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The current-voltage characteristics (I-V curves) of photovoltaic (PV) modules contain a lot of information about their health. In the literature, only partial information from the I-V curves is used for diagnosis. In this study, a methodology is developed to make full use of I-V curves for PV fault diagnosis. In the pre-processing step, the I-V curve is first corrected and resampled. Then fault features are extracted based on the direct use of the resampled vector of current or the transformation by Gramian angular difference field or recurrence plot. Six machine learning techniques, i.e., artificial neural network, support vector machine, decision tree, random forest, k-nearest neighbors, and naive Bayesian classifier are evaluated for the classification of the eight conditions (healthy and seven faulty conditions) of PV array. Special effort is paid to find out the best performance (accuracy and processing time) when using different input features combined with each of the classifier. Besides, the robustness to environmental noise and measurement errors is also addressed. It is found out that the best classifier achieves 100% classification accuracy with both simulation and field data. The dimension reduction of features, the robustness of classifiers to disturbance, and the impact of transformation are also analyzed.

Introduction

The solar photovoltaic (PV) installed capacity has experienced rapid growth among all the main energy types in recent years [START_REF]Global Market Outlook for Solar[END_REF]. However, due to the environmental threats and the potential damages in the manufacturing, transportation, installation, or other procedures, various PV faults may arise up [START_REF] Lorenzo G Di | Review of O&M Practices in PV Plants: Failures, Solutions, Remote Control, and Monitoring Tools[END_REF][START_REF] Alam | A Comprehensive Review of Catastrophic Faults in PV Arrays: Types, Detection, and Mitigation Techniques[END_REF]. These faults could not only affect the power generation but also could cause severe safety hazards [START_REF] Herná Ndez-Callejo | A review of photovoltaic systems: Design, operation and maintenance[END_REF], e.g., fire risk, electrical shock, physical danger. Therefore, it is necessary to perform effective detection and diagnosis of PV faults.

Common PV electrical data used for diagnosis include different types: output power, output voltage or current at DC or AC side, and current-voltage characteristic (I-V curve) [START_REF] Livera | Recent advances in failure diagnosis techniques based on performance data analysis for grid-connected photovoltaic systems[END_REF]. Since an I-V curve generally embeds rich information about the health status of PV modules, I-V curve-based diagnosis is a popular topic [START_REF] Mellit | Fault detection and diagnosis methods for photovoltaic systems: A review[END_REF]. As for acquiring I-V curves, common I-V tracers already support the measurement for a single module or small-scale string or array. In recent years, the hardware solutions (integrated at inverter level) have become commercially available to measure I-V curves periodically at the power plant level [START_REF] Huawei | Smart I-V Curve Diagnosis[END_REF][START_REF] Spataru | Monitoring and Fault Detection in Photovoltaic Systems Based On Inverter Measured String I[END_REF]. In this sense, diagnosis approaches based on the I-V curves could be applied to all common PV facilities.

In the literature, there are different methods of using I-V curves to extract information. The most common can be grouped into three categories: [START_REF]Global Market Outlook for Solar[END_REF] Extract key features from the curve (like VOC, ISC, VMPP, IMPP, FF, Rs, and Rsh) and then use these features for diagnosis (by threshold analysis, statistical approaches, or machine learning techniques (MLT), etc.). For example, Chine et al. [START_REF] Chine | A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks[END_REF] use VOC, ISC, VMPP, and IMPP features to detect partial shading (PS), SC, open-circuit (OC), and bypass diode failures. Both threshold method and Artificial Neural Network (ANN) are applied to classify the faults. Huang et al. [START_REF] Huang | Newly-designed fault diagnostic method for solar photovoltaic generation system based on IV-Curve measurement[END_REF] extract VOC, VMPP, IMPP and Rs from I-V curves to classify short-circuit (SC) fault, PS and degradation. CART decision tree is used as the diagnosis tool. Fadhel et al. [START_REF] Fadhel | PV shading fault detection and classification based on I-V curve using principal component analysis: Application to isolated PV system[END_REF] adopt VMPP, IMPP and PMPP as features to detect PS. Dhimish et al. [START_REF] Dhimish | Novel Open-Circuit Photovoltaic Bypass Diode Fault Detection Algorithm[END_REF] use thresholds to analyze VMPP and the voltage drop on the I-V curves to identify PS. Similar approaches can also be found in [START_REF] Bouaichi | In-situ evaluation of the early PV module degradation of various technologies under harsh climatic conditions : The case of Morocco[END_REF][START_REF] Singh | An assessment of series resistance estimation techniques for different silicon based SPV modules[END_REF][START_REF] Chen | Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics[END_REF][START_REF] Fadhel | Maximum power point analysis for partial shading detection and identification in photovoltaic systems[END_REF]. It should be noted that these studies use only partial information from the I-V curves. (2) Calculate the first or second-order derivative of the curve or identify steps on the I-V curves. For example, Ma et al. [START_REF] Ma | Fault diagnosis of cracks in crystalline silicon photovoltaic modules through I-V curve[END_REF] analyze the negative peaks on the derivative of the I-V curve to extract the steps. Then, a threshold is set to classify PS and crack faults. Zhang et al [START_REF] Zhang | A fault diagnosis method for photovoltaic module current mismatch based on numerical analysis and statistics[END_REF] break down the I-V curves into low and high voltage domains.

With a statistical method, a detection line is used to identify hot spot, PS, and crack. Similar studies can also be found in [START_REF] Miwa | Diagnosis of a power output lowering of PV ARRAY with a (-dI/dV)-V characteristic[END_REF][START_REF] Bressan | A shadow fault detection method based on the standard error analysis of I-V curves[END_REF]. [START_REF] Alam | A Comprehensive Review of Catastrophic Faults in PV Arrays: Types, Detection, and Mitigation Techniques[END_REF] Comparison of full I-V curves with simulated ones to generate residuals for analysis. Mohamed et al. [START_REF] Ali | Real Time Fault Detection in Photovoltaic Systems[END_REF] compare the measured I-V curves with the simulated ones obtained from the double diode model. They use threshold analysis to classify several types of PS and degradation. Bonsignore et al. [START_REF] Bonsignore | Neuro-Fuzzy Fault Detection Method for Photovoltaic Systems[END_REF] generate residuals from I-V curve features to detect PS, SC and ground fault. The pros and cons of the three categories are summarized in Table 1.

Table 1 Comparison of common methods using I-V curves Ref.

Methods Pros Cons [START_REF] Chine | A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks[END_REF][START_REF] Huang | Newly-designed fault diagnostic method for solar photovoltaic generation system based on IV-Curve measurement[END_REF][START_REF] Fadhel | PV shading fault detection and classification based on I-V curve using principal component analysis: Application to isolated PV system[END_REF][START_REF] Dhimish | Novel Open-Circuit Photovoltaic Bypass Diode Fault Detection Algorithm[END_REF][START_REF] Bouaichi | In-situ evaluation of the early PV module degradation of various technologies under harsh climatic conditions : The case of Morocco[END_REF][START_REF] Singh | An assessment of series resistance estimation techniques for different silicon based SPV modules[END_REF][START_REF] Chen | Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics[END_REF][START_REF] Fadhel | Maximum power point analysis for partial shading detection and identification in photovoltaic systems[END_REF] Use extracted key curve features

• Simple feature extraction • Suitable for multiple faults diagnosis

• Partial information • Sensible to noise and outliers

• Hard to extract Rs, Rsh from curves with irregular shape [START_REF] Ma | Fault diagnosis of cracks in crystalline silicon photovoltaic modules through I-V curve[END_REF][START_REF] Zhang | A fault diagnosis method for photovoltaic module current mismatch based on numerical analysis and statistics[END_REF][START_REF] Miwa | Diagnosis of a power output lowering of PV ARRAY with a (-dI/dV)-V characteristic[END_REF][START_REF] Bressan | A shadow fault detection method based on the standard error analysis of I-V curves[END_REF] Calculate the 1 st or 2 nd derivative of the curve to identify steps on the curve

• Able to identify the number of reflection points

• Sensible to noise and outliers • Only applied to detect mismatch faults (PS, crack, hot spot) [START_REF] Ali | Real Time Fault Detection in Photovoltaic Systems[END_REF][START_REF] Bonsignore | Neuro-Fuzzy Fault Detection Method for Photovoltaic Systems[END_REF] Generate residual between measured I-V curves and simulated ones Besides, the diagnosis model exhibits a high complexity of 18 layers compared with common shallow neural networks adopted in PV diagnosis (1 to 3 hidden layers).

Based on the literature review several gaps have been identified; there is no effective use of all the information contained in the I-V curves [START_REF] Chine | A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks[END_REF][START_REF] Huang | Newly-designed fault diagnostic method for solar photovoltaic generation system based on IV-Curve measurement[END_REF][START_REF] Fadhel | PV shading fault detection and classification based on I-V curve using principal component analysis: Application to isolated PV system[END_REF][START_REF] Dhimish | Novel Open-Circuit Photovoltaic Bypass Diode Fault Detection Algorithm[END_REF][START_REF] Bouaichi | In-situ evaluation of the early PV module degradation of various technologies under harsh climatic conditions : The case of Morocco[END_REF][START_REF] Singh | An assessment of series resistance estimation techniques for different silicon based SPV modules[END_REF][START_REF] Chen | Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics[END_REF][START_REF] Fadhel | Maximum power point analysis for partial shading detection and identification in photovoltaic systems[END_REF]; the detectable faults using the proposed methods are quite limited, like only the mismatch faults in [START_REF] Ma | Fault diagnosis of cracks in crystalline silicon photovoltaic modules through I-V curve[END_REF][START_REF] Zhang | A fault diagnosis method for photovoltaic module current mismatch based on numerical analysis and statistics[END_REF][START_REF] Miwa | Diagnosis of a power output lowering of PV ARRAY with a (-dI/dV)-V characteristic[END_REF][START_REF] Bressan | A shadow fault detection method based on the standard error analysis of I-V curves[END_REF]; practical applicability is limited due to low generalizability or redundancy of information. The methodology proposed below therefore aims to fill these gaps.

The proposed PV diagnosis methodology uses three different methods to integrate the full I-V curves into the input features for diagnosis. Then, the performance of six classifiers based on MLT techniques [START_REF] Zhang | A fault diagnosis method for photovoltaic module current mismatch based on numerical analysis and statistics[END_REF] when using different input features will be evaluated and compared for the fault classification.

The contribution of this work lies in the following points:

• A new methodology for photovoltaic panel fault diagnosis, based on the full use of I-V curves, is proposed. It outperforms methodologies based on partial use of I-V curves;

• Based on the correction procedures of IEC 60891, a new procedure is proposed and applied to the I-V curves of faulty photovoltaic panels, measured under different environmental conditions;

• In order to make the method independent of the number of points measured to obtain the I-V, a resampling method is proposed. The number of resampling points is determined based on resampling performance and computational cost;

• Two feature transformation techniques are applied and adapted to I-V curves for the first time to improve defect discrimination.

The paper is organized as follows: Section 2 introduces the configuration of the simulated dataset of I-V curves;

Section 3 presents the procedures of pre-processing, including the correction and resampling of I-V curves;

Section 4 puts forwards the feature extraction methods; Section 5 performs the feature analysis using different MLT classifiers for PV FDD, presents the diagnosis results using simulated and experimental data, and a comparative study with methods from the literature. Section 6 concludes the paper.

2 Configuration of the simulated dataset

PV array model

A small-scale PV array model, which corresponds to the setup of the field test (presented in Section 5), is constructed under Matlab Simulink®. The array consists of 6 Wiltec 62391-50W sc-Si modules, with two strings in parallel and each string of three modules in series, as shown in Fig. 1. Each module has 36 cells and two bypass diodes. Detailed module and array parameters are listed in Table 2 and Table 3, respectively. These faults are chosen mainly because of their significant impact on the PV power output and their high frequency of occurrence [START_REF] Köntges | Assessment of photovoltaic module failures in the field[END_REF]. Besides, the reproducibility in simulation and in real conditions is also considered.

Some examples of the I-V curves under these configurations are shown in Fig. 2. Typical I-V curves also simulated under Matlab Simulink® reported in the literature [START_REF] Huang | Newly-designed fault diagnostic method for solar photovoltaic generation system based on IV-Curve measurement[END_REF][START_REF] Chen | Deep residual network based fault detection and diagnosis of photovoltaic arrays using current-voltage curves and ambient conditions[END_REF] are presented in Fig. 3. It can be noted the similarity with those in Fig. 2.

For PS1 and PS2, reflection points appear due to the activation of bypass diodes that bypass the shaded module.

For SC1 and SC2 corresponding to one or two short-circuited modules out of three in one string, VOC decreases by 1/3 or 2/3 compared to the healthy condition. For OC, the ISC decreases by 1/2 because one out of two strings is OC. For the degradation faults, the slope near the voltage or the current axis region changes for Rs and Rsh degra, respectively. In view of t he high perform ance and aut om at ic feat ure ext ract ion capabilit y of t he deep learning t echniques, t he em erging powerful deep residual net work (ResNet ) is proposed for fault det ect ion and diagnosis (FDD) of PV arrays direct ly using t he out put I-V charact erist ic curves and corresponding am bient condit ions. First ly, a large num ber of I-V curves of t he PV array are acquired by I-V t est ers under various am bient condit ions for each case of operat ing st at us (including t he norm al st at us and fault st at uses), which cont ain m uch m ore inform at ion t han t he elect ricaldat a of dynam ic operat ing point s.

Then, t he raw I-V curves and am bient irradiance and t em perat ure are preprocessed t o build t he dat aset . Next , a new ResNet st ruct ure is proposed as t he FDD m odel. Finally, t he ResNet based FDD m odel is t rained and t est ed based on t he est ablished dat aset .

Dat a preprocessing

The preprocessing of raw I-V curves and corresponding am bient condit ions is t o provide high qualit y dat a for t raining and running t he FDD m odeleffi cient ly and eff ect ively, which includes t wo st eps. The fi rst st ep is t o down-sam ple t he raw I-V curves. The second st ep is t o com bine t he volt age and curve vect ors of each I-V curve wit h it s ambient condit ion t o form a t wo-dim ensional dat a sam ple as t he input of t he FDD m odel.

Original I-V curves obt ained by m ost I-V t est ers consist of a large num ber of dat a point s wit h non-uniform dist ribut ion. Especially, m ost dat a point s rem ain in t he range bet ween t he short -circuit point and t he MPP, while t here are m uch less dat a point s bet ween t he MPP and open circuit point .To im prove t he qualit y and reduce t he dat a size of t he dat aset for t raining t he FDD m odel, t he raw I-V curves are first ly resam pled and down-sam pled t o provide new I-V curves wit h uniform 

Generation of dataset

Based on the array model, two datasets are generated, one for training and one for testing. For each I-V curve in the data set, G varies between 400 and 1200 W/m 2 and Tm between 10 and 80°C. The corresponding parameters for the two datasets are identical and presented in Table 4. Compared to previous studies in literature [START_REF] Chen | Deep residual network based fault detection and diagnosis of photovoltaic arrays using current-voltage curves and ambient conditions[END_REF], for PS, Rs, and Rsh degradation, the fault severity is not simply set as constant. Instead, the fault severity is also varied with the corresponding parameters covering uniformly relatively wide ranges listed in Table 4, which are also the effective range for FDD in this study. Examples of curves under several faulty conditions are presented in Fig. 4. For better illustration of the impact of fault severity, the given curves are generated under identical Standard Test Condition (STC, G =1000 W/m 2 , Tm =25°C).

For PS, the PS degree is set from 10% (low shaded) to 100% (total shaded). The lower limit of 10% is set to avoid the confusion between incipient PS (such as 1% PS degree) and the healthy condition [START_REF] Salem | Detection and assessment of partial shading in photovoltaic arrays[END_REF]. For SC, the 𝑅 𝑆𝐶 is set to 10 -5 Ω to emulate a full SC, similar for OC with 𝑅 𝑂𝐶 equal to10 5 Ω. For Rs and Rsh degradation, the fault severity is tuned to introduce a wide range of shape distortion on the I-V curves, as shown from the slope change in Fig. 4. The simulation curves are obtained under ideal conditions, i.e. without any measurement errors or fluctuations.

Therefore, in order to train the classifiers with data more representative of those measured in real conditions, environmental noise and random measurement errors are introduced. The environmental noise follows a normal distribution with a SNR of 35dB, and the random error is set at 0.5% of the variance of V and I. These values are determined by combing the datasheets of the measurement devices used in field tests to the uncertainties given in the literature and technical reports [START_REF] Dirnberger | Uncertainty in PV module measurement-part I: Calibration of crystalline and thin-film modules[END_REF][START_REF] Reise | Report IEA-PVPS T13-12:2018 Uncertainties in PV System Yield Predictions and Assessments[END_REF].

Finally, in total, the training dataset contains 12000 simulated I-V curves for the eight conditions (each condition corresponding to 1500 curves). The test dataset contains 2400 curves (300 curves for each condition).

Both datasets will be subjected to the following pre-processing operations.

Pre-processing of I-V curves

The pre-processing of I-V curves consists of two main operations: correction and resampling. Irradiance or/and temperature variations can introduce differences among into I-V curves. These differences could be mis-interpreted as fault signatures. Therefore, before exploiting I-V curves obtained by measurement or simulation under different environmental conditions, they must be corrected to an identical condition, usually the STC.

The IEC 60891 standard is intended for this correction. However, the methods it proposes are not suitable for curves taken from defective photovoltaic panels. A new correction method is presented and applied in this study. Another difficulty is related to the difference in the number of points that may exist between two I-V curves. This may be due to the quantization step or to the measuring equipment. After the correction step, a resampling step is needed to ensure that all curves have the same number of points before being analyzed.

Different from the double-resampling method adopted in [START_REF] Chen | Deep residual network based fault detection and diagnosis of photovoltaic arrays using current-voltage curves and ambient conditions[END_REF], a single resampling method is proposed and employed in this study. A special procedure to determine the number of resampling points is also designed considering resampling performance and computational cost. These steps are now detailed in the following.

Correction of I-V curves

Under various environmental conditions (different G and Tm), measured or simulated I-V curves could have distinct shapes. Thus, to avoid any misinterpretation, the I-V curves are corrected to the same environmental condition. Here, STC is used as the target condition.

In [START_REF] Li | Analysis of the performance of I-V curve correction methods in the presence of defects[END_REF][START_REF] Li | Evaluation and improvement of IEC 60891 correction methods for I-V curves of defective photovoltaic panels[END_REF], it is found that the usual I-V curve correction methods are the procedure 1 and procedure 2 from the IEC 60891 standard [30]. However, these methods have limited performance in the presence of faults.

Therefore, an improved correction method has been proposed and proved able to achieve better overall correction performance under all the tested faulty conditions (same fault types studied in this paper).

Accordingly, this proposed method, detailed as follows, will be applied to correct the collected I-V curves.

𝐼 2 = 𝐼 1 (1 + 𝛼 𝑟𝑒𝑙 (𝑇 𝑚2 -𝑇 𝑚1 ))𝐺 2 /𝐺 1 (1) 
𝑉 2 = 𝑉 1 + 𝑐[𝛽 𝑟𝑒𝑙 (𝑇 𝑚2 -𝑇 𝑚1 ) + 𝑎 ⋅ 𝑙𝑛(𝐺 2 /𝐺 1 )] -𝑅 𝑠 (𝐼 2 -𝐼 1 ) -𝜅 ⋅ 𝐼 2 (𝑇 𝑚2 -𝑇 𝑚1 ) (2) 
𝑐 = 𝑉 𝑜𝑐1 [1 + 𝛽 𝑟𝑒𝑙 (25 -𝑇 1 )] (3) 
where, 𝐼 1 and 𝐼 2 , 𝑉 1 and 𝑉 2 , 𝑇 𝑚1 and 𝑇 𝑚2 , 𝐺 1 and 𝐺 2 are the current, voltage, 𝑇 𝑚 , and 𝐺 before and after correction, respectively; 𝑅 𝑠 is the internal series resistance; 𝑎 and 𝜅 are the curve correction factors; 𝑅 𝑠 , 𝑎, and 𝜅 are determined from the simulations.

Resampling of I-V curves

After the correction, the I-V curves are resampled. This is particularly necessary when dealing with new I-V curves with different number of points or distribution. This is the case, for example, for I-V curves measured by different tracers. This treatment not only ensures that each I-V curve has the same number of points, but also, and more importantly, that the points on the curve are uniformly distributed. The resampling to make the FDD methodology interoperable is described below in several steps:

-Construct a voltage vector with N points linearly distributed in the range [0, Vmax] with a constant step (Vmax is a constant for all the conditions, which could be set a little higher than the array VOC at STC in healthy condition to avoid the voltage of improperly-corrected curves to exceed this limit);

-For each voltage value, find the nearest point on the original curve and record the corresponding PV current value;

-Finally, construct a new current vector with the N values.

To determine N, the quality of the resampling must be quantified. Here, the area error (𝐸 𝑎𝑟𝑒𝑎 ) [START_REF] Phang | A review of curve fitting error criteria for solar cell I-V characteristics[END_REF] is adopted as the metric, as defined in [START_REF] Herná Ndez-Callejo | A review of photovoltaic systems: Design, operation and maintenance[END_REF].

𝐸 𝑎𝑟𝑒𝑎 = 𝑆 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟 𝑆 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 × 100% (4) 
Where, 𝑆 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is the area enclosed by the original I-V curve, 𝑆 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟 is the area enclosed by the difference between the original and the resampled I-V curve. Considering the I-V curves for the eight cases studied (the original number of points varies between 298 and 363 due the variable simulation time step), the mean and standard deviation of 𝐸 𝑎𝑟𝑒𝑎 with varying N are presented in Fig. 5. It is observed that, when N > 40, 𝐸 𝑎𝑟𝑒𝑎 becomes relatively small (~0.75%) and stable. However, it should be noted that, beside the quality of the resampling, the complexity of the model (the computational burden of the classifiers increases with the number of points) also needs to be considered. Therefore, in this study, N is set to 50 to ensure good resampling performance and reduce computational cost. Thus, after resampling, each I-V curve will consist of 50 points.

Feature extraction

After the correction and the resampling of the I-V curves, three types of features are proposed: raw I-V data or transformed into 1D or 2D vectors to increase the discriminability of features. The transformations are based on two techniques that have not been so far, to the best of our knowledge, applied to I-V curves. A dimension reduction is also evaluated to reduce information redundancy and computational cost. These steps are now presented.

Feature transformation

After the resampling, there are two means to extract features from the resampled current vectors. The first one is to use these vectors directly as input to classifiers (this method is named 'direct I-V' hereafter), while the second transforms the 1-dimensional (1D) vector to a 2-dimensional (2D) matrix. Specifically, two transformation techniques, commonly practiced in the transformation of time-series signal will be used in this research:

1) Gramian Angular Difference Field (GADF) [START_REF] Wang | Imaging Time-Series to Improve Classification and Imputation[END_REF]: It calculates the inner product of the input vector via the characterization of angular difference and preserves the temporal dependency. The size of the generated matrix (Dmatrix) =Dvector 2 , where Dvector is the number of features of the original vector. In this sense, when Dvector =50, each current vector is transformed to one matrix with Dmatrix = 2500.

2) Recurrence Plot (RP) [START_REF] Marwan | Recurrence plots for the analysis of complex systems[END_REF]: It also reveals all the time dependency of vectors and constructs a square matrix by calculating the inner distance among all the states in the phase space. The phase space is generated by embedding a shift (τ) in the input vector, where τ is determined by optimization. The Dmatrix of RP equals (Dvector-τ) 2 . In this study, τ=1, thus, Dmatrix=2401.

Some examples of GADF and RP transformation are illustrated in Fig. 6. The reason for performing these operations will be explained in Section 5.1.4. From the examples of transformation, it is observed that the values in both RP and GADF matrix stretches symmetrically around the main diagonal. When the value of the current vector exhibits a decline, a 'square' will correspondingly appear, as seen from the PS and PS2 cases. When the slope near the 𝑉 𝑂𝐶 or 𝐼 𝑆𝐶 part of the I-V curve changes, the diagonal area in the matrix will also shrink along with different directions. In this way, all the changes in an I-V curve could be reflected in the transformed matrix.

All the three feature extraction methods (direct I-V, RP, and GADF) capture complete information from the vector of current resampled from original I-V curves. Their performance will be compared to the method that only uses partial information of the I-V curves.

Dimension reduction of features

When there is a slight variation in one I-V curve, the resampled current vector used in direct I-V may contain redundant points and the transformed features could also have information duplication. To reduce the complexity of the classifiers, and improve the efficiency of the training process, a reduction of the number of features is performed, using Principal Component Analysis (PCA). The number of principal components finally retained is a trade-off between the dimension reduction and the loss of information due to the eliminated components. The usual rule is to keep the minimum number of components that represent a certain amount of the original information (cumulated variance); 95% is usually adopted. The diagnosis performance without PCA will also be discussed in in Section 5.1.3.

Feature analysis for PV FDD

For the feature extraction methods, except the ones which capture complete I-V curve information (direct I-V, RP, GADF), one traditional method which uses partial I-V curve information will also be tested for comparison.

This method extracts the eight key features (named '8paras' hereafter) from the original I-V curve and environmental parameters, i.e., G, Tm, 𝑉 𝑀𝑃𝑃 , 𝐼 𝑀𝑃𝑃 , 𝑉 𝑂𝐶 , 𝐼 𝑆𝐶 , 𝑅 𝑠 and 𝑅 𝑠ℎ . The parameters 𝑅 𝑠 and 𝑅 𝑠ℎ are calculated by the reciprocal of the slopes of one I-V curve near the 𝑉 𝑂𝐶 and 𝐼 𝑆𝐶 , respectively. In the section devoted to the diagnosis, several MLT classifiers will be evaluated for the fault classification to find which one performs better when using the four different input features.

In total, six common MLT classifiers are studied: Artificial Neural Network (ANN), Support Vector Machine (SVM), k-Nearest Neighbors (kNN), Decision Tree (DT), Random Forest (RF), and Naive Bayesian Classifier (NBC). These classifiers all tuned and evaluated under Matlab® for the classification of the eight conditions of PV array. The configuration of these classifiers is listed in Table 5. 

Diagnosis results using simulated data

Performance of fault classification

The training database (presented in Section 2.2) is divided into 70% for training and 30% for validation. This partitioning ratio (2/3 for learning and 1/3 for testing) is a commonly adopted rule of thumb [START_REF] Khanna | Effect of time and space partitioning strategies of samples on regional landslide susceptibility modelling[END_REF]. With a dataset of 12,000 samples (I-V curves), this partitioning ratio allows efficient learning and stable validation [START_REF] Sarkar | A case study on partitioning data for classification[END_REF].

Thanks to this validation the hyperparameters of the six MLT classifiers can be determined. The trained model will be evaluated with the test database (also presented in Section 2.2).

The test accuracy of the six classifiers using the four different input features is presented in Fig. 7. The details (including the macro precision, recall, F1 score, accuracy, hyperparameters) of the best classifier are listed in Table 6, and the corresponding confusion matrices are illustrated in Fig. 8. From an input perspective, it can be seen that using features based on the full I-V curve (i.e. direct I-V, RP and GADF) leads to higher classification accuracy and F1 score than using partial I-V curve information (i.e. 8paras). For the 8paras type, the highest accuracy is only 94.83%.

Large misclassification occurs for PS1, PS2, and Rs degradation. This was predictable because under these conditions, the MPPs of some of the curves could have similar or even identical positions, especially in the presence of measurement noise. In conclusion, if only 𝑉 𝑀𝑃𝑃 , 𝐼 𝑀𝑃𝑃 , 𝑉 𝑂𝐶 , 𝐼 𝑆𝐶 , 𝑅 𝑠 and 𝑅 𝑠ℎ are adopted as curve features, poor performance will be obtained.

Comparatively, for the full I-V curve-based methods (direct I-V, RP, and GADF), almost all the curve information is embedded in the input features. Thus, the classifiers can learn the variation trend of the curves and achieve high classification results, all of them higher than 99.9%. For GADF, using ANN as the classifier achieves 100% classification. For direct I-V and RP, there are one or two I-V curves wrongly classified.

In terms of average accuracy, RP and GADF perform better than direct I-V, with the six MLT classifiers. This proves that the transformation of features is relevant as it improves the classification performance. This could also be seen from the 2D t-SNE [START_REF] Belkina | Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets[END_REF] graphs shown in Fig. 9, where the discriminability of the different features can be observed. From the t-SNE graphs, it can be observed that the clusters of features-8paras are nearly all mixed up, which shows up its low capability of discriminating the different cases. For RP and GADF, the clusters are relatively more separated than that of direct I-V, like among PS1, PS2, and Rsh degradation. This is clearer for GADF.

This means, using RP or GADF, the discriminability of input features is enforced, which therefore allows all the MLT classifiers to achieve better classification, as presented in Fig. 7.

Robustness to additional disturbance

In this part, the best MLT classifiers for the four types of input features (presented in Table 6) will be tested with new test data sets to assess their robustness to random measurement errors and environmental noise. In the following, the range of variation is larger than in the previous test data set. The corresponding best classification results when using the four types of input features are presented in Fig. 10. It is observed that, overall, the best accuracy, when using all four types of features, decreases with increasing disturbance level. However, the use of features based on full I-V curves (direct I-V, RP and GADF) is more robust than the partial use of curves (8paras).

As for direct I-V, RP, and GADF, the best accuracy has a similar trend for low disturbance level. However, GADF experiences a slighter decrease of performance with increasing disturbance in V and I. Nevertheless, GADF clearly outperforms direct I-V and RP, with fewer I-V curves under heathy and Rsh degradation misclassified in other conditions. It can be concluded that the classifier using GADF to extract features has a better overall robustness to additional disturbance than other types of feature extraction methods.

Impact of PCA operation

As presented in Section 4.2, for direct I-V, RP, or GADF, the dimension of extracted features has been reduced

with PCA before fed to the MLT classifiers. In the following, the impact of this operation on the diagnosis performance will be discussed. Specifically, the processing time, and the test accuracy with and without PCA are compared as shown in Table 7. In this study, the platform is Matlab® R2020b with CPU of Intel(R) Xeon(R) E-2174G CPU @ 3.80GHz and RAM of 32G. From these results, the following conclusions can be drawn about the effects of PCA :

▪ Significant reduction of the total training time (pre-processing + training), especially for RP and GADF for which there is a decrease of almost 90% when PCA is used, ▪ The accuracy of the classification is hardly affected.

Thus, it is favorable to conduct the dimension reduction with PCA, especially for high-dimensional features extraction, as for RP and GADF.

Impact of transformation

In Section 4.1, in addition to direct I-V, two feature transformation methods (RP and GADF) have been introduced. Clearly, the feature dimension after transformation greatly increases as the current vector is transformed into a square matrix. On one side, this could increase the complexity of FDD methodology, like the longer processing time needed to perform dimension reduction and training, as it can be observed in Table 7.

On the other side, it should be noted that the transformation is able to increase the discriminability of features, as presented in the t-SNE graph in Fig. 9. This can also be noted from the observation of the outputs of the neurons. From the test results given in Fig. 8, for the I-V curves of the array under healthy condition, direct I-V, RP and GADF could all achieve 100% classification. However, from the detailed results of the output of the best classifier, a difference in the confidence of the classification could be observed, for healthy conditions, as shown in Fig. 11. For these three types of features, ANN is the best classifier. The output values of the eight neurons in the output layer (corresponding to the eight cases) are presented. For each prediction of class, the sum of all the outputs equals to one. The predicted class is the one whose neuron has the highest output. In this sense, the greater the difference between the neurons' outputs, the more reliable the prediction. To quantify the output difference, ∆ 𝑜𝑢𝑡𝑝𝑢𝑡 is defined as the difference between the largest neuron output minus the second largest output. The larger ∆ 𝑜𝑢𝑡𝑝𝑢𝑡 , the more confidence can be placed in the classifier. In Fig. 12, the mean of the ∆ 𝑜𝑢𝑡𝑝𝑢𝑡 (∆ 𝑜𝑢𝑡𝑝𝑢𝑡 ̅̅̅̅̅̅̅̅̅̅ ) for the 300 test I-V curves under healthy condition is displayed. It can be observed that direct I-V and RP have almost the same performance, while GADF reaches the highest value with 0.996. This means, when using GADF for feature extraction, the decision made by the best classifier is more reliable, which once more confirms the merit of performing feature transformation.

In addition, the t-SNE figure of features (already presented in Fig. 8) also proves that the robustness to the additional disturbance when using RP and GADF is enforced to that using direct I-V, especially for GADF.

To investigate why the transformation could increase the discriminability of features, the difference between features under different conditions after transformation is analyzed. In fact, the I-V curves of an array under incipient fault conditions (like low PS degree, low additional 𝑅 𝑠 , large additional 𝑅 𝑠ℎ ) are prone to be confused

(a) (b) (c)
with those under healthy conditions. Therefore, taking the features of I-V curves under healthy condition as a reference, the difference between the reference and the features from I-V curves under PS, Rs, or Rsh degradation with different fault severities can be quantified. Here, the Root Mean Squared Error (RMSE) is used as the metric, defined as:

𝑅𝑀𝑆𝐸 = √ ∑ (𝑋 𝑖 -𝑋 𝑖 𝑟𝑒𝑓 ) 2 𝑛 1 𝑛 (5)
where, 𝑋 𝑖 is the 𝑖 𝑡ℎ element in the transformed feature 𝑋, 𝑛 is the number of elements in the feature. 𝑋 could be the current vector built by direct I-V method or the matrix built by RP or GADF method. From Fig. 12, it is observed that the normalized RSME of direct I-V and RP have almost a similar evolution under the three conditions, while that of GADF increases clearly faster, especially under PS and Rsh degradation. This means, with increasing fault severity, GADF features will be more sensitive. It can also be pointed out that incipient fault (variation lower than 10%) diagnosis is an opened challenge as the deviation is very low for all the transformations. However, the discriminability of features under the different cases is enforced with the feature transformation, especially with GADF. 8 shows the severities of the faults, which are consistent with those used for training and presented in Table 4. Fifteen curves are recorded for each of the eight cases. Therefore, there are 120 I-V curves, some of which after correction and extrapolation are shown in Fig. 15. 

Diagnosis results using experimental data

Classification results

After the pre-processing (correction, resampling) and feature extraction (with four feature extraction methods, namely, 8paras, direct I-V, RP, or GADF), the processed samples are then fed into the best tuned classifiers (trained with simulated data presented in Table 6) for classification. The results are presented in Fig. 16. According to Fig. 15, similar to the previous observations for simulation results, the classifiers using the features based on full I-V curve information (direct I-V, RP, and GADF) outperform the one using partial information (8paras). For 8paras, the main misclassification occurs between PS and PS2, between PS/PS2 and Rs/Rsh degradation, which corresponds to Fig. 8. For the three types of features based on the full I-V curves, the classification performance reaches 100% with GADF and RP. There is one I-V curve wrongly classified when using direct I-V. This experimental test not only validates the effectiveness of the tuned classifiers using simulated data but also shows the benefit of using features based on full I-V curves for PV FDD.

Comparative study

There are several other methods in the literature to extract features from I-V curves for FDD. In the following, a comparative study will be conducted with the simulated and experimental database presented in Section 2.2.

The extracted features will be processed by the MLTs presented in Section 错误!未找到引用源。. For each type of new feature, the MLT classifiers will be re-tuned. Then, the best classifier will be validated with the same field-measured dataset. The accuracies and processing times are summarized in Table 9. The method based on partial use of an I-V curve requires less time for the pre-processing and the training than the others to the detriment of a limited accuracy. For the methods based on complete use of one I-V curve, the three proposed methods (i.e., direct I-V, RP, and GADF) show better classification accuracy than the other ones. Additionally, the decision-making time in field tests is also rapid, less than 0.3s. The IVGT method is also based on resampling but performs worse than the proposed three methods. This is supposedly due to a lack of efficient integration of G and Tm information into the features. As for the IV image method, its performance is similar to the IVGT method. However, due to the complexity of image data, the training and field test times are significantly longer than the other methods, making it less competitive for rapid deployment in PV FDD applications.

Compared with other I-V curve-based feature extraction methods, the three proposed methods (direct I-V, RP and GADF) has the following advantages:

▪ the classification performance is very good both with simulation and field data, ▪ the processing time is reasonable with low complexity in the pre-processing and learning stages, so as to ensure rapid decision making in field trials.

Therefore, the whole FDD methodology based on full I-V curves and these feature extraction methods is very promising for health monitoring of PV modules.

Discussion

From the diagnosis results, it is found that the performance of the classifier depends on the input features, i.e., support vector machine when using 8paras, artificial neural network when using other features. This is why it is essential to tune several classifiers to find out which one will have the best performance depending on which features are being used as inputs. Besides, it is also noteworthy that the type of input features has a more significant impact on the classification performance (accuracy and robustness to disturbance) than the type of classifiers. These results prove the utmost importance of the pre-processing stage in which the original samples are transformed to extract efficient features for higher discriminability. In essence, the objective of the preprocessing process is to improve the quality of the input features. This, if achieved, could not only ease the subsequent tuning process of classifiers but also improve the diagnosis performance.

Conclusion

In this paper, a methodology using full I-V curves and machine learning techniques for the fault diagnosis of PV array under eight conditions has been introduced. It has been shown that the three feature extraction methods that employ full I-V curve information perform better than the one using partial information of one I-V curve. Among the three complete information-based methods, through 1-dimension or 2-dimension transformation, Gramian angular difference field has the highest capability of discriminating the eight conditions and exhibits highest robustness to measurement errors and environmental disturbance. The classifiers tuned with simulated samples have been validated with field-measured I-V curves. The best classifier (artificial neural network) achieves 100% classification accuracy for both simulation and field tests.

The methodology and the results may constitute a valuable experience for future researchers on how to take benefit from the complete information embedded in I-V curves, to perform efficient PV fault diagnosis.

There are still some challenges to be addressed in future works: 
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 1 Fig. 1. Simulation model of the PV array
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 2 Fig. 2. Examples of simulated I-V curves under eight PV array conditions
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  ' means that the related resistance is disconnected in the simulation model.

Fig. 4 .

 4 Fig.4. I-V curves (STC) under PS1, PS2, Rs, and Rsh degradation (For PS2, the shading level for the two modules could be the same or different as shown in Fig.2. For Rsh degradation, the shape of the curves does not vary linearly with the additional resistance in parallel to the array)

Fig. 5

 5 Fig.5𝐸 𝑎𝑟𝑒𝑎 of resampling of I-V curves as a function of N (the dots represent the mean value, while the band represents the standard deviation)

Fig. 6 .

 6 Fig. 6. Examples of matrices transformed by GADF and RP: (a) Healthy, (b) PS, (c) PS2, (d) Rs degradation, (e) Rsh degradation (the value of each component on the matrix is marked by colormap)

Fig. 7 .

 7 Fig. 7. Test accuracy of all classifiers (the best accuracy is marked in red bold)

Fig. 8 .

 8 Fig. 8. Confusion matrix of the best classifier when using four types of input features

Fig. 9 .

 9 Fig. 9. t-SNE graphs of 4 types of input features extracted from identical test database: (a) 8paras, (b) direct I-V, (c) RP, (d) GADF

Fig. 10 .

 10 Fig. 10. Best classification accuracy using test dataset with varying level of added disturbance ((a): varying measurement random error of V and I; (b): varying environmental noise of V and I. The disturbance level adopted in the training dataset is marked in 'diamond')

Fig. 11

 11 Fig. 11 Neuron output of the best classifier under healthy condition using direct I-V, RP, and GADF: (a) direct I-V, (b) RP, (c) GADF

Fig. 12

 12 Fig. 12 Normalized RMSE of features between healthy and (a) PS, (b) Rs degradation, (c) Rsh degradation
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 21 Field test setup To evaluate the trained classifiers under real case, an experimental PV array of 6 sc-Si modules (Wiltec 62391-50W) is constructed, as shown in Fig. 13. The parameters of the PV modules in the simulation and field tests are identical. A reference cell (RG100) is used to measure G, and a Pt100 probe (class A) to measure the backsheet Tm of one module. Two multimeters (Keithley 2440 and 175) record the measurements G and Tm. The I-V tracer (Chauvin-Arnoux FTV200) records the array's I-V curves.

Fig. 13

 13 Fig. 13 Field test setup All the eight PV array cases are reproduced, and the corresponding I-V curves are recorded. Some fault setups are shown in Fig. 14. Table8shows the severities of the faults, which are consistent with those used for

Fig. 14 .Fig. 15 .

 1415 Fig. 14. Examples of fault setup

Fig. 16 .

 16 Fig. 16. Testing results using field-measured data

  [START_REF]Global Market Outlook for Solar[END_REF] incipient fault (at their earliest stage) should be detected. I-V curves should be simulated and measured under these conditions to evaluate the proposed PV fault detection and diagnosis methodology; (2) other transformation and dimension reduction techniques could be evaluated to enhance discriminability and reduce computational cost and complexity; (3) for very large PV plants, measurement of I-V curves at string or module level should be addressed; (4) the fault detection and diagnosis methods should address different simultaneous faults that may affect the same module or string;[START_REF] Livera | Recent advances in failure diagnosis techniques based on performance data analysis for grid-connected photovoltaic systems[END_REF] the performance of FDD methods should be analyzed for PV plants in which only inverter-level measurements are available.

  ResNet model (one type of deep neural network) to classify 8 PV array fault conditions. The classification accuracy reaches 98.8%, but the duplication of information is introduced in the input features.

	• Full information	• Poor generalization capability
	• Suitable for multiple faults	• Slow decision making
	diagnosis	
	Additionally, with the popularity of deep learning in PV diagnosis, in [23], I-V curves are integrated with
	irradiance (G) and module temperature (Tm) into 4-column matrices. These feature matrices are then processed
	by an improved	

Table 2

 2 Parameters of Wiltec 62391-50W PV module

	Variable	Value	Variable	Value
	𝐼 𝑆𝐶	3.24 A	𝑉 𝑀𝑃𝑃	17.55 V
	𝑉 𝑂𝐶	21.58 V	𝛼 𝑟𝑒𝑙	0.05 %/˚C
	𝐼 𝑀𝑃𝑃	2.85 A	𝛽	

𝑟𝑒𝑙 -0.3 %/˚C

Table 3

 3 Parameters of PV array

	Variable	Value	Variable	Value
	𝐼 𝑆𝐶	6.48 A	𝑉 𝑀𝑃𝑃	52.65 V
	𝑉 𝑂𝐶	64.74 V	𝐼 𝑀𝑃𝑃	5.70 A
	Where, VOC is the open-circuit voltage, VMPP and IMPP refer to the voltage and current at maximum power point
	(MPP), rel and rel are the temperature coefficients (TC) of short-circuit current (ISC), and the open-circuit
	voltage (VOC), respectively.			
	In total, eight configurations (i.e., healthy and seven faulty conditions) are studied:
	1) Two types of Partial Shading (PS): 1 (or 2) module(s) in one string is (are) shaded (abbreviated as PS1
	and PS2, respectively) by adjusting the block gain value that controls the irradiance;
	2) Two types of Short-Circuit (SC): 1 (or 2) module(s) in one string is (are) short-circuited (abbreviated as
	SC1 and SC2, respectively) by connecting a resistance 𝑅 𝑆𝐶 in parallel;
	3) Open-Circuit (OC): 1 string is open-circuited by connecting a resistance 𝑅 𝑂𝐶 in series;
	4) Rs degradation (Rs degra): increase of array equivalent series resistance, controlled by a resistance
	𝑅 𝑠_𝑑𝑒𝑔𝑟𝑎 added in series;			
	5) Rsh degradation (Rsh degra): decrease of array equivalent shunt resistance, controlled by a resistance
	𝑅 𝑠ℎ_𝑑𝑒𝑔𝑟𝑎 added in parallel;			

Table 4

 4 

Parameter setting for the array under healthy and faulty conditions Condition PS degree (%) 𝑅 𝑆𝐶 (Ω) 𝑅 𝑂𝐶 (Ω) 𝑅 𝑠_𝑑𝑒𝑔𝑟𝑎 (Ω) 𝑅 𝑠ℎ_𝑑𝑒𝑔𝑟𝑎 (Ω)

Table 5

 5 

		Configuration of MLT classifiers
	MLT	Configuration
	All	Common setting
	types	• Normalization: true (to [-1,1])
		• K-fold validation: 5
		• Hyperparameter optimization method: grid search or
		Bayesian method
	ANN • Structure: 1 or 2 hidden layers (5-35 neurons)

• Loss function: Cross entropy • Train algorithm: Scaled conjugate gradient • Function: tansig (hidden layer), softmax (output layer) SVM • Multiclass method: one-vs-one • Kernel scale: optimized • Penalty: optimized • Kernel function: Linear, Quadratic, Cubic, Gaussian, or RBF kNN • Number of neighbors: optimized • Distance metric: Euclidean, City block, or Chebyshev DT • Max number of splits: optimized • Split criterion: Gini's diversity index • Minimum number of leaf nodes: optimized RF • Max number of splits: optimized • Minimum number of leaf nodes: optimized • Number of predictors selected for each split: optimized NBC • Distribution type: Gaussian, or Kernel • Kernel Type: Gaussian, Box, Epanechnikov, or Triangle • Kernel smoothing window width: optimized

Table 6

 6 Details of the best classifiers

	Type of input features	Best classifier	Precision	Recall	F1 score	Test accuracy	Classifier hyperparameters
	8paras	SVM	0.9520	0.9483	0.9479	94.83%	Kernel: Polynomial 2, BoxConstraint=29.3
	direct I-V	ANN	0.9992	0.9992	0.9992	99.92%	#Neurons in hidden layer =15
	RP	ANN	0.9996	0.9996	0.9996	99.96%	#Neurons in hidden layer =10
	GADF	ANN	1	1	1	100%	#Neurons in hidden layer =32

Table 7

 7 Influence of PCA on time and accuracy

	Input feature type	PCA	Pre-processing time (PCA included) (s)	Training time (s)	Preprocess+ train time (s)	Testing time (s)	Test accuracy
	direct I-V	Y N	0.39 0.37	41.57 58.65	41.96 59.02	0.01 0.01	99.92% 99.88%
	RP	Y N	97.72 89.33	48.31 1209.23	146.03 1298.56	0.01 0.13	99.96% 99.92%
	GADF	Y N	48.88 46.90	31.75 670.89	80.63 717.79	0.01 0.11	100% 100%

Table 8

 8 

		Setting of fault severity
	Condition	Varying fault severity

Table 9

 9 Comparison of PV FDD results of different methods

	Use of I-V curves	Method	Train	Accuracy Test	Field test	Pre-process +train	Time Test	Field test*
		6paras [37]	95.41%	94.04%	90.83%	3.59s	0.05s	0.05s
	Partial							
		8paras	96.21%	94.83%	91.67%	3.08s	0.05s	0.09s
		IVGT [23]	99.75%	98.83%	97.5%	38.62s	0.01s	2.13s
		IV image [38]	100%	99.58%	95.00%	20min	13.9s	29.4s
	Complete	direct I-V	100%	99.92%	99.17%	41.96s	0.01s	0.17s
		RP	100%	99.96%	100%	146.03s	0.01s	0.29s
		GADF	100%	100%	100%	80.63s	0.01s	0.21s

* Field test time includes the time of pre-processing and classification of 120 curves