
HAL Id: hal-03414887
https://hal.science/hal-03414887

Submitted on 4 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

The geometry of mixed-Euclidean metrics on symmetric
positive definite matrices
Yann Thanwerdas, Xavier Pennec

To cite this version:
Yann Thanwerdas, Xavier Pennec. The geometry of mixed-Euclidean metrics on symmet-
ric positive definite matrices. Differential Geometry and its Applications, 2022, 81 (101867),
�10.1016/j.difgeo.2022.101867�. �hal-03414887�

https://hal.science/hal-03414887
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


The geometry of mixed-Euclidean metrics
on symmetric positive definite matrices
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Université Côte d’Azur and Inria, Epione Project Team, Sophia Antipolis
2004 route des Lucioles, 06902 Valbonne Cedex, France

Abstract

Several Riemannian metrics and families of Riemannian metrics were defined
on the manifold of Symmetric Positive Definite (SPD) matrices. Firstly, we
formalize a common general process to define families of metrics: the principle of
deformed metrics. We relate the recently introduced family of alpha-Procrustes
metrics to the general class of mean kernel metrics by providing a sufficient
condition under which elements of the former belongs to the latter. Secondly,
we focus on the principle of balanced bilinear forms that we recently introduced.
We give a new sufficient condition under which the balanced bilinear form is a
metric. It allows us to introduce the Mixed-Euclidean (ME) metrics which
generalize the Mixed-Power-Euclidean (MPE) metrics. We unveal their link
with the (u, v)-divergences and the (α, β)-divergences of information geometry
and we provide an explicit formula of the Riemann curvature tensor. We show
that the sectional curvature of all ME metrics can take negative values and
we show experimentally that the sectional curvature of all MPE metrics but
the log-Euclidean, power-Euclidean and power-affine metrics can take positive
values.

Keywords: Symmetric Positive Definite matrices, Riemannian geometry,
information geometry, families of metrics, kernel metrics, alpha-Procrustes,
mixed-power-Euclidean, mixed-Euclidean, (u, v)-divergence, (α, β)-divergence
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1. Introduction

The convex cone of Symmetric Positive Definite (SPD) matrices is a man-
ifold on which several Riemannian metrics were defined: Euclidean, Fisher-
Rao/affine-invariant [1, 2, 3, 4, 5, 6], log-Euclidean [7], Bures-Wasserstein [8,
9, 10, 11, 12, 13], Bogoliubov-Kubo-Mori [14, 15], log-Cholesky [16]... Several
families of metrics encompassing them were defined to understand their com-
mon properties, their differences and the level of generality of each property:
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kernel metrics and mean kernel metrics [17, 18], power-Euclidean [19], alpha-
Procrustes [20], deformed-affine [21], mixed-power-Euclidean [22], extended ker-
nel metrics, bivariate separable metrics [23]... In particular, kernel metrics
form a very general family of O(n)-invariant metrics indexed by kernel maps
φ : (0,∞)2 −→ (0,∞) acting on the eigenvalues of SPD matrices. This family
contains many O(n)-invariant metrics and it has good stability properties. The
subclass of mean kernel metrics, for which the kernel maps have monotonicity
properties, is interesting because it provides a necessary and sufficient condition
for geodesic completeness. Hence, kernel metrics and mean kernel metrics ap-
pear as sufficiently general families with interesting properties so it is a natural
framework to work in. However, this class contains metrics with very different
geometries so it motivates us to define subfamilies of metrics which share more
geometric properties with one another.

In previous works, we introduced two principles for building families of Rie-
mannian metrics that share interesting properties: the principle of deformed
metrics [21] and the principle of balanced bilinear forms [22]. Deforming metrics
(or datasets of SPD matrices) via a diffeomorphism is a very common proce-
dure to define families of metrics. In particular, kernel metrics are stable by
univariate diffeomorphisms, those which are characterized by their action on
eigenvalues. However, mean kernel metrics are not stable by all univariate dif-
feomorphisms because of the monotonicity requirement. In this work, we gather
many constructions of deformed metrics and we contribute a sufficient condition
under which alpha-Procrustes metrics are mean kernel metrics.

The balanced bilinear form of two flat metrics is defined by composing the
Frobenius inner product with the parallel transport of each flat metric [22].
When the bilinear form is a metric, it forms a dually-flat manifold along with
the two flat Levi-Civita connections of the flat metrics. In the case where the two
flat metrics are power-Euclidean metrics, the balanced bilinear form is a metric
called the mixed-power-Euclidean metric. In this work, we give a new sufficient
condition for a balanced bilinear form to be a metric, namely that the flat metrics
are univariately-deformed-Euclidean metrics, which allows to define the new
family of Mixed-Euclidean metrics. Then, we provide the geometric operations
of Mixed-Euclidean metrics regarding information geometry and Riemannian
geometry. In particular, our main contributions are on the one hand the link
we establish between Mixed-Euclidean/Mixed-Power-Euclidean metrics and the
(u, v)/(α, β)-divergences of information geometry, and on the other hand the
expression of the Riemann curvature tensor of Mixed-Euclidean metrics.

In Section 2, we present our notations and the preliminary concepts of uni-
variate maps and kernel metrics. In Section 3, we study deformed metrics and
we relate the family of alpha-Procrustes metrics to the class of mean kernel met-
rics. In Section 4, we recall the main concepts of information geometry, we state
the principle of balanced bilinear forms and we explain the relation between the
two. In Section 5, we introduce the new family of Mixed-Euclidean metrics and
we study its geometry. We conclude and discuss some perspectives in Section
6. The proofs of the results are presented in appendix.
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2. Notations and preliminary concepts

In this section, we introduce some notations and we recall two concepts
that are used throughout the paper. The first one is the concept of univari-
ate map on SPD matrices: it is a map acting on the eigenvalues, such as the
symmetric matrix logarithm or the power maps. The successive differentials
of smooth univariate maps can be expressed in closed form modulo eigenvalue
decomposition thanks to the functions called divided differences [24]. This main
advantage explains why they are ubiquitous as indexing collections of families
of metrics. Secondly, we recall the main facts about classes of kernel and mean
kernel metrics introduced in [17, 18].

2.1. Notations

We denote Sym(n) the vector space of real symmetric matrices of size n,
SPD(n) the manifold of SPD matrices, O(n) the orthogonal group, Diag+(n)
the group of positive diagonal matrices.

On the manifold SPD(n), we denote TΣSPD(n) the tangent space at Σ ∈
SPD(n). Given a metric gI on the manifold SPD(n) where I is any index char-
acterizing the metric, we denote ∇I its Levi-Civita connection, RI the Riemann
curvature tensor, T I the torsion tensor, ΠI the parallel transport. We omit the
index when the context is clear.

Given a matrix M , we denote Mij or [M ]ij the (i, j)-th coefficient of M .

Given coefficients (Mij)16i,j6n ∈ Rn2

, we denote [Mij ]i,j the matrix with (i, j)-
th entry Mij . Given (d1, ..., dn) ∈ Rn, we denote diag(d1, ..., dn) the correspond-
ing diagonal matrix.

We recall that exp : Σ ∈ Sym(n) 7−→
∑+∞
k=0

1
k!Σ

k ∈ SPD(n) is a dif-
feomorphism whose inverse is the symmetric matrix logarithm denoted log :
SPD(n) −→ Sym(n).

2.2. Univariate maps

In this paper, we call O(n)-equivariant map a map f : SPD(n) −→ Sym(n)
such that f(RΣR>) = Rf(Σ)R> for all Σ ∈ SPD(n) and R ∈ O(n). Among
O(n)-equivariant maps, we focus on the class of univariate maps.

Definition 2.1 (Univariate maps) A univariate map is an O(n)-equivariant map
f : SPD(n) −→ Sym(n) such that there exists a map on positive real numbers
also denoted f : (0,∞) −→ R such that f(PDP>) = P Diag(f(d1), ..., f(dn))P>

for all P ∈ O(n) and D ∈ Diag+(n) with D = Diag(d1, ..., dn).

Any f : (0,∞) −→ R can be extended into a univariate map and if the
former is of class C1 (resp. C2, resp. a C1-diffeomorphism), then the latter is
differentiable (resp. two times differentiable, resp. a diffeomorphism) [24, 23].
We denote Univ the set of smooth univariate diffeomorphisms. In addition, the
differential and the Hessian of a smooth univariate map can be expressed thanks
to the first and second divided differences as follows.
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Definition 2.2 (Divided differences) [24]

1. Let f ∈ C1(R,R). The first divided difference of f is the continuous
symmetric map f [1] : R2 −→ R defined for x, y ∈ R by:

f [1](x, y) =

{
f(x)−f(y)

x−y if x 6= y

f ′(x) if x = y

}
. (1)

2. Let f ∈ C2(R,R). The second divided difference of f is the continuous
symmetric map f [2] : R3 −→ R defined for x, y, z ∈ R by:

f [2](x, y, z) =


(f [1](x, ·))[1](y, z) = f [1](x,z)−f [1](x,y)

z−y if y 6= z

(f [1](y, ·))[1](z, x) = f [1](y,x)−f [1](y,z)
x−z if z 6= x

(f [1](z, ·))[1](x, y) = f [1](z,y)−f [1](z,x)
y−x if x 6= y

1
2f
′′(x) if x = y = z

 .

(2)

If f ∈ C2(R,R), then one can check that the differential of f [1] at (x, y) ∈ R2

is:

d(x,y)f
[1](h, k) =

{
f ′(x)h−f ′(y)k

x−y + f(x)−f(y)
(x−y)2 (h− k) if x 6= y

f ′′(x)
2 (h+ k) if x = y

}
, (3)

so one can prove that df [1] is continuous and f [1] ∈ C1(R2,R). This also proves

that ∂f [1]

∂x (x, x) = f ′′(x)
2 and that f [2] is continuous.

From now on, all univariate maps are assumed to be smooth.

Lemma 2.1 (Differential and Hessian of a univariate map) [24] The differential
and the Hessian of a univariate map f are O(n)-equivariant: dPDP>f(PXP>) =
P dDf(X)P> and HPDP>f(PXP>, PY P>) = P HDf(X,Y )P>. Hence, they
are determined by their values at diagonal matrices D ∈ Diag+(n), which are
given by the following formulae:

[dDf(X)]ij = f [1](di, dj)Xij , (4)

[HDf(X,X)]ij = 2

n∑
k=1

f [2](di, dj , dk)XikXjk. (5)

2.3. Classes of O(n)-invariant metrics

The class of kernel metrics is a subclass of O(n)-invariant metrics on SPD
matrices indexed by smooth bivariate symmetric maps φ : (0,∞)2 −→ (0,∞)
[17]. The advantages of this class are the simple formulation of its elements,
some important results on the metrics (completeness, cometric) and some im-
portant stability properties of the class. Hence, it is a good ambient class to
define subfamilies of metrics. Therefore in this section, we recall the defini-
tion of kernel metrics, the refinement of mean kernel metrics and the results on
completeness, cometric and stability.
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2.3.1. Kernel metrics

Definition 2.3 (Kernel metric) A kernel metric [17] is an O(n)-invariant metric
for which there is a smooth bivariate map φ : (0,∞)2 −→ (0,∞) such that
gΣ(X,X) = gD(X ′, X ′) =

∑
i,j

1
φ(di,dj)

X ′2ij , where X = PX ′P>, Σ = PDP>

with P ∈ O(n) and D = Diag(d1, ..., dn).

Important examples of kernel metrics are the Euclidean, the log-Euclidean,
the affine-invariant, the Bures-Wasserstein and the Bogoliubov-Kubo-Mori met-
rics:

(Euclidean) gE
Σ(X,X) = tr(X2), (6)

(Log-Euclidean) gLE
Σ (X,X) = tr(dΣ log(X)2), (7)

(Affine-invariant) gA
Σ(X,X) = tr((Σ−1X)2), (8)

(Bures-Wasserstein) gBW
Σ (X,X) = tr(ΣSΣ(X)2), (9)

(Bogoliubov-Kubo-Mori) gBKM
Σ (X,X) = tr(dΣ log(X)X), (10)

where SΣ(X) denotes the solution of the Sylvester equation X = ΣSΣ(X) +
SΣ(X)Σ. A review of the definitions, geometric properties and main references
on these five metrics can be found in [23].

2.3.2. The refinement of mean kernel metrics

There is a refinement of kernel metrics where the bivariate function φ relies
on a function called a symmetric homogeneous mean [17]. These subclasses
provide a nice necessary and sufficient condition for geodesic completeness.

Definition 2.4 (Mean kernel metrics) [17] A mean kernel metric is a kernel
metric characterized by a bivariate map φ of the form φ(x, y) = am(x, y)θ

where a > 0 is a positive coefficient, θ ∈ R is a homogeneity power and m :
(0,∞)2 −→ (0,∞) is a symmetric homogeneous mean, that is:

1. symmetric, i.e. m(x, y) = m(y, x) for all x, y > 0,

2. homogeneous, i.e. m(cx, cy) = cm(x, y) for all c, x, y > 0,

3. non-decreasing in both variables,

4. min(x, y) 6 m(x, y) 6 max(x, y) for all x, y > 0. It implies m(x, x) = x.

Theorem 2.1 (Completeness of mean kernel metrics) [17] Mean kernel metrics
are geodesically complete if and only if θ = 2.

2.3.3. Main results

The five kernel metrics cited above are mean kernel metrics. The mean
functions are summarized in Table 1.

Moreover, the class of kernel metrics is stable under pullback by univariate
diffeomorphisms [17]. However, the class of mean kernel metrics is not stable
under univariate diffeomorphisms, essentially because of the third condition of
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Metric Kernel φ(x, y) Mean m Power θ
Euclidean 1 Any mean 0

Log-Euclidean ( x−y
log(x)−log(y) )2 Logarithmic mean 2

Affine-invariant xy Geometric mean 2
Bures-Wasserstein 4 x+y

2 Arithmetic mean 1
Bogoliubov-Kubo-Mori x−y

log(x)−log(y) Logarithmic mean 1

Table 1: Bivariate functions of the main O(n)-invariant metrics on SPD matrices.

a symmetric homogeneous mean. Indeed, the mean has to be non-decreasing in
both variables which is neither a differential nor a Riemannian property.

In addition, the class of kernel metrics is cometric stable [23]. Indeed, the
cometric is a metric on the cotangent bundle T ∗SPD(n) ' SPD(n)× Sym(n)∗.
Thanks to the Riesz theorem, the Frobenius inner product provides the identi-
fication Sym(n)∗ ' Sym(n) so the cometric can be considered as a metric. The
cometric of the kernel metric characterized by φ is the kernel metric character-
ized by 1

φ .

3. Deformed metrics

Log-Euclidean metrics on SPD matrices are pullback metrics of Euclidean
metrics on the vector space of symmetric matrices via the symmetric matrix
logarithm log : SPD(n) −→ Sym(n). This geometric construction of a metric
on SPD matrices based on a diffeomorphism f is commonly used to define
families of metrics on SPD matrices indexed by automorphisms of SPD matrices.
Indeed, even if these metrics are isometric, they do not give the same results
in data analyses. It is actually equivalent to compute with the metric g on the
transformed dataset [f(Σ1), ..., f(ΣN )] or to compute with the pullback metric
f∗g on the initial dataset [Σ1, ...,ΣN ].

In this section, we give examples of situations in the literature where such
transformations are applied to the data (section 3.1), then we unify them into
our principle of deformed metrics and we give the fundamental Riemannian
operations (distance, geodesics, curvature, parallel transport) of the deformed
metrics (section 3.2). In Section 3.3, we contribute the new family of deformed-
Wasserstein metrics based on this principle which comprises the family of alpha-
Procrustes metrics [20]. We also give a sufficient condition under which alpha-
Procrustes metrics are mean kernel metrics.

3.1. Use of a deformation in the literature

As mentioned before, the class of kernel metrics is stable by pullback under
univariate diffeomorphisms [17, 23]. In particular, pullbacks of the Euclidean
metric and the affine-invariant metric under power diffeomorphisms are detailed
in the original paper on kernel metrics [17]. They were later called power-
Euclidean [19] and power-affine metrics, or more generally deformed-Euclidean
and deformed-affine metrics for an arbitrary diffeomorphism [21]. Moreover,
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power-Euclidean metrics are mean kernel metrics for any power and power-
affine metrics are mean kernel metrics if and only if the power belongs to [−2, 2]
[17]. Since power-Euclidean metrics interpolate between the log-Euclidean, the
Wigner-Yanase/square-root and the Euclidean metrics, an optimization proce-
dure was proposed on the parameter to choose the most appropriate metric
on a dataset of covariance matrices for Diffusion Tensor Imaging (DTI) [19].
It is common in DTI to compute with precision matrices which are the in-
verses of covariance matrices, inv(Σ) = Σ−1 [25], or with other transformations
of the covariance matrices such as the adjugate function adj(Σ) = det(Σ)Σ−1

[26]. More recently, the family of alpha-Procrustes metrics was introduced by
pullback under power diffeomorphisms of the Bures-Wasserstein metric, as for
power-Euclidean and power-affine metrics, and it was extended to the infinite
dimension in the context of Reproducing Kernel Hilbert Spaces (RKHS) [20].

In papers where the power diffeomorphisms are used to define power-Euclidean,
power-affine and alpha-Procrustes metrics [17, 19, 18, 21, 20], it is often noticed
that the limit when the power tends to 0 is the log-Euclidean metric. This is
actually a general fact. Indeed, from a Riemannian metric g, it is possible to
construct a one-parameter family of metrics (g(p))p∈R∗ by taking the pullback by
the power diffeomorphism powp : Σ ∈ SPD(n) 7−→ Σp ∈ SPD(n) for p 6= 0 and

to scale it by 1
p2 , that is g

(p)
Σ (X,X) = 1

p2 gΣp(dΣpowp(X), dΣpowp(X)) for all

Σ ∈ SPD(n) and all X ∈ TΣSPD(n). Then when p tends to 0, g(p) tends to the

log-Euclidean metric associated to the inner product gIn , that is g
(p)
Σ (X,X) −→

p→0

gIn(dΣ log(X), dΣ log(X)) for all Σ ∈ SPD(n) and all X ∈ TΣSPD(n).

3.2. Principle of deformed metrics

Principle 3.1 (Principle of deformed metrics) Let g be a Riemannian metric
on SPD(n) and f : SPD(n) −→ SPD(n) be a diffeomorphism. Then the f -
deformed metric is defined as the pullback metric f∗g. It is a Riemannian
metric on SPD(n) which is isometric to g and whose expression is:

(f∗g)Σ(X,X) = gf(Σ)(dΣf(X), dΣf(X)). (11)

All the Riemannian operations of a deformed metric are obtained by pulling
back the formulae that are known for the initial metric, as shown in Table 2.

Metric gfΣ(X,X) = gf(Σ)(dΣf(X), dΣf(X))
Distance df (Σ,Λ) = d(f(Σ), f(Λ))

Levi-Civita dΣf(∇fXΣ
Y ) = ∇dΣf(X)(df(Y ))

Curvature dΣf(RfΣ(X,Y )Z) = Rf(Σ)(dΣf(X), dΣf(Y ))dΣf(Z)

Geodesics f(γf(Σ,X)(t)) = γ(f(Σ),dΣf(X))(t)

Logarithm dΣf(LogfΣ(Λ)) = Logf(Σ)(f(Λ))

Parallel transport dΛf(Πf
γ;Σ→ΛX) = Πf◦γ;f(Σ)→f(Λ)(dΣf(X))

Table 2: Riemannian operations of deformed metrics on SPD matrices
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A fundamental stability property is that if g is O(n)-invariant and if f is
O(n)-equivariant, then the deformed metric f∗g is also O(n)-invariant. More-
over, as mentioned before, if g is a kernel metric and if f is univariate, then
the deformed metric f∗g is a kernel metric and the set {f∗g, f ∈ Univ} forms a
family of kernel metrics that is closed under pullback by univariate diffeomor-
phisms [17]. The Riemannian operations that are known in closed form for g
are also known in closed form for f∗g.

3.3. The new family of deformed-Wasserstein metrics

Definition 3.1 (Deformed-Wasserstein metrics) A deformed-Wasserstein met-
ric is the pullback metric by a univariate diffeomorphism of the Bures-Wasserstein
metric (Formula (9)).

The family of deformed-Wasserstein metrics contains the family of alpha-
Procrustes metrics since they are pullbacks of the Bures-Wasserstein metric by
the power diffeomorphism pow2α scaled by 1

4α2 [20]. In this work, we designate
alpha-Procrustes metrics as power-Wasserstein metrics to be consistent with
power-Euclidean and power-affine metrics and to parameterize the family by
p ∈ R∗, the correspondence being p = 2α. As argued earlier, we can say that
the log-Euclidean metric belongs to deformed-Wasserstein metrics so we can
designate it as power-Wasserstein with power p = 0.

Since the Bures-Wasserstein metric is a mean kernel metric, it is tempting to
determine when a power-Wasserstein metric is a mean kernel metric, in analogy
to the work done for the power-Euclidean and the power-affine metrics [17].
Here we give a sufficient condition under which a power-Wasserstein metric is a
mean kernel metric. The proof is in Appendix A.

Theorem 3.1 (Sufficient condition for power-Wasserstein to be mean kernel)
The power-Wasserstein metric of parameter p 6 1 is a mean kernel metric.

This condition does not seem to be sufficient. Indeed, after numerical
simulations, we conjecture that there exists p0 ∈ (2.61, 2.611) such that the
power-Wasserstein metric of parameter p is a mean kernel metric if and only
if p ∈ (−∞, 1] ∪ [p0,+∞). Moreover, the proof actually tells that if p ∈ (1, 2],
then it is not a mean kernel metric.

In this section, we gathered the deformations of Riemannian metrics or of
SPD datasets under our principle of deformed metrics. Therefore from a metric
we can define the family of power deformations of this metric, which tends
to a log-Euclidean metric when the power tends to 0. Moreover, the family of
univariate deformations of a kernel metric is a stable subfamily of kernel metrics
and it is interesting to determine when these metrics are mean kernel metrics.
It seems to be a quite difficult problem for general univariate deformations. On
the example of power deformations of the Bures-Wasserstein metric, we gave the
sufficient condition p 6 1. To the best of our knowledge, determining necessary
and sufficient conditions for deformed-Euclidean, deformed-affine and deformed-
Wasserstein metrics to be mean kernel metrics remains an open problem.
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4. Balanced metrics

The affine-invariant and the Bogoliubov-Kubo-Mori metrics were shown to
provide a dually-flat structure, that is a couple of flat affine connections which
are dual with respect to the metric. This is a rich geometric structure which
provides a so called canonical divergence, a potentials and specific algorithms
[2, 27, 28]. A dually-flat manifold is a Hessian manifold where the potential
is defined globally [29, 30]. Inspired by the characterization of the duality
based on parallel transport, we introduced a preliminary version of the prin-
ciple of balanced bilinear forms in [22] which allows to define a bilinear form
g0 on SPD matrices from two flat Riemannian metrics g, g∗ by g0

Σ(X,Y ) =
tr((ΠΣ→InX)(Π∗Σ→InY )) where Π,Π∗ denote the respective parallel transports.
The term “balanced” was chosen because the bilinear form relies half on each of
the two flat metrics. We showed that if the two flat metrics are power-Euclidean
metrics, then the balanced bilinear form is symmetric and positive definite, i.e.
a metric. In this section, we give a weaker condition under which the bilinear
form is a metric.

To ease the comprehension of this section, we recall the main concepts of
information geometry, especially dually-flat manifolds and related notions, in
Section 4.1. In Section 4.2, we provide a new condition on the two flat metrics
so that the balanced bilinear form is a metric: it is sufficient to assume that the
flat metrics are univariately-deformed-Euclidean metrics.

4.1. Information geometry and dually-flat manifolds

Before introducing the specific concepts of information geometry, we recall
the definition of an affine map between manifolds equipped with affine connec-
tions and the definition of a flat affine connection. We denote ∂ the canonical
affine connection on a vector space.

Definition 4.1 (Affine map) LetM,M′ be two manifolds with respective affine
connections ∇,∇′. We say that f :M−→M′ is an affine map if for all vector
fields X,Y on M, we have ∇′f∗(X)f∗(Y ) = f∗(∇XY ).

Definition 4.2 (Flat affine connection) Depending on domains of research and
authors, a flat affine connection is a connection such that:

1. (Affine geometry) R = 0 and T = 0,

2. (Information geometry) [2, Section 1.7] there exists a global chart f :
(M,∇) −→ (RdimM, ∂) which is an affine map, i.e. M can be seen as an
open set of RdimM via f .

In the following, we call 1-flat (resp. 2-flat) a connection that is flat according
to the sense 1 (resp. 2) of the previous definition. A 2-flat connection is clearly
1-flat. Conversely, a 1-flat connection is locally 2-flat, i.e. each point has a
neighborhood U such that ∇ is 2-flat on U . A 1-flat connection is a priori not
globally 2-flat because the manifold need not be an open set of Rn (e.g. the
circle S1). The obstruction is topological.
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In this work, the flat metrics we introduce on SPD(n) (which is an open set
of the vector space of symmetric matrices) are actually 2-flat.

4.1.1. Dual connections with respect to a metric

Definition 4.3 (Dual connections) [2] Let (M, g) be a Riemannian manifold,
∇g the Levi-Civita connection of g and ∇,∇∗ be affine connections on M. We
say that ∇∗ is the dual connection of ∇ with respect to g if one of the following
equivalent requirements is satisfied:

1. ∂kgij = gljΓ
l
ki+gil(Γ

∗)lkj for all i, j, k ∈ {1, ...,dimM} in any chart, where

Γkij and (Γ∗)kij are the Christoffel symbols of ∇ and ∇∗,

2. Z g(X,Y ) = g(∇ZX,Y ) + g(X,∇∗ZY ) for all vector fields X,Y, Z on M,

3. g(X,Y ) = g(ΠX,Π∗Y ) for all vector fields X,Y on M.

Hence given a metric g, ∇ uniquely determines ∇∗ and (∇∗)∗ = ∇ so that
∇+∇∗

2 is a metric connection. We call (g,∇,∇∗) a dualistic structure.

Note that if ∇ and ∇∗ are torsion-free, then ∇+∇∗
2 = ∇g.

Definition 4.4 (Dually-flat manifold) [2] We say that (M, g,∇,∇∗) is a dually-
flat manifold (or a Hessian manifold) when ∇ and ∇∗ are dual with respect to
the metric g and when ∇ and ∇∗ are flat (in the sense 2 of Definition 4.2).

4.1.2. Divergence

Definition 4.5 (Divergence) [2] A divergence is a distance-like smooth map
D :M×M−→ R+ such that:

1. (separation) D(x, y) = 0 if and only if x = y,

2. (non-degenerate) the symmetric positive semi-definite bilinear form gD :
z ∈ M 7−→ −∂x|x=z∂y|y=zD is positive definite. It is called the induced
Riemannian metric. We denote [ : TM −→ T ∗M and # = [−1 :
T ∗M −→ TM the musical isomorphisms associated to the metric gD,
defined by [(X)(Y ) = g(X,Y ).

We can also define the dual divergence D∗ : (x, y) 7−→ D(y, x) and the induced
connection by ∇DXY : z ∈M 7−→ ](Z 7−→ ∂2

x|x=z∂y|y=zD(X,Y, Z)).

Lemma 4.1 (Dual connections induced by a divergence) [2] Let D be a diver-
gence on M. Then the connections ∇ := ∇D and ∇∗ := ∇D∗ are dual with
respect to the induced metric gD: a divergence induces a dualistic structure.

In general, there is not a canonical way to define a divergence from a dualistic
structure, except if it is dually-flat.

10



4.1.3. Canonical divergence of a dually-flat manifold

Definition 4.6 (Canonical divergence) [2] Let (M, g,∇,∇∗) be a dually-flat
manifold where M is simply connected. Let u, v : M −→ Rn be two smooth
coordinate systems such that u is ∇-affine, v is ∇∗-affine and g( ∂

∂ui ,
∂
∂vj ) = δij .

The canonical divergence D is defined by D(x, y) = ψ(x)+ϕ(y)−〈u(x)|v(y)〉 for
all x, y ∈M where 〈·|·〉 is the canonical inner product on Rn and ψ,ϕ :M−→ R
are smooth maps called potentials defined as follows:

1. dψ =
∑
i v
idui for all i ∈ {1, ..., n} or equivalently without coordinates

dxψ(X) = 〈v(x)|dxu(X)〉 for all x ∈M and X ∈ TxM,

2. dϕ =
∑
i u

idvi for all i ∈ {1, ..., n} or dxϕ(X) = 〈u(x)|dxv(X)〉,

3. ψ(x) + ϕ(x) = 〈u(x)|v(x)〉 for all x ∈M.

The equation dψ =
∑
i v
idui has a solution by Poincaré’s lemma because M

is simply connected and the differential form ω =
∑
i v
idui is closed. Indeed,

g( ∂
∂ui ,

∂
∂uj ) = ∂vk

∂uj g( ∂
∂ui ,

∂
∂vk

) = ∂vi

∂uj and by symmetry of g, g( ∂
∂ui ,

∂
∂uj ) = ∂vj

∂ui

so ∂vi

∂uj = ∂vj

∂ui . So ψ is well defined up to an additive constant and ϕ as well.
Finally, dx(ψ+ϕ)(X) = 〈v(x)|dxu(X)〉+〈u(x)|dxv(X)〉 = dx(〈u|v〉)(X) so there
exists a constant c ∈ R such that ψ(x) + ϕ(x) = 〈u(x)|v(x)〉+ c for all x ∈ M.
We can impose c = 0 by choosing the constant in ϕ appropriately.

4.2. Principle of balanced bilinear forms

The principle of balanced bilinear forms [22] provides a bilinear form by
combining the parallel transports of two flat metrics via the Frobenius inner
product. We can give a more general definition of a balanced bilinear form by
choosing any inner product on symmetric matrices, although we focus on the
Frobenius inner product afterwards.

Principle 4.1 (Principle of balanced bilinear forms) We fix 〈·|·〉 an inner prod-
uct on Sym(n). Let g+, g− be two flat Riemannian metrics on SPD(n). We
denote ∇+,∇− their Levi-Civita connections and Π+,Π− their associated par-
allel transport maps that do not depend on the curve since the metrics are flat.
Then the balanced bilinear form associated to g+ and g− is defined by:

g0
Σ(X,Y ) = 〈Π+

Σ→InX|Π
−
Σ→InY 〉. (12)

Theorem 4.1 (Relation between balanced metric and dually-flat manifold)
[22] Let g+, g− be two flat Riemannian metrics on SPD(n). We denote ∇+,∇−
their Levi-Civita connections. If the balanced bilinear form g0 is a metric, then
(SPD(n), g0,∇+,∇−) is a dually-flat manifold, which automatically comes with
a canonical divergence D according to the previous section.

It would be nice to have a sufficient condition under which a balanced bilinear
form is a metric. In [22], we proved that, with the Frobenius inner product, if g+

and g− are power-Euclidean metrics with powers α and β, then g0 is a metric.
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In the following theorem, we give a weaker sufficient condition which allows to
define the new family of Mixed-Euclidean metrics. The proof is in Appendix A.

Theorem 4.2 (Sufficient condition for a balanced bilinear form to be a metric)
Let 〈·|·〉 = Frob be the Frobenius inner product. Let g+, g− be deformed-
Euclidean metrics respectively associated to univariate diffeomorphisms u and
v. Then the balanced bilinear form g0 is a metric.

5. The new family of mixed-Euclidean metrics

5.1. Definition

Definition 5.1 (Mixed-Euclidean metric ME(u, v)) The (u, v)-Mixed-Euclidean
metric is the balanced metric g0 defined in Theorem 4.2. It is given by:

g
ME(u,v)
Σ (X,X) =

1

u′(1)v′(1)

∑
i,j

u[1](di, dj)v
[1](di, dj)X

′2
ij , (13)

where X = PX ′P>, Σ = PDP> with P ∈ O(n), D = diag(d1, ..., dn).

Remark 5.1 We notice that if we denote φu = u′(1)
u[1] and φv = v′(1)

v[1] the kernel
maps associated to the u, v-deformed Euclidean metrics, the balanced metric is
a kernel metric characterized by φu,v =

√
φuφv. Hence, the principle of balanced

bilinear forms seems to appear as a principle of mean of metrics.

The family of Mixed-Euclidean metrics contains the family of Mixed-Power-
Euclidean metrics [22] for u = Fα and v = Fβ where Fα = powα if α 6= 0 and
F0 = log.

(Log-Euclidean) g
MPE(0,0)
Σ (X,X) = tr(dΣ log(X)

2
), (14)

(Power-Euclidean) g
MPE(α,α)
Σ (X,X) =

1

α2
tr(dΣpowα(X)2), (15)

(Power-affine) g
MPE(α,−α)
Σ (X,X) =

1

α2
tr((Σ−αdΣpowα(X))2), (16)

(“Power-BKM”) g
MPE(α,0)
Σ (X,X) =

1

α
tr(dΣpowα(X)dΣ log(X)), (17)

(General MPE) g
MPE(α,β)
Σ (X,X) =

1

αβ
tr(dΣpowα(X)dΣpowβ(X)).

(18)

As mentioned in [22], this family interpolates between the log-Euclidean met-
ric (0, 0), the power-Euclidean metrics (α, α), the power-affine metrics (α,−α)
(including the affine-invariant metric (1,−1)) and the Bogoliubov-Kubo-Mori
metric (1, 0).

12



5.2. Information geometry of Mixed-Euclidean metrics

As said in Theorem 4.1, balanced metrics come with a canonical divergence.
As Mixed-Euclidean metrics are the balanced metrics of two deformed-Euclidean
metrics u∗gE and v∗gE, it is straightforward that u : SPD(n) −→ Sym(n) and
v : SPD(n) −→ Sym(n) provide flat coordinate systems for these respective met-
rics. The canonical divergence of this structure is known as the (u, v)-divergence
in Information Geometry [31, Section 4.5.2]. The novelty here is the rela-
tion we establish between Mixed-Euclidean metrics and (u, v)-divergences. In
particular, the Mixed-Power-Euclidean metrics come with the so-called (α, β)-
divergences on SPD matrices [32]. This family contains the well known families
of α-divergences and β-divergences [32, Formulae 69,70]. We state the corre-
spondence between Mixed-Euclidean metrics and (u, v)-divergences in the fol-
lowing corollary of Theorem 4.1. We recall the formulae of (α, β)-divergences
with the corresponding potentials and we illustrate the correspondence with two
charts.

Corollary 5.1 (Mixed-Euclidean metrics and (u, v)-divergences) Let u, v be
two univariate diffeomorphisms u, v : SPD(n) −→ SPD(n). Then the manifold
(SPD(n), gME(u,v), u∗∇E, v∗∇E) is dually-flat and its canonical divergence is
the (u, v)-divergence of Information Geometry [31]. In particular, the manifold
(SPD(n), gMPE(p,q),∇PE(p),∇PE(q)) is dually-flat and its canonical divergence
is the (α, β)-divergence [32, Formulae 51,54,56,66]. The (α, β)-divergences and
the corresponding potentials (up to an additive constant, see Section 4.1.3) are:

(α = β = 0) D0,0(Σ|Σ′) =
1

2
‖ log(Σ)− log(Σ′)‖2Frob, (19)

(α = β 6= 0) Dα,α(Σ|Σ′) =
1

2α2
‖Σα − Σ′α‖2Frob, (20)

(α = −β 6= 0) Dα,−α(Σ|Σ′) = − 1

α2
tr
[
(In + α log Σ)− α log Σ′ − ΣαΣ′−α

]
, (21)

(α 6= β = 0) Dα,0(Σ|Σ′) =
1

α
tr

[(
Σα log Σ− 1

α
Σα
)

+
1

α
Σ′α − Σα log Σ′

]
, (22)

(α, β, α± β 6= 0) Dα,β(Σ|Σ′) =
1

αβ
tr

[
α

α+ β
Σα+β +

β

α+ β
Σ′α+β − ΣαΣ′β

]
, (23)

(α = β = 0) ψ0,0(Σ) =
1

2
tr(log(Σ)2), (24)

(α = β 6= 0) ψα,α(Σ) =
1

2α2
tr(Σ2α), (25)

(α = −β 6= 0) ψα,−α(Σ) = − 1

α
tr(log Σ) = − 1

α
log(det Σ) (26)

(α 6= β = 0) ψα,0(Σ) =
1

α
tr(Σα log Σ− 1

α
Σα), (27)

(α, β, α± β 6= 0) ψα,β(Σ) =
1

β(α+ β)
tr(Σα+β). (28)

The (α, β)-divergences on SPD matrices can also be obtained by extending
the (α, β)-divergences on positive discrete measures [33]. Indeed, a pos-
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itive discrete measure is a vector of positive numbers so the diagonal matrix
of eigenvalues of an SPD matrix can be considered as a positive discrete mea-
sure. Then the (α, β)-potential on positive diagonal matrices is extended by
O(n)-invariance, which defines the (α, β)-potential and the (α, β)-divergence on
SPD matrices [32]. Conversely, the (α, β)-divergences on SPD matrices define
divergences on positive discrete measures when restricted to positive diagonal
matrices. So there is a one-to-one correspondence between (α, β)-divergences on
SPD matrices [32] (or Mixed-Power-Euclidean metrics) and (α, β)-divergences
on positive discrete measures [33]. This correspondence is given on Figure 1.
The graph on the right is essentially borrowed from [33] with complements from
[34].

Figure 1: Correspondence between MPE metrics on SPD matrices and (α, β)-divergences on
positive discrete measures.

Remark 5.2 The affine-invariant/Fisher-Rao metric is associated to the Kullback-
Leibler divergence of centered multivariate Gaussian densities, which dif-
fers from the O(n)-invariant extension of the Kullback-Leibler divergence of
positive discrete measures represented on Figure 1.

The (u, v)-divergences can be expressed via an integral formula [31, Formula
(4.170)] following Definition 4.6. The formulae of the previous corollary can
thus be computed either from that formula or directly.

5.3. Riemannian geometry of Mixed-Euclidean metrics

Another immediate consequence of the relation between balanced metrics
and dually-flat manifolds is that the Levi-Civita connection of the Mixed-Euclidean
metric MPE(u, v) is simply the arithmetic mean of the Levi-Civita connections
of the deformed-Euclidean metrics u∗gE and v∗gE.
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Corollary 5.2 (Levi-Civita connection of Mixed-Euclidean metrics)

∇ME(u,v)
XΣ

Y = ∂XΣ
Y +

1

2
((dΣu)−1(HΣu(X,Y )) + (dΣv)−1(HΣv(X,Y ))) (29)

It is even possible to compute the curvature following the same ideas as for
the BKM metric in [15]. The proof is given in Appendix A.

Theorem 5.1 (Curvature of Mixed-Euclidean metrics) Let u, v : SPD(n) −→
SPD(n) be two univariate diffeomorphisms. We define the univariate diffeomor-

phism w = v◦u−1 so that u : (SPD(n), gME(u,v)) −→ (SPD(n), w′(1)
u′(1)v′(1)g

ME(Id,w))

is an isometry. For Σ = PDP> ∈ SPD(n), we denote X = PX ′P> ∈ TΣSPD(n)
and analogously for Y, Z, T ∈ TΣSPD(n), we denote uij = u[1](di, dj), uijk =
u[2](di, dj , dk) and analogously for v, w. We denote mij = w[1](u(di), u(dj)) =
vij
uij

and mijk = w[2](u(di), u(dj), u(dk)). Then the curvature of the mixed-

Euclidean metric gME(u,v) is:

R
ME(u,v)
Σ (X,Y, Z, T ) =

1

u′(1)v′(1)

∑
i,j,k,l

ρijkl(X
′
ijY
′
jkZ

′
klT
′
li − Y ′ijX ′jkZ ′klT ′li (30)

+X ′ijZ
′
jkY

′
klT
′
li − Y ′ijZ ′jkX ′klT ′li),

where ρijkl =
mijlmjlk

2mjl
uijujkukluli = 1

2ujlvjl
(uijvijl − vijuijl)(ujkvjkl − vjkujkl)

is symmetric in i ↔ k, in j ↔ l and in u ↔ v. In particular, at Σ = In, the
curvature is:

R
ME(u,v)
In

(X,Y, Z, T ) =
1

4

[(
ln

∣∣∣∣ v′u′
∣∣∣∣)′ (1)

]2

RA
In(X,Y, Z, T ), (31)

where A stands for the affine-invariant metric (Formula 8). Therefore, the
sectional curvature of the mixed-Euclidean metric at In takes non-positive val-
ues. In particular, for mixed-power-Euclidean metrics MPE(α, β) with α2 6= β2

(thus excluding log-Euclidean, power-Euclidean and power-affine metrics), since

κ
MPE(α,β)
λΣ (X,Y ) = λ−(α+β) × κMPE(α,β)

Σ (X,Y ) for all λ > 0, the lower bound
of the sectional curvature is −∞.

It seems difficult to determine theoretically whether the sectional curvature
of mixed-Euclidean metrics (again, excluding MPE(α, β) with α2 = β2) can
take positive values. On Figure 2, we show numerical results which make us
think that this is the case. Indeed, we observe numerically that for all α, β ∈
{0.05 k| k ∈ {−40, ..., 40}} such that α2 6= β2, we have κ

MPE(α,β)
min < 0 and

κ
MPE(α,β)
max > 0. These simulations also tend to show that, at a given point Σ,

the negative values taken by the sectional curvature are much larger in absolute
value than the positive values taken by the sectional curvature.

From Figure 2, it appears that power-Euclidean metrics (flat), power-affine
metrics (Hadamard) and the log-Euclidean metric at the intersection play a spe-
cial role among the family of Mixed-Power-Euclidean since all others apparently
admit positive and negative sectional curvature.
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Figure 2: Lower and upper bounds of the sectional curvature of the mixed-power-
Euclidean metrics. Left: lower bound. Right: upper bound. The lower bound of the

power-affine metrics (β = −α) is known as −α
2

2
[23]. The bounds were obtained in di-

mension 3 by taking 1000 random positive diagonal matrices D of determinant 1 (to avoid
scaling effects), 1000 random pairs of symmetric matrices (X,Y ) and computing the sectional

curvature κ
MPE(α,β)
D (X,Y ) =

RD(X,Y,X,Y )

gD(X,X)gD(Y,Y )−gD(X,Y )2
for (α, β) ∈ [−2, 2]2 with a step

∆α = ∆β = 0.05. Diagonal matrices are taken instead of SPD matrices because the MPE
metrics are O(n)-invariant.

In addition, for Mixed-Power-Euclidean metrics, we can also compute the
geodesics, the logarithm map and the distance between commuting matrices.
These formulae are proved in Appendix A.

Theorem 5.2 (Riemannian operations of MPE metrics) Let α, β ∈ R such
that α+ β 6= 0, thus excluding log-Euclidean and power-affine metrics. Table 3
summarizes the formulae of the geodesics, the logarithm map and the distance
in the particular case where Σ,Λ ∈ SPD(n) and V ∈ TΣSPD(n) commute.
They essentially reduce to the formulae of the α0-power-Euclidean metric with
α0 = α+β

2 . These formulae are generally not valid for non-commuting matrices.

Geodesics γ(Σ,V )(t) = (Σα0 + t dΣpowα0
(V ))1/α0

Logarithm LogΣ(Λ) = (dΣpowα0
)−1(Λα0 − Σα0)

Distance d(Σ,Λ) = 1
α0
‖Λα0 − Σα0‖Frob

Table 3: Riemannian operations of Mixed-Power-Euclidean metrics for commuting matrices

It would be tempting to generalize the formulae of geodesics, logarithm and
distance between commuting matrices to Mixed-Euclidean metrics. However, if
we consider two diffeomorphisms u, v : (0,∞) −→ (0,∞), the map f =

√
uv

(which generalizes powα0
=
√

powαpowβ) is not a diffeomorphism of (0,∞) in

general. For example, take u(x) = x(x+1) and v(x) = 1
x2 . So the generalization

is not straightforward.
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6. Conclusion

Deforming a Riemannian metric is a general way of defining new metrics and
new families of metrics on SPD matrices. In particular, using power diffeomor-
phisms defines one-parameter families which tend to the log-Euclidean metric
when the power tends to 0. The class of kernel metrics is stable by univariate dif-
feomorphism whereas the class of mean kernel metrics is not. We showed that
the alpha-Procrustes (or power-Wasserstein) metrics are mean kernel metrics
when the power p = 2α 6 1.

We extended the principle of balanced bilinear forms and we gave a new
sufficient condition under which the bilinear form is a metric. This allowed
to define the new family of Mixed-Euclidean metrics which extends the two-
parameter family of Mixed-Power-Euclidean metrics. Since balanced metrics
define dually-flat manifolds which are characterized by a canonical divergence,
Mixed-Euclidean metrics are in one-to-one correspondence with the (u, v)-divergences
of information geometry. In particular, Mixed-Power-Euclidean metrics are in
bijection with (α, β)-divergences. Finally, we computed the curvature of all
Mixed-Euclidean metrics.

Some questions remain open. What are the conditions on the univariate
diffeomorphisms u, v for the u-deformed Euclidean, affine, Wasserstein or the
(u, v)-mixed-Euclidean metric to be a mean kernel metric? Are there more
general conditions on two flat metrics for their balanced bilinear form to be a
metric? What if we replace the Frobenius inner product by another one? Does
the operation (φ, φ′) 7−→

√
φφ′ on flat kernel metrics generalize the principle of

balanced metrics?
More generally, since the two-parameter family of (α, β)-Mixed-Power-Euclidean

metrics interpolate between the Euclidean, the log-Euclidean, the affine-invariant
and the Bogoliubov-Kubo-Mori metrics, does there exist a principled family with
three or four parameters which additionally includes the Bures-Wasserstein met-
ric? It is not difficult to build parametric families of metrics which interpolate
between all of them whereas it is more difficult to find interpolations with an
interesting geometry such as the dually-flat geometry.
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A. Proofs

Proof of Theorem 3.1 (Condition for power-Wasserstein to be a mean kernel metric).

Let us show that if p 6 1, then the functionm(x, y) =

[
(xp + yp)

(
p x−y
xp−yp

)2
] 1

2−p

is non-decreasing in x (and by symmetry in y). If we factorize by y and define

a new variable t = x/y, we have to study the function f(t) = F (t)
1

2−p where

F (t) = (tp + 1)
(
p t−1
tp−1

)2

.

First, let us prove that F is non-decreasing if and only if p 6 1. We denote
f0(x) = p x−1

xp−1 > 0 and g0(x) = xpf0(x)2 so that F (x) = f0(x)2 + g0(x). Note
that f0 is non-decreasing if and only if p 6 1. We also introduce h0(x) =

(xp + 1)(x− 1)2 so that F (x) = p2 h0(x)
(xp−1)2 .

1. If p − 1 > 0, then F ′(0) = −2p2 < 0 so F ′ cannot be positive around 0
because it is smooth at 0. So F is not non-decreasing.

2. If p ∈]0, 1], then F is non-decreasing as product of three non-decreasing
positive functions.

3. We assume that p < 0. Let us prove separately that F is increasing on
(0, 1) and on (1,∞). As F is continuous (at 1), it will prove that F is
increasing on (0,∞).

(a) Let us prove that F is increasing on (0, 1). We only need to prove
that g0 is increasing on (0, 1). We successively derive:

• g′0(x) = p2 x− 1

(xp − 1)3
xp−1︸ ︷︷ ︸

<0

((2− p)xp+1 + pxp − (p+ 2)x+ p)︸ ︷︷ ︸
g1(x)

,

• g′1(x) = (2− p)(p+ 1)xp + p2xp−1 − (p+ 2),

• g′′1 (x) = pxp−2((2− p)(p+ 1)x+ p(p− 1)).

We can notice that g1(1) = 0 and g′1(1) = 0. So if we prove that
g′′1 < 0 on (0, 1), then g′1 is decreasing thus positive, so g1 is increasing
thus negative, and finally g′0 is positive so g0 increases.

i. If p+ 1 = 0, then g′′1 has the sign of p2(p− 1) < 0,

ii. if p+ 1 > 0, then g′′1 is positive before x0 := p(p−1)
(p+1)(p−2) < 0 and

negative after,

iii. if p+ 1 < 0, then g′′1 is negative before x0 := p(p−1)
(p+1)(p−2) > 1 and

positive after.

So we proved that F is increasing on (0, 1).

(b) Let us prove that F is increasing on (1,∞). As x 7−→ 1
(xp−1)2 is

increasing, we only need to prove that h0 is increasing on (1,∞) so
that F is increasing on (1,∞) as product of two positive increasing
functions. We derive successively:
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• h′0(x) = (x− 1)h1(x) with h1(x) = (p+ 2)xp − pxp−1 + 2,

• h′1(x) = pxp−2((p+ 2)x− (p− 1)).

We need to prove that h1 > 0 on (1,∞). As before, we distinguish
the cases:

i. If p+2 < 0, then h′1 is negative before x0 := p−1
p+2 > 1 and positive

after. As h1(x0) = 2− xp−1
0 > 1, we have h1 > 0 on (1,∞).

ii. If p+2 > 0, then h′1 is negative on (1,∞). As limx→∞ h1(x) = 2,
we have h1 > 0 on (1,∞).

So we proved that F is increasing on (1,∞) and therefore on (0,∞).

Finally, we proved that F is non-decreasing if and only if p 6 1. As f = pow 1
2−p
◦

F , we can assert that if p 6 1, then f is non-decreasing, as expected.

Proof of Theorem 4.2 (Sufficient condition for a balanced bilinear form to be a metric).
Let u, v : SPD(n) −→ Sym(n) be two univariate diffeomorphisms onto the re-
spective image of SPD(n) by u and v. Let g+, g− be the respective deformed-
Euclidean metrics by u and v. Hence for all Σ ∈ SPD(n) and X,Y ∈ TΣSPD(n):

g+
Σ (X,X) = tr(dΣu(X)2), (32)

g−Σ (Y, Y ) = tr(dΣv(Y )2). (33)

Hence the flat parallel transports Π+ and Π− do not depend on the curve, they
are simply given by the differentials of u and v:

Π+
Σ→ΛX = (dΛu)−1(dΣu(X)), (34)

Π−Σ→ΛY = (dΛv)−1(dΣv(Y )), (35)

where dΣu(X) = P dDu(P>XP )P> and [dDu(P>XP )]ij = u[1](di, dj)[P
>XP ]ij

given an eigenvalue decomposition of Σ = PDP> with D = diag(d1, ..., dn) ∈
Diag+(n) and P ∈ O(n). Note that dInu(X) = u′(1)X so dInu = u′(1)Id. The
same is valid for v. Therefore, since the parallel transport is O(n)-equivariant,
the balanced bilinear form g0 is defined by:

g0
Σ(X,Y ) = tr((Π+

Σ→InX)(Π−Σ→InY )) (36)

= tr(P (Π+
D→InP

>XP )P>P (Π−D→InP
>Y P )P>) (37)

=
1

u′(1)v′(1)
tr(dDu(P>XP )dDv(P>Y P )) (38)

=
1

u′(1)v′(1)

∑
i,j

u[1](di, dj)v
[1](di, dj)[P

>XP ]ij [P
>Y P ]ij . (39)

First, g0 is symmetric. Second, since u : (0,∞) −→ R is a diffeomorphism,
either u′ > 0 or u′ < 0 and by the mean value theorem, the sign of u[1] is the

sign of u′. Hence
u[1](di,dj)
u′(1) > 0 and similarly

v[1](di,dj)
v′(1) > 0 so the coefficients of

the quadratic form g0
Σ(X,X) are positive. So the balanced bilinear form g0 is a

Riemannian metric.
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Proof of Theorem 5.1 (Curvature of Mixed-Euclidean metrics). We compute the
curvature of the metric gME(u,v) for univariate diffeomorphisms u, v : SPD(n) −→
SPD(n). Since dΣv(X) = du(Σ)w(dΣu(X)) with w = v ◦ u−1, the map u is an

isometry between gME(u,v) and c gME(Id,w) with c = w′(1)
u′(1)v′(1) . So it suffices to

compute the curvature of gME(Id,w) and to conclude by pullback and scaling.
Let Σ = PDP> ∈ SPD(n). We denote uij = u[1](di, dj), uijk = u[2](di, dj , dk)

and analogously for v and w.
The curvature of g := gME(Id,w) can be computed the same way as shown

in [15] for the metric BKM = MPE(1, 0) = ME(Id, log). Following [15], we
introduce GΣ(X) = dΣw(X) and ΓΣ(X,Y ) such that:

gΣ(X,Y ) =
1

w′(1)
tr(dΣw(X)Y ) =

1

w′(1)
tr(GΣ(X)Y ), (40)

∇XΣY = dΣY (X) + ΓΣ(X,Y ), (41)

where ∇ is the Levi-Civita connection of g. Note that GΣ : Sym(n) −→
Sym(n) is a linear isomorphism and ΓΣ is symmetric. According to Lemma
2.1, [GD(X)]ij = wijXij . Then the Riemann curvature tensors are defined by
R(X,Y )Z = ∇X∇Y Z−∇Y∇XZ−∇[X,Y ]Z andR(X,Y, Z, T ) = −g(R(X,Y )Z, T )
so we can write R in function of Γ and dΓ or in function of G and dG [15]:

R(X,Y )Z = dΓ(X)(Y,Z)− dΓ(Y )(X,Z) + Γ(X,Γ(Y, Z))− Γ(Y,Γ(X,Z))

(42)

= −1

4
G−1(dG(X)(G−1(dG(Y )(Z)))) +

1

4
G−1(dG(Y )(G−1(dG(X)(Z)))),

(43)

R(X,Y, Z, T ) =
1

4w′(1)
tr
[(
dG(X)(G−1(dG(Y )(Z)))− dG(Y )(G−1(dG(X)(Z)))

)
T
]
.

(44)

So we only need to express dΣG(X)(Y ) = HΣw(X,Y ). Lemma 2.1 gives
HΣw(X,Y ) = P HDw(X ′, Y ′)P> and [HD(X ′, Y ′)]ij =

∑
k wijk(X ′ikY

′
jk+X ′jkY

′
ik).

Hence:

tr(dΣG(X)(G−1
Σ (dΣG(Y )(Z)))T ) = tr(dDG(X ′)(G−1

D (dDG(Y ′)(Z′)))T ′) (45)

=
∑
i,j

[dDG(X ′)(G−1
D (dDG(Y ′)(Z′)))]ijT

′
ij (46)

=
∑
i,j,k

wijk(X ′ik[G−1
D (dDG(Y ′)(Z′))]jk +X ′jk[G−1

D (dDG(Y ′)(Z′))]ik)T ′ij

(47)

= 2
∑
i,j,k

wijkX
′
ik[G−1

D (dDG(Y ′)(Z′))]jkT
′
ij (48)

= 2
∑
i,j,k

wijk
wjk

X ′ik[dDG(Y ′)(Z′)]jkT
′
ij (49)

= 2
∑
i,j,k,l

wijkwjkl
wjk

X ′ik(Y ′jlZ
′
kl + Y ′klZ

′
jl)T

′
ij . (50)
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Therefore:

R(X,Y, Z, T ) =
1

w′(1)

∑
i,j,k,l

wijkwjkl
2wjk

(X ′ikY
′
klZ
′
ljT
′
ji +X ′ikZ

′
klY
′
ljT
′
ji (51)

− Y ′ikX ′klZ ′ljT ′ji − Y ′ikZ ′klX ′ljT ′ji).

To get the curvature of gME(u,v), we scale this formula by c = w′(1)
u′(1)v′(1) and

we pull it back via the map u. The coefficients wij = w[1](di, dj) and wijk =
w[2](di, dj , dk) are replaced by the coefficients mij = w[1](u(di), u(dj)) = vij/uij
and mijk = w[2](u(di), u(dj), u(dk)). The vectors X = [Xij ]i,j are replaced
by the vectors dΣu(X) = [uijXij ]i,j . Hence the curvature of ME(u, v) writes
(modulo a permutation of indexes l→ k → j → l):

R
ME(u,v)
Σ (X,Y, Z, T ) =

1

u′(1)v′(1)

∑
i,j,k,l

ρijkl(X
′
ijY
′
jkZ

′
klT
′
li +X ′ijZ

′
jkY

′
klT
′
li (52)

− Y ′ijX ′jkZ ′klT ′li − Y ′ijZ ′jkX ′klT ′li),

where ρijkl =
mijlmjlk

2mjl
uijujkukluli. This expression is symmetric in i ↔ k and

j ↔ l but it does not look really symmetric in u ↔ v. Let us check that it is
though. If dj 6= dl, we can write:

ρijkl =
1

2

ujl
vjl

1

u(dj)− u(dl)
(mij −mil)

1

u(dj)− u(dl)
(mkj −mkl)uijujkukluli

=
1

2(dj − dl)2

1

ujlvjl
(vijuil − uijvil)(vkjukl − ukjvkl)

=
(vij(uil − uij)− uij(vil − vij))(vkj(ukl − ukj)− ukj(vkl − vkj))

2(dj − dl)2ujlvjl

=
1

2ujlvjl
(uijvijl − vijuijl)(ujkvjkl − vjkujkl).

Since the two expressions of ρijkl are continuous in (di, dj , dk, dl), they also
coincide when dj = dl. The last expression is clearly symmetric in u↔ v.
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The curvature at Σ = D = In follows from the following computations:

uij = u[1](di, dj) = u′(1), (53)

mij =
vij
uij

=
v′(1)

u′(1)
, (54)

mijk = w[2](u(di), u(dj), u(dk)) =
1

2
w′′(u(1)), (55)

w′ = (v′ ◦ u−1)× (u−1)′ =
v ◦ u−1

u′ ◦ u−1
, (56)

w′ ◦ u =
v′

u′
, (57)

(w′′ ◦ u)× u′ =
v′′u′ − v′u′′

u′2
, (58)

mijk =

(
v′′u′ − u′v′′

2u′3

)
(1), (59)

ρijkl =
mijlmjlk

2mjl
uijujkukluli (60)

=
u′(1)

2v′(1)

(
v′′(1)u′(1)− u′(1)v′′(1)

2u′(1)
3

)2

u′(1)
4

(61)

=
1

8u′(1)v′(1)
(v′′(1)u′(1)− v′(1)u′′(1))2 (62)

=
1

8u′(1)v′(1)
u′(1)2v′(1)2

(
v′′(1)

v′(1)
− u′′(1)

u′(1)

)2

(63)

=
1

8
u′(1)v′(1) ((ln |v′|)′ − (ln |u′|)′)2

(1) (64)

=
1

8
u′(1)v′(1)

[(
ln

∣∣∣∣ v′u′
∣∣∣∣)′ (1)

]2

. (65)

Hence, according to Formula (52), the curvature at In writes:

R
ME(u,v)
In

(X,Y, Z, T ) =
1

8

[(
ln

∣∣∣∣ v′u′
∣∣∣∣)′ (1)

]2

tr(XY ZT +XZY T − Y XZT − Y ZXT )

(66)

=
1

8

[(
ln

∣∣∣∣ v′u′
∣∣∣∣)′ (1)

]2

tr(XY ZT − Y XZT ), (67)

because the second and fourth terms cancel. Recognizing the curvature of the
affine-invariant RA

In
(X,Y, Z, T ) = 1

2 tr(XY ZT − Y XZT ) metric [1, 35, 23], we
can finally write:

R
ME(u,v)
In

(X,Y, Z, T ) =
1

4

[(
ln

∣∣∣∣ v′u′
∣∣∣∣)′ (1)

]2

RA
In(X,Y, Z, T ). (68)
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Proof of Theorem 5.2 (Riemannian operations of Mixed-Power-Euclidean metrics).
We compute the geodesics, the logarithm map and the distance between com-
muting matrices. We show that the geodesics of the Mixed-Power-Euclidean
metrics MPE(α, β) with α+β 6= 0 when the base point Σ ∈ SPD(n) and the ini-
tial tangent vector X ∈ TΣSPD(n) commute is γ(t) = (Σα0 + t α0 Σα0−1X)1/p0

where α0 = α+β
2 6= 0. Once this is shown, the formulae of the logarithm and

the distance are obvious so we omit the proofs. As the metric is O(n)-invariant,
we can assume that Σ and X are diagonal matrices.

First, we assume that α, β 6= 0. As MPE(α, β) is a balanced metric, the
Levi-Civita connection is ∇MPE(α,β) = 1

2 (pow∗α∇E + pow∗β∇E) where ∇E is the
Euclidean connection on symmetric matrices. Since for any curve γ on SPD(n),
we have:

(pow∗α∇E)γ′(t)γ
′ = (dγ(t)powα)−1(∇E

(dγ(t)powα)(γ′(t))dpowα(γ′)) (69)

= (dγ(t)powα)−1(∇E
(γα)′(t)(γ

α)′) (70)

= (dγ(t)powα)−1((γα)′′(t)), (71)

the geodesic equation ∇MPE(α,β)
γ′ γ′ = 0 rewrites:

(dγ(t)powα)−1((γα)′′(t)) + (dγ(t)powβ)−1((γβ)′′(t)) = 0. (72)

We compute:

γ(t)α = Σα(In + t α0 Σ−1X)
α
α0 , (73)

(γα)′(t) = αΣα−1X(In + t α0 Σ−1X)
α
α0
−1, (74)

(γα)′′(t) = α(α− α0) Σα−2X2(In + t α0 Σ−1X)
α
α0
−2, (75)

(dγ(t)powα)−1((γα)′′(t)) =
1

α
γ(t)1−α(γα)′′(t) (76)

=
α− β

2
Σ−1X2(In + t α0 Σ−1X)

1
α0
−2. (77)

As this expression is skew-symmetric in (α, β), the curve γ satisfies the geodesic
equation.

Second, we assume that α 6= 0 and β = 0. Similarly, the Levi-Civita con-
nection is ∇MPE(α,β) = 1

2 (pow∗α∇E + log∗∇E). Hence the geodesic equation is
analogously (dγ(t)powα)−1((γα)′′(t)) + (dγ(t) log)−1((log γ)′′(t) = 0. Thus:

log γ(t) = log Σ +
1

α0
log(In + t α0 Σ−1X), (78)

(log γ)′(t) = Σ−1X(In + t α0 Σ−1X)−1, (79)

(log γ)′′(t) = −α0 Σ−2X2(In + t α0 Σ−1X)−2, (80)

(dγ(t) log)−1((log γ)′′(t)) = γ(t)(log γ)′′(t) (81)

= −α
2

Σ−1X2(In + t α0 Σ−1X)
1
α0
−2. (82)

This expression cancels Equation (77) with β = 0 so the curve γ is the geodesic.
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