0 =
1] <∞ for all 0 < a < a0, for an explicitly calculated a0 > 0, provided that Emε

0 <
∞ for some ε > 0. Unfortunately, the proof of this claim in [13] contains an error:
on p.1261, the inequality of the last line cannot be obtained from the inequality of
line 3 from the bottom, because there is the common term φTnξ in the factors of
the product therein (so that these factors are not independent); consequently, Eq.
(2.7) of that paper is not proved. We are grateful to the referee who pointed out
the error in an earlier version of the present paper, originated from [13]. Part a) of
Theorem 2.1 is a corrected version of Theorem 1.2 (or Theorem 3.1) of [13], with
the conditional moment condition E (m(p)

0 )ε
mpε0

< ∞ (which holds for ε = 1 when (A2)
of [13] holds, and for ε = 1/p when (A4) of [13] holds), and the slightly modified
conclusion that E[W−a|Z0 = 1] < ∞ for some a > 0 (which is enough for the
purposes in [13, 23]). Due to this result, the gap in the proof of Theorem 1.2 [13]
does not have impact on the results on Berry Esseen’s bound and large and moderate
deviations stated in [13, 23].

From Theorem 2.1 we get the following corollary.
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Corollary 2.3. Assume (2.10). If P(p1 = 0) = 1, then EkW−a < ∞ for all a > 0.
If P(p1 = 0) < 1, then the equation

E[pk1m
ak
0 ] = 1 (2.11)

has a unique solution ak on (0,∞), and{
EkW−a <∞ for a ∈ [0, ak),
EkW−a =∞ for a ∈ [ak,∞).

This indicates that the solution ak of the equation (2.11) is the critical value for
the existence of harmonic moments of the r.v. W .

The next result gives an asymptotic equivalent as n → ∞ of the probability
Pk (Zn = j) = P (Zn = j|Z0 = k), for integers j, k > 1. Assume P(p1 = 0) < 1.
Then for k > 1,

γk = Pk(Z1 = k) = Epk1 > 0. (2.12)
Define rk as the unique solution on (0,∞) of the equation

γk = Em−rk0 . (2.13)
Notice that if P(0 < p1 < 1) > 0, then γk is strictly decreasing, and rk is strictly
increasing. As usual, we write an ↑ a or a = limn→∞ ↑ an to mean that (an) is
increasing and its limit is a.

Theorem 2.4. Assume P(p1 = 0) < 1, and let k > 1 be a fixed integer.
a) For any j > k, we have, as n→∞,

qk,j := lim
n→∞

↑ Pk (Zn = j)
γnk

∈ [0,∞]. (2.14)

Moreover, qk,k = 1, and for each j > k, qk,j > 0 if and only if the state j is
accessible in the sense that Pk(Zn = j) > 0 for some n > 0.
If additionally P(0 < p1 < 1) > 0, then qk,j < ∞, whose values are uniquely

determined by the recurrence relation

γkqk,j =
j∑
i=k

qk,i p(i, j) with p(i, j) = P(Z1 = j|Z0 = i), j > k, (2.15)

with the initial condition qk,k = 1; the recurrence relation reads also

qk,j = 1
γk − γj

j−1∑
i=k

qk,i p(i, j), j > k. (2.16)

b) Assume (2.10). Then
∞∑
j=k

qk,j =∞ and
∞∑
j=k

j−rqk,j <∞ ∀r > rk. (2.17)

In particular the radius of convergence of the power series

Qk(t) =
+∞∑
j=k

qk,jt
j (2.18)
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is equal to 1.
c) For all t ∈ [0, 1), we have,

EktZn
γnk

↑ Qk(t) as n→∞, (2.19)

d) The power series Qk(t) satisfies the functional equation

γkQk(t) = E [Qk(f0(t))] (2.20)

for t ∈ [0, 1), with the initial condition Q(k)
k (0) = k!. Moreover, under the condi-

tion P(0 < p1 < 1) > 0, the functional equation (2.20) together with the initial
condition Q(k)

k (0) = k! characterizes the power series Qk(t) in the following sense:
if Q̂k(t) = ∑∞

j=0 q̂k,jt
j is a power series with q̂k,j ∈ C and q̂k,k = 1, which converges

and satisfies
γkQ̂k(t) = E

[
Q̂k(f0(t))

]
for t > 0 small enough, then Q̂k coincide with Qk.

Part a) sheds light on the bound P (Zn 6 j) 6 njγn obtained in [7] (Lemma 7) for
a BPRE with P(Z1 = 0) = 0. Furthermore, Theorem 2.4 extends the results of [6]
for the Galton-Watson process, with some significant differences. Indeed, when the
environment is random and non-degenerate, we have, for k > 2, Gk,1(t) = Efk0 (t) 6=
Gk

1(t) in general, which implies that Qk(t) 6= Qk(t), whereas we have the relation
Qk(t) = Qk(t) for the Galton-Watson process.

Theorem 2.4 also improves the results of [10] (Theorem 2.1), where it has been
proved that for a general supercritical BPRE

lim
n→∞

1
n

logPk (Zn = j) = −ρ < 0. (2.21)

In the case where P (Z1 = 0) = 0, our result is sharper by giving an equivalent of
Pk (Zn = j). Moreover, also in the case where P (Z1 = 0) = 0, it has been stated
mistakenly in [10] that limn→∞

1
n

logPk (Zn = j) = k log γ, whereas the correct as-
ymptotic is

lim
n→∞

1
n

logPk (Zn = j) = log γk.

Now we discuss the particular fractional linear case. The reproduction law of a
BPRE is said to be fractional linear if

p0(ξ0) = a0, pk(ξ0) = (1− a0)(1− b0)
b0

bk0 for k > 1, (2.22)

that is, when the generating function of the offspring distribution {pk(ξ0) : k ∈ N}
is

f0(t) = a0 + (1− a0)(1− b0)t
1− b0t

,
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where a0 ∈ [0, 1), b0 ∈ (0, 1), with a0 + b0 6 1, are random variables depending on
the environment ξ0. In this case, the mean of the offspring distribution is given by

m0 = 1− a0

1− b0
.

The constant ρ in (2.21) was computed in [10]: with X = logm0,

ρ =


− logE[e−X ] if E[Xe−X ] > 0 (intermediately and

strongly supercritical case),
− log infλ>0 E[e−X ] if E[Xe−X ] < 0 (weakly supercritical case).

Moreover, precise asymptotic results for the strongly and intermediately supercriti-
cal case can be found in [11], where the following assertions are proved:

(1) if E[Xe−X ] > 0 (strongly supercritical case),

P(Zn = 1) ∼ ν
(
E[e−X ]

)n
;

(2) if E[Xe−X ] = 0 (intermediately supercritical case),

P(Zn = 1) ∼ θ
(
E[e−X ]

)n
l(n)n−(1−s),

with θ, ν, s positive constants and l(·) a slowly varying function. In the particular
case where a0 = 0, Theorem 2.4 recovers Theorem 2.1.1 of [11] with p1(ξ0) = 1/m0,
X = logm0 > 0 and E

[
Xe−X

]
> 0. Therefore the process is strongly supercritical

and P(Zn = 1) ∼ ν
(
E[e−X ]

)n
= γn. However, since we assume P(Z1 = 0) = 0,

our result does not highlight the previous two asymptotic regimes stated in the
particular case when the distribution is fractional linear. The study of the general
case is a challenging problem which still remains open.

3. Harmonic moments of W

In this section we prove Theorem 2.1. Denote the quenched Laplace transform of
W under the environment ξ by

φξ(t) = Eξ
[
e−tW |Z0 = 1

]
(3.1)

when the process starts with one initial particle, and the annealed Laplace transform
of W by

φk(t) = E
[
φkξ (t)

]
= Ek

[
e−tW

]
, (3.2)

when the process starts with k individuals.
The following lemma is the key technical tool to study the exact decay rate of the

Laplace transform of the limit variable W .

Lemma 3.1 ([17], Lemma 4.1). Let φ : R+ → R+ be a bounded function and let Y
be a positive random variable such that for some constants q ∈ (0, 1), a ∈ (0,∞),
C > 0 and t0 > 0 and all t > t0,

φ(t) 6 qEφ(Y t) + Ct−a.

If qE (Y −a) < 1, then φ(t) = O(t−a) as t→∞.
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We will use the following bound for the quenched p-th moments of W .

Lemma 3.2. For p ∈ (1, 2],

EξW p 6 1 +
∞∑
k=0

1
Πp−1
k

m
(p)
k

mp
k

. (3.3)

Proof. We shall use the following elementary inequality due to Assmussen and Hering
[3, p.41]: if S = ∑n

i=1Xi is the sum of N independent random variables Xi > 0, and
h : [0,∞)→ [0,∞) is concave and non-decreasing, then

E[Sh(S)] 6
n∑
i=1

E[Xih(Xi)] + (ES)h(ES). (3.4)

From the definition of the branching process, we have the decomposition

Wn+1 := Zn+1

Πn+1
= 1

Πn

Zn∑
i=1

Nn,i

mn

, n > 0.

Applying inequality (3.4) with this sum and the conditional expectation Eξ(·| Fn),
together with h(t) = tp−1, and using the fact that Eξ(Wn+1|Fn) = Wn, we get

Eξ[W p
n+1|Fn] 6 Zn

Πp
n

m(p)
n

mp
n

+W p
n .

Taking expectation with respect to Pξ, we obtain for n > 0,

Eξ[W p
n+1] 6 1

Πp−1
n

m(p)
n

mp
n

+ EξW p
n .

By induction, this gives for n > 0,

EξW p
n+1 6 1 +

n∑
k=0

1
Πp−1
k

m
(p)
k

mp
k

, (3.5)

which implies (3.3). �

We remark that (3.3) remains valid if m
(p)
n

mpn
is replaced by the p-th centered mo-

ments ∑∞k=0 | kmn − 1|ppk(ξn), multiplied by a constant Bp depending on p. This can
be seen from inequality (2.1) of [15], and can be checked using the Bukholder, Davis
and Gundy inequality for martingales.

Proof of Theorem 2.1. We can suppose that the moment condition E(m
(p)
0
mp0

)ε <
∞ holds for some p ∈ (1, 2], since the normalized conditional Lp-norm m0(p)1/p/m0
is increasing in p. In the following, we assume p ∈ (1, 2]. We proceed in six steps.

Step 1: we first establish a bound of φξ(t) uniformly in ξ for which EξW p is
bounded. Notice that the function t 7→ (e−t − 1 + t)/tp is bounded on (0,∞), so
that there is a constant C > 0 such that for all t > 0,

e−t 6 1− t+ Ctp/p. (3.6)
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Using this inequality with t replaced by tW and taking expectation with respect to
Pξ, together with the fact that EξW = 1, we obtain, for all t > 0,

φξ(t) 6 1− t+ C(EξW p)tp/p. (3.7)

Therefore, if EξW p 6 K for some constant K > 0, then for all t > 0,

φξ(t) 6 1− t+ CKtp/p =: g(t).

At tK := (CK)−1/(p−1), the function g attains its minimum

βK := min
t>0

g(t) = g(tK) = 1− (1− 1/p)tK < 1.

Therefore

φξ(t) 6 φξ(tK) 6 g(tK) = βK if t > tK and EξW p 6 K. (3.8)

Step 2: we next obtain a recurrence relation on φξ(t). It is well-known that φξ(t)
satisfies the functional relation

φξ(t) = f0

(
φTξ

(
t

m0

))
, (3.9)

where f0(t) = ∑∞
k=1 pk(ξ0)tk is the generating function of the offspring distribution

{pk(ξ0) : k ∈ N}, T is the shift operator of the environment sequence defined by
T (ξ0, ξ1, . . .) = (ξ1, ξ2, . . .). Using (3.9) and the fact that φkTξ

(
t
m0

)
6 φ2

Tξ

(
t
m0

)
for

all k > 2, we obtain

φξ(t) 6 p1(ξ0)φTξ
(
t

m0

)
+ (1− p1(ξ0))φ2

Tξ

(
t

m0

)
. (3.10)

In particular, φξ(t) 6 φTξ
(

t
m0

)
. By iteration, this implies, for any t > 0,

φξ(t) 6 φTξ

(
t

m0

)
6 φT 2ξ

(
t

m0m1

)
6 · · · 6 φTnξ

(
t

Πn

)
, n > 1, (3.11)

where T n denotes the n-fold iteration of T . Taking the k-th power in (3.10), using the
binomial expansion and the fact that φ2k−i

T ξ

(
t
m0

)
6 φk+1

Tξ

(
t
m0

)
for all i ∈ {0, . . . , k−

1}, we get

φkξ (t) = pk1(ξ0)φkTξ
(
t

m0

)
+

k−1∑
i=0

(
k

i

)
p1(ξ0)i(1− p1(ξ0))k−iφ2(k−i)+i

T ξ

(
t

m0

)

6 pk1(ξ0)φkTξ
(
t

m0

)
+ (1− pk1(ξ0))φk+1

Tξ

(
t

m0

)
= φkTξ

(
t

m0

) [
pk1(ξ0) + (1− pk1(ξ0))φTξ

(
t

m0

)]
. (3.12)

By iteration, this together with (3.11) leads to

φkξ (t) 6 φkTnξ

(
t

Πn

) n−1∏
j=0

(
pk1(ξj) + (1− pk1(ξj))φTnξ

(
t

Πn

))
, k, n > 1. (3.13)
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Step 3: we establish a recurrence relation on φk(t) = E
[
φkξ (t)

]
= Ek

[
e−tW

]
.

From (3.13) and (3.8) applied to φTnξ(t/Πn), we obtain, for any t > 0 and n > 1,

φkξ (t) 6 φkTnξ

(
t

Πn

) n−1∏
j=0

(
pk1(ξj) + (1− pk1(ξj))βK

)
(3.14)

+ 1{ t
Πn

<tK} + φkTnξ

(
t

Πn

)
1{ETnξW p>K},

where 1{·} denotes the indicator function of the set {·}. Taking expectation and using
the independence between Tnξ and (ξ0, · · · , ξn−1) and the fact that 1{ETnξW p>K} 6
ETnξW p/K, we obtain, for any η > 0, t > 0 and n > 1,

φk(t) 6 E
[
φk

(
t

Πn

) n−1∏
j=0

(
pk1(ξj) + (1− pk1(ξj))βK

) ]

+ 1
Kη

E
[
φkTnξ

(
t

Πn

)
(ETnξW p)η

]
+ P( t

Πn

< tK). (3.15)

We will now find a suitable bound of E
[
φkTnξ

(
t

Πn

)
(ETnξW p)η

]
. To this end the

difficulty is that there is a dependence between φkTnξ and (ETnξW p). To overcome
this difficulty we will use an explicit bound of (ETnξW p) and the recurrence relation
(3.11). Let η ∈ (0, 1] be small enough such that E

(
m

(p)
0
mp0

)η
<∞. By Lemma 3.2 and

the sub-additivity of the function x 7→ xη, we have

(ETnξW p)η 6 1 +
∞∑
k=0

1
Π(p−1)η
k (Tnξ)

(
m

(p)
k (Tnξ)
mp
k(Tnξ)

)η
. (3.16)

From (3.11), we have φTnξ (x) 6 φTk+1Tnξ

(
x

Πk+1(Tnξ)

)
. Therefore from the preceding

bound of (ETnξW p)η we obtain

φkTnξ

(
t

Πn

)
(ETnξW p)η 6 φkTnξ

(
t

Πn

)
+
∞∑
k=0

φkTnξ

(
t

Πn

) 1
Π(p−1)η
k (Tnξ)

(
m

(p)
k (Tnξ)
mp
k(Tnξ)

)η

6 φkTnξ

(
t

Πn

)
+
∞∑
k=0

φkTk+1+nξ

(
t

Πk+1(T nξ)Πn(ξ)

)
1

Π(p−1)η
k (Tnξ)

(
m

(p)
k (Tnξ)
mp
k(Tnξ)

)η
.

(3.17)

Since T k+1+nξ is independent of (ξi)i6k+n (this is why we passed from T nξ to
T k+1+nξ), taking expectation in the above inequality leads to

E
[
φkTnξ

(
t

Πn

)
(ETnξW p)η

]
6 Eφk

(
t

Πn

)
+
∞∑
k=0

E
[φk ( t

Πk+1(Tnξ)Πn(ξ)

)
Π(p−1)η
k (Tnξ)

(
m

(p)
k (Tnξ)
mp
k(Tnξ)

)η]
.

(3.18)
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Therefore, coming back to (3.15) we obtain the following inequality on φk:

φk(t) 6 E
[
φk

(
t

Πn

) n−1∏
j=0

(
pk1(ξj) + (1− pk1(ξj))βK

) ]

+ P( t

Πn

< tK) + 1
Kη

{
Eφk

(
t

Πn

)
+
∞∑
k=0

E
[φk ( t

Πk+1(Tnξ)Πn(ξ)

)
Π(p−1)η
k (Tnξ)

(
m

(p)
k (Tnξ)
mp
k(Tnξ)

)η]}
.

(3.19)

Step 4: we prove that if Emε
0 <∞ and E

(
m

(p)
0
mp0

)ε
<∞ for some ε > 0, then

φk(t) 6 Ct−a (3.20)

for some constants C, a > 0 and all t > 0, which implies that EkW−b < ∞ for all
b ∈ (0, a) (the implication is a standard result, and can be easily checked e.g. by
using the formula EkW−b = 1

Γ(b)
∫+∞

0 φk(t)tb−1dt, where Γ(b) =
∫∞

0 e−ttb−1dt).

As in Step 3, let η ∈ (0, 1] be small enough such that E
(
m

(p)
0
mp0

)η
<∞. Let Y be a

positive random variable whose distribution is determined by

E [g(Y )] = 1
q

{
E
[
g
( 1

Πn

) n−1∏
j=0

(
pk1(ξj) + (1− pk1(ξj))βK

) ]

+ 1
Kη

Eg
( 1

Πn

)
+ 1
Kη

∞∑
k=0

E
[g ( 1

Πk+1(Tnξ)Πn(ξ)

)
Π(p−1)η
k (Tnξ)

(
m

(p)
k (Tnξ)
mp
k(Tnξ)

)η]}
(3.21)

for all bounded and measurable function g, where q is the norming constant (to
make E [g(Y )] = 1 when g = 1) defined by

q = E
[ n−1∏
j=0

(
pk1(ξj) + (1− pk1(ξj))βK

) ]
+ 1
Kη

{
1 +

∞∑
k=0

E
[ 1
Π(p−1)η
k (Tnξ)

(
m

(p)
k (Tnξ)
mp
k(Tnξ)

)η]}

=
[
E
((
pk1(ξ0) + (1− pk1(ξ0))βK

))]n
+ 1
Kη

{
1 + 1

1− Em−(p−1)η
0

· E
((m(p)

0 )η
mpη

0

)}
.

Then from (3.15) and Markov’s inequality we obtain for all a > 0 and t > 0,

φk(t) 6 qEφk (Y t) + taK(Ema
0)n

ta
. (3.22)
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We choose a > 0 and η ∈ (0, 1) small enough such that Em2a
0 <∞ and E

( (m(p)
0 )
mp0

)2η
<

∞, so that E
(
ma0(m(p)

0 )η
mpη0

)
<∞ by Cauchy-Schwartz’s inequality. Notice that

qEY −a = E
[
Πa
n

n−1∏
j=0

(
pk1(ξj) + (1− pk1(ξj))βK

) ]

+ 1
Kη

EΠa
n + 1

Kη

∞∑
k=0

E
[Πa

k+1(T nξ)Πa
n(ξ)

Π(p−1)η
k (Tnξ)

(
m

(p)
k (Tnξ)
mp
k(Tnξ)

)η]

=
[
E
(
ma

0

(
pk1(ξ0) + (1− pk1(ξ0))βK

))]n
+ (Ema

0)n
Kη

{
1 + 1

1− Em−(p−1)η+a
0

· E
(
ma

0(m(p)
0 )η

mpη
0

)}
.

By the dominated convergence theorem,

qEY −a a↓0−−→ q
n→∞−−−→ 1

Kη

{
1 + 1

1− Em−(p−1)η
0

· E
((m(p)

0 )η
mpη

0

)}
K→∞−−−→ 0.

So we can choose K,n large enough and a > 0 small enough, such that q < 1 and
qEY −a < 1. Therefore, from (3.22) and Lemma 3.1, we get (3.20).

Step. 5: prove that under the boundedness condition (2.10),

Epk1ma
0 < 1 ⇒ φk(t) = O(t−a) as t→∞. (3.23)

We follow the argument in [15] where the case k = 1 was treated. Notice that when
m0 > c1 > 1 and m(p)

0 6 cp, from Lemma 3.2 we see that there is a constant K > 0
such that EξW p 6 K for almost every environment ξ. With such a K, from (3.14)
we get for all t > 0,

φξ(t) 6 bnK + 1{ t
Πn

<tK}, where bK := p̄1 + (1− p̄1)βK .

From (3.12) and this bound applied to φTξ, we get

φkξ (t) 6 φkTξ
( t

m0

) [
pk1(ξ0) + (1− pk1(ξ0))(bnK + 1{ t

Πn+1
6tK})

]
6 φkTξ

( t

m0

) (
pk1(ξ0) + bnK

)
+ 1{ t

Πn+1
<tK}. (3.24)

Taking expectation, we get for all n > 1 and t > 0,

φk(t) 6 Eφk
( t

m0

) [
pk1(ξ0) + bnK

]
+ P( t

Πn+1
< tK)

6 q1Eφ(Y1t) + taK(Ema
0)n+1

ta
, (3.25)
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where q1 = E
[
pk1(ξ0) + bnK

]
, Y1 is a positive random variable whose distribution is

determined by

Eg(Y1) = 1
q1
E
[
g( 1
m0

)
(
pk1(ξ0) + bnK

) ]
for any bounded and measurable function g. Notice that q1 → E

[
pk1(ξ0)

]
< 1 as

n→∞, and

q1EY −a1 = E
[
ma

0

(
pk1(ξ0) + bnK

) ]
n→∞−−−→ E

[
ma

0p
k
1(ξ0)

]
< 1.

Therefore we can choose n large enough such that q1 < 1 and q1EY −a1 < 1. So from
(3.25) and Lemma 3.1, we conclude that φk(t) 6 Ct−a for some constant C > 0 and
all t > 0. This ends the proof of the implication (3.23).

Notice that when Epk1ma
0 < 1, we can take a0 > a close to a such that Epk1ma0

0 < 1.
Applying the implication (3.23) with a replaced by a0, we get φk(t) 6 Ct−a0 for some
constant C > 0 and all t > 0, which implies that EkW−a < ∞. So we have proved
the implication

Epk1ma
0 < 1 ⇒ EkW−a <∞, (3.26)

under the boundedness condition (2.10).

Step 6: prove that for any a > 0,

EkW−a <∞⇒ Epk1(ξ0)ma
0 < 1. (3.27)

Assume that EkW−a < ∞. Note that the r.v. W admits the well-known decompo-
sition

W = 1
m0

Z1∑
i=1

W (i),

where the r.v.’s W (i) (i > 1) are i.i.d. and independent of Z1 under Pξ, and are
also independent of Z1 and ξ0 under P. The decomposition can be easily seen from
the definition of the branching process, by considering the sub branching processes
starting from the particles i of the first generation, and by taking W (i) as the
corresponding limit variable of the fundamental martingale of the branching process
starting from i. The conditional probability law of W (i) satisfies Pξ(W (i) ∈ ·) =
PTξ(W ∈ ·). Since Pk(Z1 > k + 1) > 0, we have

EkW−a > Ekma
0

( Z1∑
i=1

W (i)
)−a

1{Z1 = k} = Epk1(ξ0)ma
0 EkW−a, (3.28)

which implies that Epk1(ξ0)ma
0 < 1.

Combing the results proved in Steps 4-6, we obtain the conclusions of Theorem
2.1 : in fact, Part a) is proved in Step 4, while Part b) is proved in Steps 5 and 6.
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4. Small value probability in the non-extinction case

In this section we prove Theorem 2.4.
a) We start with the proof of part a). For k > 1 and j > k, define

qk,j,n := P (Zn = j|Z0 = k)
γnk

, with γk = Pk(Z1 = k) = Epk1. (4.1)

By the Markov property, we have
Pk (Zn+1 = j) > Pk (Z1 = k)Pk (Zn = j) .

Dividing by γn+1
k leads to

qk,j,n+1 > qk,j,n. (4.2)
Therefore, the limit of qk,j,n exists as n→∞:

qk,j := lim
n→∞

↑ qk,j,n ∈ [0,∞].

We shall prove that qk,j satisfies the properties claimed in the theorem.
a1) We first remark that qk,k = 1 and that for any j > k, qk,j > 0 if and only if

the state j is accessible. In fact, when Z0 = k, then Zn = k if and only if Zj = k for
all j = 0, · · · , n, so that

P(Zn = k|Z0 = k) =
n∏
j=1

P(Zj = k|Zj−1 = k) = γnk ,

which implies qk,k = 1. If j is accessible, that is, if there exists n > 0 such that
Pk(Zn = j) > 0, then qk,j > qk,j,n = Pk(Zn = j)/γnk > 0; if j is not accessible,
that is, if Pk(Zn = j) = 0 for all n > 0, then qk,j,n = 0 for all n > 0, so that
qk,j = limn→∞ qk,j,n = 0.

a2) We next show that if P(0 < p1 < 1) > 0, then for all j > k, we have
H(j) : qk,j <∞.

We do the proof by induction. For j = k, we have qk,k = 1, so that H(k) holds.
Assume that j > k + 1 and that H(i) is true for all k 6 i 6 j − 1. By the total
probability formula, we obtain

Pk (Zn+1 = j)
γn+1
k

= 1
γk

j∑
i=k

P (Zn+1 = j|Zn = i) Pk (Zn = i)
γnk

,

which is equivalent to

qk,j,n+1 = 1
γk

[ j−1∑
i=k

p(i, j)qk,i,n + γjqk,j,n

]
, (4.3)

with p(i, j) = P (Z1 = j|Z0 = i). Using the fact that qk,j,n 6 qk,j,n+1, we get by the
induction hypothesis that

sup
n∈N

qk,j,n+1(γk − γj) 6
j−1∑
i=k

qk,i p(i, j) <∞.
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Since P(0 < p1 < 1) > 0, we have γk− γj > 0. Thus qk,j <∞, so that H(j) remains
true. By induction H(j) holds for all j > k.

a3) We then prove the recurrent relation for qk,j. Taking the limit as n → ∞ in
(4.3), leads to

qk,j = 1
γk

[ j−1∑
i=k

qk,i p(i, j) + γjqk,j

]
. (4.4)

This gives the recurrent relation (2.15). Notice that this relation holds even if
P(0 < p1 < 1) = 0, although in this case we do not know whether qk,j <∞.

When P(0 < p1 < 1) > 0, then γj < γk for j > k, so that the recurrence relation
reads also

qk,j = 1
γk − γj

j−1∑
i=k

qk,i p(i, j), j > k. (4.5)

We have therefore finished the proof of part a) of Theorem 2.4.

b) Now we prove part b) of Theorem 2.4 about the moments and radius of con-
vergence of the power series Qk(t), assuming P(p1 = 0) < 1 and (2.10). Notice that
these conditions imply that P(0 < p1 < 1) > 0.

The method that we developpe here is new even in the case of the Galton-Watson
process.

We start with a lemma about the harmonic moments of Zn.

Lemma 4.1. Assume P(p1 = 0) < 1 and (2.10). Let k > 1 and let rk be the unique
solution on (0,∞) of the equation γk = Em−rk0 . Then, for any r > rk, we have

lim
n→∞

↑ EkZ−rn
γnk

<∞. (4.6)

Proof. By the Markov property,

Ek
[
Z−rn+1

]
> Ek

[
Z−rn+1|Z1 = k

]
Pk(Z1 = k) = γkEk

[
Z−rn

]
,

which proves that the sequence (Ek [Z−rn ] /γnk )n∈N is increasing. We show that it
is bounded. For n > 1 and m > 0, we have the following well-known branching
property for Zn:

Zn+m =
Zm∑
i=1

Z
(m)
n,i , (4.7)

where, under Pξ, the random variables Z(m)
n,i (i > 1) are i.i.d., independent of Zm,

whose conditional probability law satisfies Pξ
(
Z

(m)
n,i ∈ ·

)
= PTmξ (Zn ∈ ·). Intu-

itively, relation (4.7) shows that, conditionally on Zm = i, the annealed law of the
process Zn+m is the same as that of a new process Zn starting with i individuals.
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Using (4.7) with m = 1, the independence between Z1 and Z(1)
n,i (i > 1) and the

fact that EiZ−rn 6 Ek+1Z
−r
n for all i > k + 1, we have

Ek
[
Z−rn+1

]
= Ek

[
Z−rn+1|Z1 = k

]
Pk(Z1 = k)

+
∞∑

i=k+1
E

( i∑
h=1

Z
(1)
n,h

)−r ∣∣∣∣∣Z1 = i

Pk(Z1 = i)

6 γkEk
[
Z−rn

]
+ Ek+1

[
Z−rn

]
. (4.8)

Therefore, by iteration,
Ek
[
Z−rn+1

]
γn+1
k

6
Ek [Z−rn ]
γnk

+ Ek+1 [Z−rn ]
γn+1
k

6 · · ·

6 1 +
n∑
j=0

Ek+1
[
Z−rj

]
γj+1
k

(4.9)

We shall use a change of measure, by modifying the distribution of the environ-
ment sequence. Let τ0 be the common law of ξn. Recall that the annealed law is
P(dx, dξ) = Pξ(dx)τ(dξ), where τ = τ⊗N0 is the product measure. For r > 0, let τ
be a new probability mesure on the environment space defined by

τr(dt) = m(t)−r
cr

τ0(dt) with cr = Em−r0 ,

wherem(t) = ∑
i>0 ipi(t) is the conditional mean of the offspring distribution {pk(t)}

at 0 given the environment ξ0 = t. Define the new annealed measure
P(r)(dx, dξ) = Pξ(dx)τr(dξ).

Denote the corresponding expectation by E(r). For k > 1, set

P(r)
k (·) = P(r)(·|Z0 = k) and E(r)

k (·) = E(r)(·|Z0 = k).
Then

E(r)
k [X] = Ek [Π−rn X]

cnr
(4.10)

for any Fn-measurable random variable X. It can be easily seen that under the new
probability measure P(r), (Zn) is still a superritical branching process in a random
environment. By (4.10), we obtain

Ek+1
[
Z−rn

]
= E(r)

k+1[W−r
n ]cnr . (4.11)

It is known (see [15], Lemma 2.1) that

sup
n∈N

E(r)
k+1[W−r

n ] = E(r)
k+1[W−r]. (4.12)

Notice that

E(r)[pk+1
1 (ξ0)mr

0] = γk+1

Em−r0
= Em−rk+1

0
Em−r0

< 1 for any r < rk+1.
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So by Theorem 2.1 we get for any r < rk+1,

C(r) := E(r)
k+1[W−r] <∞. (4.13)

Coming back to (4.9) and using (4.11) - (4.13) , we get for r ∈ (rk, rk+1),

Ek
[
Z−rn+1

]
γn+1
k

6 1 + C(r)
γk

n∑
j=0

(
cr
γk

)j
<

C(r)
γk − cr

, (4.14)

using the fact that γk = Em−rk0 > Em−r0 = cr. Thus the sequence (Ek [Z−rn ] /γnk )n∈N
is bounded and (4.6) holds for any r ∈ (rk, rk+1). Using the fact that Ek

[
Z−r

′

n+1

]
6

Ek
[
Z−rn+1

]
for any r′ > r, the result follows for any r > rk, which ends the proof of

the lemma. �

Remark 4.2. From the results stated above, with some additional analysis one can
obtain an equivalent of the harmonic moments EZ−rn for any r > 0. However, it is
delicate to have an expression of the concerned constant in the equivalence. See [14]
on this topic.

We can now show the moments results (2.17) about {qk,j}, which imply that the
radius of convergence R of the power series Qk(t) = ∑∞

j=k qk,jt
j is equal to 1. Since∑∞

j=k Pk (Zn = j) = 1, we have
∞∑
j=k

γ−nk Pk (Zn = j) = γ−nk .

Passing to the limit as n→∞ and using part a) of Theorem 2.4 and the monotone
convergence theorem, we obtain:

∞∑
j=k

qk,j = +∞,

which proves that R 6 1. We prove that R > 1 by showing that
+∞∑
j=k

j−rqk,j <∞

for r > rk. Using again part a) of Theorem 2.4, the monotone convergence theorem
and Lemma 4.1, we have, for any r > rk,

+∞∑
j=k

j−rqk,j =
+∞∑
j=k

j−r lim
n→∞

↑ Pk(Zn = j)
γnk

= lim
n→∞

↑ EkZ−rn
γnk

<∞. (4.15)

This ends the proof of part b).
c) We now prove part c) of Theorem 2.4. Since

EktZn
γnk

=
∑
j=k

Pk(Zn = j)
γnk

tj,

using part a) and the monotone convergence theorem, we get (2.19).
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d) We finally prove that the power series Qk(t) satisfies the functional equa-
tion (2.20), and that this equation characterizes the power series Qk(t). Recall that
EktZ1 = ∑∞

j=k p(k, j)tj = Efk0 (t). By Fubini’s theorem, we have

E [Qk(f0(t))] = E
[ ∞∑
i=k

qk,if
i
0(t)

]
=
∞∑
i=k

qk,iE
[
f i0(t)

]

=
∞∑
i=k

qk,iE
[
tZ1 | Z0 = i

]
=
∞∑
i=k

qk,i
∞∑
j=i

p(i, j)tj

=
∞∑
j=k

[
j∑
i=k

qk,i p(i, j)]tj

On the other hand, γkQk(t) = ∑∞
j=k γkqk,jt

j. Therefore, by the recursive relation
(2.15), for all t ∈ [0, 1),

γkQk(t) = E [Qk(f0(t))] .
The above argument also applies to prove that this functional equation char-

acterizes the power series Qk(t). Assume P(0 < p0 < 1) > 0. Suppose that
Q̂k(t) = ∑∞

j=0 q̂k,jt
j is a power series with q̂k,j ∈ C (a priori not necessarily real

or positive) and q̂k,k = 1, whose radius of convergence is ρ > 0, which satisfies

γkQ̂k(t) = E
[
Q̂k(f0(t))

]
for t > 0 small enough. We will prove that Q̂k coincide with Qk. In fact, the same
argument used in the calculation of E [Qk(f0(t))] applies for E

[
Q̂k(f0(t))

]
, yielding

that for 0 6 t < ρ,

E
[
Q̂k(f0(t))

]
=

∞∑
j=0

[
j∑
i=0

q̂k,ip(i, j)]tj;

in the argument we can still use Fubini’s theorem, due to the fact that f0(t) 6 t and
that the series Q̂(t) = ∑∞

j=0 q̂k,jt
j converges absolutely for t ∈ [0, ρ). Therefore, by

comparing the coefficients, we see that γkQ̂k(t) = E
[
Q̂k(f0(t))

]
for all t > 0 small

enough if and only if

γkq̂k,j =
j∑
i=0

q̂k,ip(i, j), ∀j > 0. (4.16)

From this relation, we can easily cheque by reduction on j that

q̂k,j = 0 ∀j = 0, · · · , k − 1. (4.17)

Actually, for j = 0, Eq. (4.16) gives γkq̂k,0 = q̂k,0p(0, 0); as γk = Epk1 < 1 = p(0, 0),
this implies qk,0 = 0. Assume that q̂k,j = 0 ∀j = 0, · · · , n with n + 1 < k, then Eq.
(4.16) with j = n + 1 gives γkq̂k,j = q̂k,n+1p(n + 1, n + 1); as γk = Epk1 > Epn+1

1 =
p(n+ 1, n+ 1), this implies q̂k,n+1 = 0. By induction, this proves (4.17).
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With (4.17) at hand, (4.16) implies

γkq̂k,j =
j∑
i=k

q̂k,ip(i, j), ∀j > k, (4.18)

which reads also

q̂k,j = 1
E(pk1 − pj1)

j−1∑
i=k

p(i, j)q̂k,i, j > k. (4.19)

Since q̂k,k = qk,k = 1, from this relation and the same relation satisfied by (qk,j),
it follows by an easy reduction argument that q̂k,j = qk,j for all j > k. We have
therefore roved that Q̂(t) coincides with Q(t).

This ends the proof of Theorem 2.4.
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