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Let (Z n ) be a supercritical branching process in an independent and identically distributed random environment ξ. We deduce the exact decay rate of the probability P(Z n = j|Z 0 = k) as n → ∞, for each j k, assuming that P(Z 1 = 0) = 0. We also study the existence of harmonic moments of the random variable W = lim n→∞ Zn E(Zn|ξ) under a simple moment condition. Résumé. Soit (Z n ) un processus de branchement surcritique en environnement aléatoire ξ indépendant et identiquement distribué. Nous donnons un équivalent de la probabilité P(Z n = j|Z 0 = k) lorsque n → ∞, pour tout j k, sous la condition P(Z 1 = 0) = 0. Nous étudions également l'existence des moments harmoniques de la variable aléatoire limite W = lim n→∞ Zn E(Zn|ξ) , sous une hypothèse simple d'existence de moments.

Introduction

A branching process in a random environment (BPRE) is a natural and important generalisation of the Galton-Watson process, where the reproduction law varies according to a random environment indexed by time. It was introduced in Smith and Wilkinson [START_REF] Smith | On branching processes in random environments[END_REF] to model the growth of a population in an unknown exogenous environment. For background concepts and basic results concerning a BPRE we refer to Athreya and Karlin [START_REF] Athreya | On branching processes with random environments: I: Extinction probabilities[END_REF][START_REF] Athreya | Branching processes with random environments: II: Limit theorems[END_REF]. In the critical and subcritical regime the branching process gets extinct and the research interest is mostly concentrated on the survival probability and conditional limit theorems, see e.g. Afanasyev, Böinghoff, Kersting, Vatutin [START_REF] Afanasyev | Limit theorems for weakly subcritical branching processes in random environment[END_REF][START_REF] Afanasyev | Conditional limit theorems for intermediately subcritical branching processes in random environment[END_REF], Vatutin [START_REF] Vatutin | A refinement of limit theorems for the critical branching processes in random environment[END_REF], Vatutin and Zheng [START_REF] Vatutin | Subcritical branching processes in a random environment without the Cramer condition[END_REF], and the references therein. In the supercritical case, a great deal of current research has been focused on large deviations, see Bansaye and Berestycki [START_REF] Bansaye | Large deviations for branching processes in random environment. Markov Process[END_REF], Bansaye and Böinghoff [START_REF] Bansaye | Upper large deviations for branching processes in random environment with heavy tails[END_REF][START_REF] Bansaye | Lower large deviations for supercritical branching processes in random environment[END_REF][START_REF] Bansaye | Small positive values for supercritical branching processes in random environment[END_REF], Böinghoff and Kersting [START_REF] Böinghoff | Upper large deviations of branching processes in a random environment -offspring distributions with geometrically bounded tails[END_REF], Huang and Liu [START_REF] Huang | Moments, moderate and large deviations for a branching process in a random environment[END_REF], Nakashima [START_REF] Nakashima | Lower deviations of branching processes in random environment with geometrical offspring distributions[END_REF]. In the particular case when the offspring distribution is geometric, precise asymptotics can be found in Böinghoff [START_REF] Böinghoff | Limit theorems for strongly and intermediately supercritical branching processes in random environment with linear fractional offspring distributions[END_REF], Kozlov [START_REF] Kozlov | On large deviations of branching processes in a random environment: geometric distribution of descendants[END_REF].

An important closely linked issue is the asymptotic behavior of the distribution of a BPRE (Z n ), i.e. the limit of P(Z n = j|Z 0 = k) as n → ∞, for fixed j 1 when the process starts with k 1 initial individuals. For the Galton-Watson process, the asymptotic is well-known and can be found in the book by Athreya and Ney [START_REF] Athreya | Branching processes[END_REF]. Concerning the lower large deviation principle of a BPRE, Bansaye and Böinghoff have shown in [START_REF] Bansaye | Small positive values for supercritical branching processes in random environment[END_REF] that, for any fixed j 1 and k 1 it holds n -1 log P(Z n = j|Z 0 = k) → -ρ as n → ∞, where ρ > 0 is a constant. This result characterizes the exponential decrease of the probability P(Z n = j|Z 0 = k) for the general supercritical case, when extinction can occur. However, it stands only on a logarithmic scale, and the constant ρ is not explicit, except when the reproduction law is fractional linear, for which ρ is explicitly computed in [START_REF] Bansaye | Small positive values for supercritical branching processes in random environment[END_REF]. Sharper asymptotic results for the fractional linear case can be found in [START_REF] Böinghoff | Limit theorems for strongly and intermediately supercritical branching processes in random environment with linear fractional offspring distributions[END_REF]. In the present paper, we improve the results of [START_REF] Bansaye | Small positive values for supercritical branching processes in random environment[END_REF] and extend those of [START_REF] Böinghoff | Limit theorems for strongly and intermediately supercritical branching processes in random environment with linear fractional offspring distributions[END_REF] by giving an asymptotic equivalent of the probability P(Z n = j|Z 0 = k) as n → ∞, provided that each individual gives birth to at least one child. These results are important to understand the asymptotics of the process, and are useful to obtain sharper asymptotic large deviation results. We also improve the result of [START_REF] Huang | Moments, moderate and large deviations for a branching process in a random environment[END_REF] about the existence of the harmonic moment of the limit variable W = lim n→∞ Zn E(Zn|ξ) , and closes a gap in [START_REF] Grama | Berry-Esseen's bound and Cramér's large deviation expansion for a supercritical branching process in a random environment[END_REF] on this topic.

Let us explain briefly the findings of the paper. Assume that P(Z 1 = 0) = 0. From Theorem 2.4 of the paper it follows that when Z 0 = 1, P (Z n = j) ∼ n→∞ γ n q j with γ = P(Z 1 = 1) > 0, (

where q j ∈ [0, +∞) can be computed as the unique solution of some recurrence equations, and q j > 0 if and only if P (Z n = j) > 0 for some n 0; moreover, the generating function Q(t) = ∞ j=1 q j t j has the radius of convergence equal to 1 and is characterized by the functional equation γQ(t) = EQ(f 0 (t)), t ∈ [0, [START_REF] Afanasyev | Limit theorems for weakly subcritical branching processes in random environment[END_REF], (1.2) where f 0 (t) = ∞ i=1 p i (ξ 0 )t i is the conditional generating function of Z 1 given the environment. These results extend the corresponding results for the Galton-Watson process (see [START_REF] Athreya | Branching processes[END_REF]). They also improve and complete the results in [START_REF] Bansaye | Small positive values for supercritical branching processes in random environment[END_REF] and [START_REF] Böinghoff | Limit theorems for strongly and intermediately supercritical branching processes in random environment with linear fractional offspring distributions[END_REF]: it was proved in [START_REF] Bansaye | Small positive values for supercritical branching processes in random environment[END_REF] that 1 n log P (Z n = j) → log γ, and in [START_REF] Böinghoff | Limit theorems for strongly and intermediately supercritical branching processes in random environment with linear fractional offspring distributions[END_REF] that P (Z n = 1) ∼ n→∞ γ n q 1 in the fractional linear case.

In the proofs of the above results we make use of Theorem 2.1 on the harmonic moments of W , which shows that: a) for any integer k

1, E[W -a |Z 0 = k] < ∞ for some a > 0 under a simple moment condition on m (p) 0 = ∞ i=1 i p p i (ξ 0 ) for some p > 1, b) for any fixed a > 0, E[W -a |Z 0 = k] < ∞ if and only if E p k 1 (ξ 0 )m a 0 < 1, (1.3) 
under a boundedness condition on m 0 = ∞ i=1 ip i (ξ 0 ) and m (p) 0 . Part a) corrects an error in an earlier work [START_REF] Grama | Berry-Esseen's bound and Cramér's large deviation expansion for a supercritical branching process in a random environment[END_REF]Theorem 1.2] where the case Z 0 = 1 was considered, and improves the corresponding result in [START_REF] Huang | Moments, moderate and large deviations for a branching process in a random environment[END_REF] where a boundedness condition on m 0 and m (p) 0 was required; part b) extends Theorem 1.4 in [START_REF] Huang | Moments, moderate and large deviations for a branching process in a random environment[END_REF] where the case k = 1 was treated.

The proof of Theorem 2.1 is based on the method developed in [START_REF] Liu | Asymptotic properties of supercritical age-dependent branching processes and homogeneous branching random walks[END_REF]Lemma 4.1] which enables to obtain the decay rate of the Laplace transform φ k (t) = E[e -tW |Z 0 = k] as t → ∞, from a functional inequality of the form

φ(t) qEφ(Y t) + Ct -a , (1.4)
where Y is a positive random variable. Such an equality is obtained by a careful analysis using a recursive procedure and a bound of the quenched p-th moment

E[W p |ξ].
In the proof of Theorem 2.4, the equivalence relation (1.1) and the recursive equations for the limit values (q j ) come from simple monotonicity arguments. The difficulty is to characterize the sequence (q j ) by its generating function Q. To this end, we first calculate the radius of convergence of Q by determining the asymptotic behavior of the normalized harmonic moments EZ -r n /γ n as n → ∞ for some r > 0 large enough and by using the fact that ∞ j=1 j -r q j = lim n→∞ EZ -r n /γ n . We then show that the functional equation (1.2) has a unique solution subject to an initial condition.

The rest of the paper is organized as follows. The main results, Theorems 2.1 and 2.4, are presented in Section 2. Their proofs are given respectively in Sections 3 and 4.

Main results

A BPRE (Z n ) can be described as follows. The random environment is represented by a sequence ξ = (ξ 0 , ξ 1 , ...) of independent and identically distributed random variables (i.i.d. r.v.'s), whose realizations determine the probability generating functions

f n (t) = f (ξ n , t) = ∞ i=0 p i (ξ n )t i , t ∈ [0, 1], p i (ξ n ) 0, ∞ i=0 p i (ξ n ) = 1.
(2.1)

The branching process (Z n ) n 0 is defined by the relations

Z n+1 = Zn i=1 N n,i , for n 0, (2.2) 
where N n,i is the number of children of the i-th individual of the generation n. Conditionally on the environment ξ, the r.v.'s Z 0 , N n,i (n 0, i 1) are all independent of each other, each N n,i has the probability generating function f n . For simplicity, we only consider the case where Z 0 is a constant.

In the sequel we denote by P ξ the quenched law, i.e. the conditional probability when the environment ξ is given, and by τ the law of the environment ξ. Then P(dx, dξ) = P ξ (dx)τ (dξ) is the total law of the process, called annealed law. The corresponding quenched and annealed expectations are denoted respectively by E ξ and E. When Z 0 = 1, for n ∈ N, the quenched and annealed probability generating function of Z n are respectively

g n (t) := f 0 • . . . • f n-1 (t) = E ξ (t Zn | Z 0 = 1), G n (t) = E[t Zn | Z 0 = 1] = E [f 0 • . . . • f n-1 (t)] = E [g n (t)] ,
(2.3) with the convention that g 0 (t) = t. When the process starts with k individuals, we denote by P k and E k the annealed probability and expectation, that is,

P k (•) = P(•|Z 0 = k) and E k (•) = E(•|Z 0 = k), k ∈ N * .
It follows from (2.2) that the annealed probability generating function of Z n starting with k individuals is

G k,n (t) = E k t Zn = E g k n (t) , k ∈ N * , n ∈ N. (2.4)
Define, for any environment sequence ξ = (ξ 0 , ξ 1 , • • • ), any integer n 0 and any real number p > 0,

m (p) n = m (p) n (ξ) = ∞ i=0 i p p i (ξ n ), m n = m n (ξ) = m (1) n (ξ), Π 0 = 1 and Π n = Π n (ξ) = Π n-1 k=0 if n 1. Then m (p) n = E ξ [N p n,i
] is the conditional p-th moment of the offspring distribution at generation n, when the environment ξ is given, and

Π n = Π n (ξ) = E ξ [Z n |Z 0 = 1]. Let W n = Z n Π n , n 0, (2.5) 
be the normalized population size. It is well known that under P ξ , as well as under P, the sequence (W n ) n 0 is a non-negative martingale with respect to the filtration

F n = σ (ξ, N j,i , 0 j n -1, i = 1, 2 . . .) ,
where by convention F 0 = σ(ξ). Then the limit W = lim n→∞ W n exists P -a.s. and EW 1.

We shall assume that µ := E log m 0 ∈ (0, ∞), which implies that the BPRE is supercritical (see e.g. [START_REF] Smith | On branching processes in random environments[END_REF][START_REF] Athreya | On branching processes with random environments: I: Extinction probabilities[END_REF][START_REF] Athreya | Branching processes[END_REF]) and that

γ := P(Z 1 = 1) ∈ [0, 1). (2.6)
With the extra condition E| log(1-p 0 (ξ 0 ))| < ∞, the population size tends to infinity with positive probability (see [START_REF] Smith | On branching processes in random environments[END_REF]). We also assume in the whole paper that each individual gives birth to at least one child, i.e. p 0 (ξ 0 ) = 0 a.s.

(2.7)

In particular, m 0 1 a.s., and P(m 0 = 1) < 1. Consequently, under the condition

E Z 1 m 0 log + Z 1 < ∞, (2.8) 
the martingale (W n ) converges to W in L 1 (P) (see e.g. [START_REF] Tanny | A necessary and sufficient condition for a branching process in a random environment to grow like the product of its means[END_REF]) and

P(W > 0) = P(Z n → ∞) = 1.
Our first result concerns the harmonic moments of the r.v. W . As usual, we write p 1 ∞ = ess sup p 1 for the essential supremum of p 1 = p 1 (ξ 0 ). Theorem 2.1. a) Assume that there are some constants p > 1 and ε > 0 such that

Em ε 0 < ∞ and E m (p) 0 m p 0 ε < ∞ (2.9)
Then there exists a > 0 such that

E k W -a < ∞. b)
Assume that there are some constants p1 ∈ (0, 1) and c 1 , p, c p > 1 such that p 1 (ξ 0 ) p1 , c 1 m 0 and m 0 (p) c p a.s.

(2.10)

Then for any a > 0,

E k W -a < ∞ if and only if E p k 1 (ξ 0 )m a 0 < 1.
Notice that the two moments conditions in (2.9) are implied by the single one Part a) improves Theorem 2.2(i) of [START_REF] Huang | Moments, moderate and large deviations for a branching process in a random environment[END_REF], which states that E[W -a |Z 0 = 1] < ∞ for some a > 0 if the boundedness conditions on m 0 and m (p) 0 in (2.10) hold. Instead of these boundedness conditions, here only a simple moment condition is used. Part b) gives the critical value for the existence of harmonic moments of W under the boundedness condition 2.10; it extends the corresponding result in [START_REF] Huang | Moments, moderate and large deviations for a branching process in a random environment[END_REF]Theorem 1.4] where the case k = 1 was treated. Proving the critical value without the boundedness condition 2.10 seems very delicate. Fortunately, for the usual study of large and moderate deviations as we studied in [START_REF] Huang | Moments, moderate and large deviations for a branching process in a random environment[END_REF][START_REF] Grama | Berry-Esseen's bound and Cramér's large deviation expansion for a supercritical branching process in a random environment[END_REF][START_REF] Wang | Limit theorems for a supercritical branching process with immigration in a random environment[END_REF], the existence of the harmonic moment of some order is enough. Remark 2.2. It is stated in Theorem 1.2 (or Theorem 3.1) of [START_REF] Grama | Berry-Esseen's bound and Cramér's large deviation expansion for a supercritical branching process in a random environment[END_REF] that E[W -a |Z 0 = 1] < ∞ for all 0 < a < a 0 , for an explicitly calculated a 0 > 0, provided that Em ε 0 < ∞ for some ε > 0. Unfortunately, the proof of this claim in [START_REF] Grama | Berry-Esseen's bound and Cramér's large deviation expansion for a supercritical branching process in a random environment[END_REF] contains an error: on p.1261, the inequality of the last line cannot be obtained from the inequality of line 3 from the bottom, because there is the common term φ Tnξ in the factors of the product therein (so that these factors are not independent); consequently, Eq. (2.7) of that paper is not proved. We are grateful to the referee who pointed out the error in an earlier version of the present paper, originated from [START_REF] Grama | Berry-Esseen's bound and Cramér's large deviation expansion for a supercritical branching process in a random environment[END_REF]. Part a) of Theorem 2.1 is a corrected version of Theorem 1.2 (or Theorem 3.1) of [START_REF] Grama | Berry-Esseen's bound and Cramér's large deviation expansion for a supercritical branching process in a random environment[END_REF], with the conditional moment condition [START_REF] Grama | Berry-Esseen's bound and Cramér's large deviation expansion for a supercritical branching process in a random environment[END_REF] holds, and for ε = 1/p when (A4) of [START_REF] Grama | Berry-Esseen's bound and Cramér's large deviation expansion for a supercritical branching process in a random environment[END_REF] holds), and the slightly modified conclusion that E[W -a |Z 0 = 1] < ∞ for some a > 0 (which is enough for the purposes in [START_REF] Grama | Berry-Esseen's bound and Cramér's large deviation expansion for a supercritical branching process in a random environment[END_REF][START_REF] Wang | Limit theorems for a supercritical branching process with immigration in a random environment[END_REF]). Due to this result, the gap in the proof of Theorem 1.2 [START_REF] Grama | Berry-Esseen's bound and Cramér's large deviation expansion for a supercritical branching process in a random environment[END_REF] does not have impact on the results on Berry Esseen's bound and large and moderate deviations stated in [START_REF] Grama | Berry-Esseen's bound and Cramér's large deviation expansion for a supercritical branching process in a random environment[END_REF][START_REF] Wang | Limit theorems for a supercritical branching process with immigration in a random environment[END_REF].

E(m (p) 0 ) ε < ∞; in practice it
E (m (p) 0 ) ε m pε 0 < ∞ (which holds for ε = 1 when (A2) of
From Theorem 2.1 we get the following corollary.

Corollary 2.3. Assume (2.10). If P(p

1 = 0) = 1, then E k W -a < ∞ for all a > 0. If P(p 1 = 0) < 1, then the equation E[p k 1 m a k 0 ] = 1 (2.11)
has a unique solution a k on (0, ∞), and

E k W -a < ∞ for a ∈ [0, a k ), E k W -a = ∞ for a ∈ [a k , ∞).
This indicates that the solution a k of the equation (2.11) is the critical value for the existence of harmonic moments of the r.v. W .

The next result gives an asymptotic equivalent as n → ∞ of the probability

P k (Z n = j) = P (Z n = j|Z 0 = k), for integers j, k 1. Assume P(p 1 = 0) < 1. Then for k 1, γ k = P k (Z 1 = k) = Ep k 1 > 0.
(2.12) Define r k as the unique solution on (0, ∞) of the equation

γ k = Em -r k 0 . ( 2.13) 
Notice that if P(0 < p 1 < 1) > 0, then γ k is strictly decreasing, and r k is strictly increasing. As usual, we write a n ↑ a or a = lim n→∞ ↑ a n to mean that (a n ) is increasing and its limit is a.

Theorem 2.4. Assume P(p 1 = 0) < 1, and let k 1 be a fixed integer. a) For any j k, we have, as n → ∞,

q k,j := lim n→∞ ↑ P k (Z n = j) γ n k ∈ [0, ∞]. (2.14)
Moreover, q k,k = 1, and for each j > k, q k,j > 0 if and only if the state j is accessible in the sense that P k (Z n = j) > 0 for some n 0.

If additionally P(0 < p 1 < 1) > 0, then q k,j < ∞, whose values are uniquely determined by the recurrence relation

γ k q k,j = j i=k q k,i p(i, j) with p(i, j) = P(Z 1 = j|Z 0 = i), j > k, (2.15)
with the initial condition q k,k = 1; the recurrence relation reads also

q k,j = 1 γ k -γ j j-1 i=k q k,i p(i, j), j > k. (2.16) b) Assume (2.10). Then ∞ j=k q k,j = ∞ and ∞ j=k j -r q k,j < ∞ ∀r > r k .
(2.17)

In particular the radius of convergence of the power series

Q k (t) = +∞ j=k q k,j t j (2.18)
is equal to 1. c) For all t ∈ [0, 1), we have,

E k t Zn γ n k ↑ Q k (t) as n → ∞, (2.19) 
d) The power series Q k (t) satisfies the functional equation

γ k Q k (t) = E [Q k (f 0 (t))] (2.20) for t ∈ [0, 1), with the initial condition Q (k) k (0) = k!.
Moreover, under the condition P(0 < p 1 < 1) > 0, the functional equation (2.20) together with the initial condition

Q (k) k (0) = k! characterizes the power series Q k (t) in the following sense: if Qk (t) = ∞
j=0 qk,j t j is a power series with qk,j ∈ C and qk,k = 1, which converges and satisfies

γ k Qk (t) = E Qk (f 0 (t)) for t > 0 small enough, then Qk coincide with Q k .
Part a) sheds light on the bound P (Z n j) n j γ n obtained in [START_REF] Bansaye | Large deviations for branching processes in random environment. Markov Process[END_REF] (Lemma 7) for a BPRE with P(Z 1 = 0) = 0. Furthermore, Theorem 2.4 extends the results of [START_REF] Athreya | Branching processes[END_REF] for the Galton-Watson process, with some significant differences. Indeed, when the environment is random and non-degenerate, we have, for

k 2, G k,1 (t) = Ef k 0 (t) = G k 1 (t) in general, which implies that Q k (t) = Q k (t), whereas we have the relation Q k (t) = Q k (t)
for the Galton-Watson process. Theorem 2.4 also improves the results of [START_REF] Bansaye | Small positive values for supercritical branching processes in random environment[END_REF] (Theorem 2.1), where it has been proved that for a general supercritical BPRE

lim n→∞ 1 n log P k (Z n = j) = -ρ < 0. (2.21)
In the case where P (Z 1 = 0) = 0, our result is sharper by giving an equivalent of P k (Z n = j). Moreover, also in the case where P (Z 1 = 0) = 0, it has been stated mistakenly in [START_REF] Bansaye | Small positive values for supercritical branching processes in random environment[END_REF] that lim n→∞

1 n log P k (Z n = j) = k log γ, whereas the correct as- ymptotic is lim n→∞ 1 n log P k (Z n = j) = log γ k .
Now we discuss the particular fractional linear case. The reproduction law of a BPRE is said to be fractional linear if

p 0 (ξ 0 ) = a 0 , p k (ξ 0 ) = (1 -a 0 )(1 -b 0 ) b 0 b k 0 for k 1, (2.22)
that is, when the generating function of the offspring distribution {p k (ξ 0 ) :

k ∈ N} is f 0 (t) = a 0 + (1 -a 0 )(1 -b 0 )t 1 -b 0 t ,
where a 0 ∈ [0, 1), b 0 ∈ (0, 1), with a 0 + b 0 1, are random variables depending on the environment ξ 0 . In this case, the mean of the offspring distribution is given by

m 0 = 1 -a 0 1 -b 0 .
The constant ρ in (2.21) was computed in [START_REF] Bansaye | Small positive values for supercritical branching processes in random environment[END_REF]: with

X = log m 0 , ρ =      -log E[e -X ] if E[Xe -X ] 0 (intermediately and strongly supercritical case), -log inf λ 0 E[e -X ] if E[Xe -X ] < 0 (weakly supercritical case).
Moreover, precise asymptotic results for the strongly and intermediately supercritical case can be found in [START_REF] Böinghoff | Limit theorems for strongly and intermediately supercritical branching processes in random environment with linear fractional offspring distributions[END_REF], where the following assertions are proved:

(1) if E[Xe -X ] > 0 (strongly supercritical case),

P(Z n = 1) ∼ ν E[e -X ] n ;
(2) if E[Xe -X ] = 0 (intermediately supercritical case),

P(Z n = 1) ∼ θ E[e -X ] n l(n)n -(1-s) ,
with θ, ν, s positive constants and l(•) a slowly varying function. In the particular case where a 0 = 0, Theorem 2.4 recovers Theorem 2.1.1 of [START_REF] Böinghoff | Limit theorems for strongly and intermediately supercritical branching processes in random environment with linear fractional offspring distributions[END_REF] with p 1 (ξ 0 ) = 1/m 0 , X = log m 0 > 0 and E Xe -X > 0. Therefore the process is strongly supercritical and P(Z n = 1) ∼ ν E[e -X ] n = γ n . However, since we assume P(Z 1 = 0) = 0, our result does not highlight the previous two asymptotic regimes stated in the particular case when the distribution is fractional linear. The study of the general case is a challenging problem which still remains open.

Harmonic moments of W

In this section we prove Theorem 2.1. Denote the quenched Laplace transform of W under the environment ξ by

φ ξ (t) = E ξ e -tW |Z 0 = 1 (3.1)
when the process starts with one initial particle, and the annealed Laplace transform of W by

φ k (t) = E φ k ξ (t) = E k e -tW , (3.2) 
when the process starts with k individuals.

The following lemma is the key technical tool to study the exact decay rate of the Laplace transform of the limit variable W . Lemma 3.1 ([17], Lemma 4.1). Let φ : R + → R + be a bounded function and let Y be a positive random variable such that for some constants q ∈ (0, 1), a ∈ (0, ∞), C > 0 and t 0 0 and all t > t 0 ,

φ(t) qEφ(Y t) + Ct -a . If qE (Y -a ) < 1, then φ(t) = O(t -a ) as t → ∞.
We will use the following bound for the quenched p-th moments of W . Lemma 3.2. For p ∈ (1, 2],

E ξ W p 1 + ∞ k=0 1 Π p-1 k m (p) k m p k . (3.3)
Proof. We shall use the following elementary inequality due to Assmussen and Hering [3, p.41]: if S = n i=1 X i is the sum of N independent random variables X i 0, and

h : [0, ∞) → [0, ∞) is concave and non-decreasing, then E[Sh(S)] n i=1 E[X i h(X i )] + (ES)h(ES). (3.4)
From the definition of the branching process, we have the decomposition

W n+1 := Z n+1 Π n+1 = 1 Π n Zn i=1 N n,i m n , n 0.
Applying inequality (3.4) with this sum and the conditional expectation

E ξ (•| F n ),
together with h(t) = t p-1 , and using the fact that

E ξ (W n+1 |F n ) = W n , we get E ξ [W p n+1 |F n ] Z n Π p n m (p) n m p n + W p n .
Taking expectation with respect to P ξ , we obtain for n 0,

E ξ [W p n+1 ] 1 Π p-1 n m (p) n m p n + E ξ W p n .
By induction, this gives for n 0,

E ξ W p n+1 1 + n k=0 1 Π p-1 k m (p) k m p k , ( 3.5) 
which implies (3.3).

We remark that (3.3) remains valid if

m (p) n m p n is replaced by the p-th centered mo- ments ∞ k=0 | k mn -1| p p k (ξ n )
, multiplied by a constant B p depending on p. This can be seen from inequality (2.1) of [START_REF] Huang | Moments, moderate and large deviations for a branching process in a random environment[END_REF], and can be checked using the Bukholder, Davis and Gundy inequality for martingales.

Proof of Theorem 2.1. We can suppose that the moment condition E(

m (p) 0 m p 0 ) ε <
∞ holds for some p ∈ (1, 2], since the normalized conditional L p -norm m 0 (p) 1/p /m 0 is increasing in p. In the following, we assume p ∈ (1, 2]. We proceed in six steps.

Step 1: we first establish a bound of φ ξ (t) uniformly in ξ for which E ξ W p is bounded. Notice that the function t → (e -t -1 + t)/t p is bounded on (0, ∞), so that there is a constant C > 0 such that for all t 0, e -t 1 -t + Ct p /p. (3.6) Using this inequality with t replaced by tW and taking expectation with respect to P ξ , together with the fact that E ξ W = 1, we obtain, for all t > 0,

φ ξ (t) 1 -t + C(E ξ W p )t p /p. (3.7)
Therefore, if E ξ W p K for some constant K > 0, then for all t > 0, φ ξ (t) 1 -t + CKt p /p =: g(t).

At t K := (CK) -1/(p-1) , the function g attains its minimum

β K := min t>0 g(t) = g(t K ) = 1 -(1 -1/p)t K < 1.
Therefore

φ ξ (t) φ ξ (t K ) g(t K ) = β K if t t K and E ξ W p K. (3.8)
Step 2: we next obtain a recurrence relation on φ ξ (t). It is well-known that φ ξ (t) satisfies the functional relation

φ ξ (t) = f 0 φ T ξ t m 0 , ( 3.9) 
where f 0 (t) = ∞ k=1 p k (ξ 0 )t k is the generating function of the offspring distribution {p k (ξ 0 ) : k ∈ N}, T is the shift operator of the environment sequence defined by T (ξ 0 , ξ 1 , . . .) = (ξ 1 , ξ 2 , . . .). Using (3.9) and the fact that

φ k T ξ t m 0 φ 2 T ξ t m 0 for all k 2, we obtain φ ξ (t) p 1 (ξ 0 )φ T ξ t m 0 + (1 -p 1 (ξ 0 ))φ 2 T ξ t m 0 . (3.10)
In particular, φ ξ (t) φ T ξ t m 0 . By iteration, this implies, for any t > 0,

φ ξ (t) φ T ξ t m 0 φ T 2 ξ t m 0 m 1 • • • φ T n ξ t Π n , n 1, (3.11) 
where T n denotes the n-fold iteration of T . Taking the k-th power in (3.10), using the binomial expansion and the fact that φ 2k-i

T ξ t m 0 φ k+1 T ξ t m 0 for all i ∈ {0, . . . , k - 1}, we get φ k ξ (t) = p k 1 (ξ 0 )φ k T ξ t m 0 + k-1 i=0 k i p 1 (ξ 0 ) i (1 -p 1 (ξ 0 )) k-i φ 2(k-i)+i T ξ t m 0 p k 1 (ξ 0 )φ k T ξ t m 0 + (1 -p k 1 (ξ 0 ))φ k+1 T ξ t m 0 = φ k T ξ t m 0 p k 1 (ξ 0 ) + (1 -p k 1 (ξ 0 ))φ T ξ t m 0 . (3.12)
By iteration, this together with (3.11) leads to

φ k ξ (t) φ k T n ξ t Π n n-1 j=0 p k 1 (ξ j ) + (1 -p k 1 (ξ j ))φ T n ξ t Π n , k, n 1. (3.13)
Step 3: we establish a recurrence relation on φ k (t) = E φ k ξ (t) = E k e -tW . From (3.13) and (3.8) applied to φ Tnξ (t/Π n ), we obtain, for any t > 0 and n 1,

φ k ξ (t) φ k T n ξ t Π n n-1 j=0 p k 1 (ξ j ) + (1 -p k 1 (ξ j ))β K (3.14) + 1 { t Πn <t K } + φ k T n ξ t Π n 1 {E T n ξ W p >K} ,
where 1 {•} denotes the indicator function of the set {•}. Taking expectation and using the independence between T n ξ and (ξ 0 , • • • , ξ n-1 ) and the fact that 1 {E T n ξ W p >K} E T n ξ W p /K, we obtain, for any η > 0, t > 0 and n 1,

φ k (t) E φ k t Π n n-1 j=0 p k 1 (ξ j ) + (1 -p k 1 (ξ j ))β K + 1 K η E φ k T n ξ t Π n (E T n ξ W p ) η + P( t Π n < t K ). (3.15) 
We will now find a suitable bound of E φ k T n ξ t

Πn (E T n ξ W p ) η . To this end the difficulty is that there is a dependence between φ k T n ξ and (E T n ξ W p ). To overcome this difficulty we will use an explicit bound of (E T n ξ W p ) and the recurrence relation (3.11). Let η ∈ (0, 1] be small enough such that E 

(E T n ξ W p ) η 1 + ∞ k=0 1 Π (p-1)η k (T n ξ) m (p) k (T n ξ) m p k (T n ξ) η . (3.16) From (3.11), we have φ T n ξ (x) φ T k+1 T n ξ x Π k+1 (T n ξ)
. Therefore from the preceding bound of (E T n ξ W p ) η we obtain

φ k T n ξ t Π n (E T n ξ W p ) η φ k T n ξ t Π n + ∞ k=0 φ k T n ξ t Π n 1 Π (p-1)η k (T n ξ) m (p) k (T n ξ) m p k (T n ξ) η φ k T n ξ t Π n + ∞ k=0 φ k T k+1+n ξ t Π k+1 (T n ξ)Π n (ξ) 1 Π (p-1)η k (T n ξ) m (p) k (T n ξ) m p k (T n ξ) η .
(3.17)

Since T k+1+n ξ is independent of (ξ i ) i k+n (this is why we passed from T n ξ to T k+1+n ξ), taking expectation in the above inequality leads to

E φ k T n ξ t Π n (E T n ξ W p ) η Eφ k t Π n + ∞ k=0 E φ k t Π k+1 (T n ξ)Πn(ξ) Π (p-1)η k (T n ξ) m (p) k (T n ξ) m p k (T n ξ) η . (3.18)
Therefore, coming back to (3.15) we obtain the following inequality on φ k :

φ k (t) E φ k t Π n n-1 j=0 p k 1 (ξ j ) + (1 -p k 1 (ξ j ))β K + P( t Π n < t K ) + 1 K η Eφ k t Π n + ∞ k=0 E φ k t Π k+1 (T n ξ)Πn(ξ) Π (p-1)η k (T n ξ) m (p) k (T n ξ) m p k (T n ξ) η . (3.19)
Step 4:

we prove that if Em ε 0 < ∞ and E m (p) 0 m p 0 ε < ∞ for some ε > 0, then φ k (t) Ct -a (3.20)
for some constants C, a > 0 and all t > 0, which implies that E k W -b < ∞ for all b ∈ (0, a) (the implication is a standard result, and can be easily checked e.g. by using the formula

E k W -b = 1 Γ(b) +∞ 0 φ k (t)t b-1 dt, where Γ(b) = ∞ 0 e -t t b-1 dt). As in Step 3, let η ∈ (0, 1] be small enough such that E m (p) 0 m p 0 η < ∞.
Let Y be a positive random variable whose distribution is determined by

E [g(Y )] = 1 q E g 1 Π n n-1 j=0 p k 1 (ξ j ) + (1 -p k 1 (ξ j ))β K + 1 K η Eg 1 Π n + 1 K η ∞ k=0 E g 1 Π k+1 (T n ξ)Πn(ξ) Π (p-1)η k (T n ξ) m (p) k (T n ξ) m p k (T n ξ) η (3.21)
for all bounded and measurable function g, where q is the norming constant (to make E [g(Y )] = 1 when g = 1) defined by

q = E n-1 j=0 p k 1 (ξ j ) + (1 -p k 1 (ξ j ))β K + 1 K η 1 + ∞ k=0 E 1 Π (p-1)η k (T n ξ) m (p) k (T n ξ) m p k (T n ξ) η = E p k 1 (ξ 0 ) + (1 -p k 1 (ξ 0 ))β K n + 1 K η 1 + 1 1 -Em -(p-1)η 0 • E (m (p) 0 ) η m pη 0 .
Then from (3.15) and Markov's inequality we obtain for all a > 0 and t > 0,

φ k (t) qEφ k (Y t) + t a K (Em a 0 ) n t a . (3.22)
We choose a > 0 and η ∈ (0, 1) small enough such that Em 2a 0 < ∞ and E (m

(p) 0 ) m p 0 2η < ∞, so that E m a 0 (m (p) 0 ) η m pη 0 < ∞ by Cauchy-Schwartz's inequality. Notice that qEY -a = E Π a n n-1 j=0 p k 1 (ξ j ) + (1 -p k 1 (ξ j ))β K + 1 K η EΠ a n + 1 K η ∞ k=0 E Π a k+1 (T n ξ)Π a n (ξ) Π (p-1)η k (T n ξ) m (p) k (T n ξ) m p k (T n ξ) η = E m a 0 p k 1 (ξ 0 ) + (1 -p k 1 (ξ 0 ))β K n + (Em a 0 ) n K η 1 + 1 1 -Em -(p-1)η+a 0 • E m a 0 (m (p) 0 ) η m pη 0 .
By the dominated convergence theorem,

qEY -a a↓0 --→ q n→∞ ---→ 1 K η 1 + 1 1 -Em -(p-1)η 0 • E (m (p) 0 ) η m pη 0 K→∞ ---→ 0.
So we can choose K, n large enough and a > 0 small enough, such that q < 1 and qEY -a < 1. Therefore, from (3.22) and Lemma 3.1, we get (3.20).

Step. 5: prove that under the boundedness condition (2.10),

Ep k 1 m a 0 < 1 ⇒ φ k (t) = O(t -a ) as t → ∞. (3.23) 
We follow the argument in [START_REF] Huang | Moments, moderate and large deviations for a branching process in a random environment[END_REF] where the case k = 1 was treated. Notice that when m 0 c 1 > 1 and m (p) 0 c p , from Lemma 3.2 we see that there is a constant K > 0 such that E ξ W p K for almost every environment ξ. With such a K, from (3.14) we get for all t > 0,

φ ξ (t) b n K + 1 { t Πn <t K } , where b K := p1 + (1 -p1 )β K . From (3.
12) and this bound applied to φ T ξ , we get

φ k ξ (t) φ k T ξ t m 0 p k 1 (ξ 0 ) + (1 -p k 1 (ξ 0 ))(b n K + 1 { t Π n+1 t K } ) φ k T ξ t m 0 p k 1 (ξ 0 ) + b n K + 1 { t Π n+1 <t K } . (3.24)
Taking expectation, we get for all n 1 and t > 0,

φ k (t) Eφ k t m 0 p k 1 (ξ 0 ) + b n K + P( t Π n+1 < t K ) q 1 Eφ(Y 1 t) + t a K (Em a 0 ) n+1 t a , ( 3.25) 
where

q 1 = E p k 1 (ξ 0 ) + b n K , Y 1 is a positive random variable whose distribution is determined by Eg(Y 1 ) = 1 q 1 E g( 1 m 0 ) p k 1 (ξ 0 ) + b n K
for any bounded and measurable function g. Notice that q 1 → E p k 1 (ξ 0 ) < 1 as n → ∞, and

q 1 EY -a 1 = E m a 0 p k 1 (ξ 0 ) + b n K n→∞ ---→ E m a 0 p k 1 (ξ 0 ) < 1.
Therefore we can choose n large enough such that q 1 < 1 and q 1 EY -a 1 < 1. So from (3.25) and Lemma 3.1, we conclude that φ k (t) Ct -a for some constant C > 0 and all t > 0. This ends the proof of the implication (3.23).

Notice that when Ep k 1 m a 0 < 1, we can take a 0 > a close to a such that Ep k 1 m a 0 0 < 1. Applying the implication (3.23) with a replaced by a 0 , we get φ k (t) Ct -a 0 for some constant C > 0 and all t > 0, which implies that E k W -a < ∞. So we have proved the implication

Ep k 1 m a 0 < 1 ⇒ E k W -a < ∞, (3.26) 
under the boundedness condition (2.10).

Step 6: prove that for any a > 0,

E k W -a < ∞ ⇒ Ep k 1 (ξ 0 )m a 0 < 1. (3.27) 
Assume that E k W -a < ∞. Note that the r.v. W admits the well-known decomposition

W = 1 m 0 Z 1 i=1 W (i),
where the r.v.'s W (i) (i 1) are i.i.d. and independent of Z 1 under P ξ , and are also independent of Z 1 and ξ 0 under P. The decomposition can be easily seen from the definition of the branching process, by considering the sub branching processes starting from the particles i of the first generation, and by taking W (i) as the corresponding limit variable of the fundamental martingale of the branching process starting from i. The conditional probability law of W (i) satisfies 

P ξ (W (i) ∈ •) = P T ξ (W ∈ •). Since P k (Z 1 k + 1) > 0, we have E k W -a > E k m a 0 Z 1 i=1 W (i) -a 1{Z 1 = k} = Ep k 1 (ξ 0 )m a 0 E k W -a , ( 3 

Small value probability in the non-extinction case

In this section we prove Theorem 2.4. a) We start with the proof of part a). For k 1 and j k, define q k,j,n :=

P (Z n = j|Z 0 = k) γ n k , with γ k = P k (Z 1 = k) = Ep k 1 . (4.1)
By the Markov property, we have

P k (Z n+1 = j) P k (Z 1 = k) P k (Z n = j) .
Dividing by γ n+1 k leads to q k,j,n+1 q k,j,n . (4.2) Therefore, the limit of q k,j,n exists as n → ∞:

q k,j := lim n→∞ ↑ q k,j,n ∈ [0, ∞].
We shall prove that q k,j satisfies the properties claimed in the theorem. a1) We first remark that q k,k = 1 and that for any j > k, q k,j > 0 if and only if the state j is accessible. In fact, when Z 0 = k, then Z n = k if and only if Z j = k for all j = 0, • • • , n, so that

P(Z n = k|Z 0 = k) = n j=1 P(Z j = k|Z j-1 = k) = γ n k ,
which implies q k,k = 1. If j is accessible, that is, if there exists n 0 such that P k (Z n = j) > 0, then q k,j q k,j,n = P k (Z n = j)/γ n k > 0; if j is not accessible, that is, if P k (Z n = j) = 0 for all n 0, then q k,j,n = 0 for all n 0, so that q k,j = lim n→∞ q k,j,n = 0. a2) We next show that if P(0 < p 1 < 1) > 0, then for all j k, we have

H(j) : q k,j < ∞.
We do the proof by induction. For j = k, we have q k,k = 1, so that H(k) holds. Assume that j k + 1 and that H(i) is true for all k i j -1. By the total probability formula, we obtain

P k (Z n+1 = j) γ n+1 k = 1 γ k j i=k P (Z n+1 = j|Z n = i) P k (Z n = i) γ n k , which is equivalent to q k,j,n+1 = 1 γ k j-1 i=k p(i, j)q k,i,n + γ j q k,j,n , (4.3) 
with p(i, j) = P (Z 1 = j|Z 0 = i). Using the fact that q k,j,n q k,j,n+1 , we get by the induction hypothesis that sup n∈N q k,j,n+1 (γ k -γ j ) j-1 i=k q k,i p(i, j) < ∞.

Since P(0 < p 1 < 1) > 0, we have γ k -γ j > 0. Thus q k,j < ∞, so that H(j) remains true. By induction H(j) holds for all j k. a3) We then prove the recurrent relation for q k,j . Taking the limit as n → ∞ in (4.3), leads to

q k,j = 1 γ k j-1 i=k q k,i p(i, j) + γ j q k,j . (4.4)
This gives the recurrent relation (2.15). Notice that this relation holds even if P(0 < p 1 < 1) = 0, although in this case we do not know whether q k,j < ∞.

When P(0 < p 1 < 1) > 0, then γ j < γ k for j > k, so that the recurrence relation reads also

q k,j = 1 γ k -γ j j-1 i=k q k,i p(i, j), j > k. (4.5)
We have therefore finished the proof of part a) of Theorem 2.4.

b) Now we prove part b) of Theorem 2.4 about the moments and radius of convergence of the power series Q k (t), assuming P(p 1 = 0) < 1 and (2.10). Notice that these conditions imply that P(0 < p 1 < 1) > 0.

The method that we developpe here is new even in the case of the Galton-Watson process.

We start with a lemma about the harmonic moments of Z n . Lemma 4.1. Assume P(p 1 = 0) < 1 and (2.10). Let k 1 and let r k be the unique solution on (0, ∞) of the equation γ k = Em -r k 0 . Then, for any r > r k , we have

lim n→∞ ↑ E k Z -r n γ n k < ∞. (4.6) 
Proof. By the Markov property,

E k Z -r n+1 E k Z -r n+1 |Z 1 = k P k (Z 1 = k) = γ k E k Z -r n , which proves that the sequence (E k [Z -r n ] /γ n k ) n∈N is increasing.
We show that it is bounded. For n 1 and m 0, we have the following well-known branching property for Z n :

Z n+m = Zm i=1 Z (m) n,i , (4.7) 
where, under P ξ , the random variables Z (m) n,i (i 1) are i.i.d., independent of Z m , whose conditional probability law satisfies (4.7) shows that, conditionally on Z m = i, the annealed law of the process Z n+m is the same as that of a new process Z n starting with i individuals.

P ξ Z (m) n,i ∈ • = P T m ξ (Z n ∈ •). Intu- itively, relation
Using (4.7) with m = 1, the independence between Z 1 and Z [START_REF] Afanasyev | Limit theorems for weakly subcritical branching processes in random environment[END_REF] n,i (i 1) and the fact that

E i Z -r n E k+1 Z -r
n for all i k + 1, we have

E k Z -r n+1 = E k Z -r n+1 |Z 1 = k P k (Z 1 = k) + ∞ i=k+1 E   i h=1 Z (1) n,h -r Z 1 = i   P k (Z 1 = i) γ k E k Z -r n + E k+1 Z -r n . ( 4.8) 
Therefore, by iteration,

E k Z -r n+1 γ n+1 k E k [Z -r n ] γ n k + E k+1 [Z -r n ] γ n+1 k • • • 1 + n j=0 E k+1 Z -r j γ j+1 k (4.9)
We shall use a change of measure, by modifying the distribution of the environment sequence. Let τ 0 be the common law of ξ n . Recall that the annealed law is P(dx, dξ) = P ξ (dx)τ (dξ), where τ = τ ⊗N 0 is the product measure. For r > 0, let τ be a new probability mesure on the environment space defined by

τ r (dt) = m(t) -r c r τ 0 (dt) with c r = Em -r 0 ,
where m(t) = i 0 ip i (t) is the conditional mean of the offspring distribution {p k (t)} at 0 given the environment ξ 0 = t. Define the new annealed measure P (r) (dx, dξ) = P ξ (dx)τ r (dξ). Denote the corresponding expectation by E (r) . For k 1, set

P (r) k (•) = P (r) (•|Z 0 = k) and E (r) k (•) = E (r) (•|Z 0 = k). Then E (r) k [X] = E k [Π -r n X] c n r (4.10)
for any F n -measurable random variable X. It can be easily seen that under the new probability measure P (r) , (Z n ) is still a superritical branching process in a random environment. By (4.10), we obtain

E k+1 Z -r n = E (r) k+1 [W -r n ]c n r . (4.11)
It is known (see [START_REF] Huang | Moments, moderate and large deviations for a branching process in a random environment[END_REF], Lemma 2.1) that

sup n∈N E (r) k+1 [W -r n ] = E (r) k+1 [W -r ]. (4.12) 
Notice that

E (r) [p k+1 1 (ξ 0 )m r 0 ] = γ k+1 Em -r 0 = Em -r k+1 0 Em -r 0 < 1 for any r < r k+1 .
So by Theorem 2.1 we get for any r < r k+1 ,

C(r) := E (r) k+1 [W -r ] < ∞. (4.13) 
Coming back to (4.9) and using (4.11) -(4.13) , we get for r ∈ (r k , r k+1 ),

E k Z -r n+1 γ n+1 k 1 + C(r) γ k n j=0 c r γ k j < C(r) γ k -c r , ( 4.14) 
using the fact that

γ k = Em -r k 0 > Em -r 0 = c r . Thus the sequence (E k [Z -r n ] /γ n k ) n∈N is bounded and (4.6) holds for any r ∈ (r k , r k+1 ). Using the fact that E k Z -r n+1 E k Z -r
n+1 for any r > r, the result follows for any r > r k , which ends the proof of the lemma. Remark 4.2. From the results stated above, with some additional analysis one can obtain an equivalent of the harmonic moments EZ -r n for any r > 0. However, it is delicate to have an expression of the concerned constant in the equivalence. See [START_REF] Grama | Harmonic moments and large deviations for a supercritical branching process in a random environment[END_REF] on this topic.

We can now show the moments results (2.17) about {q k,j }, which imply that the radius of convergence R of the power series Q k (t) = ∞ j=k q k,j t j is equal to 1. Since d) We finally prove that the power series Q k (t) satisfies the functional equation (2.20), and that this equation characterizes the power series Q k (t). Recall that E k t Z 1 = ∞ j=k p(k, j)t j = Ef k 0 (t). By Fubini's theorem, we have

E [Q k (f 0 (t))] = E ∞ i=k q k,i f i 0 (t) = ∞ i=k q k,i E f i 0 (t) = ∞ i=k q k,i E t Z 1 | Z 0 = i = ∞ i=k q k,i ∞ j=i p(i, j)t j = ∞ j=k [ j i=k
q k,i p(i, j)]t j

On the other hand, γ k Q k (t) = ∞ j=k γ k q k,j t j . Therefore, by the recursive relation (2.15), for all t ∈ [0, 1),

γ k Q k (t) = E [Q k (f 0 (t))] .
The above argument also applies to prove that this functional equation characterizes the power series Q k (t). Assume P(0 < p 0 < 1) > 0. Suppose that Qk (t) = ∞ j=0 qk,j t j is a power series with qk,j ∈ C (a priori not necessarily real or positive) and qk,k = 1, whose radius of convergence is ρ > 0, which satisfies γ k Qk (t) = E Qk (f 0 (t)) for t > 0 small enough. We will prove that Qk coincide with Q k . In fact, the same argument used in the calculation of E [Q k (f 0 (t))] applies for E Qk (f 0 (t)) , yielding that for 0 t < ρ,

E Qk (f 0 (t)) = ∞ j=0 [ j i=0
qk,i p(i, j)]t j ; in the argument we can still use Fubini's theorem, due to the fact that f 0 (t) t and that the series Q(t) = ∞ j=0 qk,j t j converges absolutely for t ∈ [0, ρ). Therefore, by comparing the coefficients, we see that γ k Qk (t) = E Qk (f 0 (t)) for all t > 0 small enough if and only if γ k qk,j = j i=0 qk,i p(i, j), ∀j 0.

(4.16)

From this relation, we can easily cheque by reduction on j that qk,j = 0 ∀j = 0, • • • , k -1. (4.17)

Actually, for j = 0, Eq. (4.16) gives γ k qk,0 = qk,0 p(0, 0); as γ k = Ep k 1 < 1 = p(0, 0), this implies q k,0 = 0. Assume that qk,j = 0 ∀j = 0, • • • , n with n + 1 < k, then Eq. (4.16) with j = n + 1 gives γ k qk,j = qk,n+1 p(n + 1, n + 1); as γ k = Ep k 1 > Ep n+1 1 = p(n + 1, n + 1), this implies qk,n+1 = 0. By induction, this proves (4.17).

  is in general easier to verify the condition on the normalized p-th conditional moment m

<

  ∞. By Lemma 3.2 and the sub-additivity of the function x → x η , we have

  .28) which implies that Ep k 1 (ξ 0 )m a 0 < 1. Combing the results proved in Steps 4-6, we obtain the conclusions of Theorem 2.1 : in fact, Part a) is proved in Step 4, while Part b) is proved in Steps 5 and 6.

∞

  j=k P k (Z n = j) = 1, we have ∞ j=k γ -n k P k (Z n = j) = γ -n k .Passing to the limit as n → ∞ and using part a) of Theorem 2.4 and the monotone convergence theorem, we obtain:∞ j=k q k,j = +∞,which proves that R 1. We prove that R 1 by showing that +∞ j=k j -r q k,j < ∞ for r > r k . Using again part a) of Theorem 2.4, the monotone convergence theorem and Lemma 4.1, we have, for any r > r k , proof of part b). c) We now prove part c) of Theorem 2.4. SinceE k t Zn γ n k = j=k P k (Z n = j) γ n k t j ,using part a) and the monotone convergence theorem, we get(2.19).
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With (4.17) at hand, (4.16) implies γ k qk,j = j i=k qk,i p(i, j), ∀j k, (4.18) which reads also qk,j = 1

Since qk,k = q k,k = 1, from this relation and the same relation satisfied by (q k,j ), it follows by an easy reduction argument that qk,j = q k,j for all j k. We have therefore roved that Q(t) coincides with Q(t).

This ends the proof of Theorem 2.4.