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Abstract 

In this paper, a Casualty Collection Points (CCPs) location problem is formulated as a two-stage robust 

stochastic optimization model in an uncertain environment. In this modelling approach, the network 

design decisions are integrated with the multi-period response operational decisions where the number of 

casualties with different levels of injuries coming from the affected areas is uncertain. Furthermore, the 

transportation capacity for the evacuation of casualties to CCPs and hospitals is also uncertain. To solve 

this complex problem, a robust sample average approximation method with the feasibility restoration 

technique is proposed, and its efficiency is examined through a statistical validation procedure. We then 

evaluate the proposed methodology in the backdrop of a hypothetical case of Bhopal gas tragedy (with 

the same hazard propagation profile) at the present day. We also report the solution robustness and model 

robustness of 144 instances of the case-study to show the proficiency of our proposed solution approach. 

Results analysis reveals that our modelling approach enables the decision makers to design a 

humanitarian logistic network in which not only the proximity and accessibility to CCPs is improved, but 

also the number of lives lost is decreased. Moreover, it is shown that the proposed robust stochastic 

optimization approach convergences rapidly and more efficiently. We hope that our methodology will 

encourage urban city planners to pre-identify CCP locations, and, in the event of a disaster, help them 

decide on the subset of these CCPs that could be rapidly mobilised for disaster response. 

 

Keywords: humanitarian logistics; casualty collection points; stochastic programming; robust 
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1. Introduction 

Severe weather events and natural disasters have displaced approximately 32 million people globally in 

2012 and numbers are projected to continue rising (IPCC, 2014). According to the Centre for Research 

on the Epidemiology of Disasters CRED (2015), over the past ten years, natural disasters affected almost 

1.7 billion people, including 0.7 million killed, and resulted in 1.4 trillion dollars in damages worldwide. 

Similarly, man-made disasters have human, environmental and economic consequences. Examples of 

such disasters include stampede, nuclear or chemical plant explosion, emergencies resulting from 

incorrect handling/transportation of hazardous materials, water contamination and oil spill. Man-made 

disasters happen mainly due to accidents, negligence or incompetence. With the global increase in the 

number and severity of the disasters, researchers from different disciplines are increasingly paying 

attention to disaster management problems.  

Alerts and early warning systems are among the tools available to city planners for dealing with 

emergencies. These inform the population of an impending disaster, e.g., tsunami warning system of the 

Japanese Meteorological Agency (Tatehata, 1997) and COBRA alerts in the UK (Thunhurst, Ritchie, 

Friend, & Booker, 1992). Although these are useful for the advance warning, it is also essential to have, 

in place, existing strategies for humanitarian logistic network design that could be initiated after a 

disaster occurs. Analytical models may be developed to represent population centres with critical 

infrastructures like hospitals, power plants and transport networks. This will enable experimentation of 

humanitarian logistic operations and inform city planners if these are fit for purpose and where 

improvements can be made. In this paper, we have developed one such model. The model is motivated 

by a disaster which took place in Bhopal, India, in the year 1984. It is commonly referred to as the 

Bhopal gas tragedy and was caused due to a leak of toxic gas (methyl isocyanate) from a pesticide 

manufacturing plant. In OR literature, the case study of Bhopal disaster has been used once before to 

illustrate a methodology that can help identify root causes of disasters and facilitating allocation of 

resources to prevent their occurrence. In their work, Ishizaka and Labib (2014) propose a hybrid method 

consisting of problem structuring, visualisation, Analytic Hierarchy Process and mathematical 

programming, with the objective to calculate the optimal allocation of available funds in order to avoid a 

disaster. 

For our model, we use the backdrop of the propagation of hazard that took place on the night of 2-3rd 

December 1984; we use population and other model-specific parameters from the latest available census 

data and other municipal reports for the city of Bhopal. We consider a hypothetical case of a gas leak 

taking place in Bhopal in today’s date which follows the hazard propagation profile (e.g., wind direction) 

reported back in 1984. The number of people dead as a direct consequence of inhaling toxic gas is 

estimated to be between 3,700 to 16,000. Considering the catastrophic loss of lives, our objective here is 

to design a humanitarian logistic network in which response planning and operations are taken into 

account for the evacuation of the entire population of the affected areas to facilities that provide 

temporary medical assessment and treatment (these are referred to as Casualty Collection Points or 
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CCPs) and to the hospitals. In our model there are two uncertain parameters, namely, the number of 

casualties and the transportation capacity. The motivation for using these variables is based on the hazard 

profile that was associated with the Bhopal disaster. The direction of the wind determined the number of 

people that inhaled the toxic gas. If the wind movement was in the direction of build-up population 

centres (called as wards) then this would affect more people. Furthermore, the demographics associated 

with a ward could have a bearing on the severity associated with inhaling the gas. For example, 

inhalation of the gas had different sensitivities associated with children and elderly people compared to 

the rest of the population (Bowonder, 1987). Our model, therefore, considered this uncertainty in the 

number and severity of casualties. The motivation for the second uncertain parameter (transport capacity) 

is based on the generally accepted fact that developing countries often have inadequate transportation and 

which is likely to affect emergency evacuation (Bisarya & Puri, 2005; Bowonder, 1987). Bisarya & Puri 

(2005) recommend that the people living in the vicinity of hazardous plants should be made aware of the 

sources of transportation/ambulances for emergency evacuation. However, in a disaster of such 

magnitude, it is important to consider not only public transport but also private vehicles for the 

transportation of casualties (as happened in Bhopal). Ownership of private vehicles will usually depend 

on the socio-economic status of the people living in different wards.  Further, public transport capacity 

will also be dictated by transport infrastructure available in different population centres. In order to 

account for these variations, our model includes transport capacity as an uncertain parameter.  

In such uncertain environment, decision makers are to act without exact or complete information 

about number of casualties from the affected areas and the transportation capacity for moving casualties 

to CCPs and hospitals. These factors cannot be confidentially estimated due to the unpredictability of 

time, place and severeness of a disaster as well as the changing roadway infrastructure as a result of 

disaster impacts (Bayram & Yaman, 2015). In the context considered here, the number of casualties with 

different levels of injuries coming from the affected areas over the planning horizon and the 

transportation capacity for moving casualties are uncertain parameters. The uncertainty about future 

realizations of these parameters are considered in the form of random sample of scenarios incorporated in 

the problem formulation. 

The vast majority of studies in disaster and emergency management have focussed on the distribution 

of relief in the aftermath of disasters (Anaya-Arenas, Renaud & Ruiz, 2014; Paul & Zhang, 2019). In this 

context, stock location, resource allocation, and commodity flow from predefined warehouse locations to 

affected areas have been the most impactful variables to optimize for the construction of relief 

distribution networks. Casualty management problems, such as the one presented in this paper, can 

similarly be construed in terms of CCP location, casualty medical treatments, and casualty flow from the 

affected areas to safer places and hospitals. In spite of the importance of casualty management in 

humanitarian logistics, relatively little attention has been paid to this subject (Gupta, Starr, Farahani, & 

Matinrad, 2016). Our work is, therefore, a contribution to this literature; specifically, we are concerned 

with the casualty management functions of disaster management that are caused by human error, such as 
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industrial accidents, and which are implemented after a disaster strikes (response phase of disaster 

planning).  

A disaster may result in numerous lives being lost. However, the severity of potential threats in the 

aftermath of a disaster can be mitigated by providing fast and essential aids through intermediary sites. 

As mentioned earlier, these sites with short-term missions and temporary locations are referred to as 

CCPs. An overall view of CCP establishment and operations is presented in Figure 1. In existing 

literature, several terms have been interchangeably used to denote these facilities, such as field treatment 

site (Drezner, 2004) or alternative care facilities (Caunhye, Li, & Nie, 2015). However, for consistency, 

we have used CCP for casualty collection point or facilities that are functionally similar to CCPs. CCP 

locations are identified before the disaster occurrence, i.e. during the preparedness phase, but selected 

after the disaster has occurred, i.e. in the response phase (see Figure 1). After choosing the right location 

and establishing1 the CCPs, the following operational and tactical decisions are to be made in the 

response phase at CCPs: (i) triage, (ii) casualty registration, (iii) casualty medical treatment, (iv) casualty 

evacuation, and finally (v) shutting down the site(s) (Koehler, Foley, & Jones, 1992).  

 

Figure 1. CCP establishment and operations. 

 

Uncertainty affects strategic CCP location decisions, and which have a bearing on tactical and 

operational decisions. The network design decisions are strategic decisions that are made when 

forecasting uncertain parameters. Planning and operational decisions, on the other hand, are usually made 

when parameters are more obvious (e.g., the parts of the city that may be affected due to an unfolding 

weather-related event). It is arguable that including strategic decisions would improve the quality of 

                                                           

1 The California National Guard announced that establishment of a CCP capable of providing an intermediate-level medical care 

requires a minimum of 48 hours to set up. 
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casualty management and other operational decisions. In particular, optimizing the location and 

allocation decisions at the strategic level with the hierarchical integration of the periodical policy 

decisions lead us to a two-stage stochastic optimization model. With this motivation, we reflect on a 

robust stochastic optimization approach, which simultaneously optimizes the number of CCPs, location, 

allocation, and capacity decisions at the strategic level and scenario-based casualty triage, casualty 

registration, casualty holding, and casualty transportation decisions in a multi-period planning setting, 

while satisfying the system constraints enhancing the problem objective function.  

The organization of the remainder of this paper is as follows. In Section 2, we provide a literature review 

and highlight the main contributions of this paper. Section 3 represents a generic robust optimization 

modelling approach and a two-stage formulation for the problem context presented in the paper. Section 

4 contains a robust stochastic optimization procedure as well as the validation procedure. In Section 5, 

we study the application of the model to the case study; we provide experimental results for extensive 

realistic problem instances; we discuss these results and performance of the solution methodology. 

Section 6 is the concluding section and discusses future work. 

2. Literature review 

This section presents a brief overview of research on casualty management and disaster response. 

(Drezner, 2004) first introduced the CCP location problem in a discrete network and its application in 

disaster management in Orange County, California. Then, (Drezner, Drezner, & Salhi, 2006) developed 

the problem to a multi-objective programming model to find appropriate locations for CCPs. Casualty 

transportation in cases of expected disasters and post-disaster, have been widely studied in the form of a 

transportation network design problem (Shen, Pannala, Rai, & Tsoi, 2008; Ozdamar, 2011; Yao, 

Mandala, & Do Chung, 2009; Ben-Tal, Do Chung, Mandala, & Yao, 2011). In this regard, (An, Cui, Li, 

& Ouyang, 2013) and (Kulshrestha, Lou, & Yin, 2014) developed a stochastic model that incorporates 

mass-transit casualty evacuation planning from pick-up locations. (Najafi, Eshghoi, & Dullaert, 2013), 

(Goerigk & Grün, 2014) and (Goerigk, Deghdak, & T’Kindt, 2015) studied the impact of multiple 

transportation modes including private vehicles, rapid transit, and mass-transit shuttle buses. (Sacco et 

al., 2007), (Wilson, Hawe, Coates, & Crouch, 2013) and (Kilic, Dincer, & Gokce, 2014) focused on 

processing operational decisions involving triage, transportation, and treatment for medical injuries over 

the planning period. (He & Peeta, 2014) and (He, Zheng, & Peeta, 2015) underlined the impact of 

dynamic resource allocation on casualty transportation and evacuation.  

In logistic network design, there exists temporal hierarchical structure between initial design 

considerations and the subsequent planning and operational decisions; this implies that these decisions 

are made under uncertainty (Shapiro, 2008; Klibi, Lasalle, Martel, & Ichoua, 2010). (Klibi & Martel, 

2013) emphasized that individual optimization of the logistical decisions may not guarantee an optimal 

solution for the whole operation. (Amiri-Aref, Klibi, & Babai, 2018) showed that the integration of the 

design and planning decisions could improve the quality of solutions in network design when demand is 

uncertain. Due to unpredictability concerning the magnitude of a disaster, number and location of 
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casualties, the availability of infrastructure, weather conditions, etc., providing a logistical response 

encounters a high level of difficulty and uncertainty (Apte, 2010). Thus, for the construction of an 

optimization model, to enable the integration of design and planning decisions it is important to consider 

temporal hierarchical structures with uncertainty. (Bayram, Tansel, & Yaman, 2015) emphasised that 

disaster management models that do not take into account the uncertainties may lead towards inefficient 

logistical planning and operational decision making. According to (Gupta et al., 2016), who present the 

latest survey in this field, integrating decisions related to locating casualties and moving them to 

hospitals (or safer places) can save numerous lives and further research is required in this area.  

In the existing literature, only a few authors have addressed the stochasticity in an integrated CCP 

network design problem with multi-period planning settings. (Li, Nozick, Xu, & Davidson, 2012) 

developed a scenario-based bi-level programming model for the shelter location model with the 

evacuation consideration for a realistic case study of North Carolina and highlighted the impact of 

transportation when selecting the location decisions. (Bayram & Yaman, 2015) proposed a scenario-

based two-stage stochastic shelter location model considering casualties (evacuees) allocation to the 

nearest facility to minimize the expected total evacuation time. (Bayram & Yaman, 2017) provided the 

exact solution based on Benders-decomposition algorithm to the model formulated by (Bayram & 

Yaman, 2015). They showed the importance of the inclusion of uncertainty in planning for evacuations. 

Despite the contribution of the abovementioned efforts on the interdependency of casualty transportation 

and shelter (CCP) location decisions in humanitarian logistics network design, the main shortcoming is 

the neglect of temporal hierarchy relationship between the strategic and planning decisions and the 

dynamicity of casualty arrivals as illustrated in Figure 1. Strategic decisions are adopted at the beginning 

of response phase in an uncertain environment where exact or complete information about the number of 

casualties are not available. Then, scenario-based multi-period decisions are made during the response 

phase in which we assume the horizon is composed of a set of discrete operational cycles. Note that a 

user makes periodical decisions on a timely basis (e.g., hourly, 8-hourly, 12-hourly and daily). In fact, 

the consideration of casualty state transition from one operational cycle to the next and of hierarchical 

setting between decisions results to a multi-period two-stage stochastic program model for the 

humanitarian logistics network design problem.  

To the best of our knowledge, a two-stage stochastic modelling for the CCP location problem with 

uncertain number of casualties with different levels of injuries under a multi-period settings and 

uncertain transportation capacity is lacking in the literature. Given that this problem has the same NP-

hardness property as a basic facility location problem, we have developed a heuristic robust method for 

solving the problem. This paper extends the literature related to the humanitarian logistic network design 

in the following three ways. 

While several humanitarian logistical problems studied the response network design for providing 

medical supply from prepositioned warehouses or staging areas to the affected people through the points 

of distribution (POD), this paper focuses on a network design with casualty response planning from the 
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affected areas to the evacuation points (EP) or safer places through the temporary CCPs. In the former 

context, relief items and supplies move towards affected areas, whereas the model presented in this paper 

relies on the flow of victims with life threating conditions from the affected areas to the EPs or hospitals 

through the intermediate CCPs in an uncertain environment. The additional contribution of this paper to 

the relevant articles in the literature (e.g., Yi & Ozdamar, 2007; Apte et al., 2014) is the explicit inclusion 

of the uncertainty inherent in CCP location-allocation decisions made at  the design stage of the 

optimization model. In fact, the uncertainty is due to the time lag between the strategic design decisions 

in the first stage and the dynamic operational decisions in the second stage during the response phase. 

Strategic decisions on the number, location and allocation of CCPs are made through anticipating the 

plausible scenarios for the operational decisions in the second stage. Although several studies in the 

location-evacuation literature investigated the humanitarian logistic network design, they almost 

considered deterministic or mean-value information. In this paper, we develop a two-stage stochastic 

programming modelling approach to cope adequately with the uncertainty inherent in disaster contexts, 

where the value of stochastic information is high. It has been shown that the inclusion of uncertainty at 

the strategic level improves the quality of the CCP design decisions (Birge & Louveaux, 2011). 

Second, the main aim of the problem considered here is to optimize CCP design decisions in view of 

the existence of the temporal hierarchy structure between the strategic and operational decisions over the 

planning period. The time setting between these decisions as well as the distinct time-horizon granularity 

are incorporated in the proposed model to capture the dynamic nature of lifesaving operations in the 

response phase. In this research, we deal with an integrated humanitarian logistic network problem in 

which strategic decisions are made in the first-stage model and operational decisions with anticipation of 

uncertain factors are made/revised during the multi-period planning horizon. This problem must not be 

confounded with problems which in fact optimizes the location and evacuation decisions simultaneously 

for achieving coordination, as pointed out in Yi & Ozdamar (2007); Sheu & Pan (2014). It is important 

to note that in this modelling approach the objective is to use the anticipated decisions optimized for each 

operational cycle under all scenarios, so that more efficient and robust CCP design solutions are 

generated at the strategic level. From the practical point of view, strategic decisions include the number 

and location of CCPs to be opened, CCPs capacity allocation, allocation of affected areas to established 

CCPs, hospitals allocation to established CCPs and alternative CCP locations. These decisions, also 

known as design decisions, are made immediately following a disaster. Planning decisions such as 

casualty triage, casualty registration, casualty medical treatment and casualty transporting, then need to 

be made over the whole of the planning period. The number of casualties (with several levels of injuries) 

and the available transportation capacity are uncertain throughout the proposed network. Due to the 

hierarchical structure of strategic and planning decisions, finding an optimal solution for one activity is 

not usually sufficient for the whole of the response phase. Therefore, the focus of this paper is to present 

a model that reflects the hierarchical structure of the strategic and planning  decisions in the presence of 
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uncertain parameters in one unique problem in order to provide effective design solutions; Further, to 

formulate such a problem in the form of a two-stage robust stochastic optimization model. 

Third, we proposed a robust stochastic optimization solution approach to cope with the infeasibility 

issues which may occur in the stochastic optimization problems. Our proposed approach returns robust 

solutions which are close to any given scenarios with minimum dispersion from the optimal values. This 

has been validated by the optimality gap analysis.  

Our review of the literature on stochastic programming approaches specific to casualty management 

problems has shown that no existing model has taken into consideration the three features presented 

above. The main purpose of this study is to provide a specific representation of an integrated casualty 

management structure in an uncertain environment while the system constraints are met. To the best of 

our knowledge, the modelling of CCP logistic network design problem with the characteristics 

mentioned above has not been studied in the literature so far.  

 

3. Modelling approach and problem formulation 

In this section, we first present a generic robust stochastic optimization modelling approach and then 

apply this approach in the proposed CCP logistic network design problem where the uncertain number of 

casualties with different levels of injuries, and uncertain casualty transportation capacity, are described 

by a set of realizations or scenarios for their values. 

3.1. Modelling approach 

This problem is characterized by two decision variable sets: design variables and control variables. Let 

us assume � ∈ ℝ���
 denotes the vector of design variables which need to be made here-and-now in the 

first-stage of decision-making problems with �-dimensional integer space. The design variables have 

static nature during the planning horizon and are non-adjustable to the uncertain parameters. Let us 

further assume � ∈ ℝ	��
 denotes the vector of control variables in an �-dimensional nonnegative space 

that are subjected to adjustment once the actual data of the uncertain parameters reveals itself. This 

decision set is scenario-dependent and adjustable to the optimal value of the design variables. The 

control variables which are made in the second-stage of dynamic decision-making problems are so-called 

wait-and-see decisions. Considering the definition of the design and control variables, a general 

framework of a two-stage stochastic programming model with uncertain parameters is presented in the 

following,  min�∈ℝ
������ + �����, ���� (1) 

s.t.  A� = b,    � ≥ !, (2) 

where " ≔ ��, A, b� is a set of vectors of fixed coefficients of the first-stage decision-making problem 

and of free of noise in input data. Objective function (1) represents objective function of the first-stage 

decision-making problem and the expected optimal value of the second-stage decision-making problem, 

defined by ���, ��, and equation (2) denotes the structural constraints with fixed parameters.  
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���, �� = min�∈ℝ
���$��� (3) 

s.t.  C� = e ' B� (4) 

where, � ∶= �$, B, C, e� defines a set of uncertain parameters, subjected to noisy input data, associated 

with the second-stage decision-making problem. Objective function (3) optimizes the control variables in 

the second-stage decision-making problem subject to noisy parameters. Equation (4) denotes control 

constraints with uncertain parameters adjusted to the first stage variables. Let us denote the set of � as a 

random vector with corresponding probability space support * and its particular realization. Suppose the 

expected value function �����, ��� with random vector � has finite support *. That is to say � has a 

finite number of realizations or scenarios ��+� ∶= �$�+�, B�+�, C�+�, e�+�� with respective 

probabilities ,�+�, + ∈ Ω = �1,2, . . . , |Ω|�, where ∑ ,�+�|Ω|34� = 1. Therefore, the expected value 

function is represented as follows: �����, ��� = 5 ,�+��6�, ��+�73∈Ω , (5) 

where, for each + ∈ Ω = �1,2, . . . , |Ω|�, �6�, ��+�7 denotes the optimal value of the deterministic-

equivalent linear formulation of the second-stage decision making problem: 

min��3�∈ℝ
�� 85 ,�+�$��+���+�3∈Ω 9  (6) 

s.t.  C�+���+� = e�+� ' B�+��,           ∀+ ∈ Ω, (7) 

If the set of constraints (7) has no feasible solution, the second-stage decision making problem is 

infeasible. Under this condition, there exists at least one scenario realization + ∈ Ω, for which $��+���+� = +∞ and so �6�, ��+�7 = +∞. On the other hand, this problem could be unbounded 

depending on the first-stage variables and scenario realizations and hence �6�, ��+�7 = '∞.  

The classical stochastic programming is likely to be infeasible especially when the distribution of 

uncertain parameter is unknown, or the uncertain parameter realizations do not follow a specific 

distribution (Khor, Elkamel, Ponnambalam, & Douglas, 2008). Due to the lack of information or 

imperfect data in disaster management, such as, location and time of disaster, it’s severity in terms of 

number of casualties, and available transportation capacity subsequent to the disaster, the parameters are 

almost unpredictable or are forecasted with a wide range of variability. This, coupled with the need to 

execute a large number of scenarios, will most likely produce infeasible solutions to the stochastic 

programming (Neyshabouri & Berg, 2017). To tackle possible infeasibility due to the presence of 

uncertain parameters and the risk attributed to the decision-maker, robust counterparts problem is 

proposed.  Its purpose is to find an optimal solution that satisfies all constraints for any uncertainty 

realization while reducing the risk of dispersion of the objective function value. In the robust 

optimization literature, two performance metrics that have been widely applied are the concept of 

solution robustness and model robustness (Mulvey, Vanderbei, & Zenios, 1995). Our robust counterpart 

problem studies both solution robustness and the model robustness concepts simultaneously. Since the 
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robust counterpart problem accounts for the second-stage decision-making problem with uncertain 

parameter realization, without loss of generality, we mainly focus on the formulations given in (6) –(7).  

To achieve solution robustness, (Mulvey & Ruszczyński, 1995) measured the dispersion of the 

objective values by minimizing the average of standard deviation (or absolute deviation) of the objective 

values over all scenarios. This metric guarantees that the second-stage solutions are close to any scenario 

realizations applied in the problem (Ben-Tal, Goryashko, Guslitzer, & Nemirovski, 2004). In order to 

avoid nonlinearity resulting from the standard deviation formulation, we instead utilize the absolute 

deviation one, denoted by <�+� in (8) for each scenario + ∈ Ω.  

<�+� = =$��+���+� ' 5 ,�+>�$��+>���+>�3?∈Ω@�3� =           ∀+ ∈ Ω.  (8) 

The model robustness, which focuses on infeasibility issue as a result of a violation of data-driven 

parameters, takes into account infeasibility penalty A in the objective function of the second-stage 

decision-making problem. In this modelling framework, the constraint violation is measured by an 

infeasibility variable vector B�+�, where a positive value of B�+� show the amount of infeasibility of the 

corresponding scenario + ∈ Ω in the model. It is clear that B�+� = 0 if the model is feasible. The mean 

value of probable infeasibilities is then penalized in the objective function. C�+���+� + B�+� = e�+� ' B�+��,      ∀+ ∈ Ω, (9) 

Considering both solution robustness and model robustness represented in (8) and (9), respectively, 

the robust counterpart of the second-stage stochastic programming is given as follows. 

min��3�∈ℝ
�� 85 ,�+�6$��+���+� + <�+� + AB�+�73∈Ω 9  (10) 

s.t. constraints (8) –(9),   

where the expected cost function is presented in the first term of (10) and solution robustness and model 

robustness are given in the second and third terms of (10), respectively. Since the terms stated in (10) 

need to be unified, we use coefficients E� and E	 to provide a compromised objective function, as 

denoted in (11). 

min��3�∈ℝ
�� 85 ,�+�6$��+���+� + E�<�+� + E	AB�+�73∈Ω 9 . (11) 

In the next subsection, an extended formulation of the robust two-stage stochastic programming model to 

design the casualty collection logistical network problem is presented. 

3.2. Problem formulation 

The context of the study is based on the 1984 Bhopal gas tragedy and our methodology for problem 

formulation is inspired by the guidelines provided in the technical report of (Haynes & Freeman, 1989). 

One of the key recommendations of this report is the importance of designing an efficient logistical 

network in cases of disasters with mass causality. With this motivation, a robust two-stage stochastic 

programming model is formulated to develop a logistics network design problem for the casualty 

collection points in the event of a disaster. 
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The first-stage objective function follows the recommendations of the report (Haynes & Freeman, 

1989), where the CCP locations should be close enough to both affected areas and hospitals so as to 

facilitate the efficient movement of casualties (here, the casualties are people who have been affected by 

the disaster). This objective function considers a fixed cost that can be assigned to each potential location 

for establishing a CCP and relative cost associated with distance to travel from the affected areas to the 

established CCPs and/or to the hospitals. According to the technical report, when injury severity is minor 

and the hospitals are in the vicinity of the affected areas, casualties can travel directly to established 

CCPs or hospitals without assistance (so-called self-evacuees). On the other hand, casualties with the 

need for intermediate or immediate medical care are directed to established CCPs by either emergency, 

mass-transit or even private vehicles (so-called emergency-evacuees). The emergency-evacuees go 

through four stages– triage, registration, treatment and evacuation. Incoming casualties to the CCPs are 

diagnosed for severity of their injuries (triage) and are registered subsequently. Temporary 

hospitalization and first aid medical services are then provided to the casualties (treatment). They are 

then transferred to the hospitals or other health and care facilities for further treatment (evacuation). The 

distance to travel for both self-evacuees (moving from affected areas to the established CCPs or 

hospitals) and emergency-evacuees (first travelling from affected areas to the CCPs, and then from the 

CCPs to the hospitals) is formulated in the form of a travelled distance cost minimization function. The 

second-stage objective function minimizes the expected operating costs and the penalty cost due to lives 

lost. The expected operating cost consists of the cost incurred by periodical decisions for casualty 

holding and transportation as well as the penalty cost due to system inefficiency and lack of adequate 

resources. In this study, the first-stage objective function incorporates the design decisions, while the 

second-stage objective considers the planning decisions incorporated into the design decisions. A typical 

CCP logistical network is graphically illustrated in Figure 2. 

 

 

Figure 2. CCP logistical network. 

3.2.1. The first stage model 
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The first-stage of casualty collection logistical network design problem focuses only on the humanitarian 

objective optimization with the aim of locating the CCPs where the cost of travelled distance to affected 

areas and hospitals are minimal. Let us introduce the set of affected areas by ℐ = �1,2, . . . , |ℐ|�, where the 

casualties come from. This set can also be viewed as demand points in the business context. The set of 

potential locations for establishing CCPs are denoted by G = �1,2, . . . , |G|� and the set of existing 

hospitals to serve CCPs are indicated by H = �1,2, . . . , |H|�.  

The set of first-stage design decisions is composed of (1) determining the number of required CCPs to 

meet demand, (2) selecting the location of CCPs among potential locations where each CCP is 

characterized by its capacity, and (3) allocating the affected areas as well as hospitals to every 

established CCP. The input parameters, according to the first-stage requirements, contain the distance 

matrices in our designated network. Let us denote the distance from affected area I ∈ ℐ to potential CCP 

location J ∈ G by KℐG = LMNOP|ℐ|×|G|, the distance from potential CCP location J ∈ G to hospital R ∈ H by 

KGH = LMOSP|G|×|H|, and the distance from affected area I ∈ ℐ to hospital R ∈ H by KℐH = �MNS�|ℐ|×|H|. 
The binary decision variables used in the first stage model are also represented in the following: TO = 1 if potential location J is selected as a CCP, and 0 otherwise, UNO = 1  if affected area I is allocated to potential location J, and 0 otherwise, VOS = 1  if operating CCP J is allocated to hospital R, and 0 otherwise, WNS = 1 if affected area I is allocated to hospital R, and 0 otherwise. 

These strategic decisions are made considering the uncertain parameters for the whole planning period. 

The uncertain parameter that is used most often in network design is demand value, which corresponds to 

the flow of casualties in the humanitarian context. In addition to this, we also incorporated uncertain 

transportation capacity into the model to achieve more realistic and more reliable results. The set of all 

possible flow of casualty scenarios and available transportation capacity scenarios are denoted by Υ and Γ, respectively. At the second stage, while realizing the possible scenarios Z ∈ Υ and [ ∈ Γ, the response 

decisions, including (i) triage, (ii) registration, (iii) treatment, and (iv) evacuation, are adopted over the 

planning period. Let ���, +� be the solution of planning and operating decisions at the second-stage 

depending on the scenario + = �Z, [� ∈ Ω = Υ × Γ, where Ω represents a set of all combinations of 

scenarios Z ∈ Υ and [ ∈ Γ. Let assume ,�+� is the probability of each scenario occurrence, where ,�+� =  ,�Z�. ,�[�. Thus, we can introduce ,�+�\��, +� as the expected value of the objective 

function of the second stage, where � = 6TO, UNO , VOS , WNS7 denotes the vector of the first-stage binary 

decision variables. Considering that, we present the first-stage decision-making problem in the 

following: 

min� ] 5 ,�+�\��, +� 3∈^ + _ `5 5  MNOO∈G UNON∈ℐ + 5 5 MOSS∈H VOSO∈G + 5 5 MNSS∈H WNSN∈ℐ ab, (12) 

s.t :        UNO ≤ TO, ∀ I ∈ ℐ, J ∈ G, (13) 
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VOS ≤ TO, ∀ J ∈ G, R ∈ H, (14) 

5 UNOO∈G + 5 WNSS∈H ≥ 1, ∀ I ∈ ℐ, (15) 

5 VOSS∈H ≥ TO, ∀ J ∈ G, (16) 

TO, UNO , VOS , WNS  ∈  �0, 1�, ∀ I ∈ ℐ, J ∈ G, R ∈ H, (17) 

where _ represents the provisional cost of travelling per distance unit. The objective function of the first 

stage model, presented in (12), contains the expected cost of the second-stage problem after uncertainty 

realization and the cost related to the travelled distance. Constraints (13) ensure that each affected area 

can be allocated to each established CCP. Constraints (14) show that only the established CCPs are 

allowed to be allocated to the existing hospitals. Constraints (15) represent that each affected area must 

be allocated to either established CCPs or existing hospitals. Constraints (16) guarantee that each 

operating CCP must be allocated to at least one of the existing hospitals. The binary decision variables 

are given in (17). 

3.2.2. The second stage model 

Once CCP location identification is done, the casualty response operations, including (i) triage, (ii) 

registration, (iii) treatment, and (iv) evacuation, commence with scenario realizations over the planning 

period d = �1,2, . . . , |d|�. However, the purpose of the second stage stochastic formulation is to generate 

a robust design solution by involving different scenarios at the planning and operational level. To address 

the uncertainty of the number of casualties, a set of possible scenarios are generated and are then used in 

the model. Let eNfg�Z� be the number of casualties identified with the injury severity level h ∈ i =�1,2, … , |i|� at the affected area I ∈ ℐ on day k ∈ d under scenario Z ∈ Υ. Although a wide range of 

injury severity level can be used, we divide the set of injury severity i into the following three subsets, ilN, iN�, and iNl, indicating minor injury severity, intermediate injury severity, and immediate injury 

severity, respectively. Note that the injury severity subsets are independent pairwise and that milN ∪iN� ∪ iNlo = i and milN ∩ iN� ∩ iNlo = ∅. We are inspired by the fact associated with the case study 

that self-evacuation is unlikely to happen for casualties with intermediate and immediate injury severity. 

Following to this point, we assume that casualties with minor injury severity level, i.e. h ∈ milNo, are 

able to reach CCPs/hospitals by themselves, so-called self-evacuees, and those with intermediate and 

immediate injury severity, i.e. h ∈ miN� ∪ iNlo, are led to the established CCPs. It should be noted that 

self-evacuation does not include flow of casualties with intermediate and immediate injury severity 

levels, i.e. h ∈ miN� ∪ iNlo, and that casualties with minor injury severity level, i.e. h ∈ milNo, can either 

travel to established CCPs or move directly to the hospitals. On the other hand, casualties with 

intermediate and immediate injury severity levels are moved to CCPs. In other words, casualties with 

minor severity level that are in the vicinity of a hospital can travel directly to the hospital without 

reaching CCPs. , We denote nonnegative continuous decision variable rNOfgN� �+� as the flow of casualties 
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characterized by all injury severity levels h ∈ milN ∪ iN� ∪ iNlo, from affected area I to CCP J in period k under scenario + and rNSfgsNt�+� as the flow casualties with minor injury severity level, i.e. h ∈ ilN, from 

affected area I directly to hospital R in period k under scenario +. We also denote the outflows of 

casualties with injury severity level h ∈ miN� ∪ iNlo from CCP J to hospital R in period k under scenario + by nonnegative continuous decision variable rOSfguvg�+�. Note that, only casualties with intermediate and 

immediate severity levels will be evacuated to hospitals for further treatment while casualties with minor 

severity level are supposed to be treated by medical services at CCPs and do not require to be evacuated 

to hospitals. Let k�NO = w. MNO be the cost of transporting the casualties from affected area I to CCP J, and k�OS = w. MOS be the cost of transporting the casualties from CCP J to hospital R, where w represents the 

transportation cost per person per kilometre, on average. It is clear that the transportation cost of self-

evacuees can be ignored as it does not affect the network flow.   

The number of casualties with injury severity level h which are kept at CCP J in period k under 

scenario + for temporary hospitalization is indicated by xOfgyuz�+� and associated cost of casualty holding 

or temporary hospitalization cost at a CCP is indicated by {�. Owing to the inefficiency in the response 

operations or insufficient transportation resources, an injured person (i.e. casualty) may subsequently be 

dead. The number of lives lost of casualties with injury severity level h at CCP J in period k under 

scenario +, due to the abovementioned reasons, are denoted by |Ofg} �+� and |Ofg� �+�, respectively. As 

such, in the model a very high life lost cost ~ is imposed in case of mortality. We ignored the cost of rest 

of operations, such as casualty triage and registration, as those have a negligible cost comparing to the 

mortality costs and casualty temporary hospitalization and transportation costs.  

In the second stage, the set of all possible scenarios  + = �Z, [� ∈ Ω = Υ × Γ associated with the flow 

of casualties Z ∈ Υ and the available transportation capacity [ ∈ Γ are randomly generated from the 

historical data outside the optimization procedure. For each scenario + ∈ Ω, the objective function (18) 

of the second-stage is the expected value of the total response planning and operational costs, involving 

casualty transportation cost from/to CCPs (18.1), casualty holding cost (18.2), and mortality cost (18.3) 

as follows. This objective function is subject to the system constraints (19) to (35), as described in 

afterwards.  

min 8 5 ,�+�\��, +� 3∈^ 9 (18) 

where, for each  + ∈ Ω,  \��, +� =  
  

          5 5 5 5 k�NOrNOfgN� �+�g∈df∈iO∈GN∈ℐ + 5 5 5 5 k�OSg∈df∈iS∈HO∈G rOSfguvg�+�  (18.1) 

       + 5 5 5 {�. xOfgyuz�+�g∈df∈iO∈G   (18.2) 
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       + 5 5 5 ~ �|Ofg} �+� + |Ofg� �+��g∈df∈iO∈G   (18.3) 

• Casualty triage and assignment constraints 

Casualty assignment constraints refer to the CCP logistical network design and the allowable flow of 

casualties throughout the network. This set of constraints depends in large part on triage operations and 

the diagnosed level of injury severity. Constraint (19) ensures that self-evacuation is applied to only 

casualties with minor injury severity level to be directed to the hospitals by themselves. In other words, it 

prohibits the direct flow for intermediate or immediate injury levels h ∈ miN� ∪ iNlo. Constraint (20) 

presents that casualties with all injury severity levels, i.e., h ∈ �i�, are allowed to be moved to the 

established CCPs.  Constraint (21) shows that casualties with only intermediate or immediate medical 

care, i.e. h ∈ miN� ∪ iNlo, are transported to hospitals. Since the casualties with minor injury level are 

absolutely treated in CCPs and do not require further medical treatments, they do not need to be 

evacuated to hospitals. Note that, constraints (19) –(21) guarantee that the flow of casualties in the 

network is considered where the allocation in the network is certified.  

5 rNSfgsNt�+�f∈mi��o ≤ �WNS , ∀ I ∈ ℐ, R ∈ H, k ∈ d, + ∈ Ω (19) 

5 rNOfgN� �+�f∈i ≤ �UNO , ∀ I ∈ ℐ, J ∈ G, k ∈ d, + ∈ Ω (20) 

5 rOSfguvg�+� ≤ �VOSf∈mi��∪i��o , ∀ J ∈ G, R ∈ H, k ∈ d, + ∈ Ω (21) 

where � is a positive large number.  

• Resource capacity constraints 

This set of constraints refers to two capacitated resources in the model, i.e. physical capacity 

limitations for casualty treatment at both CCPs and hospitals, and the available transportation capacity to 

move casualties in the network.  

The physical capacity for casualty treatment at established CCP J is limited to �O = ��� , where �O 

represents the area of that CCP, in square-meter unit, and � indicates the required surface to provide 

medical services to an individual, on average. However, the required capacity division for each injury 

severity level should be determined at each established CCP. The capacity division, shown by �Of�+�, 

represents the part of capacity of CCP J dedicated to injury severity level h ∈ i under scenario +. This 

decision variable is adaptive to the uncertainty inherent in the model. Constraint (22) guarantees that the 

capacity division is implemented at the established CCP and constraint (23) assures that the total 

capacity divisions do not exceed the total physical area of a CCP. Constraint (24) verifies that the 

inflows of casualties from the affected areas to an established CCP do not violate its dedicated capacity 

for each injury severity level. 
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�Of�+� ≤ �TO, ∀ J ∈ G, h ∈ i, + ∈ Ω (22) 

5 �Of�+�f∈i ≤ �OTO, ∀ J ∈ G, + ∈ Ω (23) 

5 rNOfgN� �+�N∈� ≤ �Of�+�, ∀ J ∈ G, h ∈ i, k ∈ d, + ∈ Ω (24) 

Constraint (24) associates the estimation of inflows, ∑ rNOfgN� �+�N∈�  which also contains information about 

the demand realization, with the treatment capacity limitation �Of�+� of CCPs which have been 

established in the first-stage model. However it does not necessarily mean that all allocated inflows will 

be registered at that CCP. Thus, the difference between inflows of casualties and number of registered 

casualties results in the number of mortalities.  In fact, constraint (24) plays an important role to form the 

skeleton of the logistical network design. Because, it allows the model to end with more flexible network 

design solutions by altering allocation decisions to the established CCP locations and/or opening 

additional CCPs for serving mass casualty flows. 

 Constraint (25) indicates the maximum treatment capacity of hospitals, indicated by �S, R ∈ H, for 

providing the required medical services to casualties coming directly from the affected areas and 

casualties transporting from the established CCPs. 

5 5 rNSfgsNt�+�f∈mi��oN∈ℐ + 5 5 rOSfguvg�+�f∈mi ��∪i��oO∈G ≤ �S , ∀ R ∈ H, k ∈ d, + ∈ Ω (25) 

Moreover, we consider the situation wherein the available transportation capacity at CCP J to cover 

inflows and outflows of casualties at injury severity level h ∈ i is uncertain due to failures, traffic 

congestion, accident, etc., in the roadways. This uncertain parameter is denoted by �Of�[�, where [ ∈ Γ is 

the set of scenarios for the available transportation capacity. Constraint (26) indicates that the inflows 

and outflows of casualties, i.e. rNOfgN� �+� and rOSfguvg�+�, respectively, at CCP J for injury severity level h ∈miN� ∪ iNlo cannot exceed the available transportation capacity under scenario [. 

5 rNOfgN� �+�N∈ℐ + 5 rOSfguvg�+�S∈H ≤  �Of�[�,   

 ∀ J ∈ G, h ∈ miN� ∪ iNlo, k ∈ d, + ∈ Ω, [ ∈ Γ (26) 

• Uncertain flow of casualties  

Constraint (27) takes into account the current uncertain flow of casualties under scenario Z ∈ Υ with 

injury severity level h transporting from the affected areas to the established CCPs and the hospitals.  

5 rNOfgN� �+�O∈G + 5 rNSf?gsNt �+�S∈H = eNfg�Z� ∀ I ∈ ℐ, h ∈ i, h> ∈ milNo, k ∈ d, + ∈ Ω, Z ∈ Υ (27) 

• Casualties management constraints 

Casualty management operations emphasize the necessary functions including (i) registration, (ii) 

temporary hospitalization, and (iii) evacuation to hospitals or safer places, in the humanitarian logistics 

(Lejeune & Margot, 2018). Considering this sequence of operations explained in the context of the 
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problem, we define the scenario-based decision variables accordingly. Let xOfgt���+� indicate the number 

of casualties registered with injury severity level h at CCP J in period k under scenario +. Constraint (28) 

guarantees that this latter does not exceed the inflows of casualties from the affected areas to a CCP.  xOfgt���+� ≤ 5 rNOfgN� �+�N∈ℐ , ∀ J ∈ G, h ∈ i, k ∈ d, + ∈ Ω (28) 

For the medical treatment, the available capacity dedicated to each injury severity level of a CCP should 

be taken into account. This matter is represented in constraint (29). Let us recall that xOfgyuz�+� represents 

the number of casualties for temporary hospitalization. It states that the number of casualties receiving 

temporary hospitalization services cannot be more than the dedicated capacity divisions at a CCP. Note 

that xOfgyuz�+� refers to the cumulative hospitalized individuals that corresponds to constraint (32).   xOfgyuz�+� ≤ �Of�+�, ∀ J ∈ G, h ∈ i, k ∈ d, + ∈ Ω (29) 

The medical services are immediately provided to the registered casualties diagnosed with injury severity 

level h. Depending on the severity of injuries h, the length of the hospitalization period, during which the 

casualties have to be kept and treated at CCPs, is denoted by �f. After completing the hospitalization 

period �f, these casualties become ready-to-evacuate to the corresponding hospitals. Constraint (30) 

reflects on the evacuation operations.  xOfg����+� = xOf,g@��t�� �+�, ∀ J ∈ G, h ∈ i, k ∈ d| k > �f , + ∈ Ω (30) 

where xOfg����+� denotes the number of ready-to-evacuate casualties with injury severity level h at CCP J 

in period k under scenario +. Constraint (31) certifies that the number of casualties transported from a 

CCP to the allocated hospitals cannot exceed the number of ready-to-evacuates. Note that only casualties 

with injury levels of intermediate and immediate have to be evacuated to hospitals, since they require 

further medical treatments. xOfg����+� ≥ 5 rOSfguvg�+�S∈H , ∀ J ∈ G, h ∈ miN� ∪ iNlo, k ∈ d, + ∈ Ω (31) 

Constraints (32) verifies the equilibrium casualty state transition in the consecutive periods in which the 

number of hospitalized casualties from the previous period plus the number of registered casualties of the 

current period is equal to the number of ready-to-evacuate casualties and the hospitalized casualties of 

the current period. xOfgyuz�+� = xOf,g@�yuz �+� + xOfgt���+� ' xOfg����+�, ∀ J ∈ G, h ∈ i, k ∈ d, + ∈ Ω (32) 

The most impactful output of humanitarian logistic network design is to save lives and reduce human 

suffering. This critical output is measured in our model by the following variables, |Ofg} �+� indicating 

the number of lives lost with injury severity level h ∈ i due to facility capacity limitation at CCP J in 

period k under scenario + and |Ofg� �+� indicating the number of lives lost with injury severity level h ∈miN� ∪ iNlo due to transportation capacity limitation passing through CCP J in period k under scenario +. Constraint (33) states that when casualty inflows are more than the CCP capacity to register, lives lost 
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due to facility capacity limitation occurs. Similarly, Constraint (34) states that when the number of 

ready-to-evacuate exceeds the casualty outflows, lives lost due to the limitation in transportation 

capacity occurs.  

|Ofg} �+� = 5 rNOfgN� �+�N∈ℐ ' xOfgt���+�, ∀ J ∈ G, h ∈ i, k ∈ d, + ∈ Ω (33) 

|Ofg� �+� = xOfg����+� ' 5 rOSfguvg�+�S∈H , ∀ J ∈ G, h ∈ miN� ∪ iNlo, k ∈ d, + ∈ Ω (34) 

The nonnegative continuous decision variables are given in (35). rNOfgN� �+�, rNSf?gsNt �+�, rOSf??guvg �+�, xOfgt �+�, |Ofgz �+�, �Of�+� ≥ 0  (35) 

 

∀ I ∈ ℐ, J ∈ G, h ∈ i, h> ∈ milNo, h>> ∈ �iN�, i Nl�, R ∈ H, k ∈ d, + ∈ Ω, � ∈ ����, {��, ����, � ∈ ��, �� 

Number of constraints in the first-stage model and the second-stage model is bounded to |ℐ| × |G| +|G| × |H| and |Ω| × �|ℐ| × |G| × |H| × |d| + |ℐ| × |G| × |i| × |d|�, respectively. This two-stage 

stochastic model contains |Ω| × �|G| × |i| × �|d| × �|ℐ| + 2� + 1� + |H| × |d| × �|ℐ| × �ilN� + |G| ×
6�iN�� + �iNl�7�� nonnegative continuous and |ℐ| × |G| + |G| × |H| + |ℐ| × |H| + |ℐ| binary decision 

variables, which represents a complex large-scale optimization problem. The solvability of this problem 

is highly dependent on the number of constraints and binary decision variables.   

4. Solution approach 

The solution approach proposed in this section is partly inspired from the sample average approximation 

(SAA) technique (Shapiro, 2008), which is based on an approximation of the stochastic model by an 

equivalent deterministic mixed-integer programming (MIP) model. The methodology incorporates the 

SAA method, the robust counterpart problem and the feasibility restoration technique to solve the 

stochastic CCP network design problem with uncertain parameters. 

  4.1. Sample average approximation method  

The scenario-based two-stage stochastic programming model represented above is a complex large-scale 

optimization problem, as a large number of scenarios is involved for uncertain parameters realization. To 

solve the two-stage stochastic CCP network design problem represented above, we are inspired by the 

SAA technique (Shapiro, 2008), which is based on an approximation of the stochastic model by an 

equivalent deterministic mixed-integer programming (MIP) model. The SAA model incorporates the 

equivalent deterministic mixed-integer program of the second-stage decision-making problem into the 

first-stage decision-making problem. The SAA method has mainly been used to find near-optimal 

solutions for two-stage stochastic problems (Schütz, Tomasgard, & Ahmed, 2009 ; Klibi & Martel, 2013; 

Amiri-Aref et al., 2018).  

Since two sets of uncertain parameters are concerned in this paper, i.e. the number of casualties and 

available transportation capacity, two sets of scenario generation should be realized in this model. By 

generating  � independent number of casualty scenarios given as �Z�, Z	, … , Z¡¢� = Υ¡¢ ⊂ Υ, and  	 
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independent available transportation capacity scenarios as �[�, [	, … , [¡
� = Γ¡
 ⊂ Γ, we produce a pool 

of  � ×  	 equiprobable scenarios �+�, +	, … , +¡� = Ω¡ ⊂ Ω, where Ω¡ = Υ¡¢ × Γ¡
 and   =  �.  	 

with the occurrence probability of each scenario as ,�+� = ,�Z�. ,�[� = � �¡¢� . � �¡
� = �¡. Given the 

original two-stage stochastic model (12) – (35), the SAA program is constructed in the following: 

min ]5 5 _ MNOO∈G UNON∈ℐ + 5 5 _ MOSS∈H VOSO∈G + 5 5 _ MNSS∈H WNSN∈ℐ
+ 1  5 `5 5 5 5 k�NOrNOfgN� �+�g∈df∈iO∈GN∈ℐ + 5 5 5 5 k�OSg∈df∈iS∈HO∈G rOSfguvg�+�3∈^¤
+ 5 5 5 {�. xOfgyuz�+�g∈df∈iO∈G + 5 5 5 ~ �|Ofg} �+� + |Ofg� �+��g∈df∈iO∈G ab (36) 

 
s.t.   
 

constraints sets (13) – (17), and  
constraints sets (19) – (35). 

 

where, the first three terms in (36) denote the first-stage objective function and the last term denotes the 

expected objective function of the second-stage problem.  

The SAA method is performed when a feasible solution exists and the problem has a finite objective 

value (Shapiro, 2008). However, the uncertain parameters in humanitarian logistics may not have an 

identical distribution or a known distribution parameter. In such a situation, the SAA method is prone to 

return infeasible solutions by violating some of the constraints in at least one scenario. To tackle this 

challenge, we provide a robust counterpart problem for the represented SAA method, involving robust 

solution and robust model, proposed by (Mulvey et al., 1995), in the following subsection.  

4.2. Robust SAA method  

A robust solution is characterized by its proximity to the optimal solution of a stochastic programming 

model. We incorporate solution robustness by the inclusion of the mean absolute deviation of the second-

stage solutions, indicated by Φ�+�, over the number of scenarios in the SAA model, as follows: 

Φ�+� = =\��, +� ' 5 ,�+>�\��, +�3?∈^¤@�3� = .                 + ∈ Ω¡ (37) 

Let us recall that \��, +� is the second-stage decision-making problem. As discussed earlier, expression 

(37) has to be minimized to achieve solution robustness. Therefore, it is included in the objective 

function of the SAA model. As it contains the absolute function which makes the SAA model nonlinear, 

we apply a linearization approach to guarantee the convexity of the solution space. 

Proposition 1. As the expression (37) is included in the minimization objective function, we can 

substitute it by the following expressions: 

Φ>�+� = \��, +� ' 5 ,�+>�\��, +�3?∈^¤@�3� + 2Δ�+� + ∈ Ω¡
 (38) 

where,  
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Δ�+� ≥ \��, +� ' 5 ,�+>�\��, +�3?∈^¤@�3� ,  + ∈ Ω¡
 (39) 

Δ�+�, Φ>�+� ≥ 0 + ∈ Ω¡
 (40) 

where \��, +� is given in (18.1) –(18.3). Now we consider two possible cases to verify the proposition. 

Case 1 is where \��, +� ' ∑ ,�+>�\��, +�3?∈^¤@�3� ≥ 0, then according to (39), we have Δ�+� ≥ 0. It 

is clear that Δ�+� = 0, when minimizing expression (38). In this case, Φ>�+� = \��, +� '∑ ,�+>�\��, +�3?∈^¤@�3� = Φ�+�. Case 2 is where \��, +� ' ∑ ,�+>�\��, +�3?∈^¤@�3� < 0. 

Considering the minimization of Φ>�+�, we then have Δ�+� = ∑ ,�+>�\��, +�3?∈^¤@�3� '\��, +� which results in Φ> = \��, +� ' ∑ ,�+>�\��, +�3?∈^¤@�3� = Φ�+�. For more information 

regarding this linearization method, refer to (Yu & Li, 2000).  

A robust model is regarded as a model that returns solutions which are feasible for any given scenario 

realizations. Due to the variability of the uncertain parameters, a stochastic programming model might be 

infeasible for some scenario realizations. One of the most probable reasons for infeasibility in a 

stochastic programming model is the variability of scenario realizations, which corresponds to the 

inflows of casualties (Birge and  Louveaux, 2011). This issue, which is coupled with the limited 

available physical capacity of each potential node for establishing a CCP, corresponds to constraint (23). 

In fact, this constraint verifies the additional CCP nodes are required for accommodating the inflows, as 

the existing areas of potential CCP nodes are not sufficient. To overcome this issue, we apply a model 

robustness approach, in which an infeasibility variable ¨O�+� is taken into account in the system 

constraints, as represented in (9). The infeasibility variable ¨O�+� shows the amount of infeasibility of 

each scenario + ∈ Ω in the model. It is clear that ¨O�+� = 0 if the model is feasible. Otherwise, it returns 

a positive value. However, a huge penalty number A is assigned to the infeasibility variable ¨O�+� in the 

objective function of the model to avoid being infeasible for all scenarios. We then modify the constraint 

(23), which refers to the J-th CCP capacity limitation, by adding the infeasibility variable ¨O�+�, as 

follows: 5 �Of�+�f∈i ≤ �OTO + ¨O�+� + ∈ Ω¡ (41) 

¨O�+� ≥ 0 + ∈ Ω¡ (42) 

Considering that, the SAA model with the robust optimization techniques, namely solution robustness 

and model robustness, is represented in the following:  

min ]E© `5 5 _ MNOO∈G UNON∈ℐ + 5 5 _ MOSS∈H ªOSO∈G + 5 5 _ MNSS∈H WNSN∈ℐ
+ 1  5 `5 5 5 5 k�NOrNOfgN� �+�g∈df∈iO∈GN∈ℐ + 5 5 5 5 k�OSg∈df∈iS∈HO∈G rOSfguvg�+� + 5 5 5 {� xOfgyuz�+�g∈df∈iO∈G3∈^¤
+ 5 5 5 ~ �|Ofg} �+� + |Ofg� �+��g∈df∈iO∈G aa + E�Φ>�+� + E	 5 A ¨O�+�O∈G b, 

 
 
 
 
 
 
 

(43) 



21 

 

s.t.  
 

constraints (13) –(17),  

constraints (19) –(22),  

constraints (24) –(35), and  

constraints (38) –(42), 

where E©, E�, and E	 are the coefficients to compromise the objective function elements. The first term in 

(43) corresponds to the objective function represented in (36) with the compromising coefficient. The 

second term refers to the mean absolute deviation of the second-stage solutions which is formulated in 

(37). The last-term penalizes the casualty flow violation. Note that for E© = 1 and E� = E	 = 0, the 

objective function (43) becomes the classical one represented in (36). Compromising coefficients E©, E�, E	 are adjusted based on the decision-maker’s risk attitude. The solutions obtained from the 

abovementioned robust counterpart problem of the SAA method are reliable and efficient as long as the 

infeasibility variables return zero for all scenarios + = �Z, [� ∈ Ω = Υ × Γ. If there exists at least one 

infeasibility variable with a nonzero value for any scenarios, the results are meaningless and inapplicable. 

That is to say, the model does not guarantee that obtaining solutions satisfy the system constraints for all 

scenario realizations and do not converge to the optimal solution. This failure can be partly due to the 

inappropriate set of location and allocation decisions or inadequate capacity acquisitions in the network 

structure in the first-stage decision-making problem. In other words, not all choices of design decisions � ∈ ℝ���
 give rise to feasible solutions. To achieve feasible solutions when the infeasibility variables 

return nonzero values, we apply a feasibility restoration technique on the non-algebraic constraints, i.e. 

design decisions, which is discussed in the following section. 

4.3. Feasibility restoration technique 

As casualty flow in humanitarian logistics is unpredictable, in case of failure in the robust SAA model, 

the feasibility restoration technique proposed in this paper allows us to reconsider the CCP logistic 

network structure and adopt appropriate design decisions accordingly. It is clear that the operational 

decisions at the second stage will improve as a result of improvement in the design decisions.  

The feasibility restoration technique is inspired from the work of (Abramson & Randall, 1999), which 

has been further developed in (Casey & Sen, 2005), and applied in (Huang & Mehrotra, 2016; Kim & 

Wright, 2016; Lee, Liu, Mehrotra, & Bie, 2015) . This technique is characterized by detecting 

infeasibility and incorporating auxiliary design decision variables in the two-stage program to tackle the 

issue while considering all scenario realizations. The key feature of this technique is to expand the 

network configuration so that feasible solution is enhanced and can reproduce more efficient objective 

value.  

Proposition 2. Let us recall that � = 6TO, UNO , VOS , WNS7 ∈ ℝ���  denotes the vector of the first-stage binary 

decision variables, where J ∈ G = �1,2, … , |G|� represents potential locations to establish CCPs. To 

redesign the network structure, we need a modified set of potential locations. We introduce �« =6TO« , UNO« , VO«S , WNS7 ∈ ℝ���
 as a vector of feasibility restoration variables to the design decision variables 

(i.e. the non-algebraic constraints) in which J« ∈ G« = �1,2, … , |G«|�  represents the set of restoration 
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locations to establish emergency CCPs. From the practical point of view, these set of points address the 

spots in the open space area, for example. Using the operator ⊕ to indicate merge, we represent the 

supplementary design decision variables by �­ = � ⊕ �«, such that �­ = 6TO­ , UNO­ , VO­S , WNS7 ∈ ℝ���
 is a 

vector of binary variables where J­ ∈ G­ = �1,2, … , |G­|�  represents the modified set of potential 

locations. Note that G and G« are independent sets and that G ∩ G« = ∅. Also, note that G ∪ G« = G­ 

and that |G­| = |G| + |G«|. 
As a result of Proposition 2, the new pooling of design decision variables gives rise to the evolution of 

the control variables accordingly. We introduce the evolving control variables by �­�+� ∈ ℝ	��
 as a 

vector of non-negative variables and subsequently the evolving absolute deviation function and 

infeasibility variable, <­�+� and B­�+�, respectively. According to the Proposition 2, we then 

reconstruct the robust SAA programming, as represented in (44) – (48). 

min�­∈ℝ¢�� ,�­�3�∈ℝ
�� 8E© ®���­ + 5 ,�+�$��+��­�+�3∈Ω¤ ¯ + E� 5 ,�+� <­�+�3∈Ω¤+ E	 5 A ,�+� B­�+�3∈Ω¤ 9 

 
 
 

(44) 

s.t.  A�­ = b,    �­ ≥ !, (45) 

       B�+��­ + C�+��­�+� + B­�+� = e�+�,      ∀+ ∈ Ω¡ , (46) 

        <­�+� = =$��+��­�+� ' 5 ,�+>�$��+>��­�+>�3?∈Ω@�3� =,           ∀+ ∈ Ω¡ ,  (47) 

        <­�+� ≥ 0, B­�+� ≥ 0,      ∀+ ∈ Ω¡ .  (48) 
As the extended (44) – (48) are partly similar to those already described, we avoid repeating the 

description of the above model. Increasing the size of feasibility restoration variable set to |G«?|, where «> ≫ «, allows the model to choose the most appropriate locations among the available nodes, although 

it increases the problem complexity.  

A general computational framework for the robust stochastic optimization under uncertainty is outlined 

in Figure 3. 

Input: 

 

�Z�, Z	, … , Z¡¢� = Υ¡¢ ⊂ Υ, �[�, [	, … , [¡
� = Γ¡
 ⊂ Γ, and �+�, +	, … , +¡� = Ω¡ ⊂ Ω, where Ω¡ = Υ¡¢ × Γ¡
 

Step 1: Solve the SAA model, with objective function (36) subject to constraints (13) -(17) and (19) -

(35). 

Step 2: 

 

If the model is feasible,  

Add the absolute deviation function to the model,  

Expression (38) –(40), with (18.1) –(18.3),  

Else, 

Add infeasibility variable to the constraint, and   

Replace constraints (23) by constraints (41) –(42), 

End if. 

Step 3: Add compromising coefficients E©, E�, and E	, and solve the robust SAA model,  

with objective function (43) subject to constraints (13) –(17), (19) –(22), (24) –(35), and (38) –

(42). 

Step 4: Set |G«| = 0 

While there exists at least one infeasibility variable with nonzero value, 
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Add |G«| restoration locations to the network structure, 

Add feasibility restoration variables with size |G«| to the design decision variables, 

Update all decision variables in the network, 

Solve the updated robust SAA model, 

End while.  

Step 5: Stop.  

Output: Robust design and control solution are found. 

Figure 3. The proposed robust stochastic optimization procedure. 

4.4. Validation analysis 

In this section, we discuss a validation analysis which is based on optimality gap estimation between the 

objective value at a solution found by the proposed algorithm and the optimal value of the true problem. 

The optimality gap estimation is a way to evaluate the quality of stochastic solutions in two-stage 

programming where the true objective value is finite and the second-stage solution is feasible for almost 

every realization of the random data.  

We suppose �� and �� denote the true optimal solutions of the first-stage and the second-stage problem 

and ±��� , ��� is the true optimal objective value. According to (Shapiro, 2008), since finding the value 

of ±��� , ��� is almost impossible, as enormously large number of scenarios are required, statistical lower 

and upper bounds for the true optimal objective value using the valid inequality can qualify the solution 

procedure. The statistical lower bound is estimated by averaging the solutions of the algorithm in M 

independent times based on N generated scenarios and a valid statistical upper bound for the true optimal 

objective value is given by sampling. This latter can be done through solving the second-stage problem 

using a large enough sample of scenarios  > ≫  , where the solution of the first-stage problem is given 

as input.  

• Averaging procedure 

Let �¡l and �¡l, ² = 1, … , |, denote the optimal solution vector of the two-stage stochastic problem 

found by the algorithm with scenario sample size N in the m-th replication of sample generation, and ±��¡l, �¡l� be the optimal objective value corresponding solution values. We then provide average and 

standard-deviation estimators for the true objective values. An unbiased estimator of the statistical lower 

bound of the expected true objective value, denoted by ±̅��¡́ , �¡́ �, can be the average of M ±��¡l, �¡l� 

values, as follows: 

±̅��¡́ , �¡́ � = 1| 5 ±��¡l, �¡l�´
l4�  (49) 

Considering M independent scenario generations, the standard deviation is estimated in the following: 

wµ¡́ = ¶ 1|�| ' 1� 5 6±��¡l, �¡l� ' ±̅��¡́ , �¡́ �7	´
l4�  (50) 

Using the average and standard deviation estimators for M replications of samples of size N, an 

approximate �1 ' _� × 100% confidence lower bound of the true objective value, denoted by i¡́ , is 

given as follows: 
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i¡,�@¸´ = ±̅�¹¡́ , º¡́ � ' k¸,´@�wµ¡́  (51) 

where k¸,´@� represents the _-critical value of the t-distribution with | ' 1 degrees of freedom. 

• Sampling procedure 

The statistical upper bound of the expected true optimal objective value can be estimated by sampling 

procedure. Let �» be the best optimal solution vector of the first-stage problem found by the algorithm 

with a scenario sample size N among M replications. We then solve the problem with �» as an input and 

generate sample scenarios m+�, +	, … , +¡?o ∈ Ω¡? ⊂ Ω, where  > ≫  , which are independent to 

samples used in computing �». It is clear that when �» is given as an input, the problem can be decomposed 

into  > deterministic problems. We denote the optimal objective value based on a sample size  > by ±µ��», �¡?∗ � and the optimal objective value solved one at a time by ±µ3��», �3∗ �, where + ∈ Ω¡? ⊂ Ω. Note 

that �¡?∗  and �3∗  represent the solution of the second-stage problem when  > sample scenarios are 

involved and the scenario-wise solution of the second-stage problem, respectively. One can calculate the 

standard deviation of ±µ��», �¡?∗ � by 

wµ¡?��»� = ¶ 1 >� > ' 1� 5 6±µ3��», �3∗ � ' ±µ��», �¡?∗ �7	¡?
34�  

(52) 

An approximate �1 ' _� × 100% confidence upper bound of the true objective value, denoted by ½¡?, is 

then given as  

 ½¡?,�@¸ = ±µ6�», �¡?∗ 7 + �¸wµ¡?��»� (53) 

where �¸ represents the standard normal critical value with �1 ' _� × 100% confidence level. 

Therefore, an approximate �1 ' _� × 100% confidence interval for the expected true objective value is 

represented in the form of 6i¡,�@¸´ , ½¡?,�@¸7, using equations (51) and (53). A statistically valid interval 

on the true objective value (with confidence at least 1 ' 2_), denoted by gapÁ ¡,¡?´ , and the statistical 

optimality gap percentage, denoted by gapÁ ¡,¡?´ %, are given in equations (54) and (55), respectively, as 

follows: ��ÂÁ ¡,¡?´ = ½¡?,�@¸´ ' i¡,�@¸´  (54) 

��ÂÁ ¡,¡?´ % = ��ÃÄ¤,¤?Å
½¤?,¢ÆÇÅ × 100%  (55) 

The validation procedure discussed above is then summarized in Figure 4. 

Validation procedure: 

Step 1. Averaging procedure � , |, _� 

 For replication ² = 1, … , | 

Generate sample scenario Ωl¡  

Solve the proposed algorithm outlined in Figure 3 and save ±��¡l, �¡l� 

Compute the approximate �1 ' _� × 100% confidence lower bound i¡,�@¸´  using (51) 

Next 

Step 2. Sampling procedure �x»,  >, _� 

 Generate sample scenario Ωl¡?
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For scenario + = 1, … ,  > 
Calculate the objective value ±µ3��», �3∗ � with the given solution x» 

Next 

Calculate the objective value ±µ��», �¡?∗ � with the given solution x» and all scenarios + ∈ Ω¡?
 

Compute the approximate �1 ' _� × 100% confidence upper bound ½¡?,�@¸ using (53) 

Step 3. Calculate Optimality gap  

Calculate the statistical optimality gap percentage given in (55). 

If the gap is acceptable, stop; otherwise increase N and/or M and return to step 1 

Output  Statistically valid bounds on the true objective value (with confidence at least 1 ' 2_). 

Figure 4. Validation procedure 

5. Computational study 

The robust stochastic optimization modelling approach described in Section 3 is implemented through a 

computational study using data scenarios modelled on the Bhopal gas tragedy that occurred in India over 

three decades ago. More specifically, we consider a hypothetical case of a gas leak in Bhopal in today’s 

date and which follows the hazard propagation profile (e.g., wind direction, affected wards) reported 

back in 1984. The underlying data for the study, which includes the population of specific wards 

(population areas/catchments), available transportation in the city, existing infrastructure (including 

schools and hospitals), open spaces, and other model-specific parameters, was obtained through census 

data and from local municipal reports. We conducted one field trip to get access to some of this 

information. The data thus obtained was used to estimate the required parameters, which were then used 

to model the scenarios for the computational study. In this section, we also discuss the efficiency of our 

proposed modelling approach and present the solution sensitivity analysis to provide further insights to 

humanitarian logistics planners and practitioners.  

5.1. Context for study 

This section briefly describes the Bhopal Tragedy in India, often known as the worst industrial accident 

in the world and provides a computational investigation into the humanitarian logistics network design 

for establishing CCPs in the affected areas. On December 3, 1984, a highly toxic cloud of methyl 

isocyanate (MIC) leaked from a pesticide plant in Bhopal, the capital city of the state of Madhya 

Pradesh, the second largest state in India. The leak was the consequence of a large volume of water 

entering one of the methyl isocyanate storage tanks around 9:30 pm the day before. This triggered off a 

chemical reaction resulting in a tremendous increase of temperature and pressure in the tank and 

consequently led to an explosion. More than thirty years have passed since the gas explosion, but the 

Bhopal saga is far from over. During our trips to the plant site and conversations with the volunteers at 

the NGO clinics as well as the local slum dwellers, we were told that of the 800,000 people living in 

Bhopal at that time, no one knows exactly how many people were affected that night. 

The geographical scope of our study focuses on the affected areas in the city of Bhopal. According to the 

technical report of the Indian Council of Medical Research (ICMR, 1985) on the Bhopal disaster, |ℐ| =33 wards have been identified as affected areas with more than 700,000 population (each ward is shown 

as an orange icon in Figure 5). Within this area, a set of predesignated locations have been selected as the 



26 

 

candidate points to establish CCPs. These CCP points are usually sites that can accommodate a large 

number of casualties (Drezner, 2004), for example, college and university campuses, high schools with a 

football field, mosques, malls and large parks. We identified a total of 65 CCP candidate points, 

including existing buildings and open-spaces (shown as blue icons in Figure 5). The capacity of each 

potential CCP location to provide medical services to casualties is estimated by its total available area 

divided by the space required to treat per person. We considered the latter equal to � = 7m² per person as 

reported in the statistical report (Moore, Levit, & Elixhauser, 2014). Moreover, the network 

includes |H| = 9 hospitals and medical care centres as safe places to evacuate the casualties for further 

treatment (hospitals are shown as a white cross in a purple circle). Union Carbide plant, i.e. the disaster 

point, is shown using a yellow icon. For more details about the case study, refer to Appendix A.  

 

Figure 5. Geographical locations of the affected wards and CCPs. 

We assume that the available transportation capacity by means of ambulances for immediate severity 

injury level is 500 people per trip2, which was far below the required capacity to move mass casualty in 

the disaster we considered. Therefore, we considered the public/private vehicles (including mini buses, 

standard buses, and private cars) into the transportation capacity to move mass casualty with minor and 

intermediate severity injury level to CCPs and hospitals. Using both public and private modes of 

transport, the available transportation capacity reached more than 200,000 people. To generate random 

                                                           

 The California National Guard announced that establishment of a CCP capable of providing an intermediate-level medical care 
requires a minimum of 48 hours to set up. 

4-hour with the average speed of 60 km/h and the average two-way distance between demand points and CCPs 
(Kumar & Jain, 2013).  
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number of casualties, we utilized the simulation procedure provided in (Singh & Ghosh, 1987). 

Analysing the data, we observed that the coefficient of variation of generated number of casualties of 7 

wards out of 33 was about 80%, while it was above 120% for 26 wards out of 33, which represents a 

considerable uncertainty inherent in the generated number of casualties.  

In order to provide a comprehensive perspective of results, we test the problem across different values of 

the compromising coefficients and the available transportation capacity for each instance problem. A 

wide range of E©, E�, and E	 as the compromising coefficients of objective function elements have been 

used for each instance problem which are given in the following, E© = �10@�, 1, 10, 10²�, E� =�1, 10, 10	�, and E	 = �10@Í, 5 × 10@Í, 10@	, 10@�, 1, 10�. We represent two available transportation 

capacity scenario sets usable after the disaster, percentage-wise by k�, and test with two sets of scenarios 

given in the following: k�Ï = �85%, 90%, 95%� and k�Ñ = �70%, 75%, 80%�. Note that k�Ï and k�Ñ 

refers to high and low transportation capacity scenarios, respectively. Therefore, the combination of 

various values of compromising coefficients E©, E�, and E	, and two usable transportation capacity 

percentages k�Ï and k�Ñ yields 144 problem instances. For each problem instance, we generated, based 

on the population of each ward and the number of casualties reported in Singh and Ghosh (1987),  � = 5 

independent number of casualty scenarios in |i| = 3 level of injury severity for each ward and  	 = 3 

independent available transportation capacity scenarios for each CCP, over a planning period of |d| = 7 

days. In other words, for each problem instance,  �.  	. |d|. |i| = 315 sample scenarios are generated to 

represent the number of casualties for each ward.   

5.2. Numerical results and discussion 

The instances described in Section 4.1 are solved after scenario generations on a 64-bit operating system 

server with a 2.7 gigahertz CPU on Intel(R) processor and 72 gigabytes of RAM. The proposed robust 

stochastic optimization approach, shown in Figure 3, is performed using the optimization solver GAMS 

with a MIP Relative Tolerance of 0.005 within a 5-hour computation time. The detailed numerical 

results, including the solution value and computational time, related to the 144 instances are represented 

in Tables B1-B8 of Appendix B.  

In order to measure the efficiency of the proposed logistic network design and related operations, we 

applied important metrics related to disaster management. We present the results in the following 

sections.  

5.2.1. Locational decisions 

We compare CCP location decisions found by SAA method and the proposed robust stochastic 

optimization with feasibility restoration variables with respect to coefficients of E© = �0.1, 1, 10, 100�. 

This comparison is illustrated in Figures 6(a) and 6(b) showing two levels of available transportation 

capacity after a disaster strikes. In these figures, the coefficients of E© can be considered as the risk 

aversion attitude of a decision maker (DM), where 0.1 attributes to a risk incentive DM and 100 relates 

to a risk aversive DM and is represented on the x-axis. The average number of opened CCPs over the 

number of involved instances is represented on the y-axis. Results illustrated in Figure 6(a) show that, 
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when on average 90% of casualty transportation capacity is available, the SAA method opens 39 

locations for establishing CCPs, on average, and is not sensitive to the risk aversion attitude of a DM. 

Compared to this, our proposed methodology suggests opening up to 43, on average, locations for 

establishing CCPs and is fairly relative to the risk aversion attitude of a DM. CCP location decisions are 

more of the essence when the available casualty transportation capacity decreases to 80%, on average. 

Our findings show that the output of the SAA method remains unchanged even when casualty 

transportation capacity is reduced by 10%. However, by using our proposed algorithm a significant 

increase in the number of CCPs is observed, which contributes to 47 locations for establishing CCPs in 

the case of risk averse DM (E© = 100)  – refer to Figure 6(b). In other words, the results reveal that the 

more conservative a DM is, the more the number of CCPs that will need to be operationalised. Further, 

using our proposed algorithm, as the coefficients of E© increases, the number of existing building 

selected for establishing CCPs decreased and instead more potential locations are chosen from open-

space spots as locations to set-up CCPs. The information on buildings and open spaces was based on data 

from our Bhopal case study. 

 
(a) 90% of casualty transportation capacity is available. 

 
(b) 80% of casualty transportation capacity is available. 
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Figure 6. The impact of DM risk aversion attitude on the locational decisions. 

 From Figure 6(a) and (b), it can be concluded that our proposed methodology, which is based on robust 

stochastic programming model, enables a DM to cope with the infeasibility issues due to the dispersion 

of scenarios and generates more efficient solutions which are feasible for any scenarios. Furthermore, 

being more risk averse in an uncertain decision-making environment results in opening more CCPs 

among the existing buildings and open-spaces and therefore being closer to the affected areas. This fact 

emphasizes the necessity of providing fast and efficient medical services to the casualties from the 

shortest possible distance. In the following section, the role of accessibility to the services in CCPs and 

its impact on the number of lives lost is explored. 

5.2.2. Network structure decisions 

In order to measure the quality of a complex emergency network design, we introduce the proximity 

metric which is defined as the total distance travelled in the network to the number of links associated 

with all pair nodes, i.e. from the affected areas to the established CCPs, also known as the average path 

length. Proximity is an important metric in humanitarian logistics and has been extensively used in this 

context (Muggy & Stamm, 2017). Let us indicate the solution value of allocation decision variables by UÒNO. The proximity metric is then formulated as ∑ ∑ MNOUÒNOON / ∑ ∑ UÒNOON  which represents the average path 

length to reach a CCP. Results illustrated in Figure 7 reveal that our proposed robust optimization 

method designs a network in which the average path length (shown as a dash-line in Figure 7) has 

improved in comparison to the SAA method. This can be confirmed by the results of increasing in the 

number of CCPs that are opened, as illustrated in Figure 6. We then investigate the number of lives loss, 

also known as mortality in this work, to see whether it is influenced by the average path length 

improvement. As shown in Figure 7, on average, the mortality rate experienced a significant reduction 

from 438 individuals to 294 individuals due to the decrease in the average path length. In general, Figure 

7 suggests that a small improvement in proximity to CCPs can result in a significant decrease in the 

number of lives saved. 
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Figure 7. Proximity vs mortality. 

 This analysis also addresses the Equity, also known as fairness, which tackles the discoordination of 

operational decisions for providing appropriate emergency services to casualties. When it comes to relief 

contexts, this metric measures the unsatisfied demand associated with each operational decision over the 

planning period (Marsh & Schilling, 1994), which refers to mortality in our case. Moreover, the average 

path length which denotes the rapidity is also widely considered as the equity metric (Anaya-Arenas, 

Ruiz, & Renaud, 2013). It can be interpreted from Figure 7 that overall, the equity metric has been 

improved by the modelling approach we proposed in this work.  

5.2.3. Robust performance metrics 

As discussed earlier, robust optimization approach enables DMs to generate solutions while reducing the 

risk of dispersion and ensuring the solution concentration in an uncertain environment. In this work, we 

measure the dispersion of the objective function values over all given scenarios, found by the proposed 

model, as a metric to evaluate the solution robustness. This metric gives rise to the standard deviation of 

the objective values which represents the closeness between them. Results illustrate that the dispersion of 

objective values in the uncertain environment increases, as the transportation capacity contributes to 10% 

reduction, on average. Results also suggest that the standard deviation of our proposed optimization 

approach is slightly larger than the stochastic programming method; this can be due to network 

expansion and the resultant distribution of entities throughout the optimized network. Overall, the 

dispersion of the objective value in both cases, i.e. SAA method and the proposed stochastic robust 

optimization method, are negligible (less than 10-8). 

Another important factor that is used in robust optimization approaches, also known as model robustness, 

is to generate solutions values which satisfy all system constraints for any given scenarios. Due to the 

uncertainty inherent in mass casualty flow management, it is very likely to observe the infeasible 

solutions. We also evaluate the infeasibility produced in the model for the 144 instances when using the 

stochastic modelling approach and compare with the corresponding values when applying our proposed 

solution algorithm by the usable transportation capacities. It has been observed that the stochastic 
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programming (SAA method) approach results in solutions where positive values of infeasibility exist, on 

average 3.5907445×105, whereas the proposed approach ended up with zero infeasibility values. It is also 

found out that the infeasibility values corresponding to the SAA method increase as transportation 

capacity tends to decrease. For detailed information, refer to Tables B1-B8 of Appendix B. 

In relation to robust optimization, the overall performance and reliability of solutions are measured by 

calculating the coefficient of variation, i.e. standard deviation-to-mean ratio, through all the scenarios 

(Birge, 1982). We then calculate the coefficient of variation corresponding to decision variables used in 

the model over 144 instances and represent the minimum, mean, and maximum value of the coefficient 

of variation of each variable over all instances (see Table 1). Results show that the coefficient of 

variation of all operational decisions are considerably low, such that, for the majority of them it is less 

than 1%. However, the coefficient of variation value corresponding to the strategic decision of capacity 

allocation is 2.15% on average and which is not too large. In general, it shows that the solution values 

have low variability and are quite reliable. 

Table 1. Coefficient of variation of decision variables. 

   rNOfgN� �+� rNSfgsNt�+� xOfgt���+� xOfgyuz�+� xOfg����+� rOSfguvg�+� �Of�+� 

Minimum  0.26% 0.75% 0.41% 0.38% 0.51% 0.57% 1.71% 

Mean  0.27% 0.82% 0.44% 0.40% 0.55% 0.64% 2.15% 

Maximum  0.33% 0.88% 0.46% 0.43% 0.59% 0.67% 3.12% 

5.2.4. Validation metrics 

In this section, the validation procedure, represented in Figure 4, is used to examine the accuracy of the 

solutions found by the proposed robust optimization solution method. All instances are tested and their 

associated statistical optimality gap values are computed according to the validation procedure. A lower 

bound solution with 95% confidence level is computed using the averaging procedure with replication 

size | = 4 and scenario size   = 15. Then, using the best solution found from the average, the 

sampling procedure is applied with sample evaluation scenario size  > = 150 to generate an upper 

bound with 95% confidence level. We then calculate the statistical optimality gap percentage for each 

instance. The results are reported in Tables B1-B8, in Appendix B. To provide a clear view of the 

optimality gap percentage over the instances and its relationship with DM risk aversion attitude, we 

represent the average of optimality gap percentage over the instances for each corresponding value of E© = �0.1, 1, 10, 100� in Figure 8. As can be observed, the optimality gap has a decreasing trend as the 

weight corresponding to DM risk aversion attitude increases. It is due to the fact that instances with 

higher weight of DM risk aversion attitude have the objective function with low variability and therefore 

with less optimality gap. It can be concluded that the more conservative the DM is, the less the 

optimality gap that exists.  
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Figure 8. Average optimality gap. 

We finally compare the convergence rate of the proposed solution methodology to that of SAA method 

by reporting the dual objective value and the best integer bound found by the solver in each iteration 

corresponding to an instance in Figure 9. Results represent that the proposed algorithm converges to 

optimal solutions after about 100,000 iterations while the corresponding number related to the SAA 

method is over 200,000, which shows the fast convergence rate of the proposed algorithm. This is due to 

the fact that the feasibility restoration technique is able to facilitate the proposed stochastic robust 

optimization approach to perform more efficiently and rapidly. 

 

Figure 9. Convergence rate comparison. 

6. Conclusion  

In this paper, a two-stage stochastic programming model has been formulated for the casualty collection 

point network design problem that is based on the 1994 Bhopal gas tragedy. The number of causalities 

and the available transportation capacity were the uncertain parameters of this problem; they were 

generated using an existing simulation model from literature and resulted in a high variability of number 

of casualty scenario realization. To tackle this issue, we have proposed a stochastic robust optimization 
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approach with the feasibility restoration technique, inspired by the SAA method, and an extensive 

computational experiment has been conducted for this case problem. The performance of the solution 

approach has been tested by the validation procedure commonly used in stochastic programming.  

The experimental results reveal some practical and managerial insights confirming the importance of 

CCP logistical network design and operational response decisions in an uncertain environment. The 

findings show that the network configuration obtained by our proposed methodology has a significant 

difference with the SAA method. More specifically, the proposed approach opens more CCPs and is 

more sensitive to the transportation capacity; this can be contrasted with the SAA method where no 

significant sensitivity has been observed. We notice that a conservative decision maker (DM), with risk 

aversion attitude, tends to open more CCPs in an uncertain decision-making environment.  

The proximity metric has been quantified as the average path length to a CCP in the network structure 

for all instances. It has been observed that the network configuration by our methodology enables a DM 

to improve the proximity metric in a CCP logistical network design. We notify that a small improvement 

in the proximity metric can result in a significant increase in the number of lives saved. Results also 

show that reduction in transportation capacity in stochastic programming can lead to increasing the 

dispersion of the solutions, however, our stochastic robust optimization approach is able to achieve 

solution and model robustness approaching the optimal solutions. We realize that the optimality gap in 

the stochastic programming can be improved by taking risk aversion attitude which results in less 

variability of the objective values.  

Our future research will investigate a hybrid simulation-optimization approach for casualty evacuation 

based on CCP network structures that has been identified in this work. The inclusion of the medical 

supply flow from the multiple available hospitals to the established CCPs for the purpose of casualty 

treatment can be another direction to develop this problem towards a more realistic context (Haynes & 

Freeman, 1989). In this regard, simulation approaches like Discrete-event Simulation (DES) could be 

used for modelling of healthcare supply chains (Mustafee et al., 2009). Yet area of interest is the use of 

qualitative system dynamic at the tactical level as an alternative to the scenario generation in the 

optimization model to overcome the complexity of the problem (Powell, Mustafee, Chen, & Hammond, 

2016). An extension to the robust minmax regret stochastic programming model can be another 

interesting research topic to consider in the humanitarian logistics network problem (Feizollahi & 

Averbakh, 2013). As the casualty accessibility to CCPs plays an important role in humanitarian logistics, 

a maximal accessibility network design can be further extended (Aboolian, Berman, & Verter, 2015). 

These are all future directions to the work presented in this paper. 
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