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Abstract 31 

A critical question in visual foraging concerns the mechanisms driving the next target selection. 32 

Observers first identify a set of candidate targets, and then select the best option among these 33 

candidates. Recent evidence suggests that target selection relies on internal biases towards proximity 34 

(nearest target from the last selection), priming (target from the same category as the last selection) 35 

and value (target associated with high value). Here, we tested the role of eye movements in target 36 

selection, and notably whether disabling eye movements during target selection could affect search 37 

strategy. We asked observers to perform four foraging tasks differing by selection modality and target 38 

value. During gaze foraging, participants had to accurately fixate the targets to select them and could 39 

not anticipate the next selection with their eyes, while during mouse foraging they selected the targets 40 

with mouse clicks and were free to move their eyes. We moreover manipulated both target value and 41 

proximity. Our results revealed notable individual differences in search strategy, confirming the 42 

existence of internal biases towards value, proximity and priming. Critically, there were no differences 43 

in search strategy between mouse and gaze foraging, suggesting that disabling eye movements during 44 

target selection did not affect foraging behaviour. These results importantly suggest that overt 45 

orienting is not necessary for target selection. This study provides fundamental information for 46 

theoretical conceptions of attentional selection, and emphasizes the importance of covert attention 47 

for target selection during visual foraging. 48 

 49 

Keywords: Foraging, Visual search, Visual attention, Eye movements, Target selection 50 

  51 



The selection balance  J. Tagu and Á. Kristjánsson 

3 

1. Introduction 52 

While a large amount of research has been devoted to how humans visually search for targets in their 53 

environment, this research has for the most part involved search for one unique target among several 54 

distractors (Hulleman & Olivers, 2017; Treisman & Gelade, 1980; Wolfe, 2010; Wolfe & Horowitz, 55 

2017). Recently, multi-target displays have been used to assess orienting in the visual field (e.g., Cain 56 

et al., 2012; Fougnie et al., 2015; Hills et al., 2013; Wolfe, 2013; Wolfe et al., 2016), and the results 57 

have raised a number of challenges for theories of visual attention (Á. Kristjánsson et al., 2014; T. 58 

Kristjánsson et al., 2018, 2020; Tagu & Kristjánsson, 2020), calling for further characterization of visual 59 

foraging under different conditions.  60 

 61 

One critical question in visual foraging concerns the factors driving the next target selection. This is 62 

likely to require two steps: identifying a set of candidate targets for the next selection, and then 63 

selecting the best option among these candidates (Wolfe et al., 2018, 2019). In a recent study, Wolfe 64 

et al. (2018) investigated which factors determine the second step, the selection of the best candidate, 65 

and examined whether the value assigned to different target types and the prevalence of target types 66 

could affect foraging behaviour. This is an important issue as our interactions with the world often 67 

involve targets of different value (e.g., coins in a purse, our favourite candies in a full bowl). In their 68 

foraging task, each stimulus was associated with a different number of points and participants were 69 

asked to earn a pre-specified number of points as quickly as possible. The prevalence of the targets 70 

was manipulated as well, so that in one of the conditions the most valuable targets were the rarest in 71 

the display. Observers could move to another stimulus display whenever they wanted, and the authors 72 

were interested in the time at which observers chose to move to the next display and in the identity 73 

of the targets that they had left behind. Wolfe et al. (2018) showed that when the most valuable 74 

targets were fewer on screen, some observers chose to only pursue rare but valuable targets and to 75 

move to the next display as soon as these targets had been erased, while others chose to continue 76 

foraging for other more common but less valuable targets before moving to the next display. But in 77 
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other conditions where all targets had the same value, observers either prioritized targets from the 78 

most prevalent category in the display or the targets closest to the previous selection. Note that the 79 

influence of target prevalence on search performance has also been found in single-target visual search 80 

(Wolfe & Van Wert, 2010). These results led Wolfe et al. (2018) to the conclusion that three main forces 81 

determine the next target selection: target value, spatial proximity to the previous selection, and 82 

priming of the previous target features. In other words, these three forces compete with one another, 83 

and depending on the conditions and on the individual’s internal biases, the “winner” of the 84 

competition is the target selected next. 85 

 86 

Recent evidence has identified several factors that could bias the competition in favour of value, 87 

proximity or priming. For example, Á. Kristjánsson et al. (2014) showed that during feature-based 88 

foraging, observers tend to locate the nearest target from the previous selection and frequently switch 89 

between target types for consecutive selections, while during conjunction foraging, they tend to focus 90 

on a single target type until the entire category is exhausted. In other words, this study revealed that 91 

task difficulty (or target crypticity) is an important factor for determining the next target selection, 92 

easy feature-based foraging favouring proximity to the previous target and difficult conjunction-based 93 

foraging favouring the primed features of the previous target. Later studies have identified other 94 

factors that play a role in determining the next target selection. Selection modality seems to be an 95 

important factor, as foraging with a computer mouse or with an infrared hand tracker made 96 

participants more likely to switch between target categories, favouring proximity, compared with 97 

foraging with fingers on a touchscreen (Thornton et al., 2019) or with eye gaze on a gaze-contingent 98 

display (Tagu & Kristjánsson, 2020) where participants tended to select items from the same category 99 

as on previous selections, favouring priming. Importantly, these different selection modalities are 100 

associated with different temporal dynamics, that may have contributed to the observed results. For 101 

example, the inter-target time, which corresponds to the time that has elapsed between two 102 
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successive target selections, is much lower during finger foraging (about 360 ms1 in Á. Kristjánsson et 103 

al., 2014) than during mouse foraging (about 580 ms1 in Tagu & Kristjánsson, 2020). Increased time 104 

between target selections may allow participants to switch more easily between target categories, 105 

prioritising proximity over priming. Thornton et al. (2020) directly tested this potential influence of 106 

time constraints upon foraging strategy by asking participants to synchronise their foraging speed with 107 

an auditory metronome signal and by manipulating the tempo of this signal. Their results clearly 108 

showed that with slow tempo, participants located the nearest targets and prioritised proximity, but 109 

that with increasing tempo, they were more likely to select items from the same category as previous 110 

selections and to prioritise priming. Importantly, this was found both during feature-based and 111 

conjunction-based foraging, suggesting that task difficulty and time constraints are two different 112 

factors that play a role in determining the next target selection. Although time constraints seem to be 113 

important, they cannot, on their own, explain the differences in foraging strategies between the 114 

different selection modalities. Indeed, the results of Tagu & Kristjánsson (2020) showed that observers 115 

were more likely to prioritize primed targets during gaze foraging, while the long inter-target times 116 

(about 685 ms1 in Tagu & Kristjánsson, 2020) suggest that they should have prioritized proximity. At 117 

this point, it is therefore important to note that during gaze foraging participants are forced to be 118 

careful with their eye movements and fixations, to prevent accidental distractor selections, which is 119 

not the case during mouse or finger foraging. Hence, selecting targets with eye gaze may also affect 120 

visual exploration and oculomotor dynamics, and consequently the first step of the target selection 121 

process: the identification of the potential candidates for the next selection. We will revisit this issue 122 

since we will compare mouse and gaze foraging in this study. 123 

 124 

Although past studies have identified conditions that would tilt the selection balance in favour of value, 125 

proximity or priming, all the studies mentioned above have also revealed large individual differences, 126 

                                                           

1 All inter-target times here are extracted from previous research using a feature-based foraging task with 40 
targets and 40 distractors, from 2 target types and two distractor types. 
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suggesting that individuals have by-default internal biases towards value, proximity and priming, and 127 

are differentially sensitive to the effects of task difficulty, selection modality or time constraints. As an 128 

example, in Á. Kristjánsson et al. (2014) and later studies (Jóhannesson et al., 2017; Tagu & 129 

Kristjánsson, 2020; Thornton et al., 2019, 2020) the differences in search strategy between feature-130 

based and conjunction-based foraging were consistently found for most participants, but about one 131 

third of the participants – the so-called “super foragers” – systematically located the nearest target 132 

and frequently switched between target categories, even during difficult conjunction-based foraging. 133 

The mechanisms that differentiate these super foragers from other participants are however not fully 134 

understood. Jóhannesson et al. (2017) tested, for example, whether super foragers might have better 135 

executive functions, but their results did not reveal any differences in attentional or working memory 136 

capacity between normal and super foragers. Another possibility is that super foragers could show 137 

very strong internal biases towards proximity, that could override any influence of other factors 138 

favouring priming. Consistent with this assumption, observers can switch between conjunction targets 139 

when explicitly asked to do so (Wolfe et al., 2019), or when task demands require it (T. Kristjánsson et 140 

al., 2018), but only a few individuals (i.e., the “super foragers”) spontaneously adopt this strategy. 141 

Similarly, in Wolfe et al. (2018), although the manipulation of target value strongly influenced the 142 

foraging patterns, there were clear individual differences. Some observers only selected the high-value 143 

targets, while others still selected some of the low-value targets before moving to a new display. Once 144 

again, these individual differences suggest that the former show a much stronger internal bias toward 145 

value than the latter. Nevertheless, it seems that these internal biases towards value, proximity and 146 

priming are intrinsically linked to the conditions and the task: by using three different visual search 147 

tasks (including single-target and multi-target visual search tasks), Clarke et al. (2020) have recently 148 

shown that individual differences in foraging strategy and performance were stable over repetitions 149 

of the same task, but that observers’ strategies in one task were not predictive of their behaviour in 150 

other tasks. It is therefore possible that internal biases towards value, proximity and priming are task 151 

dependent. 152 
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 153 

Here, our aim is to contribute to this growing field of research and to the identification of the factors 154 

tilting the selection balance in favour of value, proximity or priming when determining which target to 155 

select next during visual foraging. Critically, we note that past research has largely focused on the 156 

second step of the target selection process, namely the selection of the best candidate for the next 157 

target selection, but that little is known about the mechanisms involved in the first step, the 158 

identification of a set of candidates (Wolfe et al., 2018). In the current study, we therefore investigated 159 

the mechanisms underlying target identification, notably by examining the potential involvement of 160 

eye movements during target selection. Current theories of visual orienting indicate that the 161 

identification process could either be achieved with overt shifts of attention and involve eye 162 

movements, or could be achieved with covert shifts of attention, not accompanied by eye movements 163 

(Posner & Cohen, 1980; see also Hunt & Kingstone, 2003). Although there is a large literature on eye 164 

movement behaviour during single-target visual search (for a review, see Eckstein, 2011), oculomotor 165 

dynamics during visual foraging are far less well known (Kosovicheva et al., 2020; Tagu & Kristjánsson, 166 

2020). Recently, Tagu & Kristjánsson (2020) examined the influence of task difficulty and effector type 167 

on oculomotor dynamics during foraging, and showed that feature-based foraging is associated with 168 

higher fixation duration and smaller saccade amplitude than conjunction-based foraging, suggesting 169 

that easy search is associated with visual exploration in a focal mode while difficult search is associated 170 

with exploration in an ambient mode (Goldberg & Kotval, 1999; Krejtz et al., 2016; Over et al., 2007; 171 

Unema et al., 2005; Velichkovsky et al., 2002). Importantly, these effects of task difficulty on 172 

oculomotor dynamics were accompanied by effects on foraging strategy (e.g., the order of target 173 

selections) and foraging dynamics (e.g., inter-target times), and were found both when observers 174 

selected targets with a computer mouse and with eye gaze (Tagu & Kristjánsson, 2020). In other words, 175 

although there are some differences, foraging behaviour does not seem to vary much between mouse- 176 

and gaze foraging in terms of foraging strategy, foraging dynamics or oculomotor dynamics. Critically, 177 

as discussed above, during gaze foraging the target selection process is intrinsically linked to where 178 
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participants look, and consequently, to eye movements. If participants do not covertly select a visual 179 

target prior to the eye movement, they are likely to select a distractor. Hence, similar foraging 180 

behaviour during mouse foraging (where participants are free to use overt orienting) and during gaze 181 

foraging (where covert orienting is much more probable) suggests that the identification of the set of 182 

candidates for the next target selection is achieved through covert orienting. Note however that the 183 

effect of task difficulty (feature-based versus conjunction-based foraging) has proven to be large and 184 

robust and may have overridden the potential effects of effector type on foraging behaviour (Tagu & 185 

Kristjánsson, 2020). Moreover, although the study of Tagu & Kristjánsson (2020) has cast light on how 186 

the selection balance between proximity and priming could influence oculomotor dynamics, the 187 

authors did not manipulate target value.  188 

 189 

Here, for the first time, we used a feature-based foraging task to investigate the role of eye movements 190 

in target selection during visual foraging. More precisely, we examined how favouring overt orienting 191 

(in a mouse foraging task) or covert orienting (in a gaze foraging task) influences the competition 192 

between target value, proximity and priming, and therefore affects foraging strategy. In light of 193 

previous studies, we hypothesized that target value and proximity manipulations should strongly affect 194 

foraging behaviour (Wolfe et al., 2018), but that the results should not vary much between mouse- 195 

and gaze foraging tasks (Tagu & Kristjánsson, 2020), suggesting that eye movements play only a small 196 

role in target selection. Moreover, we expected to observe individual differences in foraging strategy, 197 

with considerable variation in the effects of target value and proximity across individuals, suggesting 198 

the presence of internal biases that guide target selection. 199 

 200 

2. Methods 201 

2.1. Participants 202 

Twenty-four participants aged from 21 to 48 years (mean age = 28.6, SD = 6.4) were recruited from the 203 

Icelandic community. Fourteen were females, 21 were right-handed (self-reported) and 12 were right-204 
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eye-dominant (hole-in-card test, Durand & Gould, 1910). Prior to their inclusion in the study, all 205 

participants received clear explanations about the procedure and gave their written informed consent. 206 

The study was completed in accordance with the requirements of the Icelandic bioethics committee 207 

and conformed with the ethical guidelines set out in the 1964 Declaration of Helsinki and its later 208 

amendments. 209 

 210 

The sample size (n = 24) was determined prior to data collection and was based on recent studies with 211 

similar procedures where within-subject differences in foraging behaviour have been successfully 212 

measured (e.g., n = 16 in Á. Kristjánsson et al., 2014; n = 21 in Kristjánsson and Kristjánsson, 2018; n = 213 

24 in Tagu & Kristjánsson, 2020; n = 12 in Wolfe et al., 2018). Following data collection, we verified 214 

that this sample size would provide sufficient power to detect the main effects of block type, spatial 215 

organization and effector type, and the 2 (block type: value, no value) by 2 (spatial organization: 216 

random, patches) interaction, by conducting a power analysis using the “ss.power.wa.general()” 217 

function of the “Bias and Uncertainty Corrected Sample Size” (BUCSS) R package (Anderson et al., 218 

2017). This function uses the F-value and sample size from a previous study to generate the necessary 219 

sample size needed to achieve the desired level of statistical power in the current study, for any type 220 

of effect using a within-subject ANOVA involving any number of factors. Here, we chose the previous 221 

study from our group (Tagu and Kristjánsson, 2020) that most closely resembles the current design. 222 

That study involved a 2 (block type: feature, conjunction) by 2 (effector type: mouse, gaze) repeated-223 

measures analysis of variance conducted on a set of dependent variables, including the number of runs 224 

and inter-target times. Along with the sample size and alpha parameters from Tagu and Kristjánsson 225 

(2020), we used the F-values of the reported main effects of block type on the number of runs (F[1,23] 226 

= 93.1, p < .001, ηp
2 = .80) and of effector type on inter-target times (F[1,23] = 31.8, p < .001, ηp

2 = .58) 227 

as inputs for the BUCSS ss.power.wa.general() function. We used the by-default settings of assumed 228 

alpha (.05), level of assurance (.8) and desired power (.8). The analysis yielded a minimum sample size 229 

of 12. Because our study involves a more complex design (2 x 2 x 2 within-subject design) than the 2 x 230 
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2 within-subject design of Tagu and Kristjánsson (2020), the doubled sample size (n = 24), should 231 

ensure that our study reaches the desired statistical power. 232 

 233 

2.2. Materials 234 

Stimuli were presented on a BenQ XL24211Z monitor (BenQ, Taipei, Taiwan) with a refresh rate of 144 235 

Hz and a resolution of 1920 × 1080 pixels. The experiment took place in a dimly lit and soundproof 236 

room. The head of the participants was kept stable with a chin and forehead rest positioned 57 cm 237 

away from the monitor. Eye movements from the dominant eye were recorded using an EyeLink 1000 238 

Plus (SR Research, Ontario, Canada) sampled at 2000 Hz and with an average spatial accuracy of 0.15°. 239 

The online saccade detection corresponded to an above-threshold velocity of 30°/s and acceleration 240 

of  8000°/s2. 241 

 242 

Each trial involved 108 coloured disks from six colour categories (18 stimuli per category) equalised in 243 

size (0.5° diameter) and luminance (20 cd/m2). Three of these categories (54 stimuli) were targets, and 244 

the other three (54 stimuli) were distractors. The colours were selected based on the six categories 245 

found for isoluminant colours in Witzel & Gegenfurtner (2013) and refer to the basic colour terms 246 

“pink”, “orange”, “yellow”, “green”, “blue” and “purple”. The stimuli were presented on a dark grey 247 

background with a luminance of 7 cd/m2. As shown in the trial snapshot in Figure 1A, stimuli were 248 

distributed across a non-visible grid composed of twelve columns and nine rows and occupying 28° × 249 

20° of the visual field. The columns/rows of the grid were separated by an empty space of about 2°. 250 

However, the position of the stimuli within the grid was slightly jittered (± 0.5°) to create a less uniform 251 

appearance, modifying the size of the initial 2° gap between stimuli. 252 

 253 
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 254 

Figure 1. Example of a trial. A. Example of a trial from the patched-organization condition, with purple high-255 

value targets, orange and green low-value targets, and pink, blue and yellow distractors. B. Illustration of the 256 

grid used to assign targets to locations in the grid. The black points represent the target locations in the grid 257 

before the spatial jitter was applied, and the red lines show how the grid could be divided into 12 areas of 9 258 

targets in the patched-organization condition. The purple circles indicate the areas selected for the patches of 259 

purple high-value targets for this particular trial. 260 

 261 

2.3. Procedure 262 

In four blocks of 20 trials each, participants had to select multiple instances of three target types (e.g., 263 

purple, orange and green) and ignore multiple instances of three distractor types (e.g., pink, yellow 264 

and blue). Target types were associated with a certain amount of points, and the trial ended once the 265 
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participant had selected enough targets to reach a pre-specified number of points. The four blocks 266 

differed in the point value associated with the three target types (value block or no-value block) and 267 

by the effector used to select the targets (computer mouse or eye gaze). In the value blocks, 268 

participants had to earn 176 points to terminate the trials. Selecting targets from one of the target 269 

types (e.g., purple, the “high-value targets”) made participants earn 6 points and selecting targets from 270 

the two other target types (e.g., orange and green, the “low-value targets”) made them earn 2.5 points. 271 

The number of points for each target was chosen so that participants needed to select at least one 272 

item from each target type to complete the trials: if participants selected all 18 high-value targets, they 273 

would need to select at least 28 low-value targets to terminate the trials (which corresponds, e.g., to 274 

the 18 instances of one of the low-value categories, and half of the targets from the second low-value 275 

category). Participants were however not forced to select all the high-value targets, and they could 276 

select high- and low-value targets in any order, so that all combinations leading to 176 points would 277 

terminate the trials. Participants were told that they did not need to count the points because trials 278 

would automatically end once they had earned enough points. In the no-value blocks, all target types 279 

were associated with 1 point, and participants had to earn 54 points to terminate the trials. In other 280 

words, participants’ task was to select all targets from all the three target categories. Participants had 281 

to complete each block type two times, one per effector type. During mouse foraging, participants 282 

were asked to select the targets by clicking on them with the left button of a computer mouse, while 283 

during gaze foraging they had to do so by fixating the targets with their eyes. Moreover, to manipulate 284 

target proximity, the spatial organization of the targets was manipulated within each block. Each block 285 

contained 10 trials where targets and distractors were randomly assigned to one of the 108 locations 286 

(“random organization”), intermixed with 10 trials where targets from one of the categories (which 287 

corresponded to the high-value targets in the value blocks) were distributed into three “patches”. The 288 

idea here was to contrast target value and target proximity, since on “patched” trials prioritization of 289 

target value (i.e., selecting all the high-value targets first) would force observers to travel through the 290 

distant patches, while passing over quite a few of the low-value targets on the way. During the value 291 
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blocks, the target category presented in patches was always the high-value category (e.g., purple). 292 

During the no-value blocks, the target category presented in patches was held constant for a given 293 

individual (e.g., blue). For the sake of clarity, in what follows and in the results section, we will refer to 294 

“high-value targets” for all targets presented in patches, irrespective of whether they were in the value 295 

block (in which they were indeed associated with high value) or in the no-value block (where they were 296 

not associated with a particular value). On trials organized with patches of high-value targets, the 297 

display was divided into twelve areas of nine targets (as illustrated in Figure 1B). The 18 high-value 298 

targets were randomly distributed in three of these areas, with two constraints: (1) there had to be at 299 

least two areas separating each patch of high-value targets, and (2) there had to be at least one high-300 

value target within each patch (i.e., it was not possible for the 18 high-value targets to be equally 301 

distributed in two of the three patches with the third one being composed of distractors and low-value 302 

targets). Once the high-value target locations were assigned, all other targets were randomly assigned 303 

to the 90 remaining locations in the grid. For example, Figure 1A shows a trial in the patched-304 

organization condition, and Figure 1B shows three areas selected for the purple high-value targets of 305 

Figure 1A (for a given trial). On trials with random spatial organization, all stimuli were randomly 306 

assigned to the 108 possible locations. In all conditions, the overall spatial layout and location of 307 

targets and distractors was generated independently on each trial. 308 

 309 

Each block began with a nine-point calibration. The position of the dominant eye was checked before 310 

each trial, and if it was further than 0.75° away (left, right, up or down) from the centre of the screen, 311 

the trial was cancelled and repeated later in the block, and a new calibration began before the next 312 

trial started. Moreover, each block was preceded by 2 training trials to familiarize the participant with 313 

the tasks. During the training, the trials were always from the random spatial organization condition. 314 

In all blocks, participants were instructed to finish the trials as fast as possible, without selecting any 315 

distractor. When a target was selected, it disappeared, while distractor selection led to an error-316 

message screen. As in previous research involving similar paradigms (e.g., Á. Kristjánsson et al., 2014; 317 
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Tagu & Kristjánsson, 2020; Thornton et al., 2019), we clearly explained to the participants before the 318 

experiment started that if they selected a distractor, the error message would be displayed and the 319 

entire foraging array with the 108 stimuli would be presented again later in the block. When a trial was 320 

successfully completed, a feedback screen appeared indicating the number of remaining trials in the 321 

block and the trial response time. Participants had to successfully complete 20 trials to terminate the 322 

blocks. The stimuli were surrounded by a 1.5° × 1.5° rectangular interest area, and the stimulus 323 

selection was triggered when a mouse click (mouse foraging) or an eye fixation (gaze foraging) was 324 

detected in that area. The distance between items on screen and the strength of the spatial jitter 325 

applied to stimulus locations were chosen so that the interest areas never overlapped. During gaze 326 

foraging, target selection was triggered when an eye fixation longer than 150 ms was detected in the 327 

interest area, and distractor selection was triggered when an eye fixation longer than 350 ms was 328 

detected in the interest area. To make the gaze foraging task comparable to the mouse foraging task, 329 

it was important to provide observers with the possibility to both “miss” the targets they had not yet 330 

identified and briefly fixate some of the distractors before quickly shifting their gaze somewhere else 331 

once they had identified them as distractors (as they would do in a non-gaze-contingent task). The 332 

fixation times were chosen based on pre-tests run on two well-trained participants, where 150 ms 333 

turned out to be the optimal timing to prevent false detections of target selections during visual 334 

exploration without affecting fixation durations, and 350 ms the optimal timing to prevent omissions 335 

of distractor selections while enabling quick identification of the stimuli as distractors and continued 336 

exploration of the scene (see Tagu & Kristjánsson, 2020, for similar manipulations). 337 

 338 

The order of the tasks was counterbalanced so that half of the participants started with the no-value 339 

blocks and the other half with the value blocks. Moreover, half of them performed mouse foraging 340 

before gaze foraging while the other half did the reverse. The target identities were counterbalanced 341 

as well so that for half of the participants the targets were purple, orange and green among pink, 342 

yellow and blue distractors, while for the other participants the target and distractor identities were 343 
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reversed. The identity of the high-value category was also counterbalanced, so that each colour was 344 

associated with the high-value targets for 1/6 of the observers. To prevent any influence of the 345 

associations between target types and values from the value blocks to the no-value blocks, target and 346 

distractor identities were reversed for a given observer between the value- and no-value blocks but 347 

were held constant between the mouse and gaze foraging tasks. 348 

 349 

2.4. Data analysis 350 

In line with previous studies (e.g., Á. Kristjánsson et al., 2014; T. Kristjánsson et al., 2020; Tagu & 351 

Kristjánsson, 2020), we assessed foraging strategy by measuring the number of “runs” on a given trial. 352 

A “run” refers to the sequential selection of targets of the same category. In our experiment, the 353 

number of runs could vary from 3 (one run per target category, such as when a participant never 354 

switches between target categories) to 54 (one run per target, such as when a participant always 355 

switches between target categories). Note that 54 could only be reached in the no-value blocks, as 356 

participants did not select all the targets in the value blocks. Hence, because of the differing number 357 

of target selections the number of runs may mechanically be higher in the no-value block than in the 358 

value block. To take this potential bias into account, we instead analysed the “proportional number of 359 

runs”, that corresponds to the number of runs divided by the actual number of target selections on 360 

the trial. Furthermore, foraging dynamics were assessed by measuring inter-target times (the time in 361 

milliseconds that elapses between two successive target selections) and inter-target distances 362 

(distance in degrees of visual angle between two successive target selections). Note that the first and 363 

last target selections on a trial were removed from these analyses as they are known to show different 364 

dynamics than other selections (Á. Kristjánsson et al., 2019). To examine oculomotor dynamics during 365 

foraging, after having measured the total number of fixations on each trial, we filtered the eye 366 

movement data and only included fixations that were associated with target selection (i.e., eye 367 

fixations occurring just before the mouse click during mouse foraging or the ones triggering target 368 

selection during gaze foraging) and their subsequent saccades to the analysis (for similar analyses, see 369 
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Tagu & Kristjánsson, 2020). We then examined the average fixation duration and saccade amplitude 370 

for these “critical” eye movement data associated with target selection and search for the next target. 371 

In this article, we only present analyses run on these critical eye movement data, but all data from 372 

critical and non-critical eye movements are available on the Open Science Framework (OSF) page 373 

associated with this article at https://doi.org/10.31234/osf.io/48pzy. 374 

 375 

All the dependent variables were analysed using repeated-measure analyses of variance (ANOVA). 376 

Within-subject factors included block type (no-value block, value block), effector (mouse, gaze) and 377 

spatial organization (random, patches). Moreover, we assessed the evidence in favour of the 378 

alternative hypothesis H1 versus the null hypothesis H0 using Bayes Factor analyses2 (BF10 > 1 is 379 

considered evidence in favour of H1, whereas BF10 < 1 is considered evidence in favour of H0) with the 380 

BayesFactor R package version 0.9.12–4.2 (Morey and Rouder 2018). The Bayes Factor analysis was 381 

performed using the default Jeffreys-Zellner-Siow priors (Rouder et al., 2012). 382 

 383 

3. Results 384 

3.1. Foraging strategy: internal biases towards value, proximity and priming 385 

The first aim of this study was to confirm the existence of internal biases towards value, proximity and 386 

priming that would predict search strategy during visual foraging. Our main indicator of search strategy 387 

is the proportional number of runs, that can distinguish between conditions where individuals are 388 

biased towards priming (small number of runs) and conditions where individuals are biased towards 389 

proximity (high number of runs). As expected, manipulating target value strongly affected run patterns, 390 

                                                           

2 Bayes Factors comprised between 1 and 3 yield anecdotal evidence for H1, values between 3 and 10 yield 
moderate evidence for H1, values between 10 and 30 bring strong evidence for H1, values between 30 and 100 
yield very strong evidence for H1, and values above 100 yield extreme evidence for H1. In the same manner, Bayes 
Factors comprised between 0.33 and 1 yield anecdotal evidence for H0, values between 0.1 and 0.33 yield 
moderate evidence for H0, values between 0.033 and 0.1 yield strong evidence for H0, values between 0.01 and 
0.033 yield very strong evidence for H0, and values below 0.01 yield extreme evidence for H0 (criteria proposed 
by Jeffreys, 1961, and modifed by Lee and Wagenmakers, 2014) 

https://doi.org/10.31234/osf.io/48pzy
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the value block being associated with fewer (proportional) runs (M = .35, SD = .09) than the no-value 391 

block (M = .41, SD = .10; F[1,23] = 13.8, p < .001, ηp
2 = .37, BF10 > 100; see Figure 2). In other words, the 392 

run patterns suggest that individuals are biased towards proximity in the no-value block, while they 393 

are more biased towards priming in the value block. Importantly, run patterns also varied with spatial 394 

organization (F[1,23] = 188.7, p < .001, ηp
2 = .89, BF10 > 100), the proportional number of runs being 395 

higher on trials with random spatial organization (M = .42, SD = .10) compared with trials organized 396 

with patches of targets (M = .34, SD = .08). This suggests that the inclusion of patches of targets gives 397 

more weight to priming (as opposed to proximity) in the selection balance than when spatial 398 

organization is random. Although the interaction between spatial organization and block type is 399 

significant in the ANOVA (F[1,23] = 4.5, p < .05, ηp
2 = .16, BF10 = 0.46), the observed data in Figure 2 400 

suggests a rather weak interaction, and the Bayes Factor is in favour of the null hypothesis. Overall, 401 

this suggests that spatial organization and block type independently affect the selection balance. 402 

 403 

Figure 2. Interaction between the effects of block type and spatial organization on the proportional number 404 

of runs. Blue dots represent individual data points from the no-value block and red dots represent individual 405 

data points from the value block. Black dots and error bars represent the mean with 95% confidence intervals. 406 

 407 

Until now, we have reported results on proportional number of runs, that give a good contrast 408 

between prioritization of proximity (associated with many switches between target categories) and 409 

prioritization of priming (associated with few switches between target categories). However, these 410 

analyses do not provide a clear picture of how target value affects this competition between primed 411 



The selection balance  J. Tagu and Á. Kristjánsson 

18 

targets and proximal targets. Indeed, by definition, prioritization of value would mechanically involve 412 

prioritization of primed targets, as all high-value targets are from the same category. A more direct 413 

way to address whether target value affects foraging strategy consists in analysing the order in which 414 

high-value targets and low-value targets were selected. To this aim, we computed the “selection 415 

order”, which ranges from 1 (first target being selected) to the total number of target selections on 416 

the trial (i.e., in no-value blocks, selection order always ranged from 1 to 54). Note that if an observer 417 

selects all the 18 high-value targets before the 36 low value targets on a given trial, the average 418 

selection order for the high-value targets of that trial would be 
∑ 𝑛18
𝑛=1

18
= 9.5. Similarly, selecting the 419 

high-value targets at random times during the trial would lead to an average selection order of 
∑ 𝑛54
𝑛=1

54
=420 

27.5. Remember that in the no-value blocks, “high-value targets” refer to the target category 421 

presented in patches in the non-random spatial organization condition, but these targets are not 422 

actually associated with a particular value. In Figure 3, we present the individual data on average 423 

selection order for high-value targets across trials. A quick look at the figure clearly shows that 424 

participants selected high-value targets earlier in the trial than low-value targets in the value block but 425 

did not do so in the no-value block. Interestingly, we also see considerable individual differences: while 426 

participants S01 to S03 clearly prioritized the high-value targets in the value block, participants S19 to 427 

S24 showed average selection orders over 20, suggesting weak prioritization of high-value targets, and 428 

the other observers covered the range between these two extremes. Figure 3 also shows that in the 429 

no-value block, almost all participants selected high-value targets at random times during the trial, 430 

with average selection orders close to 27.5. Moreover, in this analysis the prioritization of target 431 

proximity can also be assessed by comparing selection order of high-value targets during trials with 432 

random spatial organization and trials organized with patches of targets. Individual data from the no-433 

value block show prioritization of proximity, with the target category presented in patches selected 434 

earlier during trials with a spatial organization in patches (blue triangles with dashed-line error bars in 435 

Figure 3) compared with trials with random spatial organization (blue disks with whole-line error bars 436 
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in Figure 3). Note that this was not the case during the value blocks, where high-value targets were 437 

prioritized both when presented in patches and when randomly scattered among less valuable targets. 438 

 439 

 440 

Figure 3. Individual data on selection order for high-value targets as a function of block type and spatial 441 

organization. Disks with whole-line error bars represent data from trials with random spatial organization, 442 

and triangles with dashed-line error bars represent data from trials organized with patches of targets. Blue 443 

lines represent data from the no-value block and red lines data from the value block. Participant IDs were 444 

ordered during the analysis, according to the average selection order. Error bars represent within-individual 445 

standard errors of the mean. 446 

 447 

The ANOVA on selection order for high-value targets confirmed that selection order was significantly 448 

higher in the no-value block (M = 27.0, SD = 2.1) than in the value block (M = 17.1, SD = 4.2; F[1,23] = 449 

81.7, p < .001, ηp
2 = .78, BF10 > 100). Furthermore, the analysis confirmed that spatial organization had 450 

only a small influence – if any – on selection order for high-value targets (F[1,23] = 7.7, p < .01, ηp
2 = 451 

.25, BF10 = 0.21), with a Bayes Factor in favour of the null hypothesis. Similarly, the interaction between 452 

spatial organization and block type (F[1,23] = 7.5, p < .012, ηp
2 = .25, BF10 = 0.34) suggests that the 453 
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potential effect of spatial organization on selection order for high-value targets is only found in the no-454 

value block (organization in patches: M = 26.4, SD = 2.3; random organization: M = 27.7, SD = 2.2; p < 455 

.002 for Tukey HSD post-hoc test), not in the value block (organization in patches: M = 17.0, SD = 4.2; 456 

random organization: M = 17.2, SD = 4.3; p = .89 for Tukey HSD post-hoc test). Again, note however 457 

that the effect of spatial organization should be interpreted with caution, since even in the no-value 458 

block the effect is relatively weak and the Bayes factor is in favour of the null hypothesis. Overall, the 459 

results in Figure 3 suggest that foraging behaviour in the value block is driven by target value, while it 460 

is driven by target proximity in the no-value block. However, the analysis highlights strong individual 461 

differences in the influence of target value on selection order, which could be linked to different levels 462 

of individual internal biases towards value, proximity and priming.  463 

 464 

3.2. The role of overt and covert orienting in target selection during visual foraging 465 

The second aim of this study was to test the potential role of eye movements in target selection during 466 

visual foraging. Hence, this section is dedicated to comparing the mouse foraging task – in which 467 

observers were free to overtly orient to the next target during target selection – and the gaze foraging 468 

task – in which observers had to select targets by fixing their gaze on the current target and therefore 469 

needed to use covert orienting for identifying the next target during target selection. 470 

 471 

 472 

Figure 4. Interaction between effector type, block type and spatial organization on the proportional number 473 

of runs. Blue dots represent individual data points from the no-value block and red dots represent individual 474 
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data points from the value block. The left panel represents data from the mouse foraging task, and the right 475 

panel represents data from the gaze foraging task. Black dots and error bars represent the mean with 95% 476 

confidence intervals. 477 

 478 

Interestingly, our main indicator of foraging strategy – the proportional number of runs – does not 479 

seem to vary much between mouse (M = .39, SD = .09) and gaze (M = .37, SD = .09) foraging (F[1,23] = 480 

4.1, p > .05, ηp
2 = .15, BF10 = 1.45), with only anecdotal evidence in favour of H1. Moreover, as Figure 4 481 

shows, the ANOVA and Bayes Factor analyses suggest that the effector type used for target selection 482 

did not significantly modulate the effects of block type (F[1,23] = 1.4, p = .26, ηp
2 = .06, BF10 = .27) nor 483 

of spatial organization (F[1,23] = 5.8, p < .03, ηp
2 = .20, BF10 = .34) on the proportional number of runs 484 

(note that the 3-way interaction is also non-significant: F < 1, BF10 = .26). Overall, this analysis and 485 

Figure 4 importantly reveal that proportional run numbers do not vary between mouse- and gaze 486 

foraging, suggesting that blocking eye movements during target selection does not affect foraging 487 

strategy. 488 

 489 

 490 

Figure 5. Correlation between selection order for high-value targets during mouse foraging (abscissa) and 491 

selection order for high-value targets during gaze foraging (ordinate). Red dots represent individual data 492 

points from the value block and error bars represent within-individual standard errors of the mean. The grey 493 

dashed line shows the best linear fit with 95% confidence intervals, and the black plain line depicts what would 494 

be absolute equality between mouse and gaze foraging. 495 
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 496 

Figure 5 shows little differences between mouse and gaze foraging in selection order for high-value 497 

targets, as shown by the linear relationship between the selection order for high-value targets during 498 

mouse foraging and the selection order for high-value targets during gaze foraging (r = .77, p < .001, 499 

95%CI = [.53, .90]). In other words, the individual differences observed in the value block in Figure 3 500 

are similar for mouse and gaze foraging, suggesting that individuals do not change their foraging 501 

strategy with effector type. Again, this shows that preventing observers from overtly orienting to the 502 

next target during target selection does not change their foraging strategy. 503 

 504 
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 505 

Figure 6. Results on inter-target times, inter-target distances, fixation durations, saccade amplitudes, 506 

proportional number of fixations and number of distractor selections, that overall show a cost associated with 507 

gaze foraging. Blue dots represent individual data points from the no-value block and red dots represent 508 

individual data points from the value block. In each plot, left panels represent data from the mouse foraging 509 

task, and right panels represent data from the gaze foraging task. Black dots and error bars represent the 510 

mean with 95% confidence intervals. 511 

 512 

It is important to note, however (as shown in Figure 6) that gaze foraging is also associated with more 513 

variable inter-target times (F[1,23] = 34.7, p < .001, ηp
2 = .60, BF10 > 100) and higher inter-target 514 

distances (F[1,23] = 44.1, p < .001, ηp
2 = .66, BF10 > 100) than mouse foraging, suggesting that keeping 515 
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the same foraging strategy with both effector types comes at a cost. Similarly, oculomotor dynamics 516 

revealed that gaze foraging was associated with more numerous eye fixations3 (F[1,23] = 7.0, p < .02, 517 

ηp
2 = .23, BF10 > 100) longer fixation duration (F[1,23] = 34.7, p < .001, ηp

2 = .60, BF10 > 100) and lower 518 

saccade amplitude (F[1,23] = 49.3, p < .001, ηp
2 = .68, BF10 > 100) than mouse foraging (see Figure 6). 519 

In the general discussion we suggest that these data indicate that gaze foraging is harder than mouse 520 

foraging (see also Tagu & Kristjánsson, 2020, for similar discussion), and that although blocking overt 521 

orienting during target selection does not modulate foraging strategies, this comes at a cost. A final 522 

piece of evidence for the higher cost associated with gaze than mouse foraging is the higher number 523 

of distractor selections made by observers during gaze (M = 6.1, SD = 4.4) than mouse foraging (M = 524 

1.1, SD = 0.7; F[1,23] = 35.6, p < .001, ηp
2 = .61, BF10 > 100; see Figure 6).   525 

 526 

4. Discussion 527 

Target selection during visual foraging is accomplished with two successive processes: first the 528 

identification of a set of candidate targets for the next selection, and second the selection of the best 529 

option among these candidates. Past research has mainly focused on the second step and has been 530 

aimed at identifying the factors influencing the identity of the target being selected, which notably 531 

include internal biases towards target value, proximity and priming (see e.g., Wolfe et al., 2018). 532 

However, little attention has been paid to the first step of the target selection process, namely the 533 

factors influencing the identification of a set of candidates. Here, our aims were (1) to confirm that 534 

individual differences found on run patterns during visual foraging could be explained by internal 535 

biases towards target value, proximity and priming, using a single feature-foraging task, and (2) to 536 

examine the respective contributions of overt and covert orienting to the first step of target selection, 537 

the identification of a set of candidates for the next selection.  538 

                                                           

3 Note that, as for the number of runs, analyses were actually run on the “proportional” number of eye fixations, 
that corresponds to the number of fixations divided by the number of target selections in the trial. 
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 539 

4.1. Balancing value, proximity and priming 540 

Critically, our results show that both target value and proximity strongly shape foraging behaviour, as 541 

shown by the main effects of the target value and spatial organization manipulations on almost all 542 

dependent variables. Moreover, the results found on selection order suggest some hierarchization 543 

between value and proximity: when all items have the same value, participants mainly prioritize 544 

proximal targets over primed targets, but when targets have differing values, participants tend to 545 

prioritize more valuable targets. This result is consistent with previous research showing strong 546 

prioritization of high-value targets, even when they are rare (e.g., Wolfe et al., 2018). One could 547 

however argue that the effect of block type in our study could be driven more by the difference in task 548 

instructions between the blocks (earn a prespecified number of points in the value block or select all 549 

the targets on screen in the no-value block) than by the difference in target value manipulations. The 550 

results of Á. Kristjánsson et al. (2020) however suggest that this is not very likely since they found no 551 

difference in foraging strategy between an exhaustive foraging task and a non-exhaustive foraging 552 

task. Moreover, Wolfe et al. (2019) found slightly different foraging strategies in the two tasks showing 553 

that observers asked to select all available targets tend to prioritize primed targets (i.e., they foraged 554 

in few long runs) compared with observers who could move to a new display before having selected 555 

all available targets (who foraged in many runs of short length). So, although we acknowledge that 556 

these differences in task instructions may have slightly affected the results, we argue that the 557 

instruction we gave in the no-value block (select all available targets to terminate the trial) was more 558 

likely to trigger run behaviour similar to what we observed in the value block (i.e., few long runs). 559 

Observing an effect of block type on run behaviour in these conditions therefore highlights how large 560 

and robust the influence of target value on foraging strategy is. 561 

 562 
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Interestingly, using single-target visual search, Nowakowska et al. (2021) recently investigated whether 563 

individual differences in visual search performance could be explained by differences in motivation. In 564 

one of their experiments, the manipulation of motivation was achieved with reward manipulations. 565 

Participants had to complete two blocks of trials, and after having completed the first block, 566 

participants from the reward group were told that they would receive more money if they improved 567 

their performance in the second block compared to the first block, while participants from the flat-568 

payment group were only asked to be as fast and as accurate as possible. The results however revealed 569 

that although both groups improved their performance from the first to the second block, this 570 

improvement was not larger for the reward group than for the flat-payment group. The authors 571 

therefore conclude that practice, rather than motivation and reward, makes participants more 572 

efficient searchers. This absence of a reward effect may appear contradictory with the strong effect of 573 

block type in the present study. However, before comparing the two experiments, it is important to 574 

delineate the methodological differences that may explain the different results. Firstly, while 575 

Nowakowska et al. (2021) manipulated explicit reward (the actual money earned by the participants 576 

after having completed the experiment), we here manipulated target value: in the value block, some 577 

targets were worth more points than others, but participants did not earn any more money in the 578 

value block compared with the no-value block. Actually, in the current study participants were equally 579 

motivated in both blocks of trials. Note however that the absence of reward does not necessarily 580 

means less motivation. On the contrary, here, after each trial, participants saw a feedback screen 581 

showing the trial response time and were therefore strongly motivated to “beat their score” on the 582 

subsequent trials (a bit like in a video game). Secondly, while the reward manipulation in Nowakowska 583 

et al. (2021) involves a between-subject design, the target value manipulation we used involves a 584 

within-subject design. This is important and may partly explain the differences between the two 585 

studies. Thirdly, and maybe most importantly, in Nowakowska et al. (2021) observers had to find a 586 

single target per trial, while the current study involves many target selections per trial. Recent studies 587 

have shown that the results from single-target visual search do not necessarily apply to visual foraging 588 
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tasks, and vice versa (see e.g., T. Kristjánsson et al., 2020; Ólafsdóttir et al., 2020). To our knowledge, 589 

reward manipulations and differences in motivation have actually never been tested in visual foraging 590 

tasks, and future studies are needed to test whether the results from Nowakowska et al. (2021) could 591 

apply to foraging behaviours. Similarly, the potential generalizability of the foraging effects described 592 

here to single-target visual search should be addressed in future studies. 593 

 594 

A last line of thought that we would like to highlight regarding the interactions between value, 595 

proximity and priming comes from previous research on single-target search suggesting that priming 596 

of features boosts both the speed of the search, as evidenced by lower reaction times with repeated 597 

features (Goolsby & Suzuki, 2001; Maljkovic & Nakayama, 1994; Treisman, 1992), and perceptual 598 

sensitivity, as evidenced by higher accuracy, or d’, with repeated features (Ásgeirsson et al., 2015; 599 

Geyer et al., 2010; Sigurdardottir et al., 2008). This research therefore reveals that single-target search 600 

is more efficient when based on priming of previous features than when based on spatial location (for 601 

recent reviews, see Á. Kristjánsson & Ásgeirsson, 2019; Wolfe & Horowitz, 2017). As discussed in the 602 

introduction, foraging studies have however revealed that the prioritization of priming over spatial 603 

location – or proximity – depends on other factors, such as task difficulty (Á. Kristjánsson et al., 2014), 604 

and that during easy feature-based foraging, favouring proximity can be equally efficient, or even more 605 

efficient, than favouring priming. Here, we show that target value is also an important factor to 606 

consider, and that value tilts the selection balance towards priming, even during an easy feature-based 607 

foraging task. Hence, our results (notably on inter-target times) replicate the increase in search speed 608 

with priming, previously found in single-target visual search, using multitarget foraging. Future studies 609 

may reveal whether value and priming also boost perceptual sensitivity during visual foraging, for 610 

example by using a paradigm allowing assessment of perceptual performance. One possibility could 611 

be for example the addition of an adjustment task where observers judge the exact colours of the 612 

target they just selected on a colour wheel. If priming boosts perceptual sensitivity during foraging, 613 
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performance on the adjustment task should be better when the adjustment is made within a run than 614 

when it is made just after a switch.  615 

 616 

4.2. Individual differences and internal biases 617 

As discussed in the introduction, individual differences are often observed in visual foraging tasks 618 

(Clarke et al., 2020; Jóhannesson et al., 2017; Á. Kristjánsson et al., 2014; Tagu & Kristjánsson, 2020; 619 

Wolfe et al., 2018). Individuals show, by default, internal biases towards value, proximity and priming 620 

(Wolfe et al., 2018). There is however evidence that these internal biases can be weighted by factors 621 

such as task difficulty (e.g., Á. Kristjánsson et al., 2014), time constraints (e.g., Thornton et al., 2020) 622 

or selection modality (e.g., Thornton et al., 2019). Importantly, the current results (1) confirm the 623 

existence of different internal biases towards value, proximity and priming, as observed in Figure 3, 624 

and (2) show that these internal biases can be weighted by the target value manipulation, but that the 625 

effector manipulation does not affect foraging strategy much. Consistent with Clarke et al. (2020), this 626 

suggests that these by-default internal biases – or individual differences – are stable over repetitions 627 

of the same task (i.e., repetition of a given block type with both effectors), but that an observer’s 628 

foraging behaviour in one task (e.g., no-value block) is not predictive of their behaviour in another task 629 

(e.g., value block). Again, we do, however, see some sort of hierarchization between these internal 630 

biases. Although the magnitude of the effect of block type on selection order differs between 631 

individuals, our results clearly show that when targets are associated with differing value, all observers 632 

tilt their selection balance towards value (rather than proximity). Moreover, the effect of target 633 

proximity, found on selection order in the no-value block, disappears in the value block, as if target 634 

value had “won” the competition. These results therefore reinforce the assumption that whatever the 635 

strength of the observer’s default internal biases, target value seems to weigh higher in the selection 636 

balance than proximity and priming (see also Wolfe et al., 2018; Wolfe & Horowitz, 2017). Importantly, 637 

now that the current study has cast light on how internal biases towards value, proximity and priming 638 

could affect target selection and lead to individual differences in foraging behaviour, future studies 639 
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from visual and computer science could use these data to build new computational models of foraging 640 

behaviour for precisely predicting the foraging behaviour of individuals according to the task 641 

characteristics. Such future studies could make an important contribution to the young field of human 642 

visual foraging. 643 

 644 

4.3. Overt and covert orienting 645 

Another crucial result is that our effector type manipulation did not have much influence on run 646 

patterns and selection order, suggesting that observers kept foraging using the same strategy during 647 

mouse and gaze foraging. With this manipulation, our aim was to investigate the role of eye 648 

movements in the first step of the target selection process, namely the identification of a set of 649 

candidates for the next selection. During mouse foraging, observers were free to overtly orient within 650 

the display, whereas this behaviour was restricted during gaze foraging where observers were more 651 

likely to use covert orienting to avoid involuntary distractor selections. The results however indicate 652 

that favouring overt or covert orienting for the identification of a set of candidates does not have much 653 

influence on the selection of one of these candidates. On the contrary, the results suggest that 654 

observers modified their foraging and oculomotor dynamics (e.g., reaction times, fixation durations) 655 

in order to continue foraging with the same strategy with both effectors. Namely, gaze foraging was 656 

associated with a higher number of fixations, larger saccade amplitude and shorter fixation durations 657 

than mouse foraging. These results are consistent with visual exploration in a focal mode during mouse 658 

foraging and an ambient mode during gaze foraging (Goldberg & Kotval, 1999; Krejtz et al., 2016; Over 659 

et al., 2007; Unema et al., 2005; Velichkovsky et al., 2002). This is surprising as previous research (Tagu 660 

& Kristjánsson, 2020) did not reveal any differences in oculomotor dynamics between mouse and gaze 661 

foraging. Note however that the study of Tagu & Kristjánsson (2020) involved a comparison between 662 

feature-based and conjunction-based foraging, and that the effects linked to this factor were so strong 663 

that they might have masked the potential effects of other manipulations. Here, by using feature-664 
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based foraging only, our paradigm may have been far more sensitive to the effector-type manipulation, 665 

revealing differences in oculomotor dynamics between mouse and gaze foraging. 666 

 667 

Tagu & Kristjánsson (2020) showed that easy feature-based foraging was associated with the focal 668 

mode (long fixation durations and small saccade amplitudes), and difficult conjunction-based foraging 669 

was associated with the ambient mode (short fixations and large amplitudes) of visual exploration. 670 

Hence, the association of gaze foraging with the ambient mode found here may suggest that gaze 671 

foraging was a more difficult task than mouse foraging. Consistent with this assumption, the results of 672 

Tagu & Kristjánsson (2020) revealed that participants made more distractor selections and were more 673 

likely to select items in runs (i.e., to prioritize priming over proximity) during gaze-conjunction foraging 674 

than during mouse-conjunction foraging. During both mouse and gaze foraging, participants were 675 

more likely to prioritize priming over proximity during conjunction-based foraging, compared with 676 

feature-based foraging. Here, in an easier feature-based foraging paradigm, participants were overall 677 

more likely to prioritize proximity over priming (especially in the no-value block), as shown by the very 678 

high number of runs. However, it seems that continuing to prioritize proximity over priming during 679 

more difficult gaze foraging came at a cost, as shown notably by the higher number of distractor 680 

selections, the higher number of fixations, and exploration in an ambient mode (which by definition 681 

would not favour a strategy consisting of locating the nearest target, see Tagu & Kristjánsson, 2020). 682 

All in all, the current results and past evidence therefore suggest that the most efficient and least costly 683 

strategy during gaze foraging would be to forage in long runs of selecting items from the same category 684 

and to prioritize priming over proximity (see also Thornton et al., 2019).  685 

 686 

Importantly, our results suggest that eye movements are not required for completing the first step of 687 

the target selection process, namely the identification of a set of candidates for the next selection. In 688 

other words, being able to overtly orient (mouse foraging) or not (gaze foraging) during target selection 689 

does not seem to modulate behaviour at the second step, the selection of the best candidate target. 690 
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It is however important to note that in our tasks, there is no guarantee that observers used overt 691 

orienting during mouse foraging. Even if the paradigm allowed them to overtly orient, they could, of 692 

course, covertly attend to peripheral targets to identify a set of candidates for the next selection. 693 

Consistent with this assumption, our results revealed that observers made fewer fixations and 694 

saccades during mouse than during gaze foraging. Moreover, the fact that being able to overtly orient 695 

or not does not change foraging strategy suggests that covert attention is involved at the first step of 696 

the target selection process, both during mouse and gaze foraging. Although the effector manipulation 697 

did not influence foraging strategy, it is worth noting that it did affect oculomotor dynamics. Moreover, 698 

gaze foraging, where it is more difficult to use overt orienting, comes at a cost, with higher inter-target 699 

times and distances and more distractor selections. Hence, our results suggest that overt orienting is 700 

not involved in the identification of candidates for the next selection, but that it is involved in the 701 

selection of the best option among these candidates.  Future research may examine more specifically 702 

the potential roles of overt and covert orienting in the target selection process, focusing in particular 703 

on the importance of covert attention for target selection. Preview methods (Castelhano & Henderson, 704 

2007), which consist in flashing the search display for a fraction of seconds only, may for example be 705 

another interesting tool to consider for inducing covert orienting during visual foraging. 706 

 707 

In addition to the potential involvement of overt and covert orienting, another fundamental difference 708 

between mouse and gaze foraging is that during mouse foraging, observers can anticipate the next 709 

selection with eye movements. While selecting the current target, observers may already have 710 

identified a set of candidates for future selections, for example with covert orienting, and may have 711 

already initiated the planning of an overt movement towards the target they want to select next 712 

(Kosovicheva et al., 2020; Thornton & Horowitz, 2004). In four experiments, Kosovicheva et al. (2020) 713 

indeed recently demonstrated that during visual foraging the selection of the next target can be 714 

planned ahead, in parallel with the current selection. But if such anticipation is possible during mouse 715 

foraging, the gaze foraging paradigm prevented observers from anticipating the next selection with 716 
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their eyes. In the current study, the distance between eye position and current target position at the 717 

time of target selection is on average 2.07° (SD = 0.71°) during mouse foraging, while it is only 0.73° 718 

(SD = 0.11°) during gaze foraging. In other words, participants’ eyes may already be “on their way” 719 

towards the next target during mouse foraging, while this was not the case during gaze foraging. 720 

Hence, although the effector-type manipulation revealed that the identification of candidates for the 721 

next selection can be performed through covert orienting, it also confirms that the selection of the 722 

next target can be planned in advance, in parallel with the current selection. All in all, our results 723 

therefore suggest that overt orienting is not needed for identification of a set of candidate targets for 724 

the next selection, but that it may be necessary for efficient selection of the best option among these 725 

candidates. This last assumption would moreover explain why the effector-type manipulation modified 726 

foraging and oculomotor dynamics without influencing foraging strategy. This assumption however 727 

needs to be addressed in future foraging studies specifically designed to test the involvement of overt 728 

and covert orienting at the different stages of the target selection process.  729 

 730 

4.4. Summary and conclusions 731 

For the first time, we have assessed how target value, proximity and priming affect foraging strategy, 732 

foraging dynamics and oculomotor dynamics in a multi-target visual search task. Moreover, by 733 

contrasting mouse and gaze foraging, we have investigated how differently favouring overt and covert 734 

orienting could affect foraging behaviour. Our results critically reveal some hierarchization between 735 

the three forces that tilt the selection balance as the presence of targets with differing values overrides 736 

any potential influence of target proximity on foraging behaviour. Moreover, we have shown that 737 

target value modifies all aspects of foraging behaviour by influencing foraging strategy, foraging 738 

dynamics and oculomotor dynamics. Finally, by contrasting mouse and gaze foraging we have shown 739 

that overt orienting is not necessary for identifying candidates for the next selection, but that it may 740 

be involved in the selection of the best option among these candidates. 741 

 742 
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