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 13 

ABSTRACT 14 

Cannabis sativa has a long history of domestication both for its bioactive compounds and its 15 

fibers. This has produced hundreds of varieties, usually characterized in the literature by 16 

chemotypes, with Δ9-THC and CBD content as the main markers. However, chemotyping could 17 

also be done based on minor compounds (phytocannabinoids and others). In this work, a 18 

workflow, which we propose to name cannabinomics, combines mass spectrometry of the 19 

whole metabolome and statistical analysis to help differentiate C. sativa varieties and 20 

deciphering their characteristic markers. By applying this cannabinomics approach to the data 21 

obtained from 20 varieties of C. sativa (classically classified as chemotype I, II, or III), we 22 

compared the results with those obtained by a targeted quantification of 11 23 

phytocannabinoids. Cannabinomics can be considered as a complementary tool for 24 

phenotyping and genotyping, allowing the identification of minor compounds playing a key 25 

role as markers of differentiation. 26 

 27 

Keywords: Cannabis, cannabinomics, chemotypes, metabolome, phytocannabinoids. 28 

 29 
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1. Introduction  1 

 2 

 Cannabis sativa L. (Cannabaceae) is an herbaceous annual plant cultivated since 3 

ancient times mainly in Central Asia and South-East Asia. It has been used as a source of fibers, 4 

foods, and its specific class of specialized metabolites, called cannabinoids, which are the basis 5 

for religious, recreational, and medicinal purposes [1]. Recent analysis suggests that Cannabis 6 

producing high levels of psychoactive compounds was smoked as part of ritual activities in 7 

western China at least 2500 years ago [2]. So far, over 600 constituents have been reported in 8 

Cannabis plants, including ≈ 200 terpenes (mono-, di-, sesqui-and triterpenes), ≈ 25 flavonoids, 9 

≈ 150 cannabinoids, and other compounds like stilbenes, lignans, phytosterols, alkaloids, and 10 

amides [3,4]. Cannabinoids from C. sativa, localized in glandular trichomes, are also called 11 

phytocannabinoids to distinguish them from the mammalian endogenous (endocannabinoids) 12 

or synthetic compounds able to bind to cannabinoid receptors. These terpenophenolic 13 

compounds (i.e., isoprenylated polyketides) are considered as the active constituents of 14 

Cannabis plants and may contain 19 to 23 carbons depending on the length of the alkyl side 15 

chain [5]. They originate from the convergence of two distinct biosynthetic pathways: the 16 

polyketide pathway, giving rise to olivetolic acid (OLA) or its C1, C5 or C7 analogs, and the 17 

plastidial methyl-D-erythritol 4-phosphate (MEP) pathway, leading to the prenylation of OLA 18 

with geranyl diphosphate (GPP) that undergoes oxidative cyclization reactions [6,7]. Δ9-19 

tetrahydrocannabinolic acid (Δ9-THCA), cannabidiolic acid (CBDA), cannabichromenic acid 20 

(CBCA), and their common precursor cannabigerolic acid (CBGA) are the major 21 

phytocannabinoids found natively in most of the varieties. These acidic cannabinoids are 22 

rather unstable and may spontaneously lose the carboxyl group with exposure to light, air or 23 

heat. Their decarboxylated analogs like cannabidiol (CBD) or Δ9-tetrahydrocannabinol (Δ9-24 

THC) show a different, and often higher, bioactivity [8,9]. Many phytocannabinoids were 25 

characterized between the 1960s and 1980s [10–12], although new cannabinoids, sometimes 26 

showing cannabimimetic action, are continuously identified [5,13–15]. Cannabis chemotypes 27 

(also called phenotypes or chemovars) are commonly split into three groups based on their 28 

Δ9-THC/CBD ratio: Δ9-THC/CBD >> 1 (chemotype I, “drug-type”), Δ9-THC/CBD | 1 (chemotype 29 

II, “intermediate-type”), Δ9-THC/CBD << 1 (chemotype III, “fiber-type” or “hemp”) [16–18]. 30 

Additional chemotyping can also be based on the terpenoids, with at least five chemotypes 31 

described [19–21]. Hemp usually contains significant amounts of non-intoxicating 32 
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cannabinoids, e.g. cannabidiolic acid (CBDA) or cannabigerolic acid (CBGA). Although 1 

environmental factors play a key role in determining the amount of phytocannabinoids 2 

present in the plant at different growth stages, the Δ9-THC/CBD ratio is under genetic control 3 

and is quite stable for one given chemotype [22]. 4 

 5 

 To date, medicinal use of Cannabis is authorized in more than 50 countries, while its 6 

recreational use is authorized in around 20 countries. In December 2020, The UNODC 7 

Commission on Narcotic Drugs removed Cannabis from Schedule IV, which list drugs being 8 

particularly liable to abuse and to produce ill effects, to incorporate it into Schedule I, which 9 

allows its therapeutic use [23]. Cannabis and isolated phytocannabinoids have shown 10 

beneficial effects for chronic pain, multiple sclerosis, neurodegenerative disorders, treatment-11 

resistant epilepsy, nausea and vomiting associated with chemotherapy diseases, cancer, 12 

cardiovascular disorders, metabolic disorders and more [24–28]. Besides its current move 13 

towards medicinal Cannabis through an experimental status for 2 years (2021-2023), France 14 

has been for decades a leading producer of hemp in Europe. The commercial hemp seed 15 

producer (HEMP-it, formerly known as Fédération Nationale des Producteurs de Chanvre) 16 

holds a large number of Cannabis fiber-type varieties [29–33]. 17 

 18 

 The scientific literature on Cannabis has grown at a staggering pace, with 10 articles 19 

published per day. Yet, a majority of them pertain to Δ9-THC and CBD and to far less extent 20 

the varin type Δ9-THCV, leaving the remaining metabolites somewhat in the shadows. 21 

Chemical differentiation of Cannabis chemotypes is currently done by using 2 to 15 major 22 

cannabinoids as principal markers. Meanwhile, comprehensive metabolomic approaches 23 

allowing the detection and annotation of numerous metabolites are currently becoming 24 

mainstream in plant science and have become a key to decipher their biological roles. 25 

Techniques used for detection are hyphenated liquid or gas chromatography-mass 26 

spectrometry (LC- or GC-MS) or nuclear magnetic resonance spectroscopy (NMR), both 27 

techniques being assisted by bioinformatics and statistical analysis. We applied a LC-MS-based 28 

metabolomics workflow on medium polarity extracts of C. sativa leaves and flowers to classify 29 

chemotypes as well as map and annotate metabolites of the phytocannabinoids family and 30 

other phytochemical classes. In a collection of 20 genetically diverse chemotypes, we 31 
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compared the ability of this approach to decipher chemotypes markers with an approach 1 

based only on major cannabinoids quantification.  2 

 3 

2. Material and methods 4 

 5 

All solvents used for chromatography were LC-MS grade (HiPerSolv Chromanorm, VWR, 6 

France, Fontenay-Sous-Bois). Milli-Q RG system (Millipore, France) was used to produce high 7 

purity water of 18.2 MΩ.cm resistivity. Formic acid was >98% for LC-MS (Fluka, Buchs, 8 

Switzerland). Phytocannabinoids standards (CBDA, CBGA, CBCA, Δ9-THCA, CBD, CBG, CBC, Δ9-9 

THC, Δ8-THC, THCV, and CBN) were purchased from Sigma-Aldrich (St. Louis, MO, USA) and 10 

immediately stored at -30 °C.  11 

 12 

2.1. Plant material 13 

 14 

Thirteen fiber-type (chemotype III) and three intermediate-type (chemotype II) Cannabis 15 

sativa varieties were obtained from the HEMPT-it ADN company (Beaufort-en-Anjou, France) 16 

and four drug-type varieties (chemotype I) were obtained from CBDIS company (Paris, France) 17 

(see the list and description of varieties in supp info 1). Chemotype III and II samples were 18 

dried at 40°C, while chemotype I was dried at 80°C; all samples were finely ground, then stored 19 

at room temperature.  20 

 21 

2.2. Metabolome analysis 22 

 23 

For each sample, 100 mg were extracted in triplicate using 5 mL of acetonitrile/methanol 24 

(8:2 v/v) under sonication for 30 minutes. Extracts were then centrifuged at 4000 g for 15 25 

minutes. Supernatants were filtered using PTFE membrane syringe filter, (50 mm x 0.2 μm) 26 

and stored in vials at -30 °C. A quality control (QC) sample was created by pooling aliquots 27 

from each extract. Extracts were diluted 10 times and standards prepared at 10 µg/mL in the 28 

same solvent. Ultra-High Performance Liquid Chromatography – High-Resolution MS 29 

(UHPLC−HRMS) analyses were performed on a Q Exactive Plus orbitrap mass spectrometer, 30 

equipped with a heated electrospray probe (HESI II) coupled to a U-HPLC Ultimate 3000 RSLC 31 

system (Thermo Fisher Scientific, France). Separation was done on a Luna Omega Polar C18 32 
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column (150 mm × 2.1 mm i.d., 1.6 μm, Phenomenex, Sartrouville, France) equipped with a 1 

guard column. The mobile phase gradient used water containing 0.05 % formic acid (A) and 2 

acetonitrile containing 0.05% of formic acid (B). A gradient method at a constant flow rate of 3 

0.3 mL/min was applied under the following conditions: 60 to 100 % B in 20 min, 100 % B over 4 

2 min, equilibration over 4 min. Column oven temperature was set to 30°C, autosampler 5 

temperature was set to 5°C, and the injection volume was fixed to 2μL. Mass detection was 6 

performed in positive ionization (PI) mode at resolution 30,000 [fullwidth at half-maximum 7 

(fwhm) at 400m/z] for MS1 and resolution 17,500 for MS2 with automatic gain control (AGC) 8 

target of 1×106 for full scan MS1 and 1×105 for MS2. Ionization spray voltage was set to 3.5 kV 9 

for PI, and the capillary temperature was set to 256 °C. The mass scanning range was m/z 10 

100−1500. Each full MS scan was followed by a data-dependent acquisition of MS/MS spectra 11 

for the six most intense ions using stepped normalized collision energy of 20, 40, and 60 eV.  12 

 13 

2.3. Data mining process 14 

 15 

LC-MS data were processed following the MSCleanR workflow [34]. Briefly, samples were 16 

processed with MS-DIAL version 4.38 [35]. MS1 and MS2 tolerances were set to 0.01 and 0.05 17 

Da, respectively, in centroid mode for each dataset. Peaks were aligned on QC reference with 18 

a RT tolerance of 0.2 min, a mass tolerance of 0.015 Da, and minimum peak height detection 19 

at 4.5 × 106. MS-DIAL data were deconvoluted with MS-CleanR by selecting all filters with a 20 

minimum blank ratio set to 0.8, and a maximum relative standard deviation (RSD) set to 40. 21 

The maximum mass difference for feature relationships detection was set to 0.005 Da, and 22 

the maximum RT difference was set to 0.025 min. The Pearson correlation links were applied 23 

for correlation ≥ 0.8 and p-value significance threshold = 0.05. Two peaks were kept in each 24 

cluster for further request and the kept features were annotated with MS-FINDER version 3.50 25 

[36]. The MS1 and MS2 tolerances were set to 5 and 15 ppm, respectively. Formula finder was 26 

exclusively processed with C, H, O, N, atoms. For compounds annotation, several sets of data 27 

were used: 1) experimental LC-MS/MS data of 11 phytocannabinoid standards, analyzed on 28 

the same instrument and with the same method, were used as references using MSDial based 29 

on accurate and exact mass, fragmentation, retention time; 2) compounds identified in the 30 

Cannabis genus and the Cannabaceae family, generated from literature data (Dictionary of 31 

Natural Products,  DNP on DVD v. 28.2, CRC press) were mined by MS Finder based on exact 32 
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mass and in-silico fragmentation; 3) a generic database encompassing exact mass and MS/MS 1 

data of compounds from natural products databases included in MS-FINDER (KNApSAcK, 2 

PlantCyc, ChEBI, NANPDB, UNPD, and COCONUT). Statistical analysis and mass spectra 3 

similarity network (molecular network) was carried out using the open-source software 4 

MetGem [37] on final .msp and .csv files obtained with MSCleanR. Values used were MS2 m/z 5 

tolerance = 0.05 Da, minimum matched peaks = 4 and minimal cosine score value = 0.7. 6 

Visualization of the network was performed on Cytoscape version 3.8.2 [38]. 7 

 8 

2.4. Genotyping 9 

 10 

Fifteen cultivars from chemotypes II and III (excepted Epsilon variety) were studied 11 

with 24 plants per cultivar to perform genetic analyses. DNA extraction was performed with 12 

the Macherey nagel NucleoSpin Plant II kit from foliar discs taken from young plant leaves. 13 

Sixteen SSR markers (see supp info 2) were chosen for their polymorphism and repeatability 14 

[39,40]. The PCR MIX contains 10 ng of genomic DNA, 250 µM dNTP, 0.2 µM of primer, 2.0 mM 15 

of MgCl2, 2.0 µg.µl-1 of BSA, 10 mM of PCR buffer, and 0.3 units Taq Gold polymerase (Perkin 16 

Elmer). PCRs consisted of a 5 min preheat at 95°C followed by two rounds of cycles. 17 

Touchdown PCR consisted of 10 cycles of 95°C denaturation for 15 s, 63°C touchdown to 53°C 18 

annealing for 30 s, and 72°C extension for 30 s. This was followed by 19 cycles of 95°C 19 

denaturation for 15 s, 52°C annealing for 30 s, 72°C extension for 1 min, and one 72°C final 20 

extension for 10 min. 21 

 22 

2.5 Quantification of main phytocannabinoids  23 

 24 

Mixes of 11 phytocannabinoids at six final concentrations (10000, 1000, 100, 10, 1, 0.1, 25 

and 0.001 ng/mL) were performed to obtain calibration curves for quantitative analysis. All 26 

extracts were profiled using the LC-MS method described above and were processed using 27 

MZmine 2.53 [41] Briefly, after mass detection, the chromatogram was built and 28 

deconvolutioned using ADAP chromato-builder and wavelets (ADAP) algorithms [42]; a 29 

grouping of isotope patterns (peak grouper algorithm) and a unique pick list aligned was 30 

created; finally, a gap-filling (peak finder algorithm) was performed. A final list of the peak 31 

height for each standard at each concentration was carried out and a calibration curve was 32 
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created for each standard. Validation parameters were determined following the 1 

International Conference on Harmonization (ICH) Guidelines [43], and the following 2 

characteristics were evaluated: linearity, limit of detection (LOD), and limit of quantification 3 

(LOQ). 4 

 5 

2.6 Statistical and genetic analyses 6 

 7 

The final annotated metabolome dataset generated by the MS-CleanR workflow was 8 

uploaded on the MetaboAnalyst 5.0 online platform [44]. The data were normalized by sum 9 

and scaled by unit variance before statistical analysis. First, principal component analysis (PCA) 10 

was applied as an exploratory data analysis to provide an overview of LC-MS fingerprints. 11 

Then, a hierarchical cluster analysis (HCA) was performed to obtain a dendrogram of varieties 12 

using the metabolome dataset and the phytocannabinoids quantification dataset. Briefly, for 13 

each variable the average value across replicates was calculated, then distance matrices were 14 

obtained between the 20 varieties using either 1-r (the Pearson correlation coefficient) for the 15 

metabolome dataset or the Euclidean distance for the phytocannabinoids quantification 16 

dataset, followed by HCA on each matrix using Ward’s minimum variance criterion. On the 17 

clusters obtained, a partial least squares discriminant analysis (PLS-DA) was conducted using 18 

clusters as Y value and the top 50 features were plotted on a heatmap using ANOVA. 19 

Additionally, to look for specific biomarkers of each variety the same statistical approach was 20 

applied within each cluster. 21 

Genetic differentiation among fifteen Cannabis varieties based on 16 microsatellite 22 

markers was measured by FST using the R package adegenet, and visualized by HCA using 23 

Ward’s minimum variance criterion. To evaluate the degree of genetic structuring of cannabis 24 

varieties without a priori, we used the software STRUCTURE v2.3.4 [45], which implements a 25 

Bayesian algorithm to identify K user-defined clusters of genetically homogeneous individuals. 26 

We analyzed the data with K = 2 to 20. The analysis produced for each individual a proportion 27 

of membership to each cluster. We used both the ‘‘admixture’’ and ‘‘no admixture’’ models. 28 

Allelic frequencies were set to correlate among populations. All analyses were replicated 10 29 

times to ensure proper convergence of the MCMC with a burn-in of 100 000 steps and a MCMC 30 

length of 1 000 000 after burn-in. Posterior inference of the optimal number of cluster was 31 

performed using the ad hoc statistic ΔK based on the likelihood [46]. 32 
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3. Results and Discussion  1 

 2 

3.1. Cannabinomics reveals major discriminant compounds between Cannabis 3 

varieties 4 

 5 

Identification of phytocannabinoids in Cannabis plants is difficult for several reasons: 6 

only a few of them are commercially available, those that are available ones are expensive to 7 

purchase, access to some standards is restricted by national regulations, and the carboxylic 8 

analogs are of highly labile nature. Therefore, most studies encompass only a handful of 9 

standards. An increasing number of studies use mass spectral libraries (i.e. NIST20 library) [47] 10 

or in-house databases [48] for the annotation of the Cannabis metabolome [47], in a 11 

metabolomic approach variously referred to as Cannabinomics, Cannabinoidomics, or 12 

Phytocannabinomics [49–51]. We used several mass spectral libraries and three levels of 13 

annotations (see above in 2.3), allowing in most cases an annotation of level 2 according to 14 

the metabolomic standard initiative [52]. Application of the MSCleanR workflow to the entire 15 

LC-MS dataset in positive mode resulted in 396 compounds. Annotation prioritization was 16 

done by ranking from highest to lowest confidence as follows: 1) standards, 2) genus and 17 

family DB, and 3) generic DB. Among the compounds detected, 193 had a match in the 18 

Cannabis genus (48.7%), 41 in the Cannabaceae family (10.4%), 84 in the generic database 19 

(21.2%) while 78 remained unannotated (19.7%) (Table in Supp info 3). Extraction with 20 

ACN/MeOH 8:2 v/v is expected to yield the medium and low polarity parts of the metabolome, 21 

including phytocannabinoids and non-polar compounds. The set of extracts allowed 22 

identification or annotation of 105 phytocannabinoids under acidic or neutral form (26.5% of 23 

compounds annotated). Other metabolites annotated mostly included flavonoids and 24 

terpenoids (mono-, sesqui-, triterpenoids, prenol lipids) (Figure 1). Unknown compounds 25 

distributed evenly along the chromatogram and their masses spaned in the m/z 300-1200 26 

range. Structural similarity between compounds, assessed via fragmentation pattern 27 

similarity, is reflected by the molecular network (MN) (Figure 1 and supp info 4). 28 

Phytocannabinoid standards dispatched into 4 clusters, following pathways of fragmentations 29 

consistent with the previous report of Berman et al. [53]. One cluster gathers neutral forms of 30 

THC and CBD, with several compounds being annotated as isomers of THC (∆8-, ∆7-, ∆4-, ∆4-8-, 31 

∆4-, ∆4-THC), as well as C3-derivatives (varin-type). Another cluster gathers acidic derivatives 32 
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of THC, CBD and CBC. Both neutral and acidic derivatives of CBG-type cannabinoids are 1 

grouped together in another cluster. Four compounds are grouped with CBN in a cluster that 2 

contains degradation products, annotated as cannabinodiol isomers and cannabinol 3 

hydroxylated on the side chain. It is noteworthy that CBE derivatives (degradation products of 4 

CBD) are clustered with CBG derivatives. Cannabicyclolic acid (CBL) derivatives, which are 5 

degradation products of cannabichromene (CBC), are clustered in a group containing 14 6 

compounds. 7 

 8 
Figure 1. Mass spectral similarity network (molecular network) of annotated compounds 9 

based on MetGem software and visualized by Cystoscape. Colors show the major class of 10 

compounds in the metabolome for all Cannabis varieties, based on Classyfire attribution [54] 11 

and MetGem clustering. 12 
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Currently, more than 600 Cannabis varieties are commercially available whose 1 

genetics, for many of them, is only partially known [49]. In this work, we characterize twenty 2 

varieties of Cannabis (sixteen hemp varieties and four recreative varieties) using metabolomic 3 

tools. In order to visualize relationships between varieties based on their genotypes and 4 

phenotypes, hierarchical cluster analyses (HCA) were performed on each set of data (Figure 5 

2-A to C). HCA based on genetic differentiation among varieties (FST) suggests a clustering into 6 

two main genetic groups (showed in red and green, Fig 2-A) as confirmed by the STRUCTURE 7 

analyses (supp info 5). Most of the varieties grouped together (in green) belong to a pool of 8 

varieties developed by Hemp-It by cross-breeding and massal selection, still showing a 9 

substantial amount of genetic diversity. Clustering based on LCMS profiles on a wider panel of 10 

varieties (Fig 2-B and 2-C) yields a very similar clustering for both global metabolome data and 11 

quantified main cannabinoids data. These first analyses validate the long-standing literature 12 

classifying C. sativa varieties based on the THC/CBD ratio, leading to 3 chemotypes: hemp-13 

type (chemotype III), drug-type (chemotype I), and intermediate type (chemotype II) [16–18]. 14 

Among the varieties we studied, chemotype III encompasses cluster 3 (CBD-majority varieties) 15 

and 1 (CBG-majority varieties), whereas chemotype II is illustrated by varieties used for seed 16 

production (cluster 2). Drug-type varieties (chemotype I) are clearly clustered out (cluster 4). 17 

Samples of chemotype III were developed by HEMP-it (French hemp seed producer) in a 18 

dedicated work based on GC and TLC analyses to obtain non-monoclonal varieties with THC 19 

content below 0.2 % [33]. While selection criterion produced a homogeneous chemotype III, 20 

minor metabolites may nevertheless be used to distinguish sub-varieties, as we show below.  21 

 22 
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 1 
Figure 2. Hierarchical cluster analyses (HCA) following genetic differentiation (Fst) (A), the 2 

global metabolome (B), and main phytocannabinoids quantified (C). Varieties of Cannabis: S27 3 

= Santhica 27; S23 = Santhica 23; S70 = Santhica 70; Tiborsza = Tiborszallasi; D3 = Dioïca 3; D7 = Dioïca 4 

7; Ferimon = Ferimon; F17 = Fedora 17; F56 = Fibrimon F56; F75 = Futura 75; Epsilon = Epsilon 68; 5 

Fibrimon = Fibrimon 24; Earlina = Earlina 8FC; I11 = I11; I13g = I13g; I13p = I13p, AK = AK Silver; 6 

Charlotte = Charlotte; Purple = Purple; Remedy = Remedy. 7 

 8 

PCA analysis is a preliminary step in a multivariate analysis to provide an unsupervised 9 

overview of LC-MS fingerprints. An unsupervised PCA analysis on MetaboAnalyst 5.0 [44] was 10 

carried out to determine how chemotype metabolomes differ from each other, and which 11 

metabolites contribute the most to this difference (Figure 3-A). In our analysis, 54% of the 12 

total variance was projected in two principal component axes. As expected, replicated 13 

injections of the quality control sample (QC, made by mixing an aliquot of each extract) were 14 

grouped near the center of the plot (data not shown). Three chemotype groups were 15 
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observed. On the PC1, all varieties of chemotypes III and II (hemp type) are separated from 1 

chemotype I (drug type). The differentiation between chemotypes III and II can be observed 2 

along PC2. According to the loading plot (data not shown), the separation in Factor 1 and 2 is 3 

not attributed to specific metabolites, but is a combined effect of a variety of metabolites. To 4 

validate the HCA model, we performed a supervised PLSDA analysis (Partial Least Squares 5 

Discriminant Analysis) based on the VIP (variable importance in projection) values. Overall, 6 

47.5% of the total variance was displayed on the first two principal component axes of the 7 

PLSDA score plot (Figure 3-B). Samples can be separated into four subgroups/clusters: 8 

samples of the cluster 4 were found distant of other chemotypes on the component 1, and 9 

the samples of the cluster 1, 2, and 3 as three independent clusters on component 2. 10 

 11 

 12 
Figure 3. Global PCA (A), PLSDA analyses for clusters (B) for Cannabis chemotypes. In A, 13 

numbers relate to the clusters obtained in Fig 2-B.  14 

 15 

Following, we performed a hierarchical clustering analysis using T-test/Anova to find 16 

other characteristic markers differentiating these clusters. A heat map was generated from 17 

the top 50 metabolites present in varieties separated into clusters (Figure 4). Based on the top 18 

50 discriminant metabolites, this analysis results in the same four major clusters, as 19 

mentioned above. In these clusters, 24 metabolites out of 50 (48%) are phytocannabinoids; 20 

however, this type of compounds are unexpectedly not discriminant for cluster 4. Samples of 21 

cluster 4 (recreative varieties) have been genetically selected to present a characteristic 22 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 7, 2021. ; https://doi.org/10.1101/2021.06.07.447363doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.07.447363


13 
 

aroma due mostly to mono- and sesquiterpenes (e.g. germacrene D-type, as observed in MN, 1 

supp info 4). In cluster 1, cannabigerol (CBG) and cannabigerolic acid (CBGA) derivatives are 2 

the characteristic markers, which is consistent with the fact that this cluster groups the 3 

Santhica varieties, characterized by a very low concentration of THC and CBD, and significant 4 

concentrations of CBG and CBGA [32,55]. However, in cluster 1, other distinctive compounds 5 

are put forward, e.g. CBE-type (produced by photo-oxidation of CBD and CBDA) and CBCA-6 

type compounds. Contrary to prior knowledge stating that the fiber-type hemps are 7 

characterized by CBDA [3], cluster 3 which brings together ten fiber-type varieties show that 8 

two other cannabinoids were identified as discriminant biomarkers (∆4-8-THC and a CBLA 9 

derivative). In cluster 2, compounds with a 3-carbon resorcinyl side-chain (called propyl 10 

phytocannabinoids or C-3 phytocannabinoids) namely CBDVA, CBCVA, Δ9-THCV, and Δ1-11 

THCVA are presented as the main markers. However, in this cluster, a wide diversity of 12 

phytocannabinoids is present, as we can also observe C-5 phytocannabinoids (namely CBL, 13 

CBC, CBR, CBG, CBN, and CBM types).  14 

 15 
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 1 
Figures 4. Hierarchical clustering with the heat map generated from the top 50 metabolites 2 

present in all varieties of Cannabis. Clusters were grouped based on the HCA analysis showed 3 

in Figure 2. Class of compounds were annotated using MSCleanR workflow. Phytocannabinoid 4 

standards are displayed in bold.  5 

 6 

3.2. Unraveling characteristic markers of Cannabis varieties  7 

 8 

To obtain specific markers for each variety within the clusters, we performed 9 

independent heatmap analyses and Anova tests. The top 25 most significant compounds are 10 

listed in Table 1 (heatmaps in supp info 6-9). Among the three varieties of cluster 1 (Santhica 11 

varieties with CBG as major cannabinoid), S23 appears to be very different from the two other 12 
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varieties (S27 and S70) (supp info 6). Of the over 25 compounds discriminant of S23, 14 are 1 

phytocannabinoids including ∆9-THCA, ∆8-THC, CBN and their artifacts (CBN-1’S-hydroxy, 2 

CBNA and CBND). The CBN-type compounds result from the spontaneous oxidative 3 

aromatization of the THC-type derivatives [4]. S27 and S70 are mostly similar and share 3 4 

markers: cannabispirenol B and two stilbenoid carexane derivatives. Discriminant markers of 5 

cluster 2 (hemp varieties for seed production, characterized by C3 varin-type 6 

phytocannabinoids) suggest that these varieties are from different origins (supp info 7). 7 

Interestingly, a strigolactone derivative is identified as characteristic of two varieties. This can 8 

be related to their phenotypic aspect, which is short and much ramified. Strigolactones are 9 

phytohormones inhibiting shoot branching [56], and a change in their profile definitely has an 10 

impact on ramification. The spiran cannabispirol derivatives, like cannabispirenone A 11 

previously isolated from a Thailand drug-type Cannabis variety [57,58] are characteristic of 12 

I11. I13g variety showed a dozen of discriminant compounds, including CBD, which h is a 13 

decarboxylated artifact of CBDA, and a cannabisol isomer, a dimer of Δ9-THC with a methylene 14 

bride produced naturally in Cannabis plants [59]. In cluster 3 (hemp-type varieties with CBD 15 

as major cannabinoid), 6 groups of varieties are distinguishable (sup info 8). As shown above 16 

by the genetic clustering (Fig 2-A), D7 and Tiborszallasi varieties are very close, sharing seven 17 

discriminative compounds, among them CBDVA, cannabispirenone A and a CBL derivative. A 18 

set of 6 compounds (3 of them being annotated as flavonoids, one as a fatty amide) is highly 19 

characteristic of Earlina. Three compounds are characteristic of Ferimon and F17 (including 20 

cannabistilbene I). Hildgardtol B and a phenanthrene derivative are characteristic of Epsilon. 21 

F75 is barely distinguished from other varieties but may be considered as having some 22 

similarities with Epsilon. Four compounds (one of them being annotated as the pulchelstyrene 23 

B, a cinnamylphenol) are characteristic of F56. Two stilbenoid derivatives and 24 

isocannabispiradienone appear as being discriminant for D3 and Fibrimon. These results can 25 

hardly be interpreted because chemical markers of these hemp varieties result from a massal 26 

selection applied to empirically selected populations. Phytocannabinoids can be discriminant 27 

for some varieties but not for all of them, excluding the acidic or neutral THC and CBD 28 

derivatives, which have been used as selection markers for a low content of these 29 

phytocannabinoids. In cluster 4, AK Silver and Remedy share the same distinctive compounds 30 

(among which ∆9-THCA and CBGA) (supp info 9). Even if Charlotte and Purple variety share ∆9-31 
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THC and CBD as characteristic markers, these compounds are more concentrated in Charlotte, 1 

principally ∆9-THC (see Table 2-quantification).  2 

 3 

Table 1. Main markers by cluster from Cannabis varieties based on heat map analyses. * = same 4 

annotation; 1 = [M+Na]+; 2 = [M+H-H2O]+; 3 = [M+H-2H2O]+; 4 = [M+K]+; $ = standard; ^ = only in AK variety; # = only 5 
in Remedy variety; º = only in purple variety; £ = only in charlotte variety. In bold: phytocannabinoids standards. 6 
MN = molecular networking. 7 

ID m/z 
[M+H]+ RT Formula Compound annotated Level of annotation Classyfire (class) 

Cluster 1 

S23 

183 311.201 11.70 C21H26O2 CBN $ genus cannabinoid 

198 315.232 13.21 C21H30O2 D8-THC $ genus cannabinoid 

226 327.196 10.19 C21H26O3 Bauhinol B genus stilbene 

272 341.211 20.69 C22H28O3 CBLA-derivative Based on MN cannabinoid 

294 355.191 13.63 C22H26O4 CBNA genus cannabinoid 

298 355.191 1.86 C22H26O4 CBG-derivative Based on MN cannabinoid 

317 359.222 11.63 C22H30O4 Unknown cannabinoid based on MN cannabinoid 

346 309.1852 11.81 C21H26O3 CBN; 1'S-Hydroxy genus cannabinoid 

375 383.2222 7.80 C24H32O5 Lucidone B generic steroids and steroid 
derivative 

S27/70 

177 311.164 3.61 C20H22O3 Carexane P-isomer 1* genus stilbene 

180 311.165 2.20 C20H22O3 Carexane P-isomer 2* genus stilbene 

206 243.1023 1.423 C15H18O5 Cannabispirenol B derivative genus cannabinoid 

Cluster 2 

I13g 

138 104.107 1.15 -- Unknown compound -- -- 

139 315.232 8.953 C21H30O2 CBD $ genus cannabinoid 

199 315.232 12.55 C21H30O2 D4(8)-iso-THC genus cannabinoid 

228 327.232 1.53 C22H30O2 Cannabisol derivative genus cannabinoid 

301 375.217 2.30 C22H30O5 8,8'-Lignan-3,3',4,4',5-pentol-3,3',4,5-
Tetra-Me ether genus phenol derivative 

I13p 

189 313.1802 11.12 C20H26O4 CBDVA* genus cannabinoid 

I11 

114 245.118 1.50 C15H16O3 Cannabispirenone A genus cannabinoid 

244 331.154 2.11 C19H22O5 5-deoxystrigol family prenol lipid 

Cluster 3 

Earlina 

58 609.271 13.90 -- Unknown compound -- -- 

128 268.134 1.51 C17H17NO
2 

(2E)-3-(4-hydroxyphenyl)-N-(2-
phenylethyl)prop-2-enimidic acid 

 
genus phenol derivative 
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143 277.216 3.78 C18H28O2 5-dodecylbenzene-1,3-diol-isomer 3 * family phenol derivative 

144 277.217 3.96 C18H28O2 5-dodecylbenzene-1,3-diol-isomer 1 * family phenol derivative 

164 291.196 1.69 -- Unknown compound -- -- 

218 322.275 6.84 C20H35NO
2 Alpha-Linolenoyl ethanolamide generic prenol lipid 

F56 

129 271.097 2.04 C16H14O4 2-(3,5-Dihydroxy-2,4-dimethylphenyl)-
4-hydroxybenzofuran genus 

benzene and 
substituted 
derivative 

208 317.139 3.67 C18H20O5 Pulchelstyrene B genus flavonoid 

284 345.206 6.50 C21H28O4 Unknown compound -- -- 

290 353.1001 2.56 C18H18O6 2,3,5,6-tetramethoxy-9,10-
dihydrophenanthrene-1,4-dione genus phenanthrene 

D3/Fibrimon 

113 243.101 1.58 C15H14O3 Isocannabispiradienone genus cannabinoid 

177 311.164 3.61 C20H22O3 Carexane P-isomer 1* genus stilbene 

180 311.165 2.20 C20H22O3 Carexane P-isomer 2* genus stilbene 

Epsilon/F75 

154 287.128 2.84 C17H18O4 3,4-Dihydro-7-(4-hydroxyphenyl)-2,2-
dimethyl-2H-1-benzopyran-3,5-diol genus phenanthrene 

263 339.160 4.82 C21H22O4 Hildgardtol B genus flavonoid 

Ferimon/F17 

191 313.180 2.54 C20H24O3 Cannabistilbene I genus cannabinoid 

Tiborszallasi/D7 

114 245.118 1.50 C15H16O3 Cannabispirenone A genus cannabinoid 

189 313.1802 11.12 C20H26O4 CBDVA* genus cannabinoid 

343 355.2272 14.85 C23H32O4 CBL-Me ester genus cannabinoid 

Cluster 4 

AK/Remedy 

82 198.091 2.97 C13H11NO 2-Hydroxy-3-methyl-9H-carbazole # generic carbazole alkaloid 

130 287.0924 1.69 -- Tanacetols derivative Based on MN Prenol lipids 

165 293.248 18.36 C19H32O2 Grevillol ^ genus phenol derivative 

280 343.2272 8.61 C22H32O4 CBGA $ genus cannabinoid 

391 359.222 15.41 C22H30O4 D9-THCA $ genus cannabinoid 

Purple/Charlotte 

139 315.232 8.953 C21H30O2 CBD $ genus cannabinoid 

201 315.232 12.92 C21H30O2 D9-THC $,£ genus cannabinoid 

227 327.232 2.04 C22H30O2 Unknown compound £ -- -- 

241 329.212 2.91 C21H28O3 CBON isomer £ genus cannabinoid 

281 343.227 3.2 C22H30O3 CBG derivative º Based on MN cannabinoid 

  1 
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3.3. Classification based on targeted phytocannabinoids quantification 1 

 2 

Dozens of methods are used to quantify phytocannabinoids, based on many 3 

techniques: LC-HRMS [60], LC-DAD [61], HPTLC [62], GC-FID [30,63], GC-MS [64], Nuclear 4 

Magnetic Resonance (NMR) [65], and Triple quadrupole Multiple Reaction Monitoring (QqQ-5 

MRM) [66], among others. Techniques and methods used in Cannabis quality control 6 

monographs differ between countries. Phytocannabinoids as a class of compounds are 7 

characterized by the occurrence of many isomers and the labile nature of the native acidic 8 

forms. Such complexity is well depicted in the molecular network of Cannabis extracts (Figure 9 

1). As a consequence, the quantification of phytocannabinoids is usually based only on the 10 

quantification of their major compounds. We quantified 11 phytocannabinoids using LCMS 11 

(Table 2 and sup info 10-20). Quantitative results match with markers identified in Figure 4, 12 

notably for ∆9-THCV (detected only in cluster 2) and CBG-CBGA mainly present in cluster 1 13 

(sup info 14, 15). It is important to highlight that acidic phytocannabinoids are non-14 

enzymatically decarboxylated into their corresponding neutral forms, which occur both within 15 

the plant and, to a much larger extent, upon heating after harvesting [67]. Therefore, acidic 16 

and neutral forms are related to a certain extent, depending on the temperature of drying. All 17 

samples studied were dried at 40°C, except for samples from cluster 4 which were dried at 18 

80°C. ∆9-THCA, the native form of ∆9-THC, is elevated in cluster 2 (chemotype II, intermediate 19 

type, seed-producing varieties) and surprisingly still present in cluster 3 (chemotype III, fiber-20 

type) (supp info 19). Unsupervised PLSDA based on the results of the quantification of 11 21 

phytocannabinoids showed that clusters 2, 3, and 4 are grouped on component 2, and cluster 22 

1 on component 1 (Figure 5-A). 62.9% of the total variance was displayed on the first two 23 

principal component axes of the PLSDA score plot. To identify the most important metabolites 24 

allowing discrimination between the clusters, we performed a supervised PLSDA based on the 25 

variable importance in projection (VIP) values. Thus, a metabolite with a VIP > 1 is regarded as 26 

significantly discriminant. CBD, CBDA and CBGA are the overall main discriminant quantified 27 

phytocannabinoids (Figure 5-B). Some varieties presented as drug-type can be assimilated to 28 

fiber-types, e.g. AK and Remedy samples (Figure 5 A and C), although their phytocannabinoids 29 

content is higher (Table 2). Such drug-type varieties have been selected to produce significant 30 

amount of CBD but only moderate amounts of THC in order to be considered as “light 31 

cannabis” in some countries (close to 0,2 % Δ9-THC), thus these recreative varieties are barely 32 
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distinguished from hemp varieties when clustering is based only on main phytocannabinoids. 1 

Hemp varieties have been specifically selected to have a phytocannabinoids biosynthetic 2 

machinery which is significantly inhibited. Samples of cluster 2 stand out because of their 3 

specific expression of ∆9-THCV, and also because of a significant concentration of ∆9-THCA. As 4 

observed above, such varieties are used for seed production outside EU (mostly in China) but 5 

have not been subject to an efficient selection to reduce Δ9-THC content. As expected, cluster 6 

1 (hemp varieties with CBG as major cannabinoid) are characterized by CBG and CBGA. 7 

 8 

An overall analysis of the data shows that Cannabis varieties are more efficiently 9 

discriminated and characterized by untargeted cannabinomics analysis (metabotyping) rather 10 

than quantitation of major phytocannabinoids. In this sense, the performance measure (Q2 11 

and R2) were compared between metabolomic and quantification models on PLSDA analysis, 12 

suggesting that the metabotyping represents a most robust model (0.39 vs. 0.77, 0.26 vs. 0.75 13 

on comp1 and 0.50 vs. 0.96, 0.45 vs. 0.94 on comp2 respectively). 14 

  15 
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Table 2. UHPLC-MS quantification of 11 phytocannabinoids from 20 Cannabis varieties. Results were reported as ng/mL in injected solution (% 1 

in powder), mean ± SD; n = 3.  2 

 '9-THC '9-THCA CBD CBDA '8-THC CBG CBGA CBC CBCA '9-THCV CBN 
Linearity parameters 

Calibration 
curve 

equation 

13950.0x + 
54497.1 

2001.8x - 
16666.7 

12003.8x - 
124854.2 

2715.1x - 
191794.6 

14995.6x + 
40061.6 

3614.5x - 
186148.4 

720.7x - 
13861.0 

4564.0x + 
366666.7 

3181.1x + 
216666.7 

11974.7x + 
409756.6 

10032.2x - 
409297.1 

Correlation 
coefficient 
value (R2) 

1.0000 1.0000 0.9999 0.9995 1.0000 0.9997 0.9998 1.0000 0.9997 0.9997 0.9998 

LOD (ng/mL) 6.7 24.5 46.9 219.5 5.0 164.9 120.8 187.3 275.0 109.6 128.4 

LOQ (ng/mL) 19.7 83.7 165.1 759.0 14.8 569.7 410.2 604.4 900.0 342.6 443.8 

Sample quantification (ng/mL in injected solution (% in powder), mean ± SD) 

AK Silver 116 ± 19 
(0.006 ± 0.001) 

32066 ± 5274 
(1.603 ± 0.264) 

85409 ± 9776 
(4.270 ± 0.489) 

290696 ± 25319 
(14.535 ± 1.266) 

10387 ± 1854 
(0.519 ± 0.093) 

3380 ± 717 
(0.169 ± 0.036) 

22324 ± 4427 
(1.116 ± 0.221) 

6884 ± 654 
(0.344 ± 0.033) 

39288 ± 5538 
(1.964 ± 0.277) <LOD 991 ± 230 

(0.050 ± 0.012) 

Charlotte 941 ± 118 
(0.047 ± 0.006) 

2116 ± 495 
(0.106 ± 0.025) 

144968 ± 7134 
(7.248 ± 0.357) 

147590 ± 19191 
(7.380 ± 0.960) 

9393 ± 992 
(0.470 ± 0.050) 

1673 ± 135 
(0.050 ± 0.007) 

1693 ± 181 
(0.085 ± 0.009) 

11887 ± 1170 
(0.594 ± 0.058) 

12313 ± 2489 
(0.616 ± 0.124) <LOQ 1989 ± 270 

(0.099 ± 0.013) 

Purple 715 ± 73 
(0.036 ± 0.004) 

7344 ± 1040 
(0.367 ± 0.052) 

140928 ± 1717 
(7.046 ± 0.086) 

187738 ± 2401 
(9.387 ± 0.120) 

17086 ± 1837 
(0.854 ± 0.092) 

5193 ± 1033 
(0.260 ± 0.052) 

5786 ± 620 
(0.289 ± 0.031) 

15620 ± 1732 
(0.781 ± 0.087) 

25653 ± 3842 
(1.283 ± 0.192) <LOD 1343 ± 149 

(0.067 ± 0.007) 

Remedy 141 ± 51 
(0.007 ± 0.003) 

40302 ± 11370 
(2.015 ± 0.569) 

96951 ± 29408 
(4.848 ± 1.470) 

302006 ± 37892 
(15.100 ± 1.895) 

13180 ± 5571 
(0.659 ± 0.279) 

5118 ± 2103 
(0.256 ± 0.105) 

26266 ± 10919 
(1.313 ± 0.546) 

8875 ± 3534 
(0.444 ± 0.177) 

44744 ± 15337 
(2.237 ± 0.767) <LOD 1066 ± 448 

(0.053 ± 0.022) 

D3 47 ± 6 
(0.002 ± 0.000) 

3299 ± 271 
(0.165 ± 0.014) 

37510 ± 4630 
(1.875 ± 0.231) 

102088 ± 13455 
(5.104 ± 0.673) 

2594 ± 43 
(0.130 ± 0) 

1033 ± 31 
(0.052 ± 0.002) 

2050 ± 232 
(0.103 ± 0.012) 

2887 ± 196 
(0.144 ± 0.010) 

8299 ± 506 
(0.415 ± 0.025) <LOD 557 ± 63 

(0.028 ± 0.003) 

D7 34 ± 17  
(0.002 ± 0.001) 

18150 ± 3829 
(0.908 ± 0.191) 

23727 ± 10174 
(1.186 ± 0.509) 

158525 ± 39631 
(7.926 ± 1.982) 

5078 ± 2341 
(0.254 ± 0.117) 

1759 ± 835 
(0.088 ± 0.042) 

13110 ± 4507 
(0.656 ± 0.225) 

2125 ± 851 
(0.106 ± 0.043) 

16246 ± 6595 
(0.812 ± 0.330) <LOD <LOQ 

Earlina 54 ± 1 
(0.003 ± 0.000) 

1775 ± 160 
(0.089 ± 0.008) 

29158 ± 1224 
(1.458 ± 0.061) 

69743 ± 1338 
(3.487 ± 0.067) 

1783 ± 80 
(0.089 ± 0.004) 

1271 ± 24 
(0.064 ± 0.001) 

2922 ± 353 
(0.146 ± 0.018) 

3028 ± 181 
(0.151 ± 0.009) 

5965 ± 169 
(0.298 ± 0.008) <LOD <LOQ 

Epsilon 62 ± 25 
(0.003 ± 0.001) 

4792 ± 2036 
(0.240 ± 0.102) 

41796 ± 13520 
(2.090 ± 0.676) 

125640 ± 26148 
(6.282 ± 1.307) 

3481 ± 1469 
(0.174 ± 0.073) 

1424 ± 490 
(0.071 ± 0.024) 

4612 ± 2008 
(0.231 ± 0.100) 

3446 ± 1456 
(0.172 ± 0.073) 

11243 ± 5441 
(0.562 ± 0.272) <LOD 537 ± 196 

(0.027 ± 0.010) 

Ferimon 36 ± 5 
(0.002 ± 0.000) 

5939 ± 599 
(0.297 ± 0.030) 

28286 ± 769 
(1.414 ± 0.038) 

144063 ± 4446 
(7.203 ± 0.222) 

2730 ± 200 
(0.136 ± 0.010) 

1790 ± 90 
(0.089 ± 0.005) 

9119 ± 1615 
(0.456 ± 0.081) 

2605 ± 69 
(0.130 ± 0.003) 

13563 ± 1837 
(0.678 ± 0.092) <LOD <LOQ 

Fibrimon 62 ± 4 
(0.003 ± 0.000) 

4242 ± 393 
(0.212 ± 0.020) 

32133 ± 3425 
(1.607 ± 0.171) 

110474 ± 9044 
(5.524 ± 0.452) 

2565 ± 281 
(0.128 ± 0.014) 

1008 ± 16 
(0.050 ± 0.001) 

3023 ± 43 
(0.151 ± 0.002) 

3903 ± 215 
(0.195 ± 0.011) 

11904 ± 844 
(0.595 ± 0.042) <LOD 487 ± 17 

(0.024 ± 0.001) 

F17 46 ± 20 
(0.002 ± 0.001) 

4481 ± 2638 
(0.224 ± 0.132) 

29647 ± 11918 
(1.482 ± 0.596) 

122112 ± 39417 
(6.106 ± 1.971) 

2840 ± 1324 
(0.142 ± 0.066) 

1833 ± 793 
(0.092 ± 0.040) 

8822 ± 5449 
(0.441 ± 0.272) 

3306 ± 1489 
(0.165 ± 0.074) 

13188 ± 7568 
(0.659 ± 0.378) <LOD <LOQ 
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F56 54 ± 29 
(0.003 ± 0.001) 

15860 ± 515 
(0.793 ± 0.026) 

37256 ± 13884 
(1.863 ± 0.694) 

106675 ± 23241 
(5.334 ± 1.162) 

8117 ± 3986 
(0.406 ± 0.199) 

1388 ± 630 
(0.069 ± 0.031) 

5602 ± 2231 
(0.280 ± 0.112) 

3090 ± 1624 
(0.155 ± 0.081) 

9703 ± 3136 
(0.485 ± 0.157) <LOD 1566 ± 764 

(0.078 ± 0.038) 

F75 71 ± 26 
(0.004 ± 0.001) 

3949 ± 1422 
(0.197 ± 0.071) 

43767 ± 18352 
(2.188 ± 0.918) 

112857 ± 30611 
(5.643 ± 1.531) 

2965 ± 1062 
(0.148 ±0.053) 

2941 ± 1427 
(0.147 ± 0.071) 

8964 ± 4582 
(0.448 ± 0.229) 

4036 ± 1455 
(0.202 ± 0.073) 

10033 ± 4855 
(0.502 ± 0.243) <LOD 601 ± 254 

(0.030 ± 0.013) 

I11 <LOQ 53728 ± 16170 
(2.686 ± 0.808) 

801 ± 368 
(0.040 ± 0.018) 

8220 ± 3343 
(0.411 ± 0.167) 

8902 ± 4045 
(0.445 ± 0.202) <LOQ 1117 ± 569 

(0.056 ± 0.028) 
698 ± 419 

(0.035 ± 0.021) 
8376 ± 3880 

(0.419 ± 0.194) 
4848 ± 0.242 

(2307 ± 0.115) <LOQ 

I13gros <LOQ 27328 ± 3244 
(1.366 ± 0.162) 

1827 ± 114 
(0.091 ± 0.006) 

22512 ± 777 
(1.126 ± 0.039) 

6002 ± 367 
(0.300 ± 0.018) <LOQ 792 ± 148 

(0.040 ± 0.007) 
682 ± 63 

(0.034 ± 0.003) 
7288 ± 1210 

(0.364 ± 0.061) 
3302 ± 111 

(0.165 ± 0.006) <LOQ 

I13petit <LOQ 48151 ± 2710 
(2.408 ± 0.135) 

661 ± 59 
(0.033 ± 0.003) 

9161 ± 1659 
(0.458 ± 0.083) 

7306 ± 548 
(0.365 ± 0.027) <LOQ 1132 ± 74 

(0.057 ± 0.004) <LOQ 8223± 737 
(0.411 ± 0.037) 

6779 ± 591 
(0.339 ± 0.030) <LOQ 

S23 44 ± 23 
(0.002 ± 0.001) 

1404 ± 514 
(0.070 ± 0.026) 

8415 ± 854 
(0.421 ± 0.043) 

44425 ± 342 
(2.221 ± 0.017) 

1084 ± 484 
(0.054 ± 0.024) 

16492 ± 7565 
(0.825 ± 0.378) 

131988 ± 42368 
(6.599 ± 2.118) 

2529 ± 1109 
(0.126 ± 0.055) 

5737 ± 2409 
(0.287 ± 0.120) <LOD <LOD 

S27 66 ± 32 
(0.003 ± 0.002) 

328 ± 143 
(0.016 ± 0.007) 

1698 ± 812 
(0.085 ± 0.041) 

11361 ± 5199 
(0.568 ± 0.260) 

170 ± 89 
(0.008 ± 0.004) 

12024 ± 6055 
(0.601 ± 0.303) 

123691 ± 36527 
(6.185 ± 1.826) 

4048 ± 1641 
(0.202 ± 0.082) 

4159 ± 2023 
(0.208 ± 0.101) <LOD <LOD 

S70 40 ± 5 
(0.002 ± 0.000) <LOQ 772 ± 34 

(0.039 ± 0.002) 
3094 ± 351 

(0.155 ± 0.018) 
70 ± 6 

(0.003 ± 0.000) 
7642 ± 1511 

(0.382 ± 0.076) 
78910 ± 8265 

(3.945 ± 0.413) 
1877 ± 134 

(0.094 ± 0.007) 
1825 ± 427 

(0.091 ± 0.021) <LOD <LOD 

Tiborszallasi 25 ± 1 
(0.001 ± 0.000) 

12556 ± 2338 
(0.628 ± 0.117) 

22429 ± 765 
(1.121 ± 0.038) 

116672 ± 6549 
(5.834 ± 0.327) 

5704 ± 399 
(0.285 ± 0.020) 

1544 ± 111 
(0.077 ± 0.006) 

9795 ± 523 
(0.490 ± 0.026) 

1877 ± 134 
(0.094 ± 0.007) 

10394 ± 814 
(0.520 ± 0.041) <LOD <LOQ 
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 1 
Figure 5. Statistical analyses based of quantitative data on 11 phytocannabinoids: PLSDA 2 

based on average concentration (ng/mL) for each phytocannabinoid by cluster (obtained in 3 

Figure 2-C) (A); PLSDA-VIP projection by cluster (B); hierarchical clustering analysis with the 4 

heat-map for phytocannabinoid standards by clusters (C).  5 
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4. Conclusions 1 

 2 

Literature on Cannabis is expanding quickly, but is still mostly focused on their 3 

pharmacologically active compounds Δ9-THC and CBD. The metabolomics approach is a 4 

powerful tool to unravel the complexities of the actual entire metabolome. Cannabinomics 5 

must therefore be understood as an approach including the analyses not only of 6 

phytocannabinoids but also other compounds including terpenes, stilbenes, flavonoids, etc. 7 

In this work, cannabinomics contributed to deciphering the main discriminant metabolites in 8 

20 Cannabis varieties. Among the 13 fiber-type varieties, we identified characteristic markers 9 

allowing an efficient differentiation beyond phytocannabinoids only. Varieties of the 10 

intermediate chemotype used for seed production (“I” varieties) are identified as mostly 11 

producing C-3 phytocannabinoids. This workflow can be used as a complementary tool to be 12 

used along with genotyping with the aim to differentiate C. sativa varieties and to allow the 13 

identification of minor compounds playing a key role as markers of differentiation. This 14 

workflow could offer a shorter road to creating chemotypes and phenotypes that meet the 15 

demand of production needs for material, food and medicinal purposes. In the medicinal field, 16 

cannabinomics could facilitate improved breeding to create Cannabis varieties with greater 17 

expression of minor phytocannabinoids of medicinal value. Cannabinomics should also be 18 

used as a systematic basis for studies correlating chemical profile and therapeutical effects, as 19 

it allows to properly address the entourage effect. 20 
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