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Introduction

The Teukolsky equation (introduced in [START_REF] Saul | Perturbations of a rotating black hole. i. fundamental equations for gravitational, electromagnetic, and neutrino-eld perturbations[END_REF]) is a dierential equation on spin weighted functions. The geometrical framework necessary to understand these objects includes spin geometry, the Newman Penrose formalism (see [START_REF] Newman | An approach to gravitational radiation by a method of spin coecients[END_REF] and [START_REF] Newman | Errata: an approach to gravitational radiation by a method of spin coecients[END_REF]) and the closely related GHP formalism (introduced in [START_REF] Geroch | A space-time calculus based on pairs of null directions[END_REF]). There are some good general presentations of these formalisms in the literature: [START_REF] Chandrasekhar | he mthemtil theory of lk holes[END_REF] (Newman Penrose formalism and spin geometry), [START_REF] Penrose | pinors nd speEtimeX olume ID woEspinor lulus nd reltivisti (elds[END_REF] (Newman Penrose formalism and spin geometry) [START_REF] Andersson | Spin geometry and conservation laws in the kerr spacetime[END_REF](spin geometry), [START_REF] Andersson | Geometry of black hole spacetimes[END_REF] section 2.4(spin geometry and GHP formalism), [START_REF] Aksteiner | Linearized gravity and gauge conditions[END_REF] section 2.1(GHP formalism), [START_REF] Aksteiner | New identities for linearized gravity on the kerr spacetime[END_REF](GHP formalism), [START_REF] Harnett | The ghp connection: a metric connection with torsion determined by a pair of null directions[END_REF] (geometrical denition of spin weighted functions close to the one we use here and GHP formalism) and [START_REF] Curtis | Complex line bundles in relativity[END_REF](interpretation of spin weighted functions as complex line bundles).

The goal of these notes is to synthesize the minimal geometric background necessary to understand how spin weighted functions appear in the study of the Teukolsky equation and to provide detailed computations in the case of the Kerr spacetime. In particular, we explicit the link, between the abstract denition of spin weighted functions (relying on the Newman Penrose formalism) and the more concrete denition involving the Hopf bundle. This second point of view is used in [START_REF] Dafermos | Boundedness and decay for the teukolsky equation on kerr spacetimes i: The case |a| m[END_REF], [START_REF] Shlapentokh-Rothman | Boundedness and decay for the teukolsky equation on kerr in the full subextremal range |a| < m: frequency space analysis[END_REF] and [START_REF] Costa | Mode stability for the teukolsky equation on extremal and subextremal kerr spacetimes[END_REF] in the context of analysis of the Teukolsky equation on a Kerr background but also in [START_REF] Goldberg | Spin-s spherical harmonics and ð[END_REF] and [START_REF] Eastwood | Edth-a dierential operator on the sphere[END_REF] in the context of spin weighted functions on the two dimensional sphere. For simplicity, we do not consider here the interaction of the GHP formalism with the conformal structure of the space-time but this point of view (developped by Araneda in [START_REF] Araneda | Conformal invariance, complex structures and the teukolsky connection[END_REF]) enables to give even more geometrical meaning to the Teukoslky operator (with in particular a natural denition of the Teukolsky connection). We do not claim to prove new results in this paper but we think that this synthesis will be useful for analysts looking for a simple and detailed introduction to the geometric framework of the Teukolsky equation in the Kerr spacetime.

In a rst part, we introduce the general denitions spin weighted functions on a general Petrov D type space-time. In the second part, we compute the topology of the bundles in the case of a Kerr space-time. In the third part, we introduce (with details) the various connections and dene the GHP operators. We choose a geometrical approach using principal connections which is not the most direct but is quite natural. We used the references cited in this introduction but we reformulate everything needed in an essentially self contained way (except for some punctual peripheral propositions).

Conventions and notations

In this paper, we use the sign convention (+, -, -, -) for Lorentzian metric. For example, the Minkowski metric on R 4 will be given by the matrix η =

    1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1     .
If we have a Cartesian product A × B we denote by pr A the projection on A.

Let k ∈ Z and n ∈ N. We denote by [k] n the image of k by the projection Z → Z/nZ. More generally, we will note [x] the image of x by the projection map when we have a quotient space.

If E is a smooth vector bundle (real or complex) over a manifold M, we denote by E the dual vector bundle (for every x ∈ M, (E ) x is the space of linear forms on E x ). We denote by Γ(E) the set of smooth sections of E.

If ∇ is a linear connection acting on a complex vector bundle, we sometimes want to compute ∇ X where X is a section of the complexied tangent space. In this case, we simply extend the connection by C-linearity, in other words, we dene ∇ X := ∇ (X) + i∇ (X) .

Denition of the bundles

Let M be a space-time (4 dimensional time and space oriented Lorentzian manifold, globally hyperbolic). Since the space-time is globally hyperbolic, there is a global time function and a 1+3 decomposition. A time orientation is the choice of a global timelike vector eld and a space orientation is an orientation of the spatial part in the 1+3 decomposition. Note that a more intrinsic (but equivalent) way of dening time orientation would be: a continuous choice of a connected component of the lightcone on each point. A more intrinsic way of dening a space orientation would be: a smooth choice of a connected component of the set of triple (b 2 , b 3 , b 4 ) of independent spacelike vector elds at each point.

The principal motivation to introduce spin weighted functions is the following: In the case where the space-time is of Petrov type D, we would like to nd a global Newman Penrose null tetrad containing two vectors in the principal null directions (see denition 2.2). This tetrad can be associated (up to a sign ambiguity) with a spin frame which is adapted to the geometry. Indeed, it ensures the vanishing of some associated spin coecients and therefore simplies the component expression of the Dirac operator. We can even hope to reduce tensor equations to scalar decoupled equations for some components. However, it is in general not possible to nd such a tetrad (and such spin frame) globally for topological reasons (see for example the computations on Kerr). However, it is possible to choose a global tetrad "up to some complex factor" (and similarly for the spin frame). Rigorously, this "almost tetrad" is dened as the smooth bundle of all four vectors satisfying the Newman Penrose conditions (or the bundle of all normalized spin frame associated to it). The analog of components in this "almost tetrad" can then be dened for co-tensors (and co-spinors in the almost spin-frame). Such components can be interpreted as sections of some complex line bundle B(s, w). Such sections of B(s, w) are called spin weighted functions.

Spin structure and frame of oriented orthonormal frames

We know by [START_REF] Geroch | Spinor structure of space-times in general relativity[END_REF] that M admits a spin structure. In other words, if we denote by O the SO + (1, 3) principal bundle of oriented orthonormal frames on M (and π O is the associated projection), there exists a SL(2, C) principal bundle π S : S → M and a double covering p : S → O such that the following diagram commutes

S O M p π S π O
and such that for all g ∈ SL(2, C) and x ∈ S, p(x • g) = p(x) • p(g) where p : SL(2, C) → SO + (1, 3) is given by the Weyl representation p :

     SL(2, C) → SO + (1, 3) M → x ∈ R 4 → i -1 2 M 1 √ 2 x 0 + x 3 x 1 + ix 2 x 1 -ix 2 x 0 -x 3 M * where i 2 :      C 4 → M 2 (C) z → 1 √ 2 z 0 + z 3 z 1 + iz 2 z 1 -iz 2 z 0 -z 3 .
We also identify C 2 ⊗ C 2 and M 2 (C) via the linear isomorphisms

i 1 : C 2 ⊗ C 2 → M 2 (C) a ⊗ b → ab T .
For later use, we dene i 0 := i -1 2 • i 1 the identication between C 2 ⊗ C 2 and C 4 . Using the identication i 0 , we have for every g ∈ SL(2, C):

ρ(g) ⊗ ρ(g) = µ • p(g) (1) 
where ρ is the canonical representation of SL(2, C) on C 2 and µ is the canonical representation of SO + (1, 3) on C 4 (the identication i 0 is implicit in the equality).

Spinor bundles

Vector bundle associated to a principal bundle

Given a principal bundle π : E → B and a representation ρ of the structure group G on some (real or complex) vector space V , we can form the associated vector bundle 

F := E × V / ∼ where (e, v) ∼ (e , v ) if there exists g ∈ G such that e • g = e and ρ(g -1 )(v) = v .
: π -1 U → U × G is a local trivialization (in the sense of principal bundles) of E, then φ F : x ∈ F → ((π(x), z) such that [(φ -1 (π(x), 1), z)] = x) is a local trivialization of F.
In these notes, φ F will be called the trivialization associated to φ. If we apply the previous construction to the bundle of oriented orthonormal frames with the canonical representation of SO + (1, 3) on C 4 , we obtain the complexied tangent space on M. 

Ψ : π -1 O (U ) → U × SO + (1, 3) of O suh tht Ψ • p • Φ -1 = Id × pF e sy tht Φ nd Ψ re omptileF
Remark 2.2 (Notation). sn these notesD if we hve grtesin produt A × B we denote y pr A the projetion on A nd pr B the projetion on

BF roofF A necessary condition on Ψ is Ψ • p = (Id × p) • Φ. Therefore, the uniqueness is a direct consequence of the surjectivity of p : π -1 S (U ) → π -1 O (U ). To construct Ψ, we have to show that if p(x) = p(y), then (Id × p) • Φ(x) = (Id × p) • Φ(y). Assume x, y ∈ S are such that p(x) = p(y). In particular π S (x) = π S (y). By denition of a principal SL(2, C) bundle, there exists g ∈ SL(2, C) such that y = x • g. By denition of p, p(x) = p(x • g) = p(x) • p(g) and p(g) = 1 (the action of SO + (1, 3) on each ber of O is free). Moreover, because Φ is a trivialization, Φ(x • g) = (π S (y), pr SL(2,C) (Φ(y))g). Now, (Id × p) • Φ(x • g) = (π S (x), p(pr SL(2,C) (Φ(x)))p(g)) = (Id × p) • Φ(x).
So Ψ is well dened. Moreover, using that (Id× p)•Φ is surjective and (Id× p)•Φ(x) = (Id× p)•Φ(y) if and only if p(x) = p(y) (the only if part comes from the fact that (Id × p) • Φ(x) and p have exactly two antecedents), Ψ is bijective. Since p is a smooth covering map and Ψ • p is a local dieomorphism, we obtain that Ψ is a local dieomorphism so it is a dieomorphism. We also have that for

g ∈ SO + (1, 3), Ψ(x • g) = (π O (x), pr SO + (1,3) (Ψ(x))g). As a consequence Ψ is a local trivialization of O.
Remark 2.3. e lol triviliztion of prinipl undle n e de(ned y lol smooth setion of the undle @we sk tht this setion is the onstnt mp equl to the neutrl element of the group when written in the lol triviliztionAF wo lol setions s 1 of S nd s 2 of O de(ne omptile lol triviliztions if nd only if s 2 = p • s 1 F his ft ould hve een used to prove the proposition s wellF Remark 2.4. st is not true in generl tht for ny lol triviliztion Ψ of OD there exists omptile lol triviliztion of SF rowever it is true lolly @there exists extly P suh omptile lol triviliztions orresponding to the two lol lifts of the setion

x → Ψ -1 (x, 1) through p AF Remark 2.5. sf Φ • Φ -1 (x, g) = (x, gf (x)) is hnge of lol triviliztion of E @with f : U → G smooth mpAD then Φ F • Φ -1 F (x, v) = (x, ρ(f (x))(v))F
Two compatible trivializations enable to reduce locally the picture of spinors and vectors on M to the picture of spinors and vectors on Minkowski space. In particular, we have an analog on M of the previously dened identication between C 2 ⊗ C 2 and C 4 : Proposition 2.2. here exists unique isomorphism j of omplex vetor undles etween S ⊗S nd

T C M suh thtD given ny ouple of omptile lol triviliztions (Φ, Ψ) on U D Ψ T C M • j • Φ -1 S⊗S is extly (Id U , i 0 ) where i 0 is the identi(tion etween C 2 ⊗ C 2 nd C 4
roofF The uniqueness is obvious since compatible local trivializations cover M. For the existence, we dene j locally on each open set U associated to a compatible local trivialization and we have to check that all the denitions agree when they overlap. Let (Φ, Ψ) and (Φ , Ψ ) be two couples of compatible local trivializations on the same open set U . Let

g 1 : U → SL(2, C) smooth be such that Φ • Φ -1 (x, g) = (x, gg 1 (x))) and g 2 : U → SO + (1, 3) smooth be such that Ψ • Ψ -1 (x, g) = (x, gg 2 (x)). Using the compatibility (therefore p = Ψ -1 • Id × p • Φ = Ψ -1 • Id × p • Φ ),
we get for all x ∈ U and all g ∈ SL(2, C) (x, p(g)) = (x, p(gg 1 (x))g 2 (x) -1 ) and we deduce p

• g 1 = g 2 . Then Ψ T C M • Ψ -1 T C M • (Id × i 0 ) • Φ S⊗S • Φ -1 S⊗S (x, v) = x, µ(p(g 1 (x)))(i 0 (ρ(g 1 (x) -1 ) ⊗ ρ(g 1 (x) -1 )(v)
)) (where ρ and µ are the same as in (1) and we used remark 2.5 to compute the changes of associated trivialization). But [START_REF] Aksteiner | Linearized gravity and gauge conditions[END_REF] states exactly that µ(p(g

1 (x)))•i 0 •(ρ(g 1 (x) -1 )⊗ρ(g 1 (x) -1 )) = i 0 . Therefore Ψ T C M • Ψ -1 T C M • (Id × i 0 ) • Φ S⊗S • Φ -1 S⊗S (x, v) = (Id × i 0 )(x, v
) and the proposition is proved.

Remark 2.6. sn the followingD we identify S ⊗ S nd T C M using the mp j impliitlyF xote tht 

if m = j(a ⊗ b) ∈ T C MD then m = j(b ⊗ a)F
(Φ -1 S (x, v), Φ -1 S (x, w)) = det(v, w)F roofF
The uniqueness is obvious. To prove the existence, we dene locally and check that all the denitions agree. Let Φ and Φ be two local trivializations of S on some open set U . We denote by g : roofF We x a pair of compatible trivializations (Φ, Ψ). The equality to prove in the associated trivializations is

U → SL(2, C) the smooth map such that Φ • Φ -1 (x, h) = (x, hg(x)). Then det(ρ(g(x) -1 )(v), ρ(g(x) -1 )(w)) = det(g(x) -1 (v, w)) = det(g(x) -1 ) det(v, w) = det(v, w).
∀a, c ∈ C 2 , ∀b, d ∈ C 2 , η(i 0 (a ⊗ b), i 0 (c ⊗ d)) = det(a, c)det(b, d) where η =     1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1     is the Minkowski metric on C 4 .
We check that this equality is true using the explicit denition of i 0 .

Bundle of normalized spin frame along the null directions

From now on, we assume that M is a Petrov-type D (see the denition below) Ricci-at spacetime. por ll x ∈ U D l(x) nd n(x) re prinipl null vetors of multipliity @t lestA 2F @in ft l nd n re of multipliity extly PD see PHD hpter SA

The property of principal null directions on Petrov-type D Ricci-at space-time that we need here is the following: Proposition 2.5. sf we de(ne n nd l s in the previous de(nitionD they re pregeodesi nd sherE freeF he sher of pregeodesi vetor (eld l t x 0 with respet to X, Y orthonorml fmily of l(x 0 ) ⊥ is de

(ned s 1 2 (g(∇ Y l, Y ) -g(∇ X l, X)) + i 2 (g(∇ Y l, X) + g(∇ X l, Y
)) @see de(nition SFUFI in PHA roofF See proposition 5.9.2 in [START_REF] Barrett | he geometry of uerr lk holes[END_REF].

We dene the following subset of S × M S:

A := ∪ x∈M {(o, ι) ∈ S x × S x : j(o ⊗ o) and j(ι ⊗ ι) are independent, future oriented along null principal directions and (o, ι) = 1}
The bundle A is naturally endowed with a canonical C * right action:

(o, ι) • z = (zo, z -1 ι)
We also have a Z/4Z right action given by the map (image of the generator of Z/4Z): (o, ι) → (iι, io) By combining the two actions (performing the action of C * rst) , we get a right action of

C * f Z/4Z (with f : [1] 4 → (z → z -1
)) on A. However, this action is not free and we can quotient by the stabilizer of any point in A which is the normal subgroup H := (-1, [START_REF] Aksteiner | New identities for linearized gravity on the kerr spacetime[END_REF] 

C * 0 is a normal subgroup of G A isomorphic to C * . Proposition 2.6. he set A is smooth sumnifold of S × M SF woreoverD A is G A prinipl undle @with projetion mp π A = π S× M S | A AF roofF Let x ∈ M.
There exists an open neighborhood U of x such that there exists an oriented orthonormal tetrad (e 0 , e 1 , e 2 , e 3 ) with e 0 +e 3 and e 0 -e 3 are future oriented along the null principal directions. This tetrad gives a local trivialization Ψ of O. Then, even taking a smaller neighborhood, we can assume that there exists a local trivialization Φ of S on U such that Φ and Ψ are compatible (see remark 2.4). The set

à := Φ S× M S (π -1 A (U )) is given by U × A where A ⊂ C 2 × C 2 is dened as the set of (o, ι) ∈ C 2 × C 2 such that: i 0 (o ⊗ o) = (λ, 0, 0, λ) i 0 (ι ⊗ ι) = (µ, 0, 0, -µ) or i 0 (ι ⊗ ι) = (λ, 0, 0, λ) i 0 (o ⊗ o) = (µ, 0, 0, -µ) det(o, ι) = 1
where λ and µ are real positive numbers. We nd the following parametrization for A:

α :                G A → A [(z, [0] 4 )] → z 0 , 0 z -1 [(z, [1] 4 )] → 0 iz -1 , iz 0 where for k ∈ {0, 1, 2, 3}, [(z, [k] 4 )] is the class (z, [k] 4 )H in G A .
This map is a proper injective immersion in C 2 × C 2 and its image is A. The fact that the image is included in A can be checked directly with the denitions. The other inclusion is proved by solving the system dening A. For example, if o = o 0 o 1 and λ ∈ (0, +∞), the condition i 0 (o ⊗ o) = (λ, 0, 0, λ) rewrites (by denition

of i 0 ): √ 2 2 |o 0 | 2 + |o 1 | 2 , √ 2 (o 0 o 1 ), √ 2 (o 0 o 1 ), √ 2 2 |o 0 | 2 -|o 1 | 2 = (λ, 0, 0, λ)
This equality holds if and only if o 1 = 0 and |o 0 | 2 = 2λ. The other cases are very similar. This prove that A is a submanifold of C 2 ×C 2 and we deduce that A is a submanifold of S × M S. Moreover, we check (using the denition of the action) that the maps Φ -1 S× M S • (Id U × α) (dened around each point x ∈ M) endow A with a structure of G A principal bundle over M.

Bundle of oriented Newman-Penrose null tetrads along principal null directions

Denition 2.4. vet (l, n, m) ∈ T C,x M 3 e suh tht (n, l, m, m) is null sis of T C,x M with l nd n rel nd future orientedF e sy tht (n, l, m) is oriented if

( n+l √ 2 , (m), -(m), l-n √ 2 ) is orientedF
We dene the following subset of T C M 3 :

N := ∪ x∈M (l, n, m) ∈ (T C,x M \ {0}) 4 /g(l, l) = g(n, n) = g(m, m) = 0, l = l, n = n,
l and n are independent principal and future oriented, g(l, m) = g(n, m) = 0, g(m, m) = -1, g(l, n) = 1, (l, n, m) is oriented in the sense of denition 2.4

In particular for (l, n, m) ∈ N x , (l, n, m, m) is a basis of T C,x M. The set N is endowed with a canonical C * right action:

(l, n, m) • z = (|z|l, |z| -1 n, z |z| m)
We also have a Z/2Z right action dened by the involution:

(l, n, m) → (n, l, m)
Combining these two actions (performing the action of C * rst), we get a right action of

C * g Z/2Z on N where g([1] 2 )(z) = z -1 . Proposition 2.7. N is smooth sumnifold of T C M 3 nd is C * g Z/2Z
prinipl undle @for the tion previously de(nedA with projetion mp π N := (π

T C M 3 ) | N F roofF Let x ∈ M,
there exists an open neighborhood U of x such that there exists an oriented orthonormal tetrad (e 0 , e 1 , e 2 , e 3 ) with e 0 +e 3 and e 0 -e 3 are future oriented along the null principal directions. We denote by Ψ the corresponding trivialization of O. Then Ψ T C M 3 (N ) = U × N with N subset of (C 4 ) 3 of (l, n, m) such that:

                                                   l = √ 2 2       λ 0 0 λ       n = √ 2 2       λ -1 0 0 -λ -1       m = √ 2 2       0 e iθ -ie iθ 0       or                                                    n = √ 2 2       λ 0 0 λ       l = √ 2 2       λ -1 0 0 -λ -1       m = √ 2 2       0 e iθ ie iθ 0      
where λ is a positive real and θ is any real.

We have the following injective proper immersion (in (C 4 ) 3 )

β :                                      C * g Z/2Z → N (z, [0] 2 ) →       1 √ 2       |z| 0 0 |z|       , 1 √ 2       |z| -1 0 0 -|z| -1       , 1 √ 2       0 z |z| -i z |z| 0             (z, [1] 2 ) →       1 √ 2       |z| -1 0 0 -|z| -1       , 1 √ 2       |z| 0 0 |z|       , 1 √ 2       0 z |z| i z |z| 0            
This map has image N so N is a submanifold of (C 4 ) 3 and therefore, N is a submanifold of T C M 3 . Moreover, the maps β (around each x ∈ M) dene the structure of a C * g Z/2Z principal bundle on N .

We have a natural map:

d : A → N (o, ι) → (o ⊗ o, ι ⊗ ι, o ⊗ ι)
Remark 2.7. he ft tht the mp is well de(ned follows from proposition PFR nd the following remrk out orienttionX sf (o, ι) ∈ A x D then if we (x ouple of omptile lol triviliztions

(Φ, Ψ)round xD M := (pr C 2 (Φ S (o)), pr C 2 (Φ S (ι))) ∈ SL(2, C)F hen y hnge of omptile lol triviliztions @ssoited to the smooth mps x ∈ U → M -1 nd x ∈ U → p(M -1 )AD we n ssume tht M = 1 0 0 1 F st follows tht pr C 4 Ψ T C M (o ⊗ o) = √ 2 2     1 0 0 1     D pr C 4 Ψ T C M (ι ⊗ ι) = √ 2 2     1 0 0 -1     nd pr C 4 Ψ T C M (o ⊗ ι) = √ 2 2     0 1 -i 0     F ine Ψ is triviliztion of O @oriented orthonorml sesAD Ψ -1 T C M
sends the nonil sis of R 4 on n oriented orthonorml sis of 

to N nd for [(z, [u] 4 )] ∈ G A we hve d(a • [(z, [u] 4 )]) = d(a) • (z 2 , [u] 2 )
Remark 2.8. he mp

C * f Z/4Z → C * g Z/2Z (z, [u] 4 ) → (z 2 , [u] 2 )
is well de(ned nd is group morphism

@the key point is tht f ([u] 4 ) = g([u] 2 )AF he norml sugroup H is inluded in the kernel so we hve group morphism G A → C * g Z/2Z [(z, [u] 4 )] → (z 2 , [u] 2 )
F he mp is surjetive nd its kernel is the disrete

norml sugroup {[(1, [0] 4 )], [(-1, [0] 4 )
]}F hereforeD it is vie group doule overing mpF roofF Let x ∈ M, we dene U , Φ and Ψ as in the proof of proposition 2.6.Then the map

Φ T C M 3 • d • Ψ -1 S×S | U ×A = Id U × d where d :                                      A → N z 0 , 0 z -1 →       1 √ 2       |z| 2 0 0 |z| 2       , 1 √ 2       |z| -2 0 0 -|z| -2       , 1 √ 2       0 z 2 |z| 2 -i z 2 |z| 2 0             0 iz -1 , iz 0 →       1 √ 2       |z| -2 0 0 -|z| -2       , 1 √ 2       |z| 2 0 0 |z| 2       , 1 √ 2       0 z 2 |z| 2 i z 2 |z| 2 0            
(A and N are as dened in the proofs of propositions 2.6 and 2.7. The submanifold A is parametrized by G A using the maps α and B is parametrized by C * g Z/2Z using the map β) With this expression, we deduce the expression of the map

β -1 • d • α: β -1 • d • α : G A → C * g Z/2Z [(z, [u] 4 )] → (z 2 , [u] 2 )
To conclude the proof, note that Id U × β -1 • d • α is the expression of the map d in local trivializations for the structure of principal bundles (the same trivializations used to dene the structure in the proof of propositions 2.6 and 2.7).

Vector bundles associated to A and N and spin weighted functions

In this section, we have to make an assumption on the topology of A. We assume that A has exactly two connected components. This assumption is true for a large variety of spacetimes of interest thanks to the following proposition: Proposition 2.9. sf M is simply onnetedD then A nd N hve extly two onneted omponentsF roofF We sketch the proof for A, then see remark 2.9 to deduce the result for N . We know that each ber of A has two connected components dieomorphic to C * . Then we deduce (since M is connected) that A has one or two connected components. By contradiction, assume that A has only one connected component. Take x ∈ M, we call C * 0 and C * 1 the two connected components of A x . By the hypothesis, there exists a continuous path γ :

[0, 1] → A such that γ(0) = 1 0 and γ(1) = 1 1 . Then π A • γ is a loop on M. But M is simply connected. Therefore there exists a homotopy f : [0, 1] × [0, 1] → M between π A • γ and the constant loop t ∈ [0, 1] → x such that f t (0) = x and f t (1) = x for all t ∈ [0, 1].
But A is a ber bundle over M so it has the homotopy lifting property and we can nd a lift 1) is a continuous path with value in A x joining 1 0 and 1 1 which is a contradiction. Remark 2.9. sf A hs two onneted omponents

f of f such that f0 = γ. But the concatenation of t ∈ [0, 1] → ft (0), t ∈ [0, 1] → f1 (t) and t ∈ [0, 1] → f1-t (
A 0 nd A 1 D then d(A 0 ) nd d(A 1 ) re disjointF sndeedD if d(x) = d(y) either x = y orD y proposition PFV @nd the end of remrk PFVAD we hve y = x • [(-1, [0] 4 )] nd the ontinuous pth t → x • [(e itπ , [0] 4 )
] joins x nd yF herefore N hs lso two onneted omponents given y d(A 0 ) nd d(A 1 ) @sndeedD these two sets re onnetedD nd there exists no ontinuous pth from one to the other otherwise we ould lift this pth to pth etween A 0 nd A 1 AF Proposition 2.10. e ssume tht M is onnetedF N hs two onneted omponents if nd only if there exists two glol smooth null future oriented vetor (elds l nd n suh tht t eh point x ∈ MD l(x) nd n(x) re independent nd priniplF roofF We assume that N has two connected components. We choose one that we call N 0 . Then if

(l, n, m), (l , n , m ) ∈ N 0 with π N (l, n, m) = π N (l , n , m ), there exists z ∈ C * such that (l, n, m) = (l , n , m ) • (z, [0] 2 ) = (|z|l , |z| -1 n , z |z| m ).
In particular l and l are positively collinear as well as n and n . Then any convex combination of l and l is principal null, the same for n and n and the two are independent. This remark enables us to construct global vector elds n and l from local sections of N 0 using a partition of unity. If we assume the existence of the global vector elds l and n, then we have the two connected components: N 0 := {(u, v, m) : u and l are collinear and v and n are collinear } and N 1 := {(u, v, m) : u and n are collinear and v and l are collinear }.

From now we assume that A has two connected components. We choose one component that we call A 0 and we dene N 0 := d(A 0 ) (which is one of the two connected components of N according to remark 2.9)). The other connected component is called A 1 (and N 1 ). This choice denes an additional notion of orientation which corresponds to an ordering of the principal null directions (A 0 is the subset of oriented elements of A).

The right action of the subgroup [START_REF] Aksteiner | Linearized gravity and gauge conditions[END_REF] 4 )] induces a dieomorphism between A 0 and A 1 (similarly, the action of (1, [START_REF] Aksteiner | Linearized gravity and gauge conditions[END_REF] 2 ) induces a dieomorphism between N 0 and N 1 ). Remark 2.10. ine C * is ommuttiveD the right tion is lso left tion @nd we use oth nottions in the followingAF Let w, s ∈ 1 2 Z, we have the following representation of C * :

C * 0 := {[(z, [0] 4 )], z ∈ C * } of G A gives a structure of C * principal bundle on A 0 . Similarly, {(z, [0] 2 ), z ∈ C * } gives a structure of C * principal bundle on N 0 . The action of [(1,
ρ s,w : C * → GL(C) z → (a → z -w-s z -w+s a)
We dene the bundle B(s, w) as the complex line bundle associated to A 0 (with the right action) and the representation ρ s,w . We have a natural identication between sections of B(s, w) and the set of complex valued functions f dened on A 0 such that for all

z ∈ C * f (a • z) = z w+s z w-s f (a). ( 2 
)
The identication is given by: f → (x → [(a, f (a))] where a is any element of (A 0 ) x ). We call a spin weighted function with weights (s, w) any section of B(s, w) or equivalently (with the identication) any function on A 0 satisfying (2). We denote by W (s,w) the set of spin weighted functions.

Remark 2.11. e hve the following nonil identi(tion B(s+s , w +w ) = B(s, w)⊗B(s , w )F Remark 2.12. he numer s is lled the spin weight nd the numer w is lled the oost weight in PI setion RFIPF

We call o (resp. ι) the rst (resp. second) projection from A 0 to S and we dene l := o ⊗ o, n := ι ⊗ ι and m = o ⊗ ι. Note that thanks to the map j the maps l, m and n can be seen as T C M valued maps. We can think of these maps as generalized spin frame and generalized tetrad. Note that due to the relation o(u • z) = zo(u) (resp. ι(u • z) = z -1 ι(u)) for u ∈ A 0 , we can identify o (resp. ι) with a smooth section of the bundle B 1 2 , 1 2 ⊗ S (resp. B -1 2 , -1 2 ⊗ S). The following proposition is the main reason of why we are interested in spin weighted functions. given y F : u → I⊂ 1,a ,J⊂ 1,b u I,J where for y ∈ AD u I,J (y) = u(g 1 (y), . . . , g a (y), h 1 (y), . . . , h b (y))

with g i = o if i ∈ ID g i = ι if i / ∈ ID h i = o if i ∈ J nd h i = ι if i /
∈ JF e ll the olletion F (u) the olletion of spin weighted omponents of uF roofF The fact that the components are actually spin weighted functions with the claimed weight is a consequence of the C-linearity of cospinors and the fact that o(y • z) = zo(y) and ι(y

• z) = z -1 ι(y).
The fact that F is bijective follows from the construction of the inverse map. Indeed, if we x x ∈ M and y ∈ (A 0 ) x , the spin weighted components evaluated at y give exactly the image of a basis of ⊗ a S x ⊗ b S x which correspond to the data of an element in (S a,b ) x . The fact that this element does not depend on the choice of y follows from the property (2). Remark 2.13. sf u hs some regulrity s setionD its spin weighted omponents hve the sme regulrity @seen s setion of the line undle B(s, w)A nd reiprollyF st is the mjor dvntge of spin weighted omponents of smooth tensorX they re de(ned glolly s smooth ojets while eing prtiulrly dpted to the geometryF Remark 2.14. hnks to the identi(tion etween S ⊗ S nd T C MD we hve lso spin weighted omponents for tensor (eldsF Remark 2.15. roposition PFII n lso e understood if we onsider o nd ι s spin weighted spinors @elements of Γ(B(s, w) ⊗ S)AF sndeedD if u ∈ S a,b D spin weighted omponents re omplete ontrtions of u ⊗ g 1 ⊗ ... ⊗ g a ⊗ h 1 ⊗ ... ⊗ h b nd re therefore setions of the tensor produt of ftors of the form B ± 1 2 , ± 1 2 nd B ± 1 2 , ∓ 1 2 @nd y remrk PFII setions of some B(s, w)AF Remark 2.16. sf (o, ι) is lol setion of A 0 D it provide lol triviliztion of A 0 nd therefore lol triviliztion of B(s, w)F he expression of spin weighted omponent in this triviliztion is otined y repling o y oD ι y ιD l y lD m y m nd n y n in the expression of the omponentF herefore the old font nottion is hndy to tke lol triviliztionsF roweverD o do not depend on the hoie of prtiulr lol triviliztionF Remark 2.17. his deomposition is often used fter (rst deomposition of the ospinor or otensor into symetri spinors @see PI setion QFQ for more detils out this type of deompositionAF por exmpleD euse the eletromgneti tensor F is ntisymmetri nd relD it n e deomposed sX

F = φ ⊗ + ⊗ φ (3) 
@see @QFRFPHA in PI for detilsA where φ is setion of (S ) 2 @where is the symmetri produtAF henD the spin weighted omponents of φ n e omputed using eqution (3)X

φ(o, o) = F(l, m) φ(o, ι) = 1 2 (F(m, m) + F(l, n)) φ(ι, ι) = F(m, n)
sf we (x lol setion (o, ι) of A 0 nd write the omponents in the ssoited lol triviliztionD we (nd the usul spin omponents of the eletromgneti tensorF imilrlyD we hve the following deomposition for the eyl tensor W @see PI RFTFRIAX

W = Ψ ⊗ ⊗ + ⊗ ⊗ Ψ
where Ψ is setion of (S ) 4 F e n ompute the spin weighted omponents of Ψ from omponents of W X

Ψ 0 :=Ψ(o, o, o, o) = W (l, m, l, m) Ψ 1 :=Ψ(o, o, o, ι) = W (l, m, l, n) Ψ 2 :=Ψ(o, o, ι, ι) = W (l, m, m, n) Ψ 3 :=Ψ(o, ι, ι, ι) = W (l, n, m, n) Ψ 4 :=Ψ(ι, ι, ι, ι) = W (m, n, m, n)
ine l nd n @seen s mps from A 0 to T C MA re vlued in the set of prinipl null vetors nd the speEtime is of type hD ll the omponents vnish exept Ψ 2 F xote tht there re di'erent sign onventions for Ψ i @here we dopted the sign onvention of PI introdued in equtions @RFIIFWAD ut T in hpter I equtions @PWRA nd PQ in eqution @IFQA dopt the opposite onventionAF Remark 2.18. e n lso de(ne spin weighted omponents for setions of S a,b ⊗ B(s, w) @using remrk PFIIAF

Reduction of A 0 and N 0

To simplify the computations it is interesting to nd a smaller principal bundle with a representation such that the associated vector bundle is isomorphic to B(s, w). We can consider A 0,r := A 0 /R * + (we quotient by the action of R * + ⊂ C * ). Similarly we dene N 0,r := N 0 /R * + . We verify that the map d induces a double cover between A 0,r and N 0,r (we still call this induced map d). Moreover A 0,r and N 0,r have both a structure of U (1) principal bundle over M.

Remark 2.19. eording to proposition PFIHD we hve glol hoie of null independent prinipl rel smooth vetor (elds l nd nF st enles us to mke glol hoie of representtive for A 0,r nd N 0,r @note tht the ordering (l, n) gives hoie of onneted omponentAF e hve the following identi(tions for the redued undles

A 0,r {(o, ι) ∈ S × S : o ⊗ o = l, ι ⊗ ι = n} N 0,r {m ∈ T C M : g(m, m) = g(l, m) = g(n, m) = 0, g(m, m) = -1 nd (n, l, m) is oriented} .
y ttention to the ft tht the identi(tion of A 0,r depends on the prtiulr hoie of l nd n ut the identi(tion of N 0,r only depends on the ordering of l nd nF Remark 2.20. sn oth sesD the hoie of l nd n enles to ssoite eh lol smooth setion of A 0,r @respF N 0,r A to lol smooth setion of A 0 @respF N 0 AF hereforeD when hoie of l nd n hs een mdeD we n work with A 0,r nd N 0,r insted of A 0 nd N 0 F 3 Concrete computations in the subextremal Kerr exterior

We dene the Kerr metric with mass parameter M and angular momentum per unit of mass a. We assume that 0 < a < M (subextremal Kerr).

g = 1 - 2M r ρ 2 dt 2 + 4M ar sin 2 θ ρ 2 dtdφ - ρ 2 ∆ r dr 2 -ρ 2 dθ 2 -sin 2 θ r 2 + a 2 + 2M a 2 r sin 2 θ ρ 2 dφ 2 with ∆ r := r 2 -2M r + a 2 ρ 2 := r 2 + a 2 cos 2 θ
We dene r 0 := M + √ M 2 -a 2 and we consider rst the Kerr exterior M := R t ×(r 0 , +∞)×S 2 . We also dene the Kerr * coordinates:

(t * , r, θ * , φ * ) = (t + T (r), r, θ, φ + A(r)) with T (r) := r r 1 a 2 +r 2
∆r dr and A(r) = r r 1 a ∆r dr for some arbitrary (but xed) r 1 ∈ (r 0 , +∞). Kerr space time is an important example of Petrov type D space-time (Ricci-at). In this section we explicit the previous denitions in this concrete case.

Complete system of trivializations

We now compute the concrete topology of the bundles in the Kerr case. We will show on the way that there is no global continuous oriented Newman Penrose tetrad (global continuous section of N 0 ) nor global continuous normalized spin frame along the null directions (global section of A 0 ). Let M > 0 and a < M . We endow M := R t × (r 0 , +∞) × S 2 with the Kerr metric. It is a Petrov type D simply connected space-time. We saw that in this case, A and N have two connected components (proposition 2.9). Then, proposition 2.10 tells us that a choice of a connected component is given by a choice of global smooth vector elds (l, n) future oriented and independent along principal null directions. Here we take (Kinnersley's tetrad):

l = r 2 + a 2 ∆ r ∂ t + ∂ r + a ∆ r ∂ φ (4) 
n = r 2 + a 2 2ρ 2 ∂ t - ∆ r 2ρ 2 ∂ r + a 2ρ 2 ∂ φ (5) 
We use the identication in remark 2.19 to describe A 0,r and N 0,r . We dene p = r + ia cos θ. Then we can see that

m = ia sin θ √ 2p ∂ t + 1 √ 2p ∂ θ + i √ 2p sin θ ∂ φ (6) 
is a local section of N 0,r over M \ R t × (r 0 , +∞) × {N, S} where N and S are the north and south poles of S 2 . Note that the vector eld m cannot be extended to a smooth vector eld on M.

However it provides a local trivialization of N 0,r :

Ψ m : U (1) × R t × (r 0 , +∞) × S 2 \ {N, S} → N 0,r (e iρ , x) → e iρ m(x)
Remark 3.1. xote tht given lol triviliztion Ψ : U (1) × U → N 0,r on N 0,r D we n de(ne orresponding lol triviliztion on N 0 y tking

Ψ : C * × U → N 0 (z, x) → (|z|l(x), |z| -1 n(x), Ψ( z |z| , x))
Our next goal is to write a complete system of local trivializations on N 0,r . We dene the following map using stereographic coordinates relative to the north pole (x N , y N ) on S 2

Ψ N :      U (1) × R t × (r 0 , +∞) × S 2 \ {N } → T C M (e iρ , t, r, x N , y N ) → e iρ √ 2 r+ia (x 2 N +y 2 N )-1 1+x 2 N +y 2 N 2ia(x N -iy N ) 1+x 2 N +y 2 N ∂ t + (x 2 N +y 2 N +1) 2 (-∂ x N + i∂ y N )
Note that Ψ N commutes with the projection T C M → M. We remark that on U (1)×R t ×(r 0 , +∞)× S 2 \ {N, S} (where U (1) is identied with U (1) × {Id}) we have:

Ψ m = x N + iy N x 2 N + y 2 N Ψ N = e iφ Ψ N
where φ is the usual spherical coordinate on S 2 . Using that N 0,r is closed in T C M and Ψ N is continuous, we deduce that Ψ N has values in N 0,r . Moreover, since Ψ N is a smooth proper injective immersion as a function with values in T C M, it remains true as a function with values in the submanifold N 0,r . Since U (1) × R t × (r 0 , +∞) × S 2 \ {N } has the same dimension as N 0,r , we deduce that Ψ N denes local coordinates on N 0,r . Moreover, we check easily that it trivializes the action of U (1).

We also introduce the map Ψ S using the stereographic coordinates relative to the south pole (x S , y S ): 

Ψ S :      U (1) × R t × (r 0 , +∞) × S 2 \ {S} → T M (e iρ , t
(∂ x S + i∂ y S )
.

On U (1) × R t × (r 0 , +∞) × S 2 \ {N, S} , we have:

Ψ m = x S -iy S x 2 S + y 2 S Ψ S = e -iφ Ψ S .
As previously for Ψ N , we deduce that Ψ S denes local coordinates on N 0,r and trivializes the action of U (1).

Note that (for ω ∈ S 2 \ {N, S}),

Ψ N (e iρ , t, r, ω) = x S -iy S x S + iy S Ψ S (e iρ , t, rω) = x N -iy N x N + iy N Ψ S (e iρ , t, r, ω)
and we deduce

Ψ -1 S Ψ N (e iρ , t, r, ω) = x N -iy N x N + iy N e iρ , t, r, ω
The complete system of local trivializations (Ψ N , Ψ S ) enables us to show easily the following proposition: Proposition 3.1. here is no glol ontinuous setion of N 0,r @in other wordsD N 0,r is not the

trivil undle U (1) × R t × (r 0 , +∞) × S 2 A
roofF We argue by contradiction. Let's assume the existence of a global continuous section f . Then we construct

f 1 := pr U (1) Ψ -1 N •f | {0}×{r 0 +1}×S 2 \{N } which is continuous (pr U (1)
being the projection on U (1)). Using the stereographic coordinates relative to the north pole on {0}×{r 0 + 1}×S 2 \{N }, we can see f 1 as a function from R 2 to U (1). Using the same construction with respect to the south pole

(f 2 = pr U (1) Ψ -1 S •f | {0}×{r 0 +1}×S 2 \{S}
) and the identication using stereographic coordinates relative to the south pole, we obtain a continuous function f 2 from R 2 to U (1). The two constructions overlap and going through the various identications, we get the relation f 1 (x, y) = (x+iy) 2

x 2 +y 2 f 2 ( x x 2 +y 2 , y x 2 +y 2 ) on R 2 \ 0. We dene g : (0, +∞) × U (1) → U (1) by g(r, ω) := f 1 (rω). Since f 1 and f 2 are continuous at (0, 0), g can be continuously extended by g(0, ω) = f 1 (0) and g(+∞, ω) = ω 2 f 2 (0). This extension is a homotopy between two loops with dierent indices hence we have a contradiction and there is no global continuous section. Remark 3.2. e glol ontinuous setion on N 0 omposed with the projetion of N 0 onto N 0,r provides glol ontinuous setion on N 0,r F herefore there is no glol ontinuous setion of N 0 eitherF imilrly @using the mp dA there is no glol ontinuous setion of A 0 nd A 0,r F From the complete system of local trivialization on N 0 , we can deduce a complete system of local trivialization on A 0 . Indeed, the previous discussion shows that we have the sections s N = (l, n, e -iφ m) (smooth on R t ×(r 0 , +∞)×S 2 \{N }) and s S = (l, n, e iφ m) (smooth on R t ×(r 0 , +∞)× S 2 \ {S}) of N 0 . Since R t × (r 0 , +∞) × S 2 \ {N } is simply connected and d is a double covering map, we have exaclty two lifts of s N as a local smooth section of A 0 on R t × (r 0 , +∞) × S 2 \ {N }. We x a choice (o N , ι N ) of such a section. Then we dene (o, ι) S = (e iφ o N , e -iφ ι N ) which is smooth on R t × (r 0 , +∞) × S 2 \ {S, N } and we want to prove that (o, ι) S extends smoothly at

R t × (r 0 , +∞) × S 2 \ {S}. To show that, we rst check that d • (o, ι) S = s S on R t × (r 0 , +∞) × S 2 \ {S, N }. Let x ∈ R t × (r 0 , +∞) × S 2 \
{N, S} we know that there exists a unique smooth lift sS of s S with value (o, ι) S (x) at x. The set such that sS = (o, ι) S is open (we check that in an open set of trivialization containing a point x 0 such that sS (x 0 ) = (o, ι) S (x 0 )), closed (as a subset of R t × (r 0 , +∞) × S 2 \ {S, N }) by continuity of sS and (o, ι) S and non empty. Therefore (o, ι) S = sS . Finally, these two sections provide a complete system of trivializations of A 0 :

A -1 N : C * × R t × (r 0 , +∞) × S 2 \ {N } → A 0 (z, x) → (zo N (x), z -1 ι N (x))
A -1 S :

C * × R t × (r 0 , +∞) × S 2 \ {S} → A 0 (z, x) → (zo S (x), z -1 ι S (x))
with change of trivializations given by the map A N A -1 S (z, x) = (e iφ z, x). Note that there is no lift of the local section (l, n, m) smooth on R t × (r 0 , +∞) × S 2 \ {N, S}. Indeed, the local section of A 0

(o m , ι m ) := (e i φ 2 o N , e -i φ 2 ι N ) dened on R t × (r 0 , +∞) × S 2 \ {φ = 0}
is such a lift but it does not extend continuously to R t × (r 0 , +∞) × S 2 \ {N, S}. We denote by A m the local trivialization of A 0 associated to (o m , ι m ). It is traditionally used to write the Teukoslky operator. Remark 3.3 (Bundles on an extended Kerr space-time). e n lso ompute lol triviliztions of A 0 nd N 0 on lrger uerr spe timeF wore preiselyD using uerr str oordintes (t * , r, ω * )D we n extend the uerr metri on lrger speEtime whih is given y M ext := R t * ×(r 0 -, +∞) r ×S 2 ω * F here re very few modi(tions with respet to the omputtions on the exteriorF he min thing to note is tht we nnot mke the sme hoie of l nd n s previously sine they do not extend smoothly ross the future horizon H = {r = r 0 }F hus we renormlize themX

l = ∆ r l ñ = ∆ -1
r n nd extend them s prinipl independent future oriented prinipl null vetor (eldsF rowever the vetor (eld m extends smoothly to R t * × (r 0 -, +∞) r × S 2 ω * \ {N, S} F sndeed we hve in uerr str oordintesX

m = ia sin θ * √ 2p ∂ t * + 1 √ 2p ∂ θ * + i √ 2p sin θ * ∂ φ *
where p = r + ia cos θ * = r + ia cos θ s previouslyF his expression de(nes n extension of m on M ext suh tht for ll x ∈ M ext D ( l(x), ñ(x), m(x)) ∈ N 0 F es previouslyD we n ompute expliitly omplete system of lol triviliztions of the undles N 0,r D A 0,r D N 0 nd A 0 F

Link with the Hopf bration

In this section, we see S 3 as the unit quaternions group that is to say

S 3 := a + bi + cj + dk, (a, b, c, d) ∈ R 4 : a 2 + b 2 + c 2 + d 2 = 1 ⊂ H.
For h ∈ S 3 , the subset of imaginary quaternions I = bi + cj + dk : (b, c, d) ∈ R 3 is stable by the map c h : h → hh h * (h * is the conjugate of h in the sense of quarternions and since h ∈ S 3 , h * = h -1 ). The map c h is even an orthogonal map for the usual norm on I since (hh h * )(hh h * ) * = hh h * h * = h 2 . Therefore, Ψ : h → c h denes a Lie group morphism from S 3 to O(3) (note that I is identied with R 3 by sending (i, j, k) to the canonical basis). Since S 3 is connected and c 1 = Id, we have that Ψ(S 3 ) ⊂ SO(3). Finally, we compute the kernel of Ψ. Let h be such that c h = Id.

Then for all h ∈ I, we have:

hh h * = h hh = h h (since h * h = 1)
Therefore h commute with every element of I. But I + Z(H) = H (where Z(H) = R is the center of H. Therefore, h ∈ Z(H). Finally, since h ∈ S 3 , we nd h = 1 or h = -1. Therefore, Ψ is a Lie group morphism between two connected Lie groups with nite kernel of size two. Therefore it is a double covering map. We can identify SO(3) with O S 2 , the bundle of oriented orthonormal frame on S 2 (we identify a matrix in SO(3) with columns C 1 , C 2 and C 3 with the basis (C 2 , C 3 ) ∈ T C 1 S 2 ). We denote by π S 2 : SO(3) → S 2 the projection when SO(3) is seen as the bundle of oriented orthonormal frame on S 2 (therefore π S 2 (M ) is the rst column of the matrix with the identication that we have chosen).

The Hopf bration can be dened as H = π S 2 • Ψ : S 3 → S 2 (which is a smooth submersion). Let u ∈ S 2 ⊂ I, by denition H -1 (u) = h ∈ S 3 : hih * = u . We see that we have a right smooth ber preserving action of U (1) := S 3 ∩ (R + iR) on S 3 (given by right multiplication). Moreover, this action is simply transitive on each ber since if h 1 , h 2 ∈ H -1 (u), then g := h -1 1 h 2 is the only elements of H such that h 1 g = h 2 and it belongs to U (1) (indeed it commutes with i and has norm 1). Therefore, the Hopf bration is a principal U (1)-bundle. There is a unique action of U (1) on O S 2 such that for all x ∈ S 3 and g ∈ U (1), Ψ(x • g) = Ψ(x) • g 2 and it is dened by c h • g = c hg = c -hg for any g such that g 2 = g. Writing this more explicitly, we see that for a matrix M ∈ SO(3)

with columns C 1 , C 2 , C 3 , M = Ψ(h) for some h ∈ S 3 with Mat (i,j,k) hih * = C 1 , Mat (i,j,k)
hjh * = C 2 and Mat (i,j,k)

hkh * = C 3 . Then if g = cos(ρ) + i sin(ρ) ∈ U (1) and g = cos ρ 2 + i sin ρ 2 , M • g has columns Mat (i,j,k) hg i(hg ) * = C 1 Mat (i,j,k) hg j(hg ) * = Mat (i,j,k) (cos 2 ρ 2 -sin 2 ρ 2 )hjh * + 2 sin ρ 2 cos ρ 2 hkh * = cos(ρ)C 2 + sin(ρ)C 3 Mat (i,j,k) hg k(hg ) * = -sin(ρ)C 2 + cos(ρ)C 3 .
The map Id Rt×(r 0 ,+∞) ×H enables to put a structure of U (1) principal bundle on R t ×(r 0 , +∞)×S 3 and similarly, we put a structure of U (1) principal bundle on R t × (r 0 , +∞) × O S 2 . Proposition 3.2. e de(ne the mpX

f : R t × (r 0 , +∞) × O S 2 → T C M (t, r, (X, Y ) ∈ (O S 2 ) ω ) → - ia X+iY,e 3 R 3 √ 2p ∂ t + 1 √ 2p X + i √ 2p Y ∈ T (t,r,ω) M
where elements of S 2 @respF T S 2 A re represented y unit vetors @respF triple of unit vetorsA in R 3 @nd e 1 , e 2 , e 3 is the nonil sis of R 3 A nd p = r + i cos(θ)F he nottion . R 3 denotes the nonil slr produt on R 3 extended to CEiliner form on C 3 @therefore it is not hermitinAF e hve f : R t × (r 0 , +∞) × O S 2 → N 0,r nd it is n isomorphism of prinipl undleF roofF Let (t, r, ω) ∈ M and (X, Y ) ∈ (O S 2 ) ω . To prove that f has values in N 0,r , we have to prove that m := -

ia X+iY,e 3 R 3 √ 2p ∂ t + 1 √ 2p X + i √ 2p
Y is null, orthogonal to any principal null vector and g(m, m) = -1.

We can write the Kerr metric on the form:

g = 1 - 2M r ρ 2 dt 2 + 4M ar ρ 2 dt(sin 2 θdφ) - ρ 2 ∆ r dr 2 -ρ 2 g S 2 -a 2 1 + 2M r ρ 2 (sin 2 θdφ) 2
Moreover, if we see elements ω ∈ S 2 as units vectors

  ω x ω y ω z   on R 3
, we have:

sin 2 θdφ = -ω y dx + ω x dy
We can therefore compute:

2p 2 g(m, m) = -a 2 X + iY, e 3 2 + X + iY, -ω y e 1 + ω x e 2 2 - 2M r ρ 2 ( X + iY, e 3 -i X + iY, -ω y e 1 + ω x e 2 ) 2
But note that -ω y e 1 + ω x e 2 = e 3 × ω, ω × X = Y and Y × ω = X (since ω, X, Y is a direct orthonormal basis of R 3 ). Then, by denition of the cross product on R 3 , X, e 3 × ω = det(X, e 3 , ω)

= det(e 3 , ω, X)

= ω × X, e 3 = Y, e 3 Y, e 3 × ω = -X, e 3 
Therefore, X + iY, e 3 × ω = Y -iX, e 3 = -i X + iY, e 3 . We deduce that 2p 2 g(m, m) = 0. We compute also

g( √ 2pm, ∆ r l) = 1 - 2M r ρ 2 (-ia X + iY, e 3 ) (r 2 + a 2 ) + 2M a 2 r ρ 2 sin 2 θ(-ia X + iY, e 3 ) + 2M ar(r 2 + a 2 ) ρ 2 X + iY, e 3 × ω -aρ 2 X + iY, e 3 × ω -a 3 1 + 2M r ρ 2 X + iY, e 3 × ω sin 2 θ =0 (using X + iY, e 3 × ω = -i X + iY, e 3 )
Very similar computations show:

g( √ 2pm, ∆ -1 r n) = 0 g(m, m) = 1
The previous computations show that f has values in N 0,r . Moreover f is smooth and so is its inverse:

f -1 : m ∈ (N 0,r ) (t,r,ω) → (t, r, √ 2p( (pr TωS 2 ,∂t m), (pr TωS 2 ,∂t m)))
where pr S 2 ,∂t is the linear projection on T ω S 2 parallel to ∂ t . Therefore, it is a dieomorphism. The compatibility with projections maps is immediate. It remains to prove that f is compatible with the actions of U [START_REF] Aksteiner | Linearized gravity and gauge conditions[END_REF]. Let e iρ ∈ U (1).

(ω, X, Y ) • e iρ = (ω, cos(ρ)X + sin(ρ)Y, -sin(ρ)Y + cos(ρ)X) = (ω, (e iρ (X + iY )), (e iρ (X + iY )))

Therefore, if (X, Y ) ∈ T ω S 2 : f (t, r, (X, Y ) • e iρ ) = - ia e iρ (X + iY ), e 3 R 3 √ 2p ∂ t + e iρ (X + iY ) = e iρ f (t, r, (X, Y )) = f (t, r, (X, Y )) • e iρ
The double cover map

d := f • Ψ satises d(x • g) = d(x) • g 2 for all g ∈ U (1) and x ∈ R t × (r 0 , +∞) × S 3
and the following diagram is commutative

R t × (r 0 , +∞) × S 3 N 0,r M Id×H d π N 0,r
We see that d : R t × (r 0 , +∞) × S 3 → N 0,r is very similar to d : A 0,r → N 0,r . Indeed, the two are isomorphic as we see in the following proposition:

Proposition 3.3. qiven u ∈ R t × (r 0 , +∞) × S 3 nd v ∈ A 0,r suh tht d(u) = d(v)D we hve unique isomorphism of prinipl undles G : R t × (r 0 , +∞) × S 3 → A 0,r suh tht the following digrm is ommuttiveX R t × (r 0 , +∞) × S 3 A 0,r N 0,r d G d nd suh tht G(u) = vF
roofF Since R t × (r 0 , +∞) × S 3 is simply connected and d is a covering map, d admits a unique lift through d to a smooth map G : R t × (r 0 , +∞) × S 3 → A 0,r such that G(u) = v. A priori G is only a smooth map. It remains to show that G is in fact an isomorphism of principal bundles. First note that for all y ∈ R t × (r 0 , +∞) × S 3 , we have (Id × H)(y) = π A 0,r (G(y)) (using the commutative diagrams). Let V be a small open subset of M and y : V → R t × (r 0 , +∞) × S 3 be a local section of

R t × (r 0 , +∞) × S 3 . Then G • y is a local section of A 0,r and d • y is a local section of N 0,r . Let Ψ 1 be the local trivialization of R t × (r 0 , +∞) × S 3 such that Ψ 1 (x, e iρ ) = e iρ • y(x), Ψ 2 the local trivialization of A 0,r such that Ψ 2 (x, e iρ ) = e iρ • G(y(x)) and Φ the local trivialization of N 0,r such that Φ(x, e iρ ) = e iρ • d(y(x)). Then for x ∈ V and a ∈ U (1), Ψ -1 2 • G • Ψ 1 (x, a) = (x, γ(x, a)) where γ is the unique continuous U (1)-valued function such that γ(x, a) • G(y(x)) = G(a • y(x)). In particular γ(x, 1) = 1. Moreover, Φ -1 • d • Ψ 1 (x, a) = Φ -1 • d • Ψ 2 (x, a) = (x, a 2 ). For x ∈ V and a ∈ U (1): Φ -1 • d • G • Ψ 1 (x, a) = Φ -1 • d • Ψ 2 • Ψ -1 2 • G • Ψ 1 (x, a) = (x, γ(x, a) 2 )
And we also have

Φ -1 • d • G • Ψ 1 (x, a) = Φ -1 • d • Ψ 1 (x, a) = (x, a 2 ) We deduce γ(x, a) 2 = a 2 .
Then the following diagram is commutative:

U (1) V × U (1) U (1) a →a 2 γ (x,a) →a 2
Because a → a 2 is a covering map, we have the uniqueness of such a continuous lift with γ(x, 1) = 1.

We deduce γ = pr U (1) . This proves that G is an isomorphism of principal bundles.

Remark 3.4. he previous proposition shows tht there re extly two hoies G 1 nd G 2 for the isomorphism nd we hve for ll

a ∈ R t × (r 0 , +∞) × S 3 D G 1 (a) = G 2 (a • (-1)
)F e hoose one of the two nd ll it GF Thanks to the previous proposition, we have now a concrete description of A 0,r and we can use it to dene spin weighted functions as in [START_REF] Dafermos | Boundedness and decay for the teukolsky equation on kerr spacetimes i: The case |a| m[END_REF] (section 2.2). The concrete description avoids the reference to spin frames.

Stationarity

In this section, we introduce the notion of a trivial (vector or principal) bundle with respect to a factor in a product decomposition and we apply this notion to the bundle B(s, s) in the Kerr case. We consider a manifold M with a product decomposition Ψ : M → X × Y (Ψ being a xed dieomorphism). Denition 3.1. e sy tht @vetor or priniplA undle p E : E → M is trivil with respet to X in the deomposition given y Ψ if there exists n isomorphism f of @vetor or priniplA undle over Ψ etween E nd the undle X × F @y de(nition it is the produt of the trivil undle Id : X → X nd some undle p F : F → YAF sn prtiulrD we hve the following ommuttive digrmX

E X × F M X × Y p E f Id X ×p F Ψ
e will sy tht f is semiEtriviliztion of the undleF Remark 3.5. st is equivlent to sy tht E is @isomorphi toA the pullk of undle F on Y y the seond projetion @indeedD this pullk undle is extly the undle X × F AF Remark 3.6. sn the following we (x the identi(tion etween M nd ΨF herefore we will ssume

M = X × YF Remark 3.7. sf f : E → X × F nd f : E → X × F re two semiEtriviliztionsD we hve f • f -1 (x, z) = (x, γ(z))
where γ : F → F is n isomorphism of vetor @or priniplA undlesF Proposition 3.4. vet E e (nite rnk vetor undle over M = X × Y @M is prompt sine it is smooth mnifoldAF sf X is ontrtileD then E is trivil with respet to X F roofF Let f : [0, 1] × X × Y → X × Y be a smooth map such that f 0 = Id X ×Y and f 1 (x, y) = (x 0 , y) for all (x, y) ∈ X × Y (x 0 is some element of X ). We dene E = f * E. Then, for example by proposition 1.7 in [START_REF] Hatcher | Vector bundles and k-theory[END_REF] (rather its direct equivalent in the smooth case, obtained by minor modication in the proof), E | {0}×X ×Y is isomorphic to E | {1}×X ×Y Proposition 3.5. vet E e vetor undle over X × YF sf C = (U α , Ψ α ) is omplete system of lol triviliztions for E suh tht ll the trnsition mps g α,α ∈ C ∞ (U α ∩ U α ; Gl n (R)) re independent of the (rst ftor @ie ftorize s g α,α = gα,α • π 2 where π 2 is the seond projetion on X × YAD then there exists semiEtriviliztion f C : E → X × F C where F C is the vetor undle on Y given y the trnsition mps gα,α F Remark 3.8. e will sy tht the system C is sttionry with respet to X F es mentioned in the proof of the propositionD sttionry system of triviliztion omes nturlly with semiE triviliztion of EF roofF We rst dene the vector bundle F C by α π 2 (U α ) × R n /(g α,α ) (the family gα,α satises the cocycle condition). We denote by i α the natural maps from U α × R n to F C (composition of the injection in the disjoint union and the projection in the quotient). These maps are continuous injective and by denition of the quotient, on

U α ∩ U α , i -1 α i α (y, v) = (y, g α,α (y)v). Then we dene the map f C by f C (z) = (Ψ α (z) 1 , i α (Ψ α (z) 2 , Ψ α (z) 3 )) if z ∈ U α (
the index 1,2 and 3 refers to the components in the product decomposition). This does not depend on the choice of α such that z ∈ U α and (Id

X × i -1 α ) • f C • Ψ -1 α is the identity of U α × R n .
Therefore, f C is an isomorphism of vector bundles. Proposition 3.6. eiprollyD if we hve semiEtriviliztion f : E → X × F nd omplete system of lol triviliztions (U α , Ψ α ) on F D we n de(ne omplete system of lol triviliztion on E with trnsition mps independent of the (rst ftorF roofF We just take the system (X × U α , (Id X × Ψ α ) • f ).

We now apply these notions to the study of B(s, w). First note that the complete system of trivializations (A N , A S ) of A 0 has a transition map depending only on φ. As a consequence, the associated sytem of trivializations of B(s, w) has also a transition map depending only on φ (see remark 2.5). Therefore, we are in the context of proposition 3.5 and B(s, w) is trivial with respect to the factor R t × (r 0 , +∞) (we could also have used proposition 3.4 but proposition 3.5 provides a concrete semi-trivialization f : A 0 → R t × (r 0 , +∞) × B S 2 (s, w) associated with the stationary system of local trivializations). The map f enables to identify Γ(B(s, w)) with C ∞ (R t × (r 0 , +∞), Γ(B S 2 (s, w))).

Connections on the bundles and GHP formalism

There are dierent methods to dene the spin connection and the GHP connection, for example we could write them down explicitly in an expression involving coecients depending only on the Levi-Civita connection and the metric (see remark 4.7 and proposition 4.12) and check that it denes a linear connection. For computational purpose, these denitions are enough but they are not insightful. The spin connection is the unique connection ∇ such that j * ∇ LC = ∇ ⊗ ∇ (where ∇ LC is the Levi-Civita connection) and ∇ = 0 and these properties can be used as an alternative denition as well. However, here we choose an other denition. We start with the Levi-Civita connection and move it naturally through the dierent bundles involved. The advantage of this method is that each step is very natural, moreover it gives a good understanding of where the GHP connection comes from. Its main drawback is that it is a little longer than the direct denitions and involves some elementary knowledge about principal connections.

Therefore, we give a brief reminder about principal connections in order to have a self contained presentation. A more detailed introduction to this topic can be found in [START_REF] Kobayashi | poundtions of di'erentil geometry[END_REF] (second chapter).

Principal connection

Denition 4.1. vet π E : E → M e prinipl undle with struture group G @multiplitiveD with neutrl element denoted y IAF vet g e the vie lger of GF e prinipl onnetion ω is gEvlued one form on E suh thtX por ll g ∈ GD Ad g R * g ω = ω where Ad g : g → g is the djoint representtion @Ad g (ξ) :=

d dt |t=0 g exp(tξ)g -1 A nd R g : E → E is the right tion of g on EF
por ll ξ ∈ g nd ll e ∈ ED ω e (d 1 i e ξ) = ξ where we hve used the mp From now, for a ∈ E, we denote by H a := ker(ω a ). The following property gives a way to construct a linear connection (on an associated vector bundle) from a principal connection. Proposition 4.1. vet ρ : G → GL(V ) e representtion of G nd let F e the vetor undle ssoited to this representtionF henD smooth setion s of F is nturlly identi(ed with smooth funtion f :

i e : G → E g → e • g Remark 4.1. hi'erentiting the reltion π E •i a (g) = aD we hve the inlusion d 1 i a (g) ⊂ ker(d a π E )F woreoverD dim(ker(d a π E )) = dim(π -1 E ({a}) = dim(G) = dim(g) = dim d 1 i a (g)F herefore d 1 i a (g) = ker(d a π E )F
E → V suh tht f (x • g) = ρ(g -1 )(f (x)) nd we n de(ne @for X ∈ T x MA (∇ X s)(x) := [a, d a f ((d a π E | Ha ) -1 (X))]
where a is ny element of π -1 E ({x})F ith this de(nitionD ∇ is liner onnetion on FF roofF The denition does not depend on the choice of a. If we choose a = a • g, we have to prove that [a, d a f ((

d a π E | Ha ) -1 (X))] = [a , d a f ((d a π E | H a ) -1 (X))]. We have [a , d a f ((d a π E | H a ) -1 (X))] = [a, ρ(g)d a f ((d a π E | H a ) -1 (X))]
so it remains to prove that

ρ(g)d a f ((d a π E | H a ) -1 (X)) = d a f ((d a π E | Ha ) -1 (X))
. We have the following facts

d a•g π E d a R g = d a π E (by dierentiating π E • R g = π E ) d a•g π E | Ha•g (d a R g ) | Ha = d a π E | Ha using the previous point and the fact that R g (H a ) = H a•g . d a•g π E -1 | Ha•g = d a R g d a π E -1
| Ha (using the previous point)

d a•g f d a R g = ρ(g -1 )d a f (by dierentiating f (a • g) = ρ(g -1 )f (a))
We use that to conclude ρ(g)

d a f ((d a π E | H a ) -1 (X)) = d a f ((d a π E | Ha ) -1 (X)
). Now we have to prove that ∇ is a linear connection. We obviously have ∇ λX+Y = λ∇ X + ∇ Y . Let h be a smooth function on M. The section hs is associated with the function f = (h

• π E )f and d a f = f (a)d π E (a) hd a π E + h(π E (a))d a f
. Therefore, we have

d a f ((d a π E | Ha ) -1 (X)) = d π E (a) h(X)f + h(π E (a))d a f ((d a π E | Ha ) -1 (X)).
We deduce that ∇ denes a linear connection on F.

A useful lemma to compute the such dened connection is the following: Lemma 4.2. e use the nottion of proposition RFIF vet e e lol smooth setion of E round some

x 0 ∈ M suh tht ω • d x 0 e = 0F vet X ∈ T x 0 M nd let s e lol smooth setion of F on some open neighorhood U of x 0 suh tht s(x) = [(e(x), v(x))] with v : U → V smoothF henD ∇ X s = [(e(x 0 ), d x 0 v(X))]
roofF The equivariant function associated to s is f :

π -1 E (U ) → V such that for all x ∈ U , f (e(x)) = v(x). Let X ∈ T x 0 M.
We use the denition of the connection ∇ to write

∇ X s = [(e(x 0 ), d e(x 0 ) f d e(x 0 ) π E | H e(x 0 ) -1 (X))]
Moreover, we have d x 0 e(X) ∈ ker(ω e(x 0 ) ) = H e(x 0 ) and d e(x 0 ) π E d x 0 e(X) = d x 0 (π E • e)(X) = X.

We deduce that d e(x 0 ) π E |H e(x 0 ) -1 (X) = d x 0 e(X). As a consequence

∇ X s = [(e(x 0 ), d e(x 0 ) f d x 0 e(X))] = [(e(x 0 ), d x 0 (f • e)(X))] = [(e(x 0 ), d x 0 v(X))]
Remark 4.2. sn the se where E is the frme undle of FD the ondition ω • d x 0 e = 0 mounts to sy tht the derivtive of the lol frme vnishes t x 0 F hen the previous lemm tells us tht in this lol frmeD we n ompute ovrint derivtives of setion of F y tking usul derivtives of the oordintesF Remark 4.3. vet E e generl prinipl undle over M nd ω prinipl onnetion on EF hen for ll e 0 ∈ ED ker(ω e ) is trnsverse to the (er @nd of dimension dim(M)A y lemm RFIF es onsequeneD there exists lol setion of E round x 0 := π E (e 0 ) suh tht e(x 0 ) = e 0 nd ω e 0 • d x 0 e 0 = 0F woreoverD sine dim(d x 0 e 0 (T x 0 M)) = dim(M) = dim(ker(ω e 0 ))D we hve

d x 0 e 0 (T x 0 M) = ker(ω e 0 )F
We can use lemma 4.2 to compute the connection in the general case. 

x 0 ∈ MF vet X ∈ T x 0 M nd s e setion of F on some open neighorhood U of x 0 suh tht s(x) = [(e(x), v(x))] with v : U → V smoothF hen we hve ∇ X s = [e(x 0 ), d x 0 v(X) + d 1 ρω e(x 0 ) (d x 0 e(X))v(x 0 )]F
roofF We dene e smooth section of E on a neighborhood U of x 0 such that e (x 0 ) = e(x 0 ) and d x 0 e (T x 0 M) = ker(ω e(x 0 ) ) (e exists by remark 4.3). We dene g : U → G the unique smooth map such that e = e • g (in particular g(x 0 ) = 1). By the chaine rule, we have:

d x 0 e (x) = d 1 i e(x 0 ) (d x 0 g(X)) + d x 0 e(X)
But by denition of e (x 0 ), ω e(x 0 ) (d x 0 e (x)) = 0. On the other hand:

ω e(x 0 ) (d x 0 e (x)) = d x 0 g(X)
+ ω e(x 0 ) (d x 0 e(X)) therefore d x 0 g(X) = -ω e(x 0 ) (d x 0 e(X)). We can now compute:

s(x) = [(e(x), v(x))] = [(e(x) • g(x), ρ(g(x) -1 )v(x))] ∇ X s(x 0 ) = [(e(x 0 ) • g(x 0 ), d x 0 (ρ(g -1 )v)(X)]
(by proposition 4.1)

= [(e(x 0 ), d x 0 (v)(X) -d 1 ρd x 0 g(X)v(x 0 ))] (chain rule) = [(e(x 0 ), d x 0 (v)(X) + d 1 ρω e(x 0 ) (d x 0 e(X))v(x 0 ))]
The construction of proposition 4.1 behaves well with respect to the tensorial product of vector bundle as we see in the following proposition: Proposition 4.2. vet E e G prinipl undle with prinipl onnetion ωD ρ 1 e representE tion of G over V 1 nd ρ 2 representtion of G over V 2 F vet F 1 e the vetor undle ssoited to E with the representtion ρ 1 nd F 2 the vetor undle ssoited to E with the representtion ρ 2 F e denote y ∇ 1 @respF ∇ 2 A the liner onnetion on F 1 @respF F 2 A otined from ω thnks to proposiE tion RFIF he undle F 1 ⊗ F 2 is nturlly ssoited to E with the representtion g → ρ 1 (g) ⊗ ρ 2 (g)F e denote y ∇ the onnetion on F 1 ⊗ F 2 otined from ω y proposition RFIF hen we hve

∇ 1 ⊗ ∇ 2 = ∇
roofF Let x 0 ∈ M, let s be a local section of E on an open neighborhood U of x 0 such that ω • d x 0 s = 0 (it is always possible to nd such a section by remark 4.3). Let f 1 (resp. f 2 ) be a smooth section of F 1 (resp. F 2 ) on U . We write f 1 = [(s, g 1 )] and

f 2 = [(s, g 2 )] with g i : U → V i smooth. Then we have f 1 ⊗ f 2 (x) = [(s(x), g 1 (x) ⊗ g 2 (x))]. Let X ∈ T x 0 M. We use lemma 4.2 to compute ∇X (f 1 ⊗ f 2 ) (x 0 ) = [(s(x 0 ), d x 0 (g 1 ⊗ g 2 )(X))] = [(s(x 0 ), d x 0 g 1 (X) ⊗ g 2 (x 0 ) + g 1 (x 0 ) ⊗ d x 0 g 2 (X))] chain rule and bilinearity of ⊗ = [(s(x 0 ), d x 0 g 1 (X))] ⊗ [(s(x 0 ), g 2 (x 0 ))] + [(s(x 0 ), g 1 (x 0 ))] ⊗ [(s(x 0 ), d x 0 g 2 (X))] = (∇ 1 ) X f 1 (x 0 ) ⊗ f 2 (x 0 ) + f 1 (x 0 ) ⊗ (∇ 2 ) X f 2 (x 0 ) by lemma 4.2
The equality is true for pure product sections and we use linearity to conclude.

Finally, we give a kind of reverse construction of the previous one when E is the principal bundle of frames of a vector bundle F of rank n (real or complex, we consider the complex case here). Proposition 4.3. e ssume tht we hve liner onnetion ∇ on F @omplex vetor undle of rnk n over mnifold M of positive dimensionAF e denote y E the GL(n, C) prinipl undle of frmesF here exists unique one form ω on E suh tht for ll lol frmes (e 1 , ..., e n ) round x nd ll X ∈ T x MD ω e 1 (x),...,en(x) (d x (e 1 , ..., e n )(X)) = wt e 1 (x),...,en(x)

(∇ X e 1 (x), ..., ∇ X e n (x)) ∈ M n (C)
where wt

f 1 ,...,fn (a 1 , ..., a n ) is the unique mtrix M suh tht for ll i ∈ 1, n D a i = n k=1 M k,i f k F woreoverD ω is prinipl onnetion on EF
roofF For x ∈ M, we denote by Γ x (E) the set of local smooth section of E dened on some neighborhood of x. To prove the uniqueness, it is enough to remark that for a frame (f 1 , ..., f n ) at x, the set {d x (e 1 , ..., e n )(X) : (e 1 , ..., e n ) ∈ Γ x (E) with (e 1 , ..., e n )(x) = (f 1 , ..., f n ), X ∈ T x M} generates T (f 1 ,...,fn) E. Indeed, by a simple construction in a local trivialization around x, we can show that {d x (e 1 , ..., e n )(X) : (e 1 , ..., e n ) ∈ Γ x (E)with(e 1 , ..., e n )(x) = (f 1 , ..., f n ), X ∈ T x M} is exactly T (f 1 ,...,fn) E \ ker(d (f 1 ,...,fn) π E ) (so we have the desired conclusion as soon as M has positive dimension). The existence follows from the observation that both sides of the equality are linear and if d x (e 1 , ..., e n )(X) = d x (e 1 , ..., e n )(Y ), then (∇ X e 1 (x), ..., ∇ X e n (x)) = (∇ Y e 1 (x), ..., ∇ Y e n (x)). Now we have to check that ω denes a principal connection on the bundle of frames. In particular, for (f 1 , ..., f n ) ∈ E and g ∈ GL(n, R), Ad g (R *

g ω) f 1 ,...,fn = ω f 1 ,...,fn . By the remark in the proof of uniqueness, it is enough to check it on the vectors on the form d x (e 1 , ..., e n )(X) where (e 1 , ..., e n )(x) = (f 1 , ..., f n ). We dene (e 1 , ..., e n ) := (e 1 , ..., e n ) • g for g ∈ GL(n, C) and by denition of the right action of GL(n, C) on E, we have e i = n k=1 g k,i e k . Then we have d (f 1 ,...,fn) R g d x (e 1 , ..., e n )(X) = d x (e 1 , ..., e n )(X). We use that to compute: 

(g k,1 ∇ X e k , ..., g k,n ∇ X e k ) = g -1 Mat (f 1 ,...,fn) (∇ X e 1 , ..., ∇ X e n )g = (Ad g ) -1 ω(d x (e 1 , ..., e n )(X))
The second property to check is that for (f 1 , ..., f n ) ∈ E and g : (-1, 1) → GL(n, C) smooth with g(0) = Id, we have ω(

d dt |t=0 (f 1 , ..., f n ) • g(t)) = d dt |t=0 g(t).
To see that, we take (x 1 , ..., x n ) smooth coordinates around x with (x 1 , ..., x n )(x) = 0 and (e 1 , ..., e n ) a local frame around x such that (e 1 , ..., e n )(x) = (f 1 , ..., f n ). We dene the local frame (e 1 , ..., e n ) := (e 1 , ..., e n ) • g(x 1 ). We compute (using the chain rule)

d x (e 1 , ..., e n )(∂ x 1 ) = d dt |t=0 ((f 1 , ..., f n ) • g(t)) + d x (e 1 , ..., e n )(∂ x 1 )
Moreover, we have

e i = n k=1 g k,i (x 1 )e k Therefore ∇ ∂x 1 e i (x) = n k=1 d dt |t=0 g k,i f k + ∇ ∂x 1 e k (x
) and using the denition, we see that ω (f 1 ,...,fn) (d x (e 1 , ..., e n )(∂ x 1 )) = ω (f 1 ,...,fn) (d x (e 1 , ..., e n )(∂ x 1 )) + d dt |t=0 g(t). Eventually,we deduce:

ω (f 1 ,...,fn) d dt |t=0 ((f 1 , ..., f n ) • g(t)) = d dt |t=0 g(t).
Proposition 4.4. he onstrutions of proposition RFI nd RFQ re inverse of one notherF roofF Let Y be a local smooth section of F around x 0 ∈ M and X ∈ T x 0 M. We denote by ω the principal connection on E obtained from ∇ by going through the construction of proposition 4.3 and ∇ the linear connection obtained from ω by proposition 4.1. We prove that ∇ X Y = ∇ X Y .

To do so we choose a local basis (e 1 , ..., e n ) around x 0 such that (∇ X e 1 , ...∇ X e n ) = 0 (it is always possible to construct such a basis by working in a local trivialization around x). We denote by f the function dened from a neighborhood of π -1

E ({x 0 }) to C n by f (a) = Mat a Y (π E (a)
). We dene 

∇ X Y (x 0 ) = [(a 0 , (d x 0 Y 1 (X), ..., d x 0 Y n (X)))] = n k=1 X(Y k )(x 0 )e k (x 0 ).

On the other hand

∇ X Y = n k=1 X(Y k )(x 0 )e k + Y k ∇ X e k (x 0 ) = n k=1 X(Y k )(x 0 )e k by denition of (e 1 , ..., e k ) = ∇ X Y We conclude that ∇ = ∇.
We also have to prove that if ω is a principal connection on E and if ∇, linear connection on F is obtained by proposition 4.1, then the principal connection ω on E obtained from ∇ by proposition 4.3 is equal to ω. Since we already know that for x 0 ∈ M, a ∈ E and h ∈ g, ωd 1 i a (h) = ωd 1 i a (h) = h (by denition of a principal connection) and since T a E = kerω a ⊕ d 1 i a (g) (see lemma 4.1 and remark 4.1), it is enough to prove that ω = 0 on ker(ω a ). By remark 4.3, there exists a smooth local section (e 1 , ..., e n ) on an open neighborhood U around x 0 such that (e 1 , ..., e n )(x 0 ) = a and d x 0 (e 1 , ..., e n )(T x 0 M) = ker(ω a ). We are reduced to proving that ωa • d x 0 (e 1 , ...e n ) = 0. By denition of ω, this is the same as proving that for all i ∈ 1, n , ∇e i = 0. By denition of ∇ and lemma 4.2 (use the fact that d x 0 (e 1 , ..., e n )(T x 0 M) = ker(ω a )), it is the same as proving that if f i : U → R n is such that e i = [(e 1 , ..., e n ), f i ] then d x 0 f i = 0. This last fact is obvious since f i are the coordinates of e i in the local basis (e 1 , ..., e n ). 

f : A → B @with π B • f = π A A suh tht for ll g ∈ G A nd a ∈ AD f (a • g) = f (a)
• gF por every prinipl onnetion ω on B suh tht for ll a ∈ AD ker(ω f (a) ) ⊂ T f (a) f (A)D the one form f * ω is prinipl onnetion on AF roofF We rst have to check that f * ω has values in g A . To prove that, we remark that for all a ∈ A, Ran(d a f ) = kerω f (a) ⊕ d 1 i f (a) g A . Indeed, the right-hand side is included into the left-hand side and both sides have the same dimension (dim(Ran(d a f )) = dimA = dim(M) + dim(G A )). Moreover, ω(kerω f (a) ⊕ d 1 i f (a) g B ) = g A so f * ω has value in g A . The two properties of principal connection for f * ω follow directly for the corresponding one for ω.

Remark 4.4. he ondition ker(ω f (a) ) ⊂ T f (a) f (A) tkes prtiulrly simple form when B is the frme undle of vetor undle F nd ω omes from liner onnetion ∇ on F @y proposition RFQAF sndeedD we hve the following equivleneX ker(ω f (a) ) ⊂ T f (a) f (A) if nd only if for ll a ∈ AD there exists (e 1 , ..., e n ) lol setion of f (A) round x 0 := π B (f (A)) suh tht (e 1 , ..., e n )(x 0 ) = a nd for ll X ∈ T x 0 AD (∇ X e 1 , ..., ∇ X e n ) = 0F he ide of the proof is the followingX vet

a ∈ A nd x 0 := π B (f (a))F essume ker(ω f (a) ) ⊂ T f (a) f (A)D then we n (nd sumnifold C of f (A) of dimension dimM ontining f (a) with tngent spe ker(ω f (a) ) t f (a)F e know tht ker(ω f (a) ) ∩ ker(d f (a) π B ) = {0}D s onsequene C de(nes setion of f (A) in smll neighorhood of f (a)
this setion is the one we re looking forF eiprollyD if we hve setion (e 1 , ..., e n ) with the required propertiesD d x (e 1 , ..., e n )(T x 0 M) ⊂ ker(ω f (a) ) nd hs the sme dimensionD so ker

(ω f (a) ) = d x (e 1 , ..., e n )(T x 0 M) ⊂ T f (a) f (A)F
A typical situation where the pull back appears is the following: Proposition 4.6. vet A e G prinipl undle nd ρ : G → GL(C n ) representtion of G on C n @we n lso reple C n y R n A whih is n emedding of vieEgroupsF vet F e the vetor undle ssoited to A with the representtion ρF vet ω e prinipl onnetion on A nd ∇ the onnetion on F onstruted y proposition RFIF vet E e the prinipl undle of frmes on F nd ω E e the prinipl onnetion on E given y proposition RFQF hen if we de(ne the emeddingX

f : A → E a → ([a, e 1 ], [a, e 2 ], ..., [a, e n ])
where (e 1 , ..., e n ) is the nonil sis of

C n F hen f * ω E = d 1 ρ • ωF
roofF First, we can check that for all a ∈ A and g ∈ G, f (a

• g) = ([a, e 1 ], ..., [a, e n ]) • ρ(g). In particular for a ∈ A, d 1 (f • i a ) = d a f d 1 i a = d 1 i f (a) d 1 ρ
. By the denition of a principal connection, we know that

d 1 ρω a d 1 i a (h) = d 1 ρ(h) and also (ω E ) f (a) d 1 i f (a) (d 1 ρ(h)) = d 1 ρ(h). We deduce that d 1 ρω a d 1 i a (h) = (ω E ) f (a) d 1 i f (a) (d 1 ρ(h)) = (ω E ) f (a) d a f d 1 i a (h). Since T π A (a) A = d 1 i a (g) ⊕ ker(ω a ),
we are now reduced to checking that (ω E ) f (a) d a f (ker(ω a )) = 0. We take s a local section of A in an open neighborhood U of x 0 such that s(x 0 ) = a and d x 0 s(T x 0 M) = ker(ω a ). Then by lemma 4.2, ∇[s, e i ] = 0. We deduce that for X ∈ T x 0 M, (∇ X [s, e 1 ], ..., ∇ X [s, e n ]) = 0. Finally, using the denition of ω E we deduce that

(ω E ) f (a) (d x 0 f • s(X)) = Mat f (a) (∇ X [s, e 1 ], ..., ∇ X [s, e n ]) = 0. Therefore (ω E ) f (a) • d x 0 f (ker(ω A )) = 0
In some cases of interest, the condition in remark 4.4 is not satised. In these cases, the pull back is not a connection because the image is not contained in the Lie subalgebra g A . The goal of the following proposition is to correct this by composing (to the left) by a projection on g A . The main downside with this construction is that we have several choices for the projection leading to dierent connections. However, in cases we are interested in here, there is a particularly natural choice (see the remark after the proof). 

f : A → B suh tht for ll g ∈ G A nd a ∈ AD f (a • g) = f (a)
• gF por simpliityD we identify impliitly the vie lger of A nd the vie lger of f (A)F essume tht we hve suspe V of g B suh thtX

V ⊕ g A = g B ∀g ∈ G A , Ad g (V ) = V
e denote y q : g B → g A the projetion on g A with kernel V F por every prinipl onnetion ω on BD we n de(ne the g A Evlued one form ω := q • f * ωF hen ω is prinipl onnetion on AF roofF For all g ∈ G A , we have Ad g (g A ) ⊂ g A and Ad g (V ) ⊂ V so Ad g commutes with q. Let g ∈ G A and a ∈ A,

Ad g R * g ωa = Ad g ωa•g • d a R g = Ad g • q(f * ω) a•g • d a R g = q • Ad g ω f (a•g) • d a•g f • d a R g = q • Ad g ω f (a)•g • d f (a) R g • d a f (a) = q • Ad g (R * g ω) f (a) • d a f (a) = q • (f * (Ad g R * g ω)) a = q • (f * ω) a = ωa .
The second property of principal connections is immediate since q is the identity on g A . Remark 4.5. sn some sesD there is nturl hoie for V F e rell tht the uilling form of g B is y de(nition the symmetri iliner form K(x, y) = tr(ad x ad y ) @where ad x D ad y re onsidered s endomorphisms of g B AF xote tht the uilling form is invrint under every utomorphism of vie lger of g B F hen K is non degenerteD we sy tht g B is semisimpleF sf moreoverD K | g A ×g A is lso non degenerteD we n onsider the very nturl hoie V := g ⊥ A where g ⊥ A is the orthogonl with respet to K @note tht the two non degenery onditions imply tht V ⊕ g A = g B AF he ft tht Ad g (V ) = V for ll g ∈ G A is then given y the invrine of the uilling form y the vie lger utomorphism @preserving g A sine g ∈ G A A Ad g F We conclude this section by the following proposition that we do not prove (the proof follows quite easily from the denitions) Proposition 4.8. vet A e G A prinipl undle over M nd B e G B prinipl undle over the sme mnifold MF e ssume tht we hve overing vie group morphism f :

G A → G B nd smooth overing mp f : A → B suh tht π B • f = π A nd for ll g ∈ G A nd a ∈ AD f (a • g) = f (a)
• f (g)F henD if ω is prinipl onnetion on BD f * ω is prinipl onnetion on AF

Spin connection, GHP connection and GHP operators

For deeper geometric insight on the denitions of connections and operators, see [START_REF] Harnett | The ghp connection: a metric connection with torsion determined by a pair of null directions[END_REF]. sn the spinEoe0ient formlismD this orresponds to the vnishing of κD λD σ nd νF Remark 4.9. e n lso ompute onretely the onnetion ω on S using proposition RFTX sndeedD we hve nturl emedding of S in the set of frmes (o, ι) of S given y the mp f of proposition RFT @note tht the representtion of SL(2, C) into GL(C 2 ) is just the nturl emedding so .

The fact that f •d = p•f can be checked using a pair of compatible trivializations (and the associated trivializations for S and T M ⊗ C) in which it follows from the equality (true for every C 1 , C 2 ∈ C 2 ): @with i < jA suh tht in ny (s 0 , s 1 ) sis of S with (s 0 , s 1 ) = 1X (C i,j φ)(s k 1 , ..., ŝk i , ..., ŝ k j , ..., s in 0 ) =φ(s k 1 , ..., s k i-1 , s 1 , s k i+1 , ..., s k j-1 , s 0 , s k j+1 , ..., s kn 0 ) -φ(s k 1 , ..., s k i-1 , s 0 , s k i+1 , ..., s k j-1 , s 1 , s k j+1 , ..., s kn 0 )

p (C 1 , C 2 ) = i 0 C 1 ⊗ C 1 + C 2 ⊗ C 2 √ 2 , i 0 C 1 ⊗ C 2 + C 2 ⊗ C 1 √ 2 , -i 0 C 1 ⊗ C 2 -C 2 ⊗ C 1 √ 2i , i 0 C 1 ⊗ C 1 -C 2 ⊗ C 2 √ 2 .
where k 1 , ...k n ∈ {0, 1} nd ŝk l mens tht s k l is skipped in the enumertionF his de(nition does not depend on the hosen sis s long s it is normlizedF We see that this relation is a particular case of a relation between spin coecients of a null tetrad with l and n in principal directions introduced by Teukolsky in [START_REF] Saul | Perturbations of a rotating black hole. i. fundamental equations for gravitational, electromagnetic, and neutrino-eld perturbations[END_REF] (equation (2.11)). It is the case p = n 0 -2 and q = -n 0 .

Denition 5.3. e de(ne the eukolsky opertor T s := 2G s + 4(s -1) s -1 2 Ψ 2 F st is nturlly di'erentil opertor on B(s, s)F 5.1 Formula for the Teukolsky operator on Kerr in a trivialization provided by the Kinnersley tetrad

We consider the local section (o m , ι m ) of A 0 dened on U := R t × (r 0 , +∞) × S 2 \ {φ = 0}. We recall that by denition d((o m , ι m )) = (l, n, m) where l, n, m, m is the Kinnersley tetrad dened by ( 4), ( 5) and ( 6). Note that (-o m , -ι m ) has also the property d((-o m , -ι m )) = (l, n, m) (it is the only other section of A 0 dened on U with this property). However, the expression of T s in a local trivialization provided by a section (o, ι) only depend on d(o, ι) (this follows from the fact that it is the case for operators þ, þ', ð and ð' and for the spin weighted functions b(m), b(n) and c(l)). Therefore, it is correct to speak about the formula for the Teukolsky operator in a trivialization provided by the Kinnersley tetrad without further precision. But to x the ideas, we consider here the dierential operator (T s ) m (T s written in the local trivialization provided by A m , it is therefore a dierential operator on U ). We use the expression of þ, þ', ð and ð computed in remark 4. where a, b, c and Ψ 2 have to be computed with respect to the tetrad (l, n, m, m) (see remark 4.7). The computation of these coecients is done in [START_REF] Chandrasekhar | he mthemtil theory of lk holes[END_REF] (chapter 6, section 56, equation ( 175) and (180) but with the opposite sign convention for Ψ 2 ) and we nally nd:

(r 2 + a 2 cos 2 (θ))(T s ) m = (r 2 + a 2 ) 2 ∆ r -a 2 sin 2 θ ∂ 2 t + 4M ar ∆ r ∂ t ∂ φ + a 2 ∆ r - 1 sin 2 θ ∂ 2 φ -∆ -s r ∂ r ∆ s+1 r ∂ r - 1 sin θ ∂ θ (sin θ∂ θ ) -2s a(r -M ) ∆ r + i cos θ sin 2 θ ∂ φ -2s M (r 2 -a 2 ) ∆ r -r -ia cos θ ∂ t + s 2 cot 2 θ -s

Denition 2 . 1 .

 21 por x ∈ MD n oriented sis of T x M is sis (b 1 , ..., b 4 ) with b 1 future oriented nd timelike nd (b 2 , b 3 , b 4 ) spelike with their sptil prt @in the ICQ deompositionA eing n oriented sisF

  The vector space structure is given on each ber by λ[(e, v)] = [(e, λv)] and [(e, v)] + [(e, v )] = [(e, v + v )] which does not depend on the choice of (e, v) in the class. If φ

  The proposition is proved. Proposition 2.4. e hve the following equlity for ll x ∈ MD for ll a, c ∈ S x nd b, d ∈ S x X g(a ⊗ b, c ⊗ d) = (a, c) (b, d)

4 )

 4 to get a free action of the group G A := (C * f Z/4Z)/H. Topologically, C * f Z/4Z is simply C * ×Z/4Z which is homeomorphic to four disjoint copies of C * . The quotient by H identies C * ×{[0] 4 } with C * ×{[2] 4 } and C * × {[1] 4 } with C * × {[3] 4 } so G A is homeomorphic to two disjoint copies of C * (more precisely the two connected components are C * 0 := {[(z, [0] 4 )], z ∈ C * } and C * 1 := {[(z, [1] 4 )], z ∈ C * }, C * 0 being the connected component of the neutral element). Note that

Proposition 2 . 11 (

 211 Spin weighted components of cospinors). e denote y S a,b := ⊗ a S ⊗ b S F here is ijetion F etween the set of setions of S a,b nd the set I⊂ 1,a ,J⊂ 1,b W (|I|-|J|+ b-a 2 ,|I|+|J|-a+b 2 )

Lemma 4 . 1 .

 41 por ll e ∈ ED ker(ω e ) ⊕ ker(d e π E ) = T e EF sn prtiulr d e π E |ker(ωe) is n isomorE phism etween ker(ω e ) nd T π E (e) MF roofF The image of the injective map d 1 i e is exactly ker(d e π E ) (see remark 4.1). So the second point in the denition of ω implies that ker(ω e ) ∩ ker(d e π E ) = {0} and dimRan(ω e ) = dimg = dim(ker(d e π E )). Moreover, dim(ker(ω e )) = dim(E) -dim(Ran(ω e )) so we deduce that dim(ker(ω e )) + dimker(d e π E ) = dim(E) and we have the lemma.

Corollary 4 .

 4 1. e use the nottions of proposition RFIF vet e e lol smooth setion of E round

  R * g ω(d x (e 1 , ..., e n )(X)) = ω (f 1 ,...,fn)•g (d x (e 1 , ..., e n )(X)) = Mat (f 1 ,...,fn)•g ∇ X e 1 , ..., ∇ X e n = Mat (f 1 ,...,fn)•g n k=1

a 0 :

 0 = (e 1 , ..., e n )(x 0 ). By denition of ω, we have ω a 0 d x 0 (e 1 , ..., e n )(X) = 0. If we write Y = [((e 1 , ..., e n ), (Y 1 , ..., Y n ))] where Y i are the coordinates of Y in the local basis (e 1 , ..., e n ), we can use lemma 4.2 to deduce that

Proposition 4 . 5 (

 45 pull back of a principal connection). vet A e G A prinipl undle over M nd B G B prinipl undle over the sme mnifold MF e ssume tht G A is n emedded vie sugroup of G B nd tht we hve n emedding

Proposition 4 . 7 (

 47 Pull Back of a connection in more complicated cases). vet A e G A prinipl undle over M nd B G B prinipl undle over the sme mnifold MF e ssume tht G A is n emedded vie sugroup of G B nd tht we hve n emedding

, 0 1 .

 1 d 1 ρ is just the inlusion of sl(2, C) into M 2 (C)AF he mp f identi(es S with the set of frmes (o, ι) suh tht (o, ι) = 1F hereforeD proposition RFT tells us tht for lol smooth setion s of S identi(ed with the lol frme(o, ι) nd X ∈ T x 0 MD ω(d x 0 s(X)) = wt (o,ι)(x 0 ) (∇ X o, ∇ X ι) = a(X) c(X) b(X) -a(X) ∈ sl(2, C)F4.2.2 GHP connectionWe now dene the connection on A 0 and N 0 using proposition 4.7. We cannot use proposition 4.5 since the condition of remark 4.4 is clearly not satised. The covering map p : SL(2, C) → SO + (1, 3) gives a Lie algebra isomorphism d Id p : sl(2, C) → so[START_REF] Aksteiner | Linearized gravity and gauge conditions[END_REF][START_REF] Andersson | Geometry of black hole spacetimes[END_REF].We also have an embedding of principal bundlesf : N 0 → O (l, n, m) → l+n √ 2 ,We have chosen f to be the unique map such that f• d = p • f where f is the natural embedding of A 0 into S given by (o, ι) = f(o, ι), 1 0 Note that f((o, ι) • z) = f(o, ι) • z 0 0 z -1, therefore, f is associated with the following embedding of Lie groups:

Remark 4 .

 4 12. e n use proposition RFIP to ompute þD þ D ð nd ð in lol triviliztion given y smooth lol setion (o, ι) of A 0 F sndeedD if u ∈ B(s, w) writes u = [(o, ι), u 1 ] we hveX(þu) 1 = -(w + s)a(l) -(w -s)a(l) u 1 + l(u 1 ) (þ9u) 1 = -(w + s)a(n) -(w -s)a(n) u 1 + n(u 1 ) (ðu) 1 = -(w + s)a(m) -(w -s)a(m) u 1 + m(u 1 ) (ð9u) 1 = -(w + s)a(m) -(w -s)a(m) u 1 + mu 1 .Proposition 4.13. here exists unique element b(m) of B(0, 1) suh tht for every lol smoothsetion o, ι of A 0 de(ned on n open set U D b(m) | U = [(o, ι), b(m)] @where b(m) := -(∇ ι⊗o o, o)AFroofF The only thing to prove is that the denition does not depend of the choice of the local section (o, ι). Let (o, ι) be a local smooth section of A 0 on an open set U . Let z : U → C * be a smooth map and (o , ι ) = (o, ι) • z = (zo, z -1 ι) (every local smooth section on U can be written in this form). We then have:(∇ ι ⊗o o , o ) = (∇ zz -1 ι⊗o (zo), zo) = (zz -1 m(z)o, zo) + (z∇ ι⊗o o, zo) =zz (∇ ι⊗o o, o) =ρ (0,1) (z -1 ) (∇ ι⊗o o, o) Since [(o, ι), -ρ 0,1 (z -1 ) (∇ ι⊗o o, o)] = [(o , ι ) • z -1 , -(∇ ι⊗o o, o)]by denition of B(0, 1), we nally have: [(o , ι ), -(∇ ι ⊗o o , o )] = [(o, ι), -(∇ ι⊗o o, o)] Remark 4.13. hnks to remrk PFIID we n see b(m) s multiplition opertor from B(s, w) to B(s, w + 1)F Remark 4.14. e similrly de(ne the spin weighted funtions b(n) ∈ B(1, 0)D c(m) ∈ B(0, -1) nd c(l) ∈ B(-1, 0)F 5 Denition of the Teukolsky operator Denition 5.1 (Contraction operator). vet φ ∈ (S ) ⊗n 0 @n 0 ∈ NAF e de(ne the opertor C i,j

Denition 5 . 2 .

 52 vet φ ∈ Γ((S ) n 0 )F e de(ne the opertor D @hir opertorA s Dφ = C 1,3 ∇φ ∈ Γ(S ⊗ (S ) ⊗n 0 -1 )F feuse the spinor is symmetriD we n reple 3 in the de(nition y ny index in {3, ..., n 0 + 2}F If we use remark 4.7 to replace the occurences of a,b and c by spin coecients, we rewrite this as:(l -(n 0 -1) + -n 0 ρ -ρ) (m -(n 0 -2)β -n 0 τ ) -(m -(n 0 -1)β -α + π -n 0 τ ) (l -(n 0 -2) -n 0 ρ) = 0

  12 and the denition of b(m), b(n) and c(l) to nd for s ∈ 1 2 Z: (T s ) m =2 l -(2s -1)a(l) + a(l) + 2sb(m) + b(m) (n -2sa(n) + c(m)) -2 m -(2s -1)a(m) -a(m) + c(l) + 2sb(n) (m -2sa(m) + c(l)) + 4(s -1) s -

  Vector bundle associated with the spin structure Applying the previous construction to the spin structure and the canonical representation of SL(2, C), we get a complex vector bundle of rank 2 over M called the spinor bundle S. If we chose a local trivialization Φ of the spin structure, we deduce an associated local trivialization Φ S of S.

	Proposition 2.1. qiven lol triviliztion Φ : π -1

Remark 2.1. sf A nd B re omplex vetor undles ssoited to E for the tion ρ A nd ρ B D then A ⊗ B is nturlly isomorphi to the undle ssoited to E for the tion ρ : g → ρ A (g) ⊗ ρ B (g) nd A is nturlly isomorphi to the undle ssoited to E for the tion ρ A 2.2.2 S (U ) → U × SL(2, C) of SD there exists unique lol triviliztion @on the sme open setA

  his omes from the nlogous property on the mp i 0 F

2.2.3 Symplectic form on spinors Proposition 2.3. here exists unique sympleti form ∈ S ∧ S suh tht for ll lol trivilE iztions Φ of SD we hve x

  = 0D we hve W (l, a, l, b) = 0 where W is the eyl tensorF e sy tht the vetor l is prinipl of multipliity t lest 2 if for ll a, b ∈ T x M suh tht g(l, a) = 0D W (l, a, l, b) = 0F his hrteriztion of prinipl vetors n e found in PHD proposition SFSFSF elterntive equivlent de(nitions nd dditionl properties of prinipl null diretions re lso provided in PHF Denition 2.3. e de(ne etrov type h speEtime s speEtime M suh tht for ll x 0 ∈ MD there exists l nd n independent @therefore non vnishingA null vetor (elds de(ned on neighorhood U of x 0 suh thtX por ll x ∈ U D the set of prinipl vetor (elds t T x M is extly Rl(x) ∪ Rn(x)

	Denition 2.2. e null vetor l ∈ T x M is lled prinipl if for ll a, b ∈ T x M suh tht g(l, a) =
	g(l, b)

  T MF herefore (o⊗o, ι⊗ι, o⊗ι) is oriented in the sens of de(nition PFRF 2.4.1 Properties of d Proposition 2.8. he mp d is doule overing mp from A

  , r, x S , y S ) →

	√	2 r+ia	e iρ 1-(x 2 S 1+x 2 S	+y 2 S S +y 2	)	2ia(x S +iy S ) 1+x 2 S +y 2 S	∂ t +	(x 2 S +y 2 S +1) 2

Meaning that for all x ∈ N0 and g ∈ C * we havef (x • g) = f (x) • f (g)
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Spin connection

We denote by ∇ the Levi-Civita connection on M. Using proposition 4.3, we can dene a principal connection ω on the space of complex tangent frames E. We now want to apply proposition 4.5 (and remark 4.4) to the various principal bundles previously dened. We have an embedding of principal bundles f : O → E. We use the following proposition and proposition 4.5 (and remark 4.4) to show that f * ω is a principal connection on O. We still call it ω. Proposition 4.9. vet y 0 ∈ MF por ll (f 0 , ..., f 3 ) ∈ O y 0 D there exists lol smooth setion (e 0 , ..., e 3 ) @round y 0 A of O suh tht (e 0 , ..., e 3 )(y 0 ) = (f 0 , ..., f 3 ) nd for ll X ∈ T y 0 M, (∇ X e 0 , ..., ∇ X e 3 ) = 0F roofF We dene (x 0 , ..., x 3 ) local normal coordinates on a neighborhood of y 0 such that (∂ x 0 , ..., ∂ x 3 )(y 0 ) = (f 0 , ..., f 3 ). Then we denote by g i,j the metric coecients in these coordinates. Because coordinates are normal we have for all X ∈ T y 0 M, for all i ∈ 0, 3 , ∇ X ∂ x i = 0, g i,j (y 0 ) = δ i,j and g has vanishing rst derivatives at y 0 . We dene (e 0 , ..., e 3 ) as the Schmidt orthonormalization of (∂ x 0 , ..., ∂ x 3 ). As a consequence there is a smooth family of upper triangular invertible matrices S(y) that we can express explicitly with respect to the coecients g i,j such that S(y 0 ) = Id and (e 1 , ..., e n )(y) = (∂ x 0 , ..., ∂ x 3 )(y)S(y). Then we have, for

where X(S)(y 0 ) is the derivation coecient by coefcient. Because all the derivatives of the metric coecients g i,j vanish at y 0 , we have X(S)(y 0 ) = 0 and (∇ X e 1 , ..., ∇ X e n ) = 0.

We can then use proposition 4.8 to dene a connection ω on S by pulling back the principal connection on O. We can also dene a linear connection ∇ on the spinor bundle S and on S by using proposition 4.1. Concretely, note that for a real vector eld X and a section a of S, we have the equality ∇ X a = ∇ X a (it follows from the denitions). Therefore, by C-linearity, if X is a complex vector eld, ∇ X a = ∇ X a. We used the same notation ∇ and ω for connections on dierent bundles (and we use the context to remove ambiguity). To show that all these denitions are coherent, it is useful to prove the following proposition: Proposition 4.10. e hve j * ∇ = ∇ ⊗ ∇ where the left hnd side is the veviEgivit onnetion on T C M nd the right hnd side is the onnetion on S ⊗ SF roofF First note that ∇⊗∇ is the same connection as the one obtained by proposition 4.1 applied to the bundle S ⊗ S seen as associated to S (see proposition 4.2). Let x 0 ∈ M. Using proposition 4.9, we dene a local smooth section (e 0 , e 1 , e 2 , e 3 ) of O around x 0 such that (∇e 0 (x 0 ), ..., ∇e 3 (x 0 )) = 0. In particular, by denition of the connection on O, ω • d x 0 (e 0 , ..., e 3 ) = 0. Let s be a local smooth section of S around x 0 such that p • s = (e 0 , ..., e 3 ). By denition of the connection on S, we have ω • d x 0 s = 0. Moreover, the trivialization induced by s on S and the one induced by (e 0 , ..., e 3 ) on O are compatible. Then j written in these local trivializations is just the map id U × i where i 0 : C 2 ⊗ C 2 → C 4 is an isomorphism (dened earlier). We take Z 1 a local smooth section of S ⊗ S on a small neighborhood U of x 0 , then Z 2 = j(Z 1 ) is a local smooth section of T C M around x 0 .

We have Z 1 = [(s, Z1 )] with Z1 : U → C 2 ⊗ C 2 and Z 2 = [((e 0 , ..., e 3 ), Z2 )] with Z2 := i • Z1 .

Let X ∈ T x 0 M. By the rst remark in this proof and the denition of the connection on an associated bundle (proposition 4.1), we have that (∇ ⊗ ∇) X Z 1 = [(s, d x 0 Z1 (X))] (it uses the fact that ω • d x 0 s = 0 and lemma 4.2). Moreover, similarly we have ∇ X Z 2 = [((e 0 , ..., e 3 ), d x 0 Z2 (X))] = [((e 0 , ..., e 3 ), i 0 d x 0 Z1 (X))] (it uses the fact that ω • d x 0 (e 0 , ..., e 3 ) = 0, lemma 4.2 and the linearity of i 0 ). Then we conclude that

Since it is true for all local smooth sections Z 1 , all X ∈ T x 0 M and all x 0 ∈ M, we have proved the proposition.

Remark 4.6. sn this remrkD we use the identi(tion j impliitlyF xote tht ∇ is not the only onnetion with the property ∇ ⊗ ∇ = ∇ LC @t lest lollyAF sndeedD let U e n open set on whih we hve smooth spin frme (o, ι) with (o, ι) = 1F hen we n de(ne onnetion ∇ on S | U suh tht for ll rel vetor (eld X on U X

where aD b nd c re omplex vlued liner forms on U nd µ is rel vlued liner form on U F woreoverD we de(ne aDb nd c s followsX

gonditions [START_REF] Curtis | Complex line bundles in relativity[END_REF] re neessry to hve ∇ ⊗ ∇ = ∇ LC nd we now prove tht they re su0ient @in the de(nition of ∇ we n hose freely ny rel liner form µ hene the lk of uniquenessAF xote tht o ⊗ oD ι ⊗ ιD o ⊗ ιD ι ⊗ o is normlized null tetrd on U F herefore we hve @using properties of the veviEgivit onnetionAX

is enough to prove tht hek the equlity on this tetrdF st follows from the de(nition of ∇ F

The previous remark shows that ∇ is not completely determined by proposition 4.10. However, we also have the following proposition: Proposition 4.11. e hve ∇ = 0 roofF By denition, ∇ = 0 if for all x 0 ∈ M, X ∈ T x 0 M and a,b spinor elds dened on a neighborhood U of x 0 , we have:

We denote by ω S the principal connection on S previously dened (and used to dene the spin connection ∇) Let s be a smooth local section of S such that (ω S ) s(x 0 ) d x 0 s = 0 (which exists by remark 4. 

Moreover, by denition of (see proposition 2.3), we have (a, b)(x) = det(ã(x), b(x)). Therefore by bilinearity of the determinant:

Remark 4.7. st is very useful to note tht the onnetion ∇ on S is ompletely determined y proposition RFIH nd proposition RFII @in prtiulrD we ould hve used these properties s de(E nition of the onnetion ∇ on SAF sndeedD if we (x lol sis (o, ι) of S suh tht (o, ι) = 1 nd X vetor (eld on MD we n writeX

he oe0ients of the one forms aD -b nd c on the null sis (l, n, m, m

re lled spin oe0ientsF por exmpleD following the nottion in T hpter I @PVTA for the spin

Remark 4.8. sf we require tht (o, ι) is lol setion of A 0 @nd s usul (l, n, m) := d(o, ι)AD we hve tht l nd n re pregeodesi nd thereforeD y remrk RFUD we hveX

Note that f is unique since d is surjective.

We dene H := f (C * ) which is a commutative embedded Lie subgroup of SO + (1, 3) and h its Lie algebra (it is an abelian Lie subalgebra of so(1, 3)). In order to apply remark 4.5 (and proposition 4.7), we want to prove that the Killing form of so(1, 3) is non degenerate and that its restriction to h is also non degenerate.

It is easier to check this using the isomorphism of real Lie algebras d Id p since we have (d Id p) -1 (h) = z 0 0 -z , z ∈ C (this follows from the equality f (z 2 ) = p z 0 0 z -1 ). Note that we consider sl(2, C) as a real Lie algebra here, we will denote it by sl(2, C) R to emphasize this fact. The Killing form of sl(2, 

Remark 4.10. sing the seond de(nition of the onnetion on A 0 nd remrk RFWD we hve tht

where aDb nd c re the sme s in remrk RFU nd n e omputed using only (l, n, m, m) := d(o, ι) nd the vevi givit onnetionF e hve denoted the uillingEorthogonl projetion on (d Id p) -1 (h) y π ⊥ h F elso note tht in this equlityD the vie lger of C * hs een identi(ed with the vie lger of f(C * ) @see proposition RFUAF ithout the identi(tionD we simply get ω

We can use this principal connection to dene a connection ∇ on B(s, w) by proposition 4.1. Now we give a way to compute concretely ∇u for u a local smooth section of B(s, w). Proposition 4.12. vet (o, ι) e lol smooth setion of A 0 F vet u e lol smooth setion of

where a(X) = (∇ X o, ι) = (∇ X ι, o) s previouslyF roofF By C linearity of both sides, it is enough to prove the result for real vectors. Let x 0 ∈ U and X ∈ T x 0 M (real vector space). By corollary 4.1 and remark 4.10, we have:

here is omptiility etween the onnetion ting on di'erent spin weighted undles nd the isomorphism B(s, w)⊗B(s , w ) = B(s+s , w +w )F

GHP operators

If u is a smooth section of B(s, w), then ∇u is a smooth section of T * C M⊗B(s, w). We can dene the operators which map ∇u to its spin weighted components (dened in remark 2.18). Equivalently these operators can be seen as contraction of the spin weighted 2-cospinor ∇u with the spin weighted spinors o,ι, o and ι. These operators are called GHP operators. In this subsection, we denote by o the rst projection of A 0 and ι the second projection. We also use the notation

Remark 5.1. xote tht Dφ is symmetri with respet to the lst n 0 -1 vriles ut the (rst one hs prtiulr sttusF Proposition 5.1. e hve the following reltions t the level of spin weighted omponentsX

where c(l)D c(m)D b(m) nd b(n) re seen s multiplitions opertors on spinEweighted funtions @see remrk RFIQ nd RFIRA roofF Since both sides of the equalities are spin weighted functions of the same weight (( n 0 2 -1, n 0 2 ) for the rst and ( n 0 2 , n 0 2 -1) for the second), it is enough to check the equality in a local trivialization near each point. We do it for the rst equality (the second is similar). Let x 0 ∈ M, let (o, ι) be a local section of A 0 . Thanks to the bold notation, it is easy to compute the components in local trivializations associated to this local section: