
HAL Id: hal-03416093
https://hal.science/hal-03416093

Submitted on 5 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Entailment is Undecidable for Symbolic Heap Separation
Logic Formulæ with Non-Established Inductive Rules

Mnacho Echenim, Radu Iosif, Nicolas Peltier

To cite this version:
Mnacho Echenim, Radu Iosif, Nicolas Peltier. Entailment is Undecidable for Symbolic Heap Separation
Logic Formulæ with Non-Established Inductive Rules. Information Processing Letters, 2022, 173,
pp.106169. �10.1016/j.ipl.2021.106169�. �hal-03416093�

https://hal.science/hal-03416093
https://hal.archives-ouvertes.fr

Entailment is Undecidable for Symbolic Heap
Separation Logic Formulæ with Non-Established

Inductive Rules

Mnacho Echenima, Radu Iosifb, Nicolas Peltiera

aUniv. Grenoble Alpes, CNRS, LIG, 700 Av. Centrale, 38000 Grenoble France
bUniv. Grenoble Alpes, CNRS, VERIMAG, 700 Av. Centrale, 38000 Grenoble France

Abstract

Entailment is undecidable in general for Separation (SL) Logic formulæ with in-
ductive definitions, but it has been shown to be decidable [1] if the inductive rules
satisfy three conditions, namely progress, connectivity and establishment. We
show that entailment is undecidable if the latter condition is dropped, thus draw-
ing a much clearer frontier for (un)decidability.

Keywords: Separation Logic, Inductive Definition, Decidability

1. Introduction

Separation Logic (SL) is widely used in program verification to reason about
programs manipulating dynamically allocated data structures [np]modif [2]. SL
formulæ describe heaps, i.e. finite partial functions mapping locations (memory
addresses) to tuples of locations (records) of a fixed size. [np]modif A loca-
tion is allocated if it occurs in the domain of the considered heap. A formula
x 7→ (y1, . . . ,yκ) states that the image of the location associated with x in the heap
is the tuple of locations associated with (y1, . . . ,yκ), whereas φ1 ∗ φ2 states that
the heap can be split into two disjoint parts satisfying φ1 and φ2, respectively.
Describing unbounded data structures (lists, trees, etc.) is possible by the use of
predicate symbols, the interpretation of which is given by a set of user-defined
inductive rules. These SL formulæ, in which boolean conjunction does not occur
and negation is restricted to disequalities, are commonly called symbolic heaps.
Testing entailment between symbolic heaps is known to be decidable for a class
of inductive definitions satisfying three natural conditions [1]:(1) progress, stat-
ing that every inductive rule allocates exactly one memory cell, (2) connectivity,

Preprint submitted to Information Processing Letters September 14, 2021

ensuring that the locations allocated during the unfolding of a predicate form a
tree-like connected structure and (3) establishment, stating that every existentially
quantified variable introduced during the unfolding of inductive predicates must
be eventually allocated (in the sense that it must be asserted equal to a variable y
such that an atom y 7→ (. . .) occurs in the unfolding). These conditions play very
different rôles. Condition (1) is actually not restrictive and is considered for sim-
plicity only. In contrast, Condition (2) is crucial for decidability: entailments are
undecidable for inductive definitions that are not connected, because then the in-
ductive definitions may be used to encode context-free languages, the inclusion of
which is known to be undecidable. The remaining question is whether condition
(3) is actually required for decidability or whether it can be ignored. We show that
discarding this condition leads to undecidability. The precise rôle of establishment
for decidability of entailments between symbolic heaps has been an open problem
since establishment was identified as a condition ensuring, with progress and con-
nectivity, decidability of entailments between symbolic heaps [1]. The proof of
[1] used a reduction of the entailment between symbolic heaps to the (decidable)
satisfiability of monadic second order logic on graphs with bounded treewidth [3]
and establishment was crucial to ensure that the considered heaps have a bounded
treewidth. Later, a doubly exponential decision algorithm was designed [4], and
we recently showed that establishment can be replaced by a strictly more general
condition restricting the form of the disequations in the system [5]. The undecid-
ability proof for non-established definitions given here implies the undecidability
of entailments for definitions that cannot be transformed into the restricted dise-
quations form [5].

2. Separation Logic

Let κ ≥ 0 be a natural number, V and C be two disjoint sets of symbols (de-
noting respectively variables and constants1, and P be a set of predicate sym-
bols. Each symbol p ∈ P is associated with a unique arity #(p) ≥ 1. The set
of separation logic symbolic heaps φ is inductively defined as follows, where
x,x′,y1, . . . ,yκ,z1, . . . ,z#(p) ∈ V ∪C , u ∈ V and p ∈ P :

φ ::= x≈ x′ |x 6≈ x′ |x 7→ (y1, . . . ,yκ) |φ∗φ | p(z1, . . . ,z#(p)) |∃u . φ.

1Constants are introduced only to improve readability. One could replace them by variables
added as parameters to every predicate symbol, and adding disequality constraints x 6≈ y for all
x,y ∈ C , stating that all constants are mapped to distinct locations. Hence the undecidability result
holds also for C = /0.

2

A formula is predicate-free if it contains no symbols from P . We denote by
var(φ) the set of variables freely occurring in φ. A substitution is a partial mapping
from V to V ∪C . The substitution of domain {x1, . . . ,xn}mapping every variable
xi to ti is denoted by [xi← ti | 1≤ i≤ n]. For every formula φ and substitution σ,
φσ denotes the formula obtained by replacing each free occurrence of a variable x
in φ by σ(x) (bound variables are renamed to avoid collisions).

Let U be a countably infinite set of locations, with C ⊆ U. A structure is a
pair (s,h) where s is a store, i.e., a total mapping from V ∪C to U that is the
identity on C ; and h is a heap, i.e., a partial finite mapping from U to Uκ. Two
heaps h1 and h2 are disjoint iff dom(h1)∩dom(h2) = /0, and h1]h2 denotes the
union of disjoint heaps.

A system of inductive definitions (SID) R is a set of rules p(x1, . . . ,x#(p))⇐
φ, where x1, . . . ,x#(p) are pairwise distinct variables and φ is a symbolic heap
with var(φ) ⊆ {x1, . . . ,x#(p)}. A system R is progressing and connected if ev-
ery rule in R is of the form p(x1, . . . ,x#(p))⇐ ∃y1, . . . ,yn . x1 7→ (u1, . . . ,u#(p))∗
∗m

i=1 pi(yi
1, . . . ,y

i
#(pi)

), where for all i ∈ J1,mK, we have yi
1 ∈ {u1, . . . ,u#(p)}.

For any formula φ, we write φ→R ψ if ψ is obtained from φ by replacing
an occurrence of a predicate atom p(x1, . . . ,x#(p)) by ρ[yi ← xi | 1 ≤ i ≤ #(p)],
where R contains a rule p(y1, . . . ,y#(p))⇐ ρ and the existential variables of ρ are
α-renamed to avoid collisions. As usual,→∗R denotes the reflexive and transitive
closure of →R . A formula ψ such that φ→∗R ψ is called an R -unfolding of φ.
A SID R is established if, in every predicate-free R -unfolding ψ of a predicate
atom p(x1, . . . ,x#(p)), each existentially quantified variable in ψ is asserted equal
to a variable x, where x 7→ (y1, . . . ,yκ) is a an atom of ψ.

For all structures (s,h), symbolic heaps φ containing no predicate atom and
SIDs R , we write (s,h) |= φ iff one of the following holds: (i) φ ≡ x ≈ x′ (resp.
φ ≡ x 6≈ x′), dom(h) = /0 and s(x) = s(x′) (resp. s(x) 6= s(x′)); (ii) φ ≡ x 7→
(y1, . . . ,yκ), dom(h) = {s(x)} and h(s(x)) = (s(y1), . . . ,s(yκ)); (iii) φ ≡ φ1 ∗ φ2
and h= h1]h2 where (s,hi) |= φi, for all i∈ {1,2}; (iv) φ≡∃x . φ′ and there exists
a store s′ coinciding with s on all variables and constants distinct from x such that
(s′,h) |= φ′. This definition is extended to formulæ containing predicate symbols
as follows: (s,h) |=R φ iff (s,h) |=R ψ, for some predicate-free R -unfolding ψ

of φ. [np]modifs Note that (dis)equations are satisfied only in empty heaps. This
slightly departs from usual definitions [1, 2] but simplifies notations by getting rid
of standard conjunctions.

3

3. Encoding the Post Correspondence Problem

The undecidability proof uses a reduction from a variant of Post’s Correspon-
dence Problem (PCP). We denote by w[i] the i-th character of the word w, and by
|w| its length, so that w = (w[1], . . . ,w[|w|]). We recall that the PCP asks, given
two sequences ui = (ui

1, . . . ,u
i
N) (with i = 1,2) of words on the same alphabet V,

whether there exists a nonempty sequence s = (s1, . . . ,sG) of elements of J1,NK
(called a solution of the PCP) such that u1

s1
.u1

sG
= u2

s1
.u2

sG
. The latter word

is called a witness of the PCP and its length ΣG
g=1|ui

g| will be denoted by L. PCP
is a well-known undecidable problem. We assume that all the words in ui are
nonempty (which does not impact the undecidability proof of the PCP). We con-
sider a slightly adapted version of the PCP, in which: (i) The last element of both
sequences of words is a special character $ = u1

N = u2
N , not occurring in the words

ui
n, for i ∈ {1,2}, n ∈ J1,N− 1K; and (ii) any solution must be such that G > 1,

sG = N and sg 6= N if g < G. It is clear that the standard PCP can be reduced to the
adapted version, which is thus also undecidable. We denote by Mi the maximal
length of the words in ui, i.e. Mi def

= max{|ui
n| | n ∈ J1,NK}, for i ∈ {1,2} and let

M def
= max({M1,M2}).
We consider two special constants nil and ⊥, and we associate all natural

numbers m ∈ J1,MK and all elements a ∈ V with pairwise distinct constants also
distinct from nil and ⊥. These constants will be, for the sake of readability, also
denoted by m or a (assuming, w.l.o.g., that V∪N∪{⊥,nil} ⊆ C and V∩N= /0).
We assume next that κ = 6, i.e. we fix the number of record fields. The encoding
could easily be adapted for any κ ≥ 2, using binary trees to represent tuples of
elements, but this would greatly hinder readability, because of the progress condi-
tion which requires that every rule allocates exactly one location. For readability,
we shall actually consider elements referring to tuples of any length n≤ 6, where
missing elements are implicitly replaced by the constant ⊥. Hence the notation
x 7→ (y1, . . . ,yn) for n ≤ 6 stands for x 7→ (y1, . . . ,yn,⊥6−n). For the sake of con-
ciseness, we allow disjunctions in the right-hand side of the inductive rules: a rule
p(~x)⇐ φ ∗ (ψ1∨ψ2) stands for {p(~x)⇐ φ ∗ψ1, p(~x)⇐ φ ∗ψ2}. We first show
that the solutions of the PCP can be encoded by structures of a specific form.

Definition 1. A heap h is a PCP-encoding if there exists a word w with L def
=

|w|> 1, a natural number G > 1 and pairwise distinct locations `1, . . . , `L+1 and
`′1, . . . , `

′
G+1 with `L+1 = `′G+1 = nil, such that:

1. dom(h) = {`1, . . . , `L, `
′
1, . . . , `

′
G}.

4

2. For every l ∈ J1,LK, h(`l) is of the form (`l+1,w[l], `1
l , p1

l , `
2
l , p2

l), for loca-
tions `1

l , `
2
l and integers p1

l , p2
l ∈ J1,MK, with `1

1 = `2
1 = `′1, `1

L = `2
L = `′G and

p1
1 = p2

1 = p1
L = p2

L = 1.
3. For every g ∈ J1,GK, h(`′g) is of the form (`′g+1,sg) for some sg ∈ J1,NK,

with sG = N and sg 6= N if g < G.
The location `1 is called the root of h. We denote w(h) def

= w and s(h) def
=

(s1, . . . ,sG); clearly h uniquely defines w(h) and s(h).

nil

s1 s2 N

w[1] w[2] w[L]

1

`l

`1
l `2

l

p1
l p2

l

· · ·

· · · · · ·

· · ·

· · ·

`1

`′1

`L

`′K

Figure 1: Encoding of a PCP Solution by a Heap

[np]capital h, for consistency in ti-
tles ?

The sequence `1, . . . , `L encodes
the sequence of characters w[1],. . . ,
w[L] in a witness w. Each location `l
refers to a tuple containing the next
element of the sequence `l+1 as well
as the character w[l], and locations
`1

l , p1
l , `

2
l , p2

l , which will be used to
denote the position of the character
within the words u1

s1
.u1

sG
and u2

s1
.u2

sG
(see Def. 2). The sequence `′1, . . . , `

′
G

represents the solution s. Each location `′g points to a tuple containing the next
element of the sequence `′g+1 and the g-th component of s (see Fig. 1).

Definition 2. A PCP-encoding h is i-consistent for i = 1,2 if, for all l ∈ J1,LK,
there exists g ∈ J1,GK such that, with the notations of Def. 1, `i

l = `′g and:
1. w[l] is the pi

l-th character of the word ui
sg

(i.e., w[l] = ui
sg
[pi

l]).
2. If l 6= L and pi

l < |u
i
sg
| then `i

l+1 = `′g and pi
l+1 = pi

l +1.
3. If l 6= L and pi

l = |u
i
sg
| then g < G, `i

l+1 = `′g+1 and pi
l+1 = 1.

Lemma 3. A PCP admits a solution iff there exists a PCP-encoding that is both
1-consistent and 2-consistent.

Proof. Assume that the PCP admits a solution s of length G, with witness w and
let L = |w|. We construct a PCP-encoding as follows. Let `1, . . . , `L, `

′
1, . . . , `

′
G be

pairwise distinct locations distinct from all constants. Let `L+1
def
= `′G′+1

def
= nil,

and let h be a heap of domain {`1, . . . , `L, `
′
1, . . . , `

′
G}, such that: (i) For every

l ∈ J1,LK, h(`l)
def
= (`l+1,w[l], `′g1

l
, p1

l , `
′
g2

l
, p2

l), where gi
l is the greatest element

in J1,GK with |ui
s1
.ui

sgi
l−1
| < l, and pi

l
def
= l− |ui

s1
.ui

sgi
l−1
|. (ii) For every

5

g ∈ J1,GK, h(`′g)
def
= (`′g+1,sg). It is straightforward to check that h is a PCP-

encoding. Conversely, let h be a PCP-encoding that is i-consistent for all i = 1,2,
and let w def

= w(h) and s def
= s(h). By induction on l, we can show, by a case

analysis on whether pi
l < |u

i
sgi

l
| or not, and using Conditions 2 and 3 of Def.

2 that [np]change here, because there was a latex pb with command either
for every i ∈ {1,2} and l ∈ J1,LK, the following equality holds: w[1].w[l] =
ui

s1
.ui

sgi
l−1

.ui
sgi

l
[1].ui

sgi
l
[pi

l] (1).

I(x)⇐∃x′,y,z . x 7→ (x′,a,y,1,y,1)∗W (x′,z)∗S(y,z) (2)

W (x,z)⇐∃x′,y1,y2 . x 7→ (x′,a,y1,p1,y2,p2)∗W (x′,z) (3)
W (x,z)⇐ x 7→ (nil,$,z,1,z,1) (4)

S(y,z)⇐∃y′ . y 7→ (y′,n)∗S(y′,z) if n< N (5)
S(y,z)⇐ y 7→ (nil,N)∗ y≈ z (6)

A(x)⇐∃x′,a,z1, p1,z2, p2 . x 7→ (x′,a,z1, p1,z2, p2)∗A(x′) (7)
A(x)⇐∃x′,a,z1, p1,z2, p2 . x 7→ (x′,a,z1, p1,z2, p2) (8)

C(x,x′,a,z1, p1,z2, p2)⇐ x 7→ (x′,a,z1, p1,z2, p2)∗A(x′) (9)
C(x,x′,a,z1, p1,z2, p2)⇐ x 7→ (x′,a,z1, p1,z2, p2) (10)

B(x) ⇐ ∃x′,a,y . x 7→ (x′,a,y,1,y,1)∗B(x′)∗A(y) (11)
B(x) ⇐ ∃x′,a,z1, p1,z2, p2 . x 7→ (x′,a,z1, p1,z2, p2)∗B(x′) (12)
B(x) ⇐ ∃x′,a,z1,z2, p2,z′1 . x 7→ (x′,a,z1,p1,z2, p2)∗A(x′)

∗C(z1,z′1,n,⊥,⊥,⊥,⊥)∗a 6≈ u1
n[p1] if p1 ≤ |u1

n| (13)
B(x) ⇐ ∃x′,a,z1,z2, p2,a′,z′1, p′1,z

′
2, p′2,z

′′
1 . x 7→ (x′,a,z1,p1,z2, p2)

∗C(x′,a′,z′1, p′1,z
′
2, p′2)∗C(z1,z′′1 ,n,⊥,⊥,⊥,⊥)

∗(z′1 6≈ z1∨ p′1 6≈ p1 +1) if p1 < |u1
n| (14)

B(x) ⇐ ∃x′,a,z1,z2, p′1, p2,a′,z′1,z
′
2, p′2,z

′′
1 . x 7→ (x′,a,z1,p1,z2, p2)

∗C(x′,a′,z′1, p′1,z
′
2, p′2)∗C(z1,z′′1 ,n,⊥,⊥,⊥,⊥)

∗(p′1 6≈ 1∨ z′1 6≈ z′′1) if p1 = |u1
n| (15)

Figure 2: The SID R π for the PCP Instance π = (u1,u2) (for all a∈V, p1,p2 ∈ J1,MK, n∈ J1,NK)

Let π = (u1,u2) be an instance of PCP, where ui = (ui
1, . . . ,u

i
N), i = 1,2. We

show how to transform i-consistent PCP-encodings into SL formulæ. Let R π

be the set of rules in Fig. 2. We show that I defines the PCP-encodings of π

(Def. 1). [np]modifs Intuitively W and S allocate the locations `1, . . . , `L+1 and

6

`′1, . . . , `
′
G+1 respectively. The existential variables y1,y2 in (3) are not allocated

(the corresponding pointers w[1],w[2], . . . in Fig. 1 are pending), hence this rule
is not established.

Lemma 4. (s,h) |=R π I(x1) iff h is a PCP-encoding of root s(x1).

Proof. (s,h) |=R π I(x1) iff (s,h) |= φ for some predicate-free formula φ with
I(x1)→∗R π φ. By Rule (2), I(x1)→∗R π φ iff there exists a1 ∈ V s.t. ∃x2,y1,z. x1 7→
(x2,a1,y1,1,y1,1)∗W (x2,z)∗S(y1,z)→∗R π φ. Any→R π-derivation from W (x2,z)
starts by a sequence of application of Rule (3) followed by one application of (4).
Thus I(x1)→∗R π φ iff there exists L∈N,a1, . . . ,aL−1 ∈V, p1

2, p2
2, . . . , p1

L−1, p2
L−1 ∈

J1,MK s.t. ∃x2, . . . ,xL,y1,z. x1 7→ (x2,a1,y1,1,y1,1) ∗ψ ∗ S(y1,z)→∗R π φ, where

ψ
def
= ∗L−1

l=2 xl 7→ (xl+1,al,y1
l , p1

l ,y
2
l , p2

l) ∗ xL 7→ (nil,$,z,1,z,1). Applying Rule
(5) G− 1 times and then Rule (6), we deduce that I(x1)→∗R π φ iff there exists
L ∈ N, G ∈ N,a1, . . . ,aL−1 ∈ V, p1

2, p2
2, . . . , p1

L−1, p2
L−1 ∈ J1,MK, n1, . . . ,nG−1 ∈

J1,N−1K s.t. ∃x2, . . . ,xL,y1, . . . ,yG. x1 7→ (y,a1,y1,1,y1,1)∗ψ∗ψ′→∗R φ where

ψ′
def
= ∗G−1

g=1 yg 7→ (yg+1,ng)∗ yG 7→ (nil,N)∗ yG ≈ z. Using this equivalence, it is
easy to check that (s,h) |= I(x1) iff h is a PCP-encoding with root s(x1).

Predicate B defines the PCP-encodings that are not i-consistent, for some
i = 1,2 (Def. 2). Such structures necessarily contain locations `l and `′g con-
tradicting one of Cond. 1, 2 or 3 from Def. 2. Rule (11) is applied when `′g
is such that g > 1. It allocates the first element `1 of the witness, then invokes
A(y) to allocate all elements `′1, . . . , `

′
g−1, and the predicate B(x′) to allocate the

remaining elements. Note that, [np]modifs thanks to the rules (7) and (8), A al-
locates arbitrary linked structures, with the link on the first record field (all the
pointers in the list are pending and the resulting list does not necessarily end with
nil). Predicate C is similar to A, but has 6 additional parameters denoting the
heap image of the first allocated location. Rule (12) is applied l− 2 times to al-
locate locations `2, . . . , `l−1 and also to allocate `1 in the case where g = 1 (this
case is considered apart since the sequence `′1, . . . , `

′
g−1 is empty). The remain-

ing rules allocate the faulty location `l . Rules (13-15) handle the case where the
heap is not 1-consistent. Rule (13) allocates a location contradicting Cond. 1 in
Def. 2. The predicates A(y) and C(z1,y′,n,⊥,⊥,⊥,⊥) are used to allocate lo-
cations `l+1, . . . , `L, and `′g, . . . , `

′
G, respectively. Similarly, Rules (14) and (15)

allocate a location contradicting Cond. 2 or 3 in Def. 2, respectively. The rules
corresponding to the case where the heap is 2-consistent are defined in a similar
way (they are omitted for conciseness).

7

Lemma 5. Let h be a PCP-encoding and let s be a store such that s(x) is the
root of h. The following equivalence statement holds: (s,h) |=R B(x) iff h is not
i-consistent, for some i = 1,2.

Proof. We use the same notations as in Def. 1. ⇒⇒⇒: Assume that (s,h) |=R π B(x).
Then there exists a predicate-free unfolding φ of B(x) such that (s,h) |=R π φ. By
definition of the rules defining B, this entails that one of rules (13), (14) or (15)
(or the corresponding rules for i = 2) must have been applied at some point in
the derivation, since these are the only rules that can eliminate the predicate. By
symmetry we assume that one of the rules corresponding to i = 1 is applied. If
Rule (13) is applied, then there exist locations l, l′, l′′, l1 and l2 such that h(l) =
(l′,a, l1, p1, l2, p2) and h(l1) = (l′′,n), where a ∈ V, n ∈ J1,NK, a 6= u1

n[p1]. Since
h is a PCP-encoding, this is possible only if l= `l , for some l ∈ J1,LK and l′1 = `′g,
for some g∈ J1,GK. Then h falsifies Cond. 1 of Def. 2, hence h is not 1-consistent.
If Rule (14) is applied then there exist locations l, l′, l′′, l1, l2, l′1, l

′
2 and l′′1 such that

h(l) = (l′,a, l1, p1, l2, p2), h(l′) = (l′′,a′, l′1, p′1, l
′
2, p′2) and h(l1) = (l′′1,n), where

1 ≤ p1 < |u1
n|, and either l1 6≈ l′1 or p′1 6= p1 + 1. Since h is a PCP-encoding,

we must have l = `l and l′ = `l+1 for some l ∈ J1,LK, and l1 = `′g, for some
g ∈ J1,GK. Therefore, Cond. 2 of Def. 2 is falsified. The proof is similar if Rule
(15) is applied: we have p1 = |u1

n|, and either l′1 6≈ l′′1 or p′1 6= 1, which entails that
Cond. 3 of Def. 2 is falsified.
⇐⇐⇐: Assume that h is not i-consistent, for some i = 1,2. We assume that i = 1,

the proof for i = 2 is symmetric. By definition of a PCP-encoding, there exists a
store s′ such that s(x) = s′(x) and:

(s′,h) |=R π ∗L
l=1xl 7→ (xl+1,al,y1

l , p1
l ,y

2
l , p2

l)∗∗G
g=1yg 7→ (yg+1,ng),

where xl,yi
l,yg ∈ V , al ∈ V, pi

l ∈ J1,MK and ng ∈ J1,NK, for all l ∈ J1,LK, g ∈
J1,GK and i ∈ {1,2}. The location s(x1) is the root of the heap, thus we have
s(x) = s(x1), and we may assume, w.l.o.g., that x = x1. Since by hypothesis h is
not 1-consistent, there exist l ∈ J1,LK and g∈ J1,GK such that one of the conditions
in Def. 2 is falsified. Observe that, according to Def. 2, this entails that s(y1

l) =
s(yg). We also have l < L; indeed, it is easy to check that the faulty location
cannot be the last one, since, by definition of a PCP-encoding, this location is
associated with the special character $ and index nG = N, with ui

N = $ and pi
L = 1.

We therefore have: (s′,h) |=R π φ1 ∗ xl 7→ (xl+1,al,y1
l , p1

l ,y
2
l , p2

l) ∗ φ2 ∗ψ1 ∗ yg 7→
(yg+1,ng)∗ψ2, where:

φ1
def
=∗l−1

l′=1xl′ 7→ (xl′+1,al′ ,y1
l′ , p1

l′ ,y
2
l′ , p2

l′) ψ1
def
=∗g−1

g′=1yg′ 7→ (yg′+1,ng′)

φ2
def
=∗L

l′=l+1xl′ 7→ (xl′+1,al′ ,y1
l′ , p1

l′ ,y
2
l′ , p2

l′) ψ2
def
=∗G

g′=g+1yg′ 7→ (yg′+1,ng′)

8

It is clear that φ2 |=R π A(xl+1) (?) using Rule (7) L− l times and Rule (8)
once. Further, if l < L−1 then φ2 |=R π xl+1 7→ (xl+2,al+1,yl+1

1 , pl+1
1 ,yl+1

2 , pl+1
2)∗

A(xl+2). We also have φ2 |=R π C(xl+1,xl+2,al +1,yl+1
1 , pl+1

1 ,yl+1
2 , pl+1

2) (†), us-
ing Rule (9) if l < L−1 and Rule (10) otherwise. Similarly, ψ2 |=R π A(yg+1) and
yg 7→ (yg+1,ng) ∗ψ2 |=R π C(yg,yg+1,ng,⊥,⊥,⊥,⊥) (‡). Furthermore, if g > 1,
then ψ1 |=R π A(yg). Assume first that Cond. 1 is falsified. Then al 6= u1

g[p
1
l],

hence, by Rule (13), using (?) and (‡), we get that xl 7→ (xl+1,al,yl
1, pl

1,y
l
2, pl

2)∗
φ2 ∗ yg 7→ (yg+1,ng) ∗ψ2 |=R π B(xl). If Cond. 2 or 3 are falsified, then we get
the same result, using the rules (14) and (15), instead of (13), and Relation (†)
instead of (?). If g = 1, then, by applying Rule (12) g− 1 times, we deduce that
(s,h) |=R π B(x1). If g > 1, then we get the same result by applying Rule (11) once
and Rule (12) g−1 times, using the fact that ψ1 |=R π A(yg).

Putting everything together, we get the stated result:

Theorem 6. The entailment problem is undecidable for systems of inductive def-
initions satisfying the progress and connectivity condition, but not the establish-
ment condition.

Proof. Consider an instance π of the (adapted) PCP. By Lemma 3, the PCP has
a solution iff there exists a PCP-encoding that is i-consistent, for i = 1,2. By
Lemmas 4 and 5, we can compute a system of inductive rules R π such that h
is a PCP-encoding iff (s,h) |=R π I(x1), and h is i-consistent for all i = 1,2 iff
(s,h) 6|=R π B(x1); i.e., such that the PCP has a solution iff I(x1) 6|=R π B(x1). It is
easy to check that R π is progressing and connected but not established, see for
instance Rules (3), (7), (8) and (12) in Fig. 2. Since the PCP is undecidable, the
proof is completed.

References

[1] R. Iosif, A. Rogalewicz, J. Simacek, The tree width of separation logic with recursive
definitions, in: Proc. of CADE-24, Vol. 7898 of LNCS, 2013.

[2] S. S. Ishtiaq, P. W. O’Hearn, Bi as an assertion language for mutable data structures,
in: ACM SIGPLAN Notices, Vol. 36, 2001, pp. 14–26.

[3] B. Courcelle, The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs, Information and Computation 85 (1) (1990) 12 – 75.

9

[4] J. Pagel, F. Zuleger, Beyond symbolic heaps: Deciding separation logic with inductive
definitions, in: LPAR-23, Vol. 73 of EPiC Series in Computing, EasyChair, 2020, pp.
390–408.

[5] M. Echenim, R. Iosif, N. Peltier, Decidable entailments in separation logic with in-
ductive definitions: Beyond establishment, in: CSL 2021: 29th International Confer-
ence on Computer Science Logic, EPiC Series in Computing, EasyChair, 2021.

10

