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Abstract 28 

Radiocarbon dates and marine tephra suggest that the upper 10 m of core MD99-2274, 29 

off North Iceland, extends from ~0 to ~65 ka BP.  A multi-proxy sediment and biomarker 30 

study at a millennial-scale resolution is used to derive a paleoclimate scenario for this 31 

area of the southwestern Nordic Seas, which during the Holocene had intermittent 32 

excursions of icebergs and a seasonal cover of drifting sea ice across the site.  The 33 

sortable silt mean size (S̅S̅) suggests a bottom current (1000 m depth) flow speed 34 

maximum to minimum range of ~8 cm/s during Marine Isotope Stages 2 to 3, but the data 35 

are unreliable for the Holocene.  Slow-down in flow speeds may be associated with 36 

massive ice and water discharges linked to the Hudson Strait ice stream (H-events) and to 37 

melt of icebergs from Greenland in the Nordic seas where convection would have been 38 

suppressed. Five pulses of sediment with a distinct felsic component are associated with 39 

iceberg transport from E/NE Greenland.  Sea ice, open water and sea surface temperature 40 

(SST) biomarker proxies (i.e. IP25, HBI III, brassicasterol and alkenones) all point 41 

towards near-perennial sea ice cover during MIS 3 and 2, rather than seasonal sea ice or 42 

open water conditions. Indeed, our biomarker and sediment data require that the seas 43 

north of Iceland experienced a nearly continuous cover of sea ice, together with icebergs 44 

calved from ice stream termini, which drifted southward. The cross-correlation of the 45 

quartz % records between MD99-2274 and the well-dated core PS2644 in Blosseville 46 

Basin indicates significant coherence in the records at a multi-millennial (~8 ky) 47 

timescale. A transition to open ocean conditions is evident from the early Holocene 48 

onwards, albeit with the occurrence of some drift ice and icebergs.  49 

  50 
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1. Introduction 51 
 52 

1.1 Aims of study  53 

In order to gain some understanding of the complex marine environments that prevailed 54 

during the Late Quaternary we need to employ a multi-proxy approach that not only 55 

characterizes ocean surface and bottom water conditions, but also provides direct 56 

measurement of glacial influences on sediment supply.  Several studies have been 57 

reported from the North Iceland Shelf (Fig. 1) that document late glacial/Holocene 58 

records (e.g. Andrews et al., 2018; McCave and Andrews, 2019a & b; Sicre et al., 2008; 59 

Knudsen et al., 2003) but there are only limited references to conditions during Marine 60 

Isotope Stages (MIS) 2, 3 or 4.   Therefore, with the primary goal of establishing a 61 

framework for environmental conditions in this sector of the Iceland Sea from MIS 2 to 62 

MIS 4, we selected a previously unstudied core, MD99-2274 (Labeyrie et al., 2003) (Fig. 63 

1), and sampled the upper 10 m. MD99-2274 (henceforth #2274) is a 10-cm diameter 26 64 

m Calypso core retrieved from 67.582°N and 17.073°W at 1000 m water depth (Labeyrie 65 

et al., 2003) during the IMAGES V cruise aboard the French RV Marion Dufresne. For 66 

further context, we note that the core site is located 200 km east of the well-studied core 67 

PS2644 (van Kreveld et al., 2000; Voelker, 1999; Voelker and Haflidason, 2015) and 163 68 

km from core P57-7 (Sejrup et al., 1989) (Table 1, Fig. 1A). The main questions we 69 

posed were: 1) what is an appropriate depth/age model, 2) is there evidence for either 70 

pervasive sea ice or an ice shelf (Boers et al., 2018; Dokken et al., 2013; Petersen et al., 71 

2013), which have been called for to explain D-O cycles, 3) what were sea surface 72 

temperatures (SSTs), and 4) are there substantial changes in grain-size and mineral 73 

composition that can be associated with changes in bottom current flow speed and 74 
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changes in glacial sediment provenance? Given the location of the core (Fig. 1A) we 75 

were particularly interested in whether we could discriminate between glacial sediments 76 

derived from Iceland versus those from E/NE Greenland. 77 

1.2 Present-day oceanography 78 

The Iceland and Greenland Seas (Fig. 1A) are key areas for the formation of dense  79 

overflow waters (Brakstad et al., 2019) that flow south through sills in the Scotland-80 

Greenland Ridge (Fig. 1C).  The North Icelandic Jet (NIJ) flows southwestward along the 81 

slope below ~1000 m (Fig. 1C) with a mean speed of 9.3 m ± 2.7m/sec towards Denmark 82 

Strait (Mauritzen, 1996; Pickart et al., 2005) where it exits to form a major component of 83 

North Atlantic Deep Water “….and points to the Iceland Sea as an important place for 84 

this water mass formation.” (Jonsson and Valdimarsson, 2004). The study site lies in a 85 

sensitive area with the surface flow being the East Icelandic Current (EIC), which brings 86 

cold and relatively fresh surface water as a spin-off from the East Greenland Current 87 

(EGC), whereas the North Icelandic Irminger Current (NIIC), sourced from the southern 88 

warmer and saltier waters of the North Atlantic Drift (Stefansson, 1962), continues as an 89 

eastward flow over the inner North Iceland Shelf (NIC) (Fig. 1C).  90 

 Sea ice in the form of drift ice has been noted to reach the area in modern times, 91 

although the average position of the sea ice edge (30% sea ice cover by area) lies north of 92 

our site (Divine and Dick, 2006) (Fig. 1C). Thirty years of observations on the presence 93 

of icebergs (Andrews et al., 2019), their Fig. 7A) indicate that icebergs from E/NE 94 

Greenland drift across the site.    95 

 96 

1.3 Background to study region 97 
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Stein and colleagues (Nam et al., 1995; Stein, 2008; Stein et al., 1996) studied a 98 

comprehensive suite of cores on the Scoresby Sund Trough Mouth Fan (Fig. 1A, TMF) 99 

and reported both ice-rafted debris (IRD) and 18O on the near-surface planktonic 100 

foraminifera Neoglobquadrina pachyderma (Table 1). The cores included discrete IRD 101 

peaks (counts 10 cm3 > 500 µm), which they suggested may have been coeval with the 102 

massive ice and water discharges of the Hudson Strait Heinrich (HS H-) events (Andrews 103 

and Voelker, 2018b; Heinrich, 1988; Hemming, 2004; Hesse 2016). However, whether 104 

the response of the Greenland, Iceland, and European ice sheets was synchronous or 105 

asynchronous with the Laurentide Ice Sheet collapse events still requires clarification 106 

(Dowdeswell et al., 1999; Elliot et al., 2001). Verplanck et al (2009) provided radiogenic 107 

isotope data fingerprinting sediment sources from two cores on the Scoresby Sund TMF 108 

(O'Cofaigh et al., 2002) (JR51-GC31 and -GC32) and another core (PS62/017-4) from 109 

the Blosseville Basin (Milo et al., 2005) (Table 1). Stein et al. (1996) and Verplanck et al. 110 

(2009) described events in cores PS1730 and PS62/017-4 (Table 1, Fig. 1) that they 111 

considered coeval with the HS H-events.  Andrews and Voelker (2018) have argued that 112 

the use of the term “Heinrich events” for locations such as the Nordic Seas is not 113 

appropriate and should be modified. For example, the IRD-rich layer in PS2644 114 

correlated with HS H-2 (Voelker et al., 1998) is now referred to as PS2644 IRD#2 115 

(Andrews and Voelker, 2018). In our study, events that might correlate with HS H-events 116 

will be termed #2274-IRD#.    117 

There is no firm agreement on the extent and duration of sea ice cover in the 118 

Nordic Seas during MIS 2 and MIS 3. The CLIMAP data showed an extensive cover 119 

across the Nordic Seas (Ruddiman and McIntyre, 1981) whereas Sarnthein et al. (2003) 120 
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argue that the Nordic Seas during MIS 2 were “..largely ice free” during the summer 121 

months. The presence of an ice shelf buttressing the East Greenland ice streams has also 122 

triggered a debate especially as to a possible answer to the cause of D-O oscillations 123 

(Pettersen et al., 2013; van Kreveld et al., 2000). However, other researchers working at 124 

sites in the eastern Nordic Seas have rather focused on the role of sea ice (Dokken et al., 125 

2013; Hoff et al., 2016) and changes in the structure of the water column, and concluded 126 

that during Greenland interstadials in MIS 3, sea ice was limited in extent and duration.  127 

The presence of thick, pervasive sea ice could potentially limit the export of 128 

icebergs from E and NE Greenland Ice Streams (Reeh et al., 1999), although the 129 

sediment records from numerous sediment cores retrieved from the floor of the Arctic 130 

Ocean clearly document that iceberg rafting occurred throughout the Pleistocene (Clark, 131 

1990a,b; Stein, 2008; Phillips and Grantz, 2001; Stokes et al., 2005), with some evidence 132 

that the timing of events in some cores were similar to those for HS H-events.  For 133 

example, IRD peaks in cores from the Arctic Ocean were linked to the McClure Ice 134 

Stream in the NW sector of the Laurentide Ice Sheet and dated at 12.9, 15.6, ~22, and 30 135 

ka BP (Stokes et al., 2005). Iceberg drift is primarily a function of the integrated current 136 

direction and speed over depth, plus a component associated with wind forcing on the 137 

exposed “sail” (Bigg, 2016). In many ways, sea ice protects icebergs as it inhibits wave 138 

action, which is the greatest cause of iceberg disintegration (Bigg, 2016; Venkatesh et al., 139 

1994).    140 

1.4 Ice sheet extent MIS 1 to MIS 3 141 

#2274 lies only 60 km north of the LGM limit of the Iceland Ice Sheet (IIS) (Fig. 1) 142 

(Andrews and Helgadottir, 2003; Patton et al., 2017) with the onset of retreat associated 143 
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with calibrated radiocarbon dates of between 14 and 15 ka BP, depending on the ocean 144 

reservoir correction (Andrews et al., 2018; Andrews and Helgadottir, 2003; Knudsen et 145 

al., 2003). Retreat from the maximum position was rapid (Andrews et al., 2018; Norðdahl 146 

and Ingolfsson, 2015; Patton et al., 2017), and the ice sheet was at or behind the present-147 

day coast by the time of the deposition of the Vedde tephra ~12.2 ka BP (Lohne et al., 148 

2013). Little detail is known about the history of this ice sheet during MIS 3 (e.g. 149 

Andrews et al., 2017).   Moles et al. (2019) argued that the North Atlantic Ash Zone II 150 

(NAAZII) tephra, dated ca 54 ka BP (Austin and Hibbert, 2012), was erupted under >400 151 

m of ice, thus indicating a reasonably extensive IIS during the Greenland 18O stadial 15.2 152 

(Moles et al., 2019; Rasmussen et al., 2014), but no specific information is currently 153 

available on the MIS 3 history of the ice sheet. 154 

 The Greenland Ice Sheet (GIS) extended to the shelf break during the LGM 155 

(Funder et al., 2011b; Vasskog et al., 2015) but little is known about its history during 156 

MIS 3 or MIS 4. Judging from the delivery of quartz-rich sediments to cores along 157 

Denmark Strait, especially PS2644 and MD99-2323 (Andrews and Vogt, 2020a), it is 158 

probable that the ice also reached a similar position at these times. Peterson et al. (2013) 159 

suggested that an ice shelf may have extended out from the East Greenland Shelf across 160 

Blosseville Basin, although the sedimentary evidence for this is scanty (Andrews and 161 

Vogt, 2020a). 162 

 163 

1.5 Bedrock Geology and source signatures 164 

In terms of the mineral composition of #2274 sediments, the bedrock in glacial source 165 

areas consists primarily of either mafic (basalt) or felsic (granites/gneisses/sandstones), 166 
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although finer source identification is possible (Andrews and Vogt, 2014; 2020) (Fig. 167 

1A).  Further, Andrews and Vogt (2014) demonstrated that the sediment mineral 168 

signature of sediments offshore from the Caledonian Fold Belt was dominated by high 169 

wt% of quartz, illite, and muscovite. Detrital carbonate sediments derived from the 170 

Paleozoic outcrops of N Greenland and the Canadian Arctic are also recognized by color 171 

and mineralogy.  However, radiogenic isotopes (White et al., 2016; Verplanck et al., 172 

2009) allow more age-related differentiations, which in terms of our region (Fig. 1A and 173 

B), consists of Archaean, Paleoproterozoic, Caledonian Fold Belt, and Tertiary volcanics 174 

(Henriksen, 2008).  175 

2. Environmental proxies and age model 176 

2.1 Data methods 177 

 178 
The proxies used in this paper are the sea ice biomarkers IP25 and HBI II (Belt et al., 179 

2007; Belt and Müller, 2013; Belt, 2018), brassicasterol and HBI III as indicators of open 180 

water primary production (Volkman, 1986; Belt et al., 2015), alkenones (for SST) (Sicre 181 

et al., 2008a), % C37:4 alkenone to identify polar surface waters, grain-size indicators of 182 

bottom flow and deposition (McCave and Andrews, 2019a, b; McCave et al., 2017), 183 

magnetic susceptibility, and quantitative X-ray diffraction estimates of mineral wt% 184 

(Andrews et al., 2017; Andrews and Vogt, 2014). The X-ray diffraction data for #2274 185 

are available (Andrews and Vogt, 2020b)  The full details of these methods are included 186 

as Supplementary Material. 187 

 188 

2.2 Depth/age model  189 
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The age model is based on radiocarbon dates and the occurrence of tephras (Table 2). 190 

There are significant problems associated with obtaining and interpreting calibrated ages 191 

because of the uncertainty of the ocean reservoir correction (ORC), which has varied 192 

spatially and temporally, and might be as much as 1000 yr (Andrews et al., 2018; Skinner 193 

et al., 2019; Voelker, 1999;  Voelker et al., 1998). Three radiocarbon dates were obtained 194 

on the near-surface planktonic foraminifera Neogloboquadrina pachyderma and the other 195 

on lustrous shell fragments. Most tephras older than the Borrobol (ca 14.5 ka BP) (Lind 196 

et al., 2016; Matthews et al., 2011) are dated by reference to GIS cores, which themselves 197 

are based on a variety of assumptions and whose error increases with the estimated age 198 

(Boers et al., 2017). The qXRD data (Andrews et al., 2013; 2018) suggest the presence of 199 

high wt% of volcanic glass in two cores on the Iceland Shelf that might be coeval with 200 

the Vedde and NAAZII tephras (Brendryen et al., 2011; Lohne et al., 2013). The tephra 201 

bed at 607 cm in #2274 was identified by Haflidasson (person. commun. 2018) as being 202 

similar to FMAZ IV dated at ~47.12 ka BP (Davies et al., 2008; Rasmussen et al., 2003; 203 

Voelker and Haflidason, 2015) and that date is used in our depth/age models (see 204 

Supplementary Material). Other discrete layers of black basaltic glass were noted in the 205 

shipboard log at 99, 127.5, 717, and 740 cm (Labeyrie et al., 2003, p 477), and age 206 

estimates were obtained from our depth/age model (see later). 207 

We used the Bayesian radiocarbon calibration program “Bacon” (Blaauw and 208 

Christen, 2005) to construct depth/age models, but we also acknowledge the many 209 

problems associated with establishing accurate depth/age models (Telford et al., 2003; 210 

Trachsel and Telford, 2017). The first model is based solely on the available 14C dates 211 

and the 607 cm tephra (Table 2A and B), while the second one is based on an assumed 212 
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age estimate for the core top of 500 ± 500 (i.e. little sediment loss) and the inferred 213 

presence of the Vedde and NAAZII tephras.  Given the uncertainty in the OCR, we used 214 

a R = 0. In practice, there is relatively little difference in the median age estimates (Fig. 215 

2A). The average sediment accumulation rate (SAR) is 68 yr/cm or 14.7 cm/ky, thus our 216 

10 cm sampling density permits millennial-scale evaluations, with an average spacing 217 

between samples of 0.5 cal ky. Remarkably, for MD cores of this vintage (1999), the 218 

upper part of the core shows no evidence of piston-induced stretching (Skinner and 219 

McCave, 2003). However, the spread between minimum and maximum age estimates is 220 

often considerable given the relative paucity of dated levels, and the Bayesian approach 221 

results in an age estimate for the core top of 3600 yr BP, although the estimated date of 222 

500 ± 500 yr BP finds some support in our data. The estimated ages for the logged tephra 223 

layers are: ~11, 13.2, 53, and 56 ka BP. A possible age for the 99 cm basaltic tephra is the 224 

10.2 ka BP Saksunarvatn tephra (Lohne et al., 2013), which is widespread on the north 225 

Iceland Shelf (Krisjansdottir et al., 2007; Eiriksson and Knudson, 2002). All our 226 

subsequent data have been converted to a common depth/age model using the data in 227 

Table 2B; thus, robust inter-proxy comparisons can be made.  To ensure that we have not 228 

forced our data into an existing framework we have not tuned our model to other records 229 

(Blaauw, 2012). 230 

 We have also obtained radiocarbon dates on several Vema cores that were taken 231 

to the north of Iceland and #2274 (Fig. 1; Table 3) (Manley and Jennings, 1996). The 232 

calibrated radiocarbon dates range from ~13 to > 49 ka BP (R = 0) and were obtained 233 

on relatively large samples of N. pachyderma (Table 3). Several tephras were noted in the 234 

core description (Suppl. Data), thus indicating that conditions allowed for the deposition 235 
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of discrete tephras. The dates from these cores also provide additional information on the 236 

presence of significant numbers of the planktonic foraminifera N. pachyderma (Greco et 237 

al., 2019) and hence inferences about sea ice cover and light conditions.     238 

3. Results 239 
 240 

3.1 Lithology and Grain-size 241 

The core log of core #2274  (Labeyrie et al., 2003. p. 477) described the sediment as 242 

being principally mottled silty clay with colors ranging between 2.5Y4/2 to 5Y4/1.  243 

Visible ice-rafted clasts occur but are not common. The grain-size measurements were 244 

undertaken on sample splits from the qXRD samples and only 30 samples were 245 

processed, resulting in a coarse resolution data set (on average one sample every 2300 246 

yr). The sediments vary between a very coarse to a fine silt with average grain-sizes 247 

varying between 54.3 to 6.05 µm.  Sand > 240 µm is considered to be ice-rafted (McCave 248 

and Andrews, 2019a) and occurs in low % throughout the core, except for two notably 249 

coarser intervals with IRD240 > 5%, (Fig. 3).   250 

We have also undertaken an analysis of the sortable silt mean size (S̅S̅) and SS% 251 

in the 63-10 µm fractions (McCave et al., 1995). The correlation coefficient between 252 

these two variables is r = 0.804 indicating, relative to other cores (McCave and Andrews, 253 

2019a,b), a somewhat noisy correlation, but a generally current-sorted signal 254 

(Supplementary Fig. 1). Computation of the running correlation between SS% and S̅S̅ 255 

yields high average values (r >0.9) between ~11 and 42 ka BP but values unacceptable 256 

for flow speed inference occur in the Holocene and during brief interval ~57 ka BP ( Fig. 257 

3).  Variations in the flow speed of bottom currents (Fig. 1C) in this region reflect 258 

changes in the vigour of the ocean overturning system because the NIJ feeds into the 259 
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Denmark Strait overflow, a key starting point for the North Atlantic western Boundary 260 

Undercurrent. 261 

The overall range (minimum-maximum) in flow speed indicated by this record is 262 

~8 cm/s. Calibration of the sortable silt proxy yields a sensitivity (cm s-1/μm) rather than 263 

an absolute speed-size relationship (McCave et al., 2017). In favourable circumstances 264 

actual speeds may be estimated by matching core-top S̅S̅ data to nearby current meter 265 

measurements and plotting the differences downcore. Unfortunately, because the 266 

Holocene data are unreliable as a speed record, we cannot relate this to the present nearby 267 

flow speed measurements of 9.3 cm/sec (Jonsson, 2004). Nevertheless, low speeds 268 

correspond to HS H 1 (~15 ka), 4 (~40 ka), and 6 (~60 ka) (Fig. 3) as expected from 269 

previous work on the impact of Heinrich and other cold events on N. Atlantic circulation 270 

(e.g. Kleiven et al., 2011), on the basis of which, speeds of <5 cm/s are probable. 271 

 272 

3.2 Mineral composition   273 

On Figure 4, we plot the changes in the weight % of key minerals as determined by 274 

qXRD as well as the ratio quartz/pyroxene, which we use as a measure of felsic/mafic 275 

bedrock (as opposed to quartz/plagioclase which was used by Moros et al. (2004)).  The 276 

quartz wt% in a surface grab from this site is ~5% (Andrews and Eberl, 2007), and the 277 

median for the whole record is 5.3 % with a maximum of 16.8 %.  The magnetic 278 

susceptibility record for #2274 (Fig. 2A) is clearly inversely associated with the 279 

variations in quartz (Fig. 2B), which, together with the K-feldspars, are diamagnetic 280 

minerals (Robinson et al., 1995; Watkins and Maher, 2003). A similar inverse 281 

relationship was noted in other cores from the area (Andrews and Vogt, 2020a).  Hence 282 
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the magnetic susceptibility fluctuations support our interpretation that there are 283 

substantial variations in the inputs of felsic- versus mafic-rich sediments.   284 

The Holocene record mimics that from many sites on the North Icelandic Shelf 285 

(NIS) in showing an increase in quartz toward the present-day (Andrews et al., 2019). 286 

Quartz and pyroxene have an antiphase relationship (r2 = 0.47), which in part is related to 287 

the mineral data summing to 100% (i.e. a closed array), and which provides some 288 

constraints on the interpretation (Aitchison, 1986; Chayes, 1971).  There are five 289 

sustained peaks in the quartz wt % (Fig. 4), and K-feldspar (not shown, K-feldspar values 290 

track those of quartz (Andrews and Vogt, 2020a)) are therefore not included in this 291 

figure), which we interpret as indicating the influx of sediment from NE Greenland and 292 

possibly farther afield from Canada or Fennoscandia. Of these possible mechanisms, 293 

icebergs alone carry basal and englacial debris that includes all size fractions from 294 

cobbles to clay (> 1 µm). The variations in quartz are frequently matched by the sum of 295 

calcite and dolomite (carbonate) (Fig. 4) (r2 = 0.13, p <0.0001) although the correlations 296 

are much more significant for dolomite (r2 = 0.22) than calcite (r2 = 0.07). This probably 297 

represents transport of glacially derived material from the carbonate bedrock of NE and 298 

N Greenland and/or the Canadian Arctic Islands and Channels (Darby and Zimmerman, 299 

2008; Lakeman et al., 2018; Phillips and Grantz, 2001). The estimated ages for the 5 300 

peaks are 14.4, 31.5, 40, 54.7, and 61.8 ka BP (Fig. 4) with a possible smaller episode 301 

~22.8 ka BP. These age estimates are somewhat similar to the HS H-events (Andrews 302 

and Voelker, 2018a; Heinrich, 1988; Hemming, 2004) (see Fig. 3) but their duration are 303 

longer than the <1 ky episodes of detrital carbonate deposition associated with the HS H-304 

events (Andrews and Voelker, 2018a).  305 
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Previous work on sediment sources in this area (Verplanck et al., 2009) provide 306 

temporally limited but critical information using radiogenic isotopes on the < or > 63µm 307 

fractions.  Debris flow from the two Scoresby Sund TMF sites (JR51-GC31,-32, Table 1, 308 

Fig. 1B) lay along the 1.7 Ga Paleoproterozoic isochron; the samples contained abundant 309 

quartz and lesser amounts of basalt (Verplanck et al., 2009, p.53).  However, the 310 

sediments in the Blosseville Basin (core 17-4, Fig. 1A, Table 1), some 150 km 311 

downstream (Fig. 1A), and considered to be coeval with HS H events-1, -2, and -3, all 312 

cluster along the 0.5 Ga isochron (Calendonide bedrock, that outcrops on the eastern edge 313 

of NE Greenland north of Scoresby Sund (Fig. 1B)). The same isotopic signature 314 

characterized the non-HS H sediments in this core. Pb systematics indicate that the 315 

Holocene sediment samples at sites 907 (Table 1) and JR51-GC28 are dominated by the 316 

0.5 Ga Calendonides (White et al., 2016). Given the sediment SedUnMix results (Fig. 5) 317 

and the reported radiogenic isotopic data (Verplanck et. al., 2009; White et al., 2016), the 318 

variations in quartz are most probably associated with sediment discharge events from 319 

glacial erosion and transport in ice streams flowing through the numerous fiords north of 320 

Scoresby Sund and primarily within the Caledonian Fold Belt outcrop (Evans et al., 2002, 321 

2009; Stein, 2008).         322 

The SedUnMix analysis included sediments from NE Greenland (Calendoides, 323 

~73N; Andrews et al., 2016), E Greenland (basalt), and Iceland. The analysis of possible 324 

bedrock sources for the #2274 compositional changes indicated (as might be expected 325 

given the bedrock geology of E and NE Greenland, and Iceland) that the NE Greenland 326 

source had a granite and gneissic composition, whereas E Greenland and Iceland were 327 

linked to basalt and also dolerite (Brooks and Nielsen, 1982; Henriksen, 2008; Higgins et 328 
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al., 2008; Kristjansson et al., 1979). The results (Fig. 5) indicate that felsic-rich sediments 329 

from NE Greenland or farther afield (Arctic Canada, Fennoscandia) (Verplanck et al., 330 

2009) were deposited in a series of events that mimic the influx of quartz to the site (Figs. 331 

2B and 4); the correlation between the NE Greenland Calendonides source estimates in 332 

#2274 and the quartz wt% explains 79% of the variance. The average “unaccounted” or 333 

“unexplained” composition averaged 20 ± 5 % and degree of fit or average absolute bias 334 

is 2.3 ± 0.4 wt% indicating that the input mineral source regions provide a good fit to the 335 

#2274 mineral compositions. Figure 5 highlights two periods when the mineral 336 

composition indicates little deposition of sediment that could be ascribed to a felsic 337 

source centered around 20 and 57 ka BP, the latter being a time of substantial deposition 338 

of tephra at this site and also a time when glacial ice covered at least some of Iceland 339 

(Moles et al., 2019). Source estimates from E. Greenland (sites seaward of the early 340 

Tertiary basalt outcrop on the Geikie Plateau) and SW Iceland resulted in nearly identical 341 

patterns over the last ~65 ka BP (Fig. 5), but the results from considering Icelandic basal 342 

glacial marine diamictons (Dmm) as a source are different. The reasons for these two 343 

differing estimates are presently unclear.  344 

The provenance time-series thus suggests that we can identify four episodes in the 345 

arrival of foreign sourced sediments; 1) from ~65 to 38 ka BP when distinct pulses of NE 346 

Greenland sourced sediments arrived; 2) 38 to 17 ka BP when there was an overall 347 

decrease in this source with virtually no quartz noted ~20 ka BP; 3) a large pulse of these 348 

sediments centered ~ 15 ka BP; and 4) the last 10 ka or so that shows a steady increase in 349 

this source. This latter event is also noted in MD99-2269 (Fig. 7) and is matched by 350 

changes in the sea ice biomarker IP25 (Cabedo-Sanz et al., 2016). 351 
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3.3 Biomarkers  352 

The sea ice biomarkers IP25 and HBI II were absent or below the limit of detection in the 353 

majority of the sediment sections analyzed with only a few exceptions (Fig. 6). Of the 354 

two, HBI II was always more abundant, consistent with findings from previous studies 355 

from the study region and elsewhere in the Arctic (e.g. Massé et al., 2011; Xiao et al., 356 

2013; Bai et al., 2019). In some cases, only HBI II could be identified and quantified, 357 

with IP25 likely also present in such horizons but below the detection limit.  358 

Alkenones and brassicasterol were found at very low concentrations in glacial 359 

sediments contrasting with higher abundances in Holocene sediments. Further, the open 360 

water biomarker HBI III was only detected in Holocene sediments (data not shown). 361 

While alkenone-SSTs ranged from 7 to 9°C during the Holocene, they are unexpectedly 362 

high in the glacial portion of the record, spanning from 8 to 16°C.  363 

 364 

4. Discussion 365 

4.1 Icebergs and IRD during MIS 3 and MIS 2 366 

There is no general theory about the association of sea ice and icebergs and there is no 367 

observational census of the icebergs being transported in the EGC as there is for the 368 

Labrador Shelf off Newfoundland, apart from a 30-yr count of icebergs on the Iceland 369 

shelves (Jónsdóttir in Andrews et al., 2019).   However, Cabedo-Sanz et al. (2016) and 370 

Darby et al. (2017) showed that Holocene variations in the wt% of quartz and the sea ice 371 

biomarker IP25 co-varied in cores to the west and south of #2274, yet this was not the 372 

case at #2274 during MIS 2 and MIS 3 (Figs. 4 and 6).  In N Greenland, semi-permanent 373 

sea-ice conditions prevail today and did so intermittently during the Holocene (Funder et 374 
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al., 2011a) and it is reasonable to assume that sea-ice would have been more extensive 375 

during MIS 2 and MIS 3 when the GIS may have reached the shelf break.  However, 376 

cosmogenic dates pertaining to the extent of the Northeast Greenland Ice Stream at 377 

~78°N (Larsen et al., 2018) have been used to argue that this ice stream was behind its 378 

present margin “…41-26 ka.”    379 

Several authors have argued for the presence of an ice shelf fringing the E/NE 380 

GIS (Boers et al., 2018; Petersen et al., 2013). However, sediments recovered from 381 

beneath ice shelves are invariably fine-grained and lack ice-rafted debris (Domack et al., 382 

1999; Jennings et al., 2019; McKay et al., 2016), whereas the sediments from the 383 

Scoresby Sund TMF (Fig. 1) and margin contain clear IRD (Stein et al., 1996) (Fig. 5; 384 

see also Table 3).  Radiocarbon dates in Stein et al., (1996a) were based on 2000 N. 385 

pachyderma specimens per sample, and the numerous MIS 2 and MIS 3 radiocarbon 386 

dates on N. pachyderma from PS2644 (Sarnthein et al., 2003; Voelker, 1999; Voelker et 387 

al., 1998, 2000) were obtained on 10 mg samples of 800-2300 tests in 1-cm sediment 388 

samples. Although the complete ecology of N. pachyderma is not well known, a study of 389 

plankton hauls (Greco et al., 2019) indicates a relationship between sea ice cover and 390 

chlorophyll, hence suggesting that “light or light-dependent processes might influence 391 

the ecology of this species.” In addition, several of these cores have discrete tephra layers 392 

indicating rapid accumulation of tephras by particles falling through the water column, 393 

versus a more dispersed occurrence if the tephra was deposited on multi-year sea ice.  394 

Together these data indicate that the sea ice, at times during MIS2 and 3 and probably 395 

seasonally, must have had extensive leads and open-water areas.    396 
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 Stein et al (1996) present detailed IRD data (counts 10 cm3 > 500 µm) from a 397 

series of radiocarbon dated cores on the Scoresby Sund TMF (Fig. 1; PS1726 and 398 

PS1730, Fig. 1B) that reflect delivery of coarse sediments in a discrete series of episodes 399 

(data from www.Pangaea.de). Stein (2008) noted coarse sediment intervals that were 400 

attributed to iceberg-rafting at ~4-15, 16, 17-18, 20-21, and 22-23 ka BP. There are no 401 

mineral composition data for PS1730, but data exist for PS2644, which is 300 km away 402 

(Table 1, Fig. 1B) (Andrews and Vogt, 2020a; Vogt, 2017). A comparison between 403 

PS2644 and #2274 (Fig. 8A) indicates that PS2644, closer to the Scoresby Sund Ice 404 

Stream, has more quartz wt% but there are some notable corresponding peaks in both 405 

series. However, we note that the quartz wt% were obtained via two different but 406 

comparable quantitative methods (Andrews and Vogt, 2020a; Vogt, 2017; Zou, 2016). To 407 

evaluate similarities and differences between these two sites we used cross-wavelet 408 

analysis (Roesch and Schmidbauer, 2018; Hammer et al., 2001) (Fig. 8). The wavelet 409 

analysis of the two quartz records (Fig. 8A) demonstrates both important coeval events as 410 

well as obvious differences. In addition, the overall match between these sites for the 411 

earlier part of the record adds confidence to our age model, and also emphasizes the 412 

important differences between 35 and 65 ka. The reconstructed wavelets for PS2644 413 

show three major pulses of quartz at ~13, 20, and 29 ka BP, and these are matched by 414 

much lower peaks at #2274. Conversely, there are no distinct peaks during MIS 3 in 415 

PS2644 but there are in #2274. The sense of the directional arrows in Figure 8B is that 416 

PS2644 either leads or is in phase with #2274, and there is a hint of a significant shorter 417 

period ~60 ka BP with the two records being anti-phase. The cross-wavelet power 418 

spectrum (Fig. 8B) confirms the presence of a significant zone of coherence extending 419 
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from ~10-34 ka BP with the average cross-wavelet power peaking at ~8 ky (Fig. 8C); this 420 

is of course similar to the periodicity of HS H-events (see Clark et al., 2007) (e.g. Fig. 3) 421 

but lacks the diagnostic carbonate provenance indicators (Andrews and Voelker, 2018). 422 

Possibly because of our 0.6 ky sample spacing (Fig. 8A), there is no obvious D-O signal 423 

in the quartz PS2644 data, whereas it is evident in the  18O  Np data (Suppl. Fig. 3).  The 424 

difference in signals between #2274 and PS2644 during MIS 3 (Fig. 8A) suggests a 425 

change in either the delivery of quartz-rich sediments or a dampening down of sediment 426 

delivery.   427 

          The sortable silt evidence indicates that even at the glacial maximum there was 428 

flow along the slope in the precursor to the NIJ. As this presently heads toward the 429 

Denmark Strait outflow, we suggest that the Nordic Seas acted as a source of deep waters 430 

(probably formed in the east where Atlantic inflow continued (Sarnthein et al, 1994)) that 431 

overflowed to the North Atlantic where they formed a deep water mass (Howe et al., 432 

2016; Keigwin and Swift, 2017). The classical view of Nordic Sea behaviour during cold 433 

periods is that freshwater from melting ice-sheets and -bergs suppresses convection 434 

resulting in a severe reduction or even cessation of the AMOC inflow and overflow (e.g. 435 

a recent model, including consideration of the EGC, analysing this is from Liu et al, 436 

(2018)). However an emerging view is of a slowdown (not cessation) of Nordic Sea 437 

overflows in cold periods (Howe et al., 2016; Keigwin and Swift, 2017). A very recent 438 

view is that ice discharges in the North Pacific precede Heinrich events and may be 439 

implicated as a triggering mechanism (Walczuk et al., 2020).  In the Nordic Seas Atlantic 440 

water inflow persisted throughout the Pleistocene glacials over the Norwegian slope 441 

(Sarnthein et al., 1994; Newton et al., 2018). The evidence here indicates a persistent 442 
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outflow along the N Iceland Slope with reductions during HS H- events 1, 4, and 6. Flow 443 

speed decreases have been noted for both shallow and deep flows in this region during 444 

stadials and glacial intervals of the late and mid-Quaternary (Kleiven et al., 2011; 445 

McCave and Andrews, 2019b). The Younger Dryas often shows speed decreases but 446 

some cores record increased flow (McCave and Andrews, 2019b), as is seen here. These 447 

disparities remain a puzzle. 448 

 449 

4.2 Rationalizing mineralogical and biomarker proxies for sea ice reconstruction 450 

When detected, the concentrations of IP25 and HBI II were mainly much lower than those 451 

reported previously for mid-late Holocene (ca. 6-0 cal. ka) and deglacial (ca. 15-11 ka) 452 

sites from the NIS (Cabedo-Sanz et al., 2016; Xiao et al., 2017). However, the presence 453 

and concentration of IP25 at ca. 3.7 ka aligns with previous data reported from core JR51-454 

GC35 (located 76 km SW of #2274 (Figs.1B and 7; Table 1)) for the mid-Holocene 455 

(Cabedo-Sanz et al., 2016), consistent with the delivery of drift ice across the NIS at that 456 

time (Fig. 7). The otherwise general absence of IP25 and HBI II in #2274 points towards 457 

an environment unfavorable for sea ice diatom growth, namely ice-free conditions or a 458 

setting of near-permanent ice cover. To distinguish between these two scenarios, we 459 

measured three other biomarker types indicative of open water conditions, i.e. 460 

brassicasterol, HBI III and alkenones. In the case of brassicasterol, a phytosterol 461 

characteristic of marine diatoms (Volkman, 1986), concentrations in selected sediments 462 

from #2274 were relatively high in the Holocene section and typically two orders of 463 

magnitude lower in older (>14 ka) intervals, indicative of much lower glacial primary 464 

productivity reflecting near-perennial sea ice cover. Similarly, HBI III, a biomarker 465 
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derived from certain open water diatoms (Belt et al., 2017), was only detected in 466 

Holocene sections (data not shown). Consistent with these findings, concentrations of 467 

alkenones derived from coccolithophorid blooming in mid-late summers were also 468 

substantially lower in the older sections compared to those in the Holocene (Fig. 6). 469 

Further, the relatively high percentage contribution of the tetra-unsaturated alkenone C37:4 470 

prior to the Holocene (mean value 36% compared to 6% for the Holocene) is consistent 471 

with a dominance of polar waters (Sicre et al., 2002; Bendle et al., 2005) potentially 472 

laden with sea ice. Alkenone-derived SST estimates for the Holocene (ca. 7–9°C) are in 473 

line with those reported from other high-resolution studies from the NIS (e.g. Bendle and 474 

Rosell-Melé, 2007; Sicre et al., 2008b; Kristjansdottir et al. 2016). In contrast, SST 475 

estimates prior to the Holocene were somewhat higher (ca. 8–16°C; mean 11.4°C) 476 

although the accuracy of such estimates might be lower than for the Holocene owing to 477 

the relatively high contributions from C37:4 (Bendle and Rosell-Melé, 2004). 478 

Anomalously warm SSTs associated with low alkenone concentrations during glacial 479 

time have been reported in previous studies and attributed to advection of detrital 480 

alkenones (Sicre et al., 2005; Knutz et al., 2011). Such advection by surface currents can 481 

introduce significant bias in regions where there are large productivity and SST gradients, 482 

thereby overprinting any local signal (Bendle and Rosell-Melé, 2004; Conte et al., 2006). 483 

With extremely low alkenone production due to the presence of ice at #2274, transport of 484 

allochthonous alkenones within the IC likely explains the deviation in SSTs towards 485 

seemingly unrealistic warmer values. In any case, the most robust aspects of the 486 

biomarker data point towards near-perennial sea ice cover prior to the Holocene, although 487 

the presence of both phytosterols and alkenones (albeit at low concentrations) indicates 488 
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the occurrence of at least partial open water conditions, potentially restricted to leads or 489 

regions of partial ice melt within otherwise heavily consolidated pack ice. Such 490 

conditions would likely have led to short-term and reduced primary production during 491 

relatively short summer seasons and limited to the near-surface layer due to a strongly-492 

stratified water column resulting from partial ice melt. Both such uppermost surface layer 493 

production conditions in leads and advection of allochthonous alkenones within the IC 494 

would account for the anomalously high glacial SSTs. 495 

Our conclusion of near-perennial sea ice during MIS 3 and MIS 2 is broadly 496 

consistent with outcomes from a recent 120,000 yr reconstruction of sea-ice conditions 497 

for the North Atlantic (Maffezzoli et al., 2019) based on the analysis of enriched bromine 498 

(Brenr) in an ice core from the Renland Ice Cap (RIC) 560 km WNW from #2274 (Figs. 1 499 

and 7 [RIC]). Albeit at a much broader spatial resolution (i.e. 50-85° N), Maffezzoli et al. 500 

(2019) proposed that MIS 3 and MIS 2 experienced a (variable) mix of multi-year and 501 

first-year sea ice, before transitioning to mainly first-year ice and open water conditions 502 

following the termination of the LGM. Interestingly, the greater range of sea ice cover 503 

inferred from the RIC Brenr record is not at all clear in our #2274 record, but is evident in 504 

a biomarker record from the eastern Nordic Seas, with extensive/near-perennial sea ice 505 

cover during stadials and H-events (i.e. comparable to #2274) but ice-free conditions 506 

during interstadials (since ca. 90 ka BP); such differences between marine sites in the 507 

western and eastern Nordic Seas presumably reflects the variable influence of warm 508 

Atlantic water, limited to the eastern Nordic Seas (Hoff et al., 2016). The most prominent 509 

signature of first-year ice in the Brenr records occurred during the Younger Dryas and it is 510 

noteworthy that a transition from permanent to increasing seasonal sea ice at the NIS was 511 
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reported for this interval following a biomarker-based reconstruction of surface 512 

oceanographic conditions from core #2272 (Fig. 1; 7; Xiao et al., 2017). Further, based 513 

on relatively high concentrations of IP25 in MD99-2272 during the Younger Dryas and 514 

the preceding Bølling-Allerød, Xiao et al. (2017) concluded that biomarker production 515 

was likely associated with locally formed first year ice rather than from advected drift 516 

ice, the latter being a feature of modern-day oceanography. In contrast, our new data 517 

from #2274 indicate still near-permanent sea ice cover at this time (Fig. 7). As such, we 518 

interpret the combined ice core and marine sediment core data to suggest that as climate 519 

conditions ameliorated at the end of the LGM, near-permanent sea ice cover transitioned 520 

to first-year seasonal sea ice in the southern part of the region, especially during the 521 

Bølling-Allerød and Younger Dryas, likely due to increasing influence of the IC (Xiao et 522 

al., 2017); however, the spatial extent of this area of first year ice, located southward of 523 

the near-permanent sea ice front that characterizes MIS 3 and MIS 2, remains uncertain at 524 

this point (see Fig. 7 sub-panel). Large-scale sea ice reduction then characterized the 525 

early Holocene (Fig. 7), with a marked increase in all open water primary productivity 526 

biomarker proxies (Fig. 6). Increasing drift ice subsequently became a characteristic of 527 

the NIS from the mid Holocene onwards (Fig. 7; Cabedo-Sanz et al., 2016). 528 

Conclusions 529 

The multi-proxy sediment data from core #2274 130 km off the north Iceland coast 530 

appears at first sight to yield conflicting interpretations depending on whether sediment 531 

mineral composition or biomarker proxy data are being considered; however, these can 532 

be resolved through a more detailed consideration of the mode(s) of iceberg drift and 533 

trajectory through largely consolidated and near-pervasive sea ice. The low- resolution 534 
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sampling for grain-size restricts detailed interpretation but the sediments are mostly 535 

moderately sorted in the silt range allowing a valid record of bottom flow speed. This 536 

shows low flow speeds during H-events 1, 4 and 6 related to decrease in Nordic Sea 537 

overflow, but not cessation, and a peak in the Younger Dryas.  538 

The mineral composition of the < 2 mm grain-size sediment samples shows 5 539 

peaks with wt% of quartz values significantly higher than Holocene values. The 540 

variations in the quartz wt% are also reflected in the estimated contributions of sediment 541 

from Precambrian and Caledonian bedrock sources of NE Greenland. These data require 542 

sediment transport to the #2274 site during MIS 3 and MIS 2. If the transport is by 543 

icebergs then the sea ice cover had to allow icebergs to drift southward, as they do at 544 

present (Figs. 1C, 7). A framework of near-permanent sea ice is confirmed from ultra-low 545 

seasonal sea ice and open water biomarker concentrations. On the other hand, the 546 

occurrence of non-zero concentrations of some phytoplanktic biomarkers, and numbers 547 

of near-surface planktonic foraminfera (Table 3) points to some short-term open water 548 

conditions, either from limited sea ice melt or following the opening of leads; the 549 

presence of drifting icebergs may be significant in this respect (Fig. 7). 550 

An underlying question for HS H-events is whether North Atlantic-wide glacial 551 

marine sediment events were triggered as a response to events in Hudson Strait or 552 

whether the events are part of a shared response to broader regional oceanographic 553 

conditions (e.g. Marcott, et al., 2011; Bassis et al., 2017; Velay-Vitow et al., 554 

2019). Thus, were “coeval” HS H- events on the East Greenland margin (Stein et al., 555 

1996; Andrews et al., 1998; Voelker, 1999), or lagged events (e.g. Baffin Bay: Simon et 556 

al., 2014 Jennings et al., 2018), triggered in response to events in the Hudson Strait ice 557 
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stream?  If our quartz and IRD events (Figs. 3 and 8) are indeed coeval with HS H- 558 

events, this implies that the stability of ice streams on the NE and E Greenland shelf (and 559 

N Iceland) and Hudson Strait may all have been affected by basin-wide subsurface 560 

warming in response to a reduction in the Atlantic meridional overturning circulation 561 

(Shaffer et al., 2004; Clark et al., 2007; Marcott et al., 2011).  562 
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Tables 575 

Table 1 Location of the cores referenced in this study and showing distance from MD99-576 

2274.  Cores located on Fig. 1A and B unless noted as NA.  The last 5 sites are cores that 577 

specify sediment sources based on radiogenic isotopic data (Verplanck et al., 2009; White 578 

et al., 2016).   579 

 580 

Table 2 A and B:  Data for two possible depth/age models for MD99-2274 used in the 581 

Bayesian “Bacon” model—see text.  cc = 0 when date derived from other sources and 582 

does not require calibration; cc = 2 when ocean reservoir correction R = 0 is used 583 

(marine IntelCal 13; Reimer et al., 2013). 584 

 585 

Table 3: Depth/age data and calibrated ages for radiocarbon dates on near-surface 586 

planktonic foraminifera (see Figs. 1 and 5).  Ocean reservoir correction R = 0. 587 

 588 

Suppl. Table: Geochemistry of the tephra layer (see text).  Courtesy Dr. H. Haflidasson) 589 

 590 

Figure Captions 591 

Figure 1: A) location of MD99-2274 and some other cores noted in the paper (Table 1) 592 

(ODV, Schlitzer, 2011).  The shaded areas represent the late glacial maximum (LGM) 593 

extent of the ice sheets north of Denmark Strait; the words “basalt” and “felsic” define 594 

the primary sediment mineral sources and the arrows show probable flow paths for 595 

icebergs. BB = Blosseville Basi; TMF = Scoresby Sund Trough Mouth Fan;  B) 596 

Additional cores referenced in the paper (see also Table 1). Note that “Cald” on this 597 

figure references the southern outcrop of the Greenland Caledonides (Higgins et al., 598 
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2008). SS = Scoresby Sund; RIC = Renland Ice Cap. C) Surface and bottom currents and 599 

historical April sea-ice edge (1870-1920) (dashed white line; Divine and Dick, 2006).  600 

NIIC = North Iceland Irminger Current; EGC = East Greenland Current; EIC = East 601 

Iceland Current; Yellow lines: Bottom Currents DSOW = Denmark Strait Overflow 602 

Water; NIJ = North Iceland Jet., S = Separated East Greenland Current; OC = Iceland Sea 603 

Ocean Convection site (after Harden et al., 2016). 604 

 605 

Figure 2: A) Downcore plot of magnetic susceptibility (SI-5) and Bayesian ((Blaauw and 606 

Christen, 2016) depth age plots for MD99-2274 (see Table 2)---the red curve is for the 607 

initial available data blue curve is for the estimated ages with the addition of an estimated 608 

core top age and the presence of the Vedde and NAAZII tephras (see text).   The Marine 609 

Isotope Stage (MIS) boundaries are indicated.  Location of radiocarbon dates and tephras 610 

are noted. B) Plot of the departures from the median values of magnetic susceptibility 611 

(2.03 * 10-3 SI) and quartz wt% (5.3). Note that the quartz axis is reversed. 612 

 613 

Figure 3:  Variation in the Sortable Silt mean size (3-point 1-2-1 weighted 614 

smoothing with raw data dots) and IRD% >240 μm. Minima in S̅S̅ are seen at the time 615 

of Hudson Strait H events -H6, -H4 and -H1 while -H4, -H2, early -H1 and the YD (-H0) 616 

are marked by elevated IRD %. Blue bars are regions where the data are unreliable 617 

indicators of flow speed according to the S̅S̅ -SS% correlation criterion of McCave and 618 

Andrews, (2019a) 619 

  620 
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Figure 4: Plots of the variations in the weight% of minerals in MD99-2274, the 621 

quartz/pyroxene ratio, and magnetic susceptibility.  The green shaded areas represent 622 

Holocene values, hence points above represent departures. Numbers 1 through 5 identify 623 

IRD quartz peaks.  The vertical blue shading areas represent times when the weight% of 624 

quartz exceeds Holocene limits. 625 

 626 

Figure 5: Plots of the sediment source percentages and the degree of fit (DOF), that is the 627 

average absolute bias in the SedUnMix calculation of (observed mineral wt% - predicted 628 

mineral weight%) for each sample.  The top panel shows the location of measurable 629 

quantities of gravel, and sites of tephra layers and the radiocarbon dates on near-surface 630 

planktonic foraminifera (Table 3).  Numbers on the NE Greenland panel represent the 631 

peaks in that source and the yellow bars locate areas with minimal input from that area. 632 

 633 

Figure 6: Biomarker data (A) IP25 and HBI II concentrations; (B) ∑C37:3+C37:2  alkenone 634 

and brassicasterol concentrations; C)  SST° C estimates and the %C37:4; and D) Weight % 635 

quartz and different coarse sediment fractions. 636 

 637 

Figure 7: Schematic presentation of changes in sea ice and iceberg distribution.  The first 638 

panel (upper left) shows core locations (see Table 1 and Fig. 1A and B) and the adjoining 639 

panel the inferred conditions during MIS 3 and 2 with pervasive sea ice and embedded 640 

icebergs.  The remaining panels show the proposed evolution in the state of sea ice and 641 

iceberg supply (red triangles) during deglaciation into the Holocene (adapted from 642 
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Cabedo-Sanz et al., 2016; Xiao et al., 2017). SS =Scoresby Sound, RIC=Renland Ice 643 

Cap. 644 

 645 

 646 

Figure 8: Analysis of the quartz wt% records from PS2644 (Vogt, 2017) and MD99-2274 647 

at a common 0.6 ky spacing. A) Original quartz data (black line) and the wavelet 648 

reconstructions for the two records; B) Cross-wavelet power spectrum of quartz wt% for 649 

PS2644 and MD99-2274.  The cone of confidence indicated by the light grey areas; 650 

0.05% probability area demarcated by white line.  Arrows pointing to the right mean that 651 

the two records are in phase, arrows pointing down mean that x leads y, arrows pointing 652 

to the left indicate the records are anti-phase and pointing up indicates that #2274 leads 653 

PS2644.  C) Cross-wavelet (Fig. 8B) average power.  The 0.05 significance period is red 654 

and delimited by the dashed slanting line.  The horizontal dashed line indicates the peak 655 

periodicity (~8.5 ky). 656 

 657 

 658 

Suppl. Figure 1: Data for VM30-130 (see Fig. 1 and Table 3). 659 

 660 

Suppl. Figure 2: Showing the reduced major axis association between sortable silt mean 661 

size (S̅S̅) and SS%.   662 

 663 

Suppl. Figure 3: 18O N. pachyderma plots of cores from the Blosseville Basin/Scoresby 664 

Sund Trough Mouth Fan (see Fig. 1 and 8) from cores PS1730 (Stein et al., 1996a,b, 665 

and PS2644 (Voelker, 1999).666 
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Methods 1177 

 1178 

Magnetic susceptibility: Magnetic susceptibility was measured on-board the Marion 1179 

Dufresne (Labeyrie and Cort, 2005) in 2-cm increments (hence ~150yr sampling on 1180 

average). Measurements were taken on the 1.5 m core sections. In this area of Iceland, 1181 

the marine deposits are strongly affected by erosion and transport of basalt, which results 1182 

in very high values of magnetic susceptibility. The export of sediments from the erosion 1183 

of bedrock with much lower magnetic susceptibilities, such as granites and other felsic-1184 

rich bedrock in NE Greenland and from more distant sources (Verplanck et al., 2009; 1185 

White et al., 2016) will lower the magnetic susceptibility readings. It is important to note 1186 

that although magnetic susceptibility is straightforward to measure, data interpretation is 1187 

complex, being a product of sediment density, grain-size, and mineralogy (Robinson et 1188 

al., 1995; Stoner and Andrews, 1999; Watkins and Maher, 2003).  1189 

Quantitative X-ray Diffraction (qXRD): The weight % (wt%) of the non-clay 1190 

and clay mineral composition of the < 2 mm sediment fractions is based on the US 1191 

Geological Survey method (Eberl, 2003), which has been used extensively in this region 1192 

(e.g. Andrews et al., 2017; Andrews and Eberl, 2007; Andrews and Vogt, 2014). One 1193 

gram of sediment (dry weight) is spiked with 0.111 g of zincite, prepared (Eberl, 2003), 1194 

run in the X-ray diffractometer, and the resulting intensity data processed in the Excel 1195 

macro-program Rockjock v6. We investigate the wt% and presence/absence of 34 1196 

minerals and reduced this number by combining individual mineral wt% into larger 1197 

groups, such as k-feldspars, plagioclase, dolomite, and amorphous minerals.  Importantly 1198 

in the context of this paper we had earlier shown that qXRD can recognize the presence 1199 
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of tephra and volcanic glass, with some ability to distinguish between basaltic and 1200 

rhyolithic glass (Andrews et al., 2013). 1201 

To gain a better understanding of possible changes in the provenance of the 1202 

mineral compositions we processed the mineral wt% data in a sediment unmixing 1203 

program “SedUnMix” (Andrews and Eberl, 2012). Two models were considered, the first 1204 

with qXRD results from #2274 with four appropriate bedrocks, namely: basalt, dolerite, 1205 

gneiss, and granite; and secondly with the mineral compositions of glacial marine 1206 

sediment samples from potential source areas, namely: NE Greenland, E. Greenland, and 1207 

Iceland (Suppl. Table of bedrock and marine sediment sources). The program calculates a 1208 

“degree of fit” and also derives error estimates on each source within a sample. Ideally, 1209 

the sum of the sources should equal 100% but marked deviations from this suggest that 1210 

one or more sources have not been included, and/or that the sources are not representative 1211 

of the sediment samples.  1212 

 Grain-size: Sediment was wet-sieved at 2 mm and the grain-size volume 1213 

percentages in 96 intervals between 0.01 and 2000 µm were obtained via a Malvern laser 1214 

system. Comparisons between the Malvern and other grain-size systems have been 1215 

documented and found comparable (McCave et al., 2006; McCave and Syvitski, 1991). 1216 

However, the objections of McCave et al. (2006) to laser sizers on the grounds of grain 1217 

shape (Konert and Vandenberghe, 1997) are not valid for equant grains such as those 1218 

produced by glacial grinding, as pointed out by Piper (Marshall et al., 2014), and thus 1219 

size data are believed valid in the setting of MD2274. Grain-size curves have provided 1220 

vital information on sediment transport and deposition in this region, and methods have 1221 

been developed to reconstruct variations in bottom current speed for sediments delivered 1222 
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to the ocean from dominantly glacial sources (McCave and Andrews, 2019a, b) The 1223 

calibration of sortable silt mean (mean of 10-63 µm), a sensitivity, by McCave et al., 1224 

(2017) has been applied to changes in the grainsize record.   1225 

 Biomarkers: Biomarkers were extracted from freeze-dried subsamples (~2-4 g). 1226 

Prior to extraction, samples were spiked with an internal standard (9-octylheptadec-8-ene, 1227 

9-OHD, 10 L; 10 g mL-1) to permit quantification of the highly branched isoprenoid 1228 

(HBI) biomarkers IP25, HBI II and HBI III. 5α-androstan-3β-ol; (0.1 µg) was also added 1229 

to permit quantification of brassicasterol in some cases. Samples were then saponified in 1230 

a methanolic KOH solution (~5 mL H2O:MeOH (1:9); 5% KOH) for 60 min (70 °C). 1231 

Hexane (3×2 mL) was added to the saponified mixtures, with supernatant solutions, 1232 

containing non-saponifiable lipids (NSLs), transferred by glass pipettes to glass vials, and 1233 

solvent removed using a gentle stream of N2. Dried NSLs were re-suspended in hexane 1234 

(0.5 mL) and fractionated using column chromatography (SiO2; 0.5 g). Non-polar lipids, 1235 

including IP25 and HBI II, were eluted with hexane (6 mL), while more polar lipid 1236 

fractions containing alkenones were eluted with MeOH (6 mL). For a few horizons, 1237 

additional NSLs were fractionated to yield non-polar (hexane; 6 mL) and polar fractions 1238 

containing sterols (hexane:methyl acetate 4:1; 6 mL). Each non-polar fraction was further 1239 

purified to remove saturated components using silver-ion chromatography (Belt et al., 1240 

2015), with saturated compounds eluted with hexane (2 mL) and unsaturated compounds, 1241 

including IP25 and other HBIs, collected in a subsequent acetone fraction (3 mL). 1242 

Analysis of fractions containing IP25 and other HBIs was carried out using gas 1243 

chromatography–mass spectrometry (GC–MS) following the methods and operating 1244 

conditions described prevously (Belt et al., 2012). Mass spectrometric analysis was 1245 
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carried out in total ion current (TIC) and selected ion monitoring (SIM) modes. The 1246 

identification of IP25 and HBI II was based on their characteristic GC retention indices 1247 

(e.g. RIHP5MS = 2081,2082 and 2044 for IP25, HBI II and HBI III, respectively) and mass 1248 

spectra (Belt, 2018). Quantification of all HBIs was achieved by comparison of mass 1249 

spectral responses of selected ions (e.g. IP25, m/z 350; HBI II, m/z 348; HBI III, m/z 346) 1250 

in SIM mode with those of the internal standard (9-OHD, m/z 350) and normalized 1251 

according to their respective instrumental response factors, derived from solutions of 1252 

known biomarker concentration, and sediment masses (Belt et al., 2012). Fractions 1253 

containing sterols were derivatized with N,O-bis(trimethylsilyl)trifluoroacetamide 1254 

(BSTFA; 100 μL; 70°C for 60 min) immediately prior to analysis by GC–MS. Sterols 1255 

were identified by comparison with GC–MS responses compared to those of standards. 1256 

Sterol quantification was achieved as per the approach described above for HBIs. 1257 

Polar factions containing alkenones obtained from elution with MeOH (6 mL) were 1258 

further purified with 2 mL of hexane:methyl acetate (95:5 v/v) and 2 mL of hexane:methyl 1259 

acetate (90:10 v/v). Alkenones were analyzed using a Thermo Trace GC Ultra gas 1260 

chromatograph equipped with a CPSil5 capillary column (50m length, 0.32 i.d. and 0.25 1261 

mm film thickness), an FID detector and a septum programmable injector (SPI). Helium 1262 

was used as carrier gas. 5-cholestane was added as an external standard prior to GC 1263 

injection. SST estimates were determined using the following equation (Prahl et al., 1988). 1264 

 1265 

 1266 

U
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Figures with Captions 1339 
 1340 

 1341 
Figure 1: A) location of MD99-2274 and some other cores noted in the paper (Table 1) 1342 

(ODV, Schlitzer, 2011).  The shaded areas represent the late glacial maximum (LGM) 1343 

extent of the ice sheets north of Denmark Strait; the words “basalt” and “felsic” define 1344 
the primary sediment mineral sources and the arrows show probable flow paths for 1345 

icebergs. BB = Blosseville Basi; TMF = Scoresby Sund Trough Mouth Fan;  B) 1346 

Additional cores referenced in the paper (see also Table 1). Note that “Cald” on this 1347 

figure references the southern outcrop of the Greenland Caledonides (Higgins et al., 1348 

2008). SS = Scoresby Sund; RIC = Renland Ice Cap. C) Surface and bottom currents and 1349 

historical April sea-ice edge (1870-1920) (dashed white line; Divine and Dick, 2006).  1350 

NIIC = North Iceland Irminger Current; EGC = East Greenland Current; EIC = East 1351 

Iceland Current; Yellow lines: Bottom Currents DSOW = Denmark Strait Overflow 1352 

Water; NIJ = North Iceland Jet., S = Separated East Greenland Current; OC = Iceland Sea 1353 

Ocean Convection site (after Harden et al., 2016). 1354 
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 1355 
Figure 2: A) Downcore plot of magnetic susceptibility (SI-5) and Bayesian ((Blaauw and 1356 

Christen, 2016) depth age plots for MD99-2274 (see Table 2)---the red curve is for the 1357 

initial available data blue curve is for the estimated ages with the addition of an estimated 1358 

core top age and the presence of the Vedde and NAAZII tephras (see text).   The Marine 1359 

Isotope Stage (MIS) boundaries are indicated.  Location of radiocarbon dates and tephras 1360 

are noted. B) Plot of the departures from the median values of magnetic susceptibility 1361 

(2.03 * 10-3 SI) and quartz wt% (5.3). Note that the quartz axis is reversed. 1362 

 1363 
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1364 
Figure 3:  Variation in the Sortable Silt mean size (3-point 1-2-1 weighted 1365 
smoothing with raw data dots) and IRD% >240 μm. Minima in S̅S̅ are seen at the time 1366 

of Hudson Strait H events -H6, -H4 and -H1 while -H4, -H2, early -H1 and the YD (-H0) 1367 

are marked by elevated IRD %. Blue bars are regions where the data are unreliable 1368 

indicators of flow speed according to the S̅S̅ -SS% correlation criterion of McCave and 1369 

Andrews, (2019a) 1370 
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 1371 

 1372 
Figure 4: Plots of the variations in the weight% of minerals in MD99-2274, the 1373 

quartz/pyroxene ratio, and magnetic susceptibility.  The green shaded areas represent 1374 

Holocene values, hence points above represent departures. Numbers 1 through 5 identify 1375 

IRD quartz peaks.  The vertical blue shading areas represent times when the weight% of 1376 

quartz exceeds Holocene limits. 1377 
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 1378 
Figure 5: Plots of the sediment source percentages and the degree of fit (DOF), that is the 1379 

average absolute bias in the SedUnMix calculation of (observed mineral wt% - predicted 1380 

mineral weight%) for each sample.  The top panel shows the location of measurable 1381 

quantities of gravel, and sites of tephra layers and the radiocarbon dates on near-surface 1382 

planktonic foraminifera (Table 3).  Numbers on the NE Greenland panel represent the 1383 

peaks in that source and the yellow bars locate areas with minimal input from that area. 1384 
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 1385 
Figure 6: Biomarker data (A) IP25 and HBI II concentrations; (B) ∑C37:3+C37:2  alkenone 1386 
and brassicasterol concentrations; C)  SST° C estimates and the %C37:4; and D) Weight % 1387 

quartz and different coarse sediment fractions. 1388 
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 1389 
Figure 7: Schematic presentation of changes in sea ice and iceberg distribution.  The first 1390 

panel (upper left) shows core locations (see Table 1 and Fig. 1A and B) and the adjoining 1391 

panel the inferred conditions during MIS 3 and 2 with pervasive sea ice and embedded 1392 

icebergs.  The remaining panels show the proposed evolution in the state of sea ice and 1393 

iceberg supply (red triangles) during deglaciation into the Holocene (adapted from 1394 
Cabedo-Sanz et al., 2016; Xiao et al., 2017). SS =Scoresby Sound, RIC=Renland Ice 1395 

Cap. 1396 

 1397 
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 1398 
Figure 8: Analysis of the quartz wt% records from PS2644 (Vogt, 2017) and MD99-2274 1399 

at a common 0.6 ky spacing. A) Original quartz data (black line) and the wavelet 1400 

reconstructions for the two records; B) Cross-wavelet power spectrum of quartz wt% for 1401 

PS2644 and MD99-2274.  The cone of confidence indicated by the light grey areas; 1402 

0.05% probability area demarcated by white line.  Arrows pointing to the right mean that 1403 
the two records are in phase, arrows pointing down mean that x leads y, arrows pointing 1404 

to the left indicate the records are anti-phase and pointing up indicates that #2274 leads 1405 

PS2644.  C) Cross-wavelet (Fig. 8B) average power.  The 0.05 significance period is red 1406 

and delimited by the dashed slanting line.  The horizontal dashed line indicates the peak 1407 

periodicity (~8.5 ky). 1408 


