
HAL Id: hal-03414753
https://hal.science/hal-03414753v1

Preprint submitted on 4 Nov 2021 (v1), last revised 6 Jan 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LTL under reductions with weaker conditions than
stutter-invariance

Emmanuel Paviot-Adet, Denis Poitrenaud, Etienne Renault, Yann
Thierry-Mieg

To cite this version:
Emmanuel Paviot-Adet, Denis Poitrenaud, Etienne Renault, Yann Thierry-Mieg. LTL under reduc-
tions with weaker conditions than stutter-invariance. 2021. �hal-03414753v1�

https://hal.science/hal-03414753v1
https://hal.archives-ouvertes.fr


LTL under reductions with weaker conditions than
stutter-invariance

Emmanuel Paviot-Adet1,2, Denis Poitrenaud1,2, Etienne Renault3, Yann Thierry-Mieg1

1 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
first.last@lip6.fr

2 Université de Paris, F-75005 Paris, France
3 EPITA, LRDE, Kremlin-Bicêtre, France

renault@lrde.epita.fr

Abstract. Verification of properties expressed as 𝜔-regular languages such as
LTL can benefit hugely from stutter-insensitivity, using a diverse set of reduction
strategies. However properties that are not stutter-insensitive, for instance due to
the use of the neXt operator of LTL or to some form of counting in the logic, are
not covered by these techniques in general.
We propose in this paper to study a weaker property than stutter-insensitivity. In
a stutter insensitive language both adding and removing stutter to a word does not
change its acceptance, any stuttering can be abstracted away; by decomposing this
equivalence relation into two implications we obtain weaker conditions. We define
a shortening insensitive language where any word that stutters less than a word in
the language must also belong to the language. A lengthening insensitive language
has the dual property. A semi-decision procedure is then introduced to reliably
prove shortening insensitive properties or deny lengthening insensitive properties
while working with a reduction of a system. A reduction has the property that it
can only shorten runs. Lipton’s transaction reductions or Petri net agglomerations
are examples of eligible structural reduction strategies.
An implementation and experimental evidence is provided showing most non-
random properties sensitive to stutter are actually shortening or lengthening in-
sensitive. Performance of experiments on a large (random) benchmark from the
model-checking competition indicate that despite being a semi-decision proce-
dure, the approach can still improve state of the art verification tools.

1 Introduction

Model checking is an automatic verification technique for proving the correctness of
systems that have finite state abstractions. Properties can be expressed using the popular
Linear-time Temporal Logic (LTL). To verify LTL properties, the automata-theoretic
approach [24] builds a product between a Büchi automaton representing the LTL formula
and the reachable state graph of the system (seen as a set of infinite runs). Even if this
approach has been used successfully to verify both hardware and software components,
it suffers from the so called "state explosion problem": as the number of state variables
in the system increases, the size of the system state space grows exponentially.

One way to tackle this issue is to consider structural reductions. Structural reductions
take their roots in the work of Lipton [14] and Berthelot [1]. Nowadays, these reductions



2 PPRT

are still considered as an attractive way to alleviate the state explosion problem [13, 2].
Structural reductions strive to fuse structurally "adjacent" events into a single atomic step,
leading to less interleaving of independent events and less observable behaviors in the
resulting system. An example of such a structural reduction is shown on Figure 1 where
actions are progressively grouped (see section 3.1 for a more detailed presentation). It
can be observed that the Kripke structure representing the state space of the program is
significantly simplified.

Traditionally structural reductions construct a smaller system that preserves proper-
ties such as deadlock freedom, liveness, reachability [9], and stutter insensitive temporal
logic [19] such as LTL\𝑋 . The verification of a stutter insensitive property on a given
system does not depend on whether non observable events (i.e. that do not update
atomic propositions) are abstracted or not. On Fig 1 both instructions "𝑧 = 40;" and
"𝑐ℎ𝑎𝑛.𝑠𝑒𝑛𝑑 (𝑧)" of thread 𝛽 are non observable.

Thread α Thread β

Initially, x = y = z = 0

x++

y=chan.recv()
z=40

chan.send(z)

Atomic propositions: p ← x
?
= 0

q ← y
?
= 0

(1) Program

α0 →
α1 →
α2 →

← β0

← β1

← β2 pq

p̄q p̄q p̄q

pq pq p̄q̄

x++

z = 40 chan.send(z)

z = 40

x++

chan.send(z)

x++
y = chan.recv(..)

LA = { pq3 p̄q p̄q̄ω, pq p̄q3 p̄q̄ω, pq2 p̄q2 p̄q̄ω }
(2) State space

pq

p̄q p̄q

pq p̄q̄

x++ x++

z = 40; chan.send(z)

z = 40; chan.send(z)

y = chan.recv()

LB = { pq p̄q2 p̄q̄ω, pq2 p̄q p̄q̄ω }
(3) After ”z=40;send(z)” becomes atomic.

pq

p̄q

p̄q̄

x++ z = 40; chan.send(z); y = chan.recv()

LC = { pq p̄q p̄q̄ω }
(4) After ”z=40;send(z);y=recv();” becomes atomic.

Fig. 1: Example of reductions. (1) describes a program composed of two threads and 3 in-
teger variables. The chan variable designates a communication channel where send(int)
insert a message and int recv() consumes a message with a blocking semantic if the chan-
nel is empty. We consider that the logic only observes whether 𝑥 or 𝑦 is zero noted 𝑝 and
𝑞. (2) depicts the state-space represented as a Kripke structure. Each node is labelled by
the value of atomic propositions 𝑝 and 𝑞. When an instruction is executed the value of
these propositions may evolve. (3) represents the state-space of (1) if actions of thread
𝛽 "𝑧 = 40;𝑐ℎ𝑎𝑛.𝑠𝑒𝑛𝑑 (𝑧);" are fused into a single atomic operation. (4) represents the
state-space of (1) after further considering that the three actions of the original program
"𝑧 = 40;𝑐ℎ𝑎𝑛.𝑠𝑒𝑛𝑑 (𝑧); 𝑦 = 𝑐ℎ𝑎𝑛.𝑟𝑒𝑐𝑣()" are now a single atomic step.



LTL under reductions with weaker conditions than stutter-invariance 3

This paper shows that structural reductions can in fact be used even for fragments of
LTL that are not stutter insensitive. We identify two fragments that we call shortening
insensitive (if a word is accepted, any version that stutters less also) or lengthening
insensitive (if a word is accepted, any version that stutters more also). Based on this
classification we introduce two semi-decision procedures that provide a reliable verdict
only in one direction: e.g. presence of counter examples is reliable for lengthening
insensitive properties, but absence is not.

The paper is structured as follows, section 2 presents the definitions and notations
relevant to our setting in an abstract manner, focusing on the level of description of a
language. Section 3 instantiates these definitions in the more concrete setting of LTL
verification. Section 4 provides experimental evidence supporting the claim that the
method is both applicable to many formulae and can significantly improve state of the
art model-checkers. Some related work is presented in section 5 before concluding.

2 Definitions

In this section we first introduce in 2.1 a "shorter than" partial order relation on infinite
runs, based on the number of repetitions or stutter in the run. This partial order gives us
in 2.2 the notions of shortening and lengthening insensitive language, which are shown
to be weaker versions of classical stutter-insensitivity in 2.3. We then define in 2.4
the reduction of a language which contains a shorter representative of each run in the
original language. Finally we show that we can use a semi-decision procedure to verify
shortening or lengthening insensitive properties using a reduction of a system.

2.1 A "Shorter than" relation for infinite runs

Definition 1 (Run). : A run over a finite alphabet Σ is an infinite sequence of symbols
in Σ. We canonically denote a run 𝑟 using one of the two forms:

– (plain run) 𝑟 = 𝑤𝑛0
0 𝑤𝑛1

1 𝑤𝑛2
2 . . . with for all 𝑖 ∈N, 𝑤𝑖 ∈ Σ, 𝑛𝑖 ∈N★ and 𝑤𝑖 ≠ 𝑤𝑖+1, or

– (𝜔-run) 𝑟 = 𝑤𝑛0
0 𝑤𝑛1

1 . . . 𝑤𝜔
𝑘

with 𝑘 ∈ N and for all 0 ≤ 𝑖 ≤ 𝑘 , 𝑤𝑖 ∈ Σ, and for 𝑖 < 𝑘 ,
𝑛𝑖 ∈N★ and 𝑤𝑖 ≠ 𝑤𝑖+1. 𝑤𝜔

𝑘
represents an infinite stutter on the final symbol 𝑤𝑘 of

the run.

The set of all runs over alphabet Σ is noted Σ𝜔 .

These notations using a power notation for repetitions of a symbol in a run are
introduced to highlight stuttering. We force the symbols to alternate to ensure we have a
canonical representation: with 𝜎 a suffix, the run 𝑎𝑎𝑏𝜎 must be represented as 𝑎2𝑏1𝜎
and not 𝑎1𝑎1𝑏1𝜎. To represent a run of the form 𝑎𝑎𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐 . . . we use an 𝜔-run:
𝑎2𝑏2𝑐𝜔 .

Definition 2 (Shorter than). : A plain run 𝑟 = 𝑤𝑛0
0 𝑤𝑛1

1 𝑤𝑛2
2 . . . is shorter than a plain

run 𝑟 ′ = 𝑤
𝑛′0
0 𝑤

𝑛′1
1 𝑤

𝑛′2
2 . . . if and only if for all 𝑖 ∈N, 𝑛𝑖 ≤ 𝑛′

𝑖
. For two 𝜔-runs 𝑟 = 𝑤𝑛0

0 . . . 𝑤𝜔
𝑘

and 𝑟 ′ = 𝑤
𝑛′0
0 . . . 𝑤𝜔

𝑘
, 𝑟 is shorter than 𝑟 ′ if and only if for all 𝑖 < 𝑘 , 𝑛𝑖 ≤ 𝑛′

𝑖
.

We note this relation on runs 𝑟 4 𝑟 ′.



4 PPRT

For instance, for any given suffix 𝜎, 𝑎𝑏𝜎 4 𝑎2𝑏𝜎. Note that 𝑎𝑏𝜎 4 𝑎𝑏2𝜎 as well,
but that 𝑎2𝑏𝜎 and 𝑎𝑏2𝜎 are incomparable. 𝜔-runs are incomparable with plain runs.

Property 1. The 4 relation is a partial order on runs.

Proof. The relation is clearly reflexive (∀𝑟 ∈ Σ𝜔 , 𝑟 4 𝑟), anti-symmetric (∀𝑟,𝑟 ′ ∈ Σ𝜔 with
𝑟 ≠ 𝑟 ′, 𝑟 4 𝑟 ′ ⇔¬(𝑟 ′ 4 𝑟)) and transitive (∀𝑟,𝑟 ′, 𝑟 ′′ ∈ Σ𝜔 , 𝑟 4 𝑟 ′∧ 𝑟 ′ 4 𝑟 ′′ ⇒ 𝑟 4 𝑟 ′′).
The order is partial since some runs (such as 𝑎2𝑏𝜎 and 𝑎𝑏2𝜎 presented above) are
incomparable. ut

Definition 3. [Stutter equivalence]: a run 𝑟 is stutter equivalent to 𝑟 ′, noted 𝑟 ∼ 𝑟 ′ if
and only if there exists a shorter run 𝑟 ′′ such that 𝑟 ′′ 4 𝑟 ∧𝑟 ′′ 4 𝑟 ′. This relation ∼ is an
equivalence relation thus partitioning runs of Σ𝜔 into equivalence classes.

We denote 𝑟 the equivalence class of a run 𝑟 and denote
¯
𝑟 the shortest run in that

equivalence class.

For any given run 𝑟 = 𝑤𝑛0
0 𝑤𝑛1

1 𝑤𝑛2
2 . . . there is a shortest representative in 𝑟 that is

the run
¯
𝑟 = 𝑤0𝑤1𝑤2 . . . where no symbol is ever consecutively repeated more than once

(until the 𝜔 for an 𝜔-run). By definition all runs that are comparable to
¯
𝑟 are stutter

equivalent to each other, since
¯
𝑟 can play the role of 𝑟 ′′ in the definition of stutter

equivalence, giving us an equivalence relation: it is reflexive, symmetric and transitive.
For instance, with 𝜎 denoting a suffix,

¯
𝑟 = 𝑎𝑏𝜎 would be the shortest representative

of any run of 𝑟 of the form 𝑎𝑛0𝑏𝑛1𝜎. We can see by this definition that despite being
incomparable, 𝑎2𝑏𝜎 ∼ 𝑎𝑏2𝜎 since 𝑎𝑏𝜎 4 𝑎2𝑏𝜎 and 𝑎𝑏𝜎 4 𝑎𝑏2𝜎.

2.2 Sensitivity of a language to the length of runs

Definition 4 (Language). : a language ℒ over a finite alphabet Σ is a set of runs over
Σ, hence ℒ ⊆ Σ𝜔 . We note ℒ̄ = Σ𝜔 \ℒ the complement of a language ℒ.

In the literature, most studies are focused on stutter insensitive languages [18, 23, 17,
8, 9]. In a stutter-insensitive language ℒ, duplicating any letter (also called stuttering)
or removing any duplicate letter from a run of ℒ must produce another run of ℒ. In
other words, all stutter equivalent runs in a class 𝑟 must be either in the language or
outside of it. Let us introduce weaker variants of this property, original in this paper.

Definition 5. [Shortening insensitive]: a language ℒ is shortening insensitive if and
only if for any run 𝑟 it contains, all shorter runs 𝑟 ′ such that 𝑟 ′ 4 𝑟 are also in ℒ.

For instance, a shortening insensitive language ℒ that contains the run 𝑎3𝑏𝜎 must
also contain shorter runs 𝑎2𝑏𝜎, and 𝑎𝑏𝜎. If it contains 𝑎2𝑏2𝜎 it also contains 𝑎2𝑏𝜎,
𝑎𝑏2𝜎 and 𝑎𝑏𝜎.

Definition 6. [Lengthening insensitive]: a language ℒ is lengthening insensitive if and
only if for any run 𝑟 it contains, all longer runs 𝑟 ′ such that 𝑟 4 𝑟 ′ are also in ℒ.



LTL under reductions with weaker conditions than stutter-invariance 5

For instance, a lengthening insensitive language ℒ that contains the run 𝑎2𝑏𝜎 must
also contain all longer runs 𝑎3𝑏𝜎, 𝑎2𝑏2𝜎 . . . , and more generally runs of the form
𝑎𝑛𝑏𝑛

′
𝜎 with 𝑛 ≥ 2 and 𝑛′ ≥ 1. If it contains

¯
𝑟 = 𝑎𝑏𝜎 the shortest representative of an

equivalence class, it contains all runs in the stutter equivalence class.
While stutter insensitive languages have been heavily studied, there is to our knowl-

edge no study on what reductions are possible if only one direction holds, i.e. the
language is shortening or lengthening insensitive, but not both. A shortening insensi-
tive language is essentially asking for something to happen before a certain deadline or
stuttering "too much". A lengthening insensitive language is asking for something to
happen at the earliest at a certain date or after having stuttered at least a certain number
of times. Figure 2 represents these situations graphically.

2.3 Relationship to stutter-insensitive logic

The relationship between the notions of shortening and lengthening insensitive languages
introduced in this paper and classical definitions of stutter insensitive languages is
already apparent in [15]. We formalize it in the following theorem:

Theorem 1. A language is both shortening and lengthening insensitive if and only if it
is stutter-insensitive.

Proof. Because the language is shortening insensitive it contains the minimum
¯
𝑟 of

each equivalence class 𝑟 that it intersects with. Because the language is also lengthening
insensitive, this is enough to force inclusion of the whole equivalence class 𝑟 . Hence
any given class of stutter-equivalent runs 𝑟 is either inside or outside the language.

Conversely, duplicating any letter or removing any duplicate letter from a run directly
correspond to lengthening or shortening the run, thus ensuring that the language is both
shortening and lengthening insensitive. ut

Property 2. A language ℒ is stutter-insensitive if and only if the complement language
ℒ̄ is stutter-insensitive.

Proof. Because the language is shortening insensitive, it must be the case for any stutter-
equivalent class of runs 𝑟 that intersectsℒ that

¯
𝑟 ∈ℒ, and becauseℒ is also lengthening

insensitive this means that all runs in 𝑟 must also belong to ℒ. So any equivalence class
of runs 𝑟 must entirely belong to ℒ or (conversely) belong to its complement ℒ̄. ut

This property is already proved in [15] using a different formalization.

If we look at sensitivity to length and how it interacts with the complement operation,
we find a dual relationship where the complement of a shortening insensitive language
is lengthening insensitive and vice versa. This is because every equivalence class of
runs that is not entirely inside or outside the language is separated along a frontier that
is consistent with the shorter than ordering relation.

Property 3. A language ℒ is shortening-insensitive if and only if the complement
language ℒ̄ is lengthening insensitive.



6 PPRT

sh
or

te
ni

ng
sh

or
te

ni
ng

lengthening lengthening

...

ℒ𝑎 ℒ𝑏 shortening insensitive

ℒ𝑐 lengthening-insensitive ℒ𝑑 arbitrary

stutter-insensitive

¯
𝑟0

¯𝑟 1 ¯
𝑟2

...

¯
𝑟0

¯𝑟 1 ¯
𝑟2

...

¯
𝑟0

¯𝑟 1 ¯
𝑟2

...

¯
𝑟0

¯𝑟 1 ¯
𝑟2

Fig. 2: Σ𝜔 is represented as a circle that is partitioned into equivalence classes of runs
(𝑟0, 𝑟1 . . .). Each point in the space is a run, and some of the 4 relations are represented
as arrows ; the red point is the shortest run 𝑟 in the equivalence class. Gray areas are
inside the language, white are outside of it. Four languages are depicted :
ℒ𝑎: equivalence classes are entirely inside or outside a stutter insensitive language,
ℒ𝑏: the "bottom" of an equivalence class may belong to a shortening insensitive
language,
ℒ𝑐: the "top" of an equivalence class may belong to a lengthening insensitive language,
ℒ𝑑: some languages are neither lengthening insensitive nor shortening insensitive. This
can be because the "top" of some equivalence classes are in the language but for other
classes the "bottom" is in the language, or because in a given class there are runs outside
the language such that some shorter and some longer runs are in the language, or vice
versa.



LTL under reductions with weaker conditions than stutter-invariance 7

Proof. Let ℒ be shortening-insensitive. Let 𝑟 ∈ ℒ̄ be a run in the complement of ℒ.
Any run 𝑟 ′ such that 𝑟 4 𝑟 ′ must also belong to ℒ̄, since if it belonged to the shortening
insensitive ℒ, 𝑟 would also belong to ℒ. Hence ℒ̄ is lengthening insensitive. The
converse implication can be proved using the same reasoning. ut

If we look at figure 2, the frontier in languages ℒ𝑏 and ℒ𝑐 is apparent. The dual
effect of complement on the sensitivity of the language to length is also apparent: if gray
and white are switched we can see ℒ̄𝑏 is lengthening insensitive and ℒ̄𝑐 shortening
insensitive.

2.4 When is visiting shorter runs enough ?

Definition 7. [Reduction] Let 𝐼 be a reduction functionΣ𝜔 ↦→Σ𝜔 such that∀𝑟, 𝐼 (𝑟) 4 𝑟 .
The reduction by 𝐼 of a language ℒ is 𝑅𝑒𝑑𝐼 (ℒ) = {𝐼 (𝑟) | 𝑟 ∈ℒ}.

Note that the 4 partial order is not strict so that the image of a run may be the
run itself, hence identity is a reduction function. In most cases, the reduction function
is expected to be injective so that a single shorter run 𝑟 ′ of the reduced language
corresponds to many runs 𝑟 of the original language.

Note that given any two reduction functions 𝐼 and 𝐼 ′, 𝑅𝑒𝑑𝐼 (𝑅𝑒𝑑𝐼 ′ (ℒ)) is still a
reduction of ℒ. Hence chaining reduction rules still produces a reduction. As we will
discuss in section 3.1 structural reductions of a specification such as Lipton’s transaction
reduction [14, 13] or Petri net agglomerations [1, 22] induce a reduction at the language
level.

Theorem 2. [Reduced Shortening Insensitive Emptiness Check] Given two languages
ℒ and ℒ′, if ℒ is shortening insensitive, then ℒ∩𝑅𝑒𝑑 (ℒ′) = ∅ ⇔ℒ∩ℒ′ = ∅.

Proof. The fact that the intersection with the reduced language is empty indicates that
none of the shorter runs of 𝑅𝑒𝑑 (ℒ′) are in ℒ. Because the language ℒ is shortening
insensitive this means none of the longer words of ℒ′ can be part of ℒ either. ut

Theorem 3. [Reduced Lengthening Insensitive Emptiness Check] Given two languages
ℒ and ℒ′, if ℒ is lengthening insensitive, then ℒ∩𝑅𝑒𝑑 (ℒ′) ≠ ∅ ⇔ℒ∩ℒ′ ≠ ∅.

Proof. At least one run 𝑟 ′ is in ℒ and 𝑅𝑒𝑑 (ℒ). Therefore the longer run 𝑟 of ℒ′ that
𝑟 ′ represents is also in ℒ since the language is lengthening insensitive. ut

With these two theorems original to this paper we now can build a semi-decision
procedure that is able to prove some lengthening or shortening insensitive properties
using a reduction of a system.

3 Application to Verification

We now introduce the more concrete setting of LTL verification to exploit the theoretical
results on languages and their shortening/lengthening sensitivity developed in section 2.



8 PPRT

3.1 Kripke Structure

From the point of view of LTL verification with a state-based logic, executions of
a system are seen as runs over the alphabet Σ = 2AP, where AP is a set of atomic
propositions that may be true or false in each state. So each symbol in a run gives the
truth value of all of the atomic propositions in that state of the execution, and each
time an action happens we progress in the run to the next symbol. Some actions of the
system update the truth value of atomic propositions, but some actions can leave them
unchanged which corresponds to stuttering.

Definition 8 (Kripke Structure Syntax). Let AP designate a set of atomic propositions.
A Kripke structure KSAP = 〈𝑆, 𝑅,𝜆, 𝑠0〉 over AP is a tuple where 𝑆 is the finite set of
states, 𝑅 ⊆ 𝑆×𝑆 is the transition relation, 𝜆 : 𝑆 ↦→ 2AP is the state labeling function, and
𝑠0 ∈ 𝑆 is the initial state.

Definition 9 (Kripke Structure Semantics). The language ℒ(KSAP) of a Kripke
structure KSAP is defined over the alphabet 2AP. It contains all runs of the form 𝑟 =
𝜆(𝑠0)𝜆(𝑠1)𝜆(𝑠2) . . . where 𝑠0 is the initial state of KSAP and ∀𝑖 ∈N, either (𝑠𝑖 , 𝑠𝑖+1) ∈ 𝑅,
or if 𝑠𝑖 is a deadlock state such that ∀𝑠′ ∈ 𝑆, (𝑠𝑖 , 𝑠′) ∉ 𝑅 then 𝑠𝑖+1 = 𝑠𝑖 .

All system executions are considered maximal, so that they are represented by infinite
runs. If the system can deadlock or terminate in some way, we can extend these finite
words by an 𝜔 stutter on a particular symbol in Σ to obtain a run.

Subfigure (1) of Figure 1 depicts a program where each thread (𝛼 and 𝛽) has three
reachable positions (we consider that each instruction is atomic). In this example we
consider that the logic only observes two atomic propositions 𝑝 (true when 𝑥 = 0) and 𝑞
(true when 𝑦 = 0). The variable 𝑧 is not observed.

Subfigure (2) of Figure 1 depicts the reachable states of this system as a Kripke
structure. Actions of thread 𝛽 (which do not modify the value of 𝑝 or 𝑞) are horizontal
while actions of thread 𝛼 are vertical. While each thread has 3 reachable positions, the
emission of the message by 𝛽 must precede the reception by 𝛼 so that some situations
are unreachable. Based on Definition 9 that extends by an infinite stutter runs that end in
a deadlock, we can compute the language ℒ𝐴 of this system. It consists in three parts:
when thread 𝛽 goes first 𝑝𝑞3 𝑝𝑞 𝑝𝑞𝜔 , when thread 𝛼 goes first 𝑝𝑞 𝑝𝑞3 𝑝𝑞𝜔 , and with
an interleaving 𝑝𝑞2 𝑝𝑞2 𝑝𝑞𝜔 .

In subfigure (3) of Figure 1, the actions "𝑧 = 40;𝑐ℎ𝑎𝑛.𝑠𝑒𝑛𝑑 (𝑧);"of thread 𝛽 are
fused into a single atomic operation. This is possible because action 𝑧 = 40 of thread 𝛽
is stuttering (it cannot affect either 𝑝 or 𝑞) and is non-interfering with other events (it
neither enables nor disables any event other than subsequent instruction "chan.send(z)").
The language of this smaller KS is a reduction of the language of the original system. It
contains two runs: thread 𝛼 goes first 𝑝𝑞 𝑝𝑞2 𝑝𝑞𝜔 and thread 𝛽 goes first 𝑝𝑞2 𝑝𝑞 𝑝𝑞𝜔 .

In subfigure (4) of Figure 1, the already fused action "𝑧 = 40;𝑐ℎ𝑎𝑛.𝑠𝑒𝑛𝑑 (𝑧);"of
thread 𝛽 is further fused with the chan.recv(); action of thread 𝛼. This leads to a smaller
KS whose language is still a reduction of the original system now containing a single
run: 𝑝𝑞 𝑝𝑞 𝑝𝑞𝜔 . This simple example shows the power of structural reductions when
they are applicable, with a drastic reduction of the initial language.



LTL under reductions with weaker conditions than stutter-invariance 9

3.2 Automata theoretic LTL verification

Let us consider the problem of model-checking of an 𝜔-regular property 𝜑 (such as
LTL) on a system using the automata-theoretic approach [24]. In this approach, we wish
to answer the problem of language inclusion: do all runs of the system ℒ(KS) belong
to the language of the property ℒ(𝜑) ? To do this, when the property 𝜑 is an omega-
regular language (e.g. an LTL or PSL formula), we first negate the property ¬𝜑, then
build a (variant of) a Büchi automaton 𝐴¬𝜑 whose language4 consists in runs that are
not in the property language ℒ(𝐴¬𝜑) = Σ𝜔 \ℒ(𝜑). We then perform a synchronized
product between this Büchi automaton and the Kripke structure KS corresponding to
the system’s state space 𝐴¬𝜑 ⊗KS (where ⊗ is defined by ℒ(𝐴⊗ 𝐵) =ℒ(𝐴) ∩ℒ(𝐵)).
Either the language of the product is empty ℒ(𝐴¬𝜑 ⊗KS) = ∅, and the property 𝜑 is
thus true of this system, or the product is non empty, and from any run in the language
of the product we can build a counter-example to the property.

We will consider in the rest of the paper that the shortening or lengthening insensitive
language of definitions 5 and 6 is given as an omega-regular language or Büchi automaton
typically obtained from the negation of an LTL property, and that the reduction of
definition 7 is applied to a language that corresponds to all runs in a Kripke structure
typically capturing the state space of a system.

LTL verification with reductions. With theorem 2, a shortening insensitive property
shown to be true on the reduction (empty intersection with the language of the negation
of the property) is also true of the original system. With theorem 3, a lengthening
insensitive property shown to be false on the reduction (non-empty intersection with the
language of the negation of the property, hence counter-examples exist) is also false in
the original system. Unfortunately, our procedure cannot prove using a reduction that
a shortening insensitive property is false, or that a lengthening insensitive property is
true. We offer a semi-decision procedure.

3.3 Detection of language sensitivity

We now present a strategy to decide if a given property expressed as a Büchi automaton
is shortening insensitive, lengthening insensitive, or both. We avoid repeating in this
subsection the formal definitions of TGBA and their transformations 𝑠𝑙 and 𝑐𝑙 originally
found in [15]. We simply reuse their operations in this work to build our language
sensitivity test.

[15] introduces two syntactic transformations of a transition-based generalized Büchi
automaton 𝐴𝜑 that can be built from any LTL formula 𝜑 to represent its language
ℒ(𝜑) = ℒ(𝐴𝜑). The 𝑐𝑙 closure operation decreases stutter, it adds to the language
any run 𝑟 ′ ∈ Σ𝜔 that is shorter than a run 𝑟 in the language, The 𝑠𝑙 self-loopization
operation increases stutter, it adds to the language any run 𝑟 ′ ∈ Σ𝜔 that is longer than
a run 𝑟 in the language. More formally ℒ(𝑐𝑙 (𝐴𝜑)) = {𝑟 ′ | ∃𝑟 ∈ ℒ(𝐴𝜑), 𝑟 ′ 4 𝑟} and
ℒ(𝑠𝑙 (𝐴𝜑)) = {𝑟 ′ | ∃𝑟 ∈ℒ(𝐴𝜑), 𝑟 4 𝑟 ′}.

4 Because computing the complement 𝐴̄ of an automaton 𝐴 is exponential in the worst case,
syntactically negating 𝜑 and producing an automaton 𝐴¬𝜑 is preferable when 𝐴 is derived
from e.g. an LTL formula.



10 PPRT

[15] then shows that there are several possible ways to test if an omega-regular
language (encoded as a Büchi automaton) is stutter insensitive: essentially applying
either of the operations 𝑐𝑙 or 𝑠𝑙 should leave the language unchanged. This allows to
recognize that a property is stutter-insensitive even though it syntactically contains e.g.
the neXt operator of LTL.

For instance 𝐴𝜑 is stutter insensitive if and only if ℒ(𝑠𝑙 (𝑐𝑙 (𝐴𝜑)) ⊗ 𝐴¬𝜑) = ∅. The
full test is thus simply reduced to a language emptiness check testing that both 𝑠𝑙 and 𝑐𝑙
operations leave the language of the automaton unchanged.

Indeed for stutter insensitive languages, all or none of the runs belonging to a given
stutter-equivalence class of runs 𝑟 must belong to the language ℒ(𝐴𝜑). In other words,
if shortening or lengthening a run can make it switch from belonging to 𝐴𝜑 to belonging
to 𝐴¬𝜑 , the language is stutter sensitive. This is apparent on figure 2

We want weaker conditions here, but we can reuse the 𝑠𝑙 and 𝑐𝑙 operations devel-
oped for testing stutter insensitivity. Indeed for an automaton 𝐴 encoding a shortening
insensitive language, ℒ(𝑐𝑙 (𝐴)) =ℒ(𝐴) should hold. Conversely if 𝐴 encodes a length-
ening insensitive language, ℒ(𝑠𝑙 (𝐴)) =ℒ(𝐴) should hold. We express these tests as
emptiness checks on a product in the following way.

Theorem 4 (Testing sensitivity). Let 𝐴 designate a Büchi automaton, and 𝐴̄ designate
its complement.

ℒ(𝑐𝑙 (𝐴) ⊗ 𝐴̄) = ∅, if and only if 𝐴 defines a shortening insensitive language.
ℒ(𝑠𝑙 (𝐴) ⊗ 𝐴̄) = ∅ if and only if 𝐴 defines a lengthening insensitive language.

Proof. Despite adding all shorter runs to the language, we still do not intersect the
complement of the language, this means all shorter runs were already in the language
and the transformation did not add any words. Conversely, if 𝐴 is shortening insensitive,
for any run it contains all shorter runs must also be in the language. The reasoning is
exactly the same for the lengthening insensitive test. ut

Thanks to property 3, and in the spirit of [15] we could also test the complement
of a language for the dual property if that is more efficient, i.e. ℒ(𝑠𝑙 ( 𝐴̄) ⊗ 𝐴) = ∅ if
and only if 𝐴 defines a shortening insensitive language and similarly ℒ(𝑐𝑙 ( 𝐴̄) ⊗ 𝐴) = ∅
iff. 𝐴 is lengthening insensitive. We did not really investigate these alternatives as the
complexity of the test was already negligible in all of our experiments.

3.4 Agglomeration of events produces shorter runs

Among the possible strategies to reduce the complexity of analyzing a system are struc-
tural reductions. Depending on the input formalism the terminology used is different,
but the main results remain stable.

Let us reason at the level of a Kripke Structure. The goal of such reductions is to
structurally detect the following situation in languageℒ: let 𝑟 =𝑤𝑛0

0 𝑤𝑛1
1 𝑤𝑛2

2 . . . designate
a run (not necessarily in the language), there must exist two indexes 𝑎 and 𝑏 such that for
any natural number 𝑗 , 𝑎 ≤ 𝑗 ≤ 𝑏, 𝑟 𝑗 = 𝑤𝑛0

0 . . . 𝑤𝑛𝑎
𝑎 . . . 𝑤

𝑛 𝑗+1
𝑗

. . . 𝑤𝑛𝑏
𝑏

. . . is in the language.
In other words, the set of runs described as : {𝑟 𝑗 = 𝑤𝑛0

0 . . . 𝑤𝑛𝑎
𝑎 . . . 𝑤

𝑛 𝑗+1
𝑗

. . . 𝑤𝑛𝑏
𝑏

. . . | 𝑎 ≤
𝑗 ≤ 𝑏} must belong to the language.



LTL under reductions with weaker conditions than stutter-invariance 11

This corresponds to an event that does not impact the truth value of atomic proposi-
tions (it stutters) and can be freely commuted with any event that occurs between indexes
𝑎 and 𝑏 in the run. This event is simply constrained to occur at the earliest at index 𝑎 in
the run and at the latest at index 𝑏.

Note that these runs are all stutter-equivalent, but are incomparable by the shorter
than relation. In this situation, a reduction can choose to only represent the run 𝑟 instead
of any of these runs. This run was not originally in the language in general, but it is
indeed shorter than any of the 𝑟 𝑗 runs so it matches definition 7 for a reduction. Note that
𝑟 does contain all these longer runs so that in a stutter insensitive context, examining 𝑟
is enough to conclude for any of these runs. This is why usage of structural reductions
is compatible with verification of a logic such as 𝐿𝑇𝐿\𝑋 and has been proposed for that
express purpose in the literature [9, 13].

For instance both pre-agglomeration and post-agglomeration of Petri nets produce
a net whose language is a reduction of the language of the original net. More powerful
variants of Berthelot’s rules have been defined e.g. in [19, 6, 9, 22] for Petri nets, and
for a "modern" overview of Lipton’s transaction reductions see [13]. For lack of space,
in this paper we decided not to provide proofs that these structural transformation rules
induce reductions at the language level. A formal definition involves a) introducing the
syntax of a formalism and b) its semantics in terms of language, then c) defining the
reduction rule, and d) proving its effect is a reduction at the language level. The exercise
is not particularly difficult, and the definition of reduction rules mostly fall into the
category above, where a non observable event that happens at the earliest at point 𝑎 and
at the latest at point 𝑏 is abstracted from the trace.

Our experimental section 4.2 uses the rules of [22] for (potentially partial) pre and
post-agglomeration. That paper presents 22 structural reductions rules from which we
selected the rules valid in the context of LTL verification. Only one rule preserving
stutter-insensitive LTL was not compatible with our approach since it does not produce
a reduction at the language level: rule 3 "Redundant transitions" proposes that if two
transitions 𝑡1 and 𝑡2 have the same combined effect as a transition 𝑡, and firing 𝑡1 enables
𝑡2, 𝑡 can be discarded from the net. This reduces the number of edges in the underlying
KS representing the state space, but does not affect reachability of states. However, it
selects as representative a run involving both 𝑡1 and 𝑡2 that is longer than the one using
𝑡 in the original net, it is thus not legitimate to use in our strategy (although it remains
valid for 𝐿𝑇𝐿\𝑋 ). Rules 14 "Pre agglomeration" and 15 "Post agglomeration" are the
most powerful rules of [22] that we are able to apply in our context. They are known to
preserve 𝐿𝑇𝐿\𝑋 (but not full LTL) and their effect is a reduction at the language level,
hence we can use them when dealing with shortening/lengthening insensitive formulae.

4 Experimentation

4.1 A Study of Properties

This section provides an empirical study of the applicability of the techniques presented
in this paper to LTL properties found in the literature. To achieve this we explored several
LTL benchmarks:



12 PPRT

– Some work [5, 20] summarises the typical properties that users express in LTL. The
formulae of this benchmark have been extracted directly from the literature.

– Dwyer et al. [4] proposes property specification patterns, expressed in several logics
including LTL. These patterns have been extracted by analysing 447 formulae
coming from real world projects.

– The RERS challenge [10] presents generated formulae inspired from real world
reactive systems.

– The MCC [12] benchmark establishes a huge database of 45152 LTL formulae in
the form of 1411 Petri net models coming from 114 origins with for each one 32
random LTL formulae. These formulae use up to 5 state-based atomic propositions,
limit the nesting depth of temporal operators to 5 and are filtered in order to be non
trivial. Since these formulae come with a concrete system we were able to use this
benchmark to also provide performance results for our approach in section 4.2. We
retained 43989 model/formula pairs from this benchmark, the missing 1163 were
rejected due to parse limitations of our tool when the model size is excessive (> 107

transitions).

This set of roughly 2200 human-like formulae and 44k random formulae shows how
common the shortening/lengthening fragment of LTL that we consider in this work actu-
ally is in practice. Table 1 summarizes, for each benchmark, the number and percentage
of formulae that are either stuttering insensitive, lengthening insensitive, or shortening
insensitive. The sum of both shortening and lengthening formulae represents more than
one third (and up to 60 percent) of the formulae of these benchmarks.

Concerning the polarity, although lengthening insensitive formulae seem to appear
more frequently, most of these benchmarks actually contain each formula in both positive
and negative forms (we retained only one) so that the summed percentage might be
more relevant as a metric since lengthening insensitivity of 𝜑 is equivalent to shortening
insensitivity of ¬𝜑.

Analysis of the human-like Dwyer patterns [4] reveals that shortening/lengthening
insensitive formulae mostly come from the patterns precedence chain, response chain
and constrained chain. These properties specify causal relation between events, that
are observable as causal relations between observably different states (that might be
required to strictly follow each other), but this causality chain is not impacted by non
observable events.

Benchmark Stutter Insens. Length. Insens. Short. Insens. Others Total

Spot [5, 4, 20] 63 (67%) 17 (18%) 11 (1%) 3 (3%) 94
Dwyer et al. [4] 32 (58%) 13 (23%) 9 (16%) 1 (1.81%) 55
RERS [10]. 714 (35%) 777 (38%) 559 (28%) 0 2050
MCC [12] 24462 (56%) 6837 (14%) 5390 (12%) 7300 (16%) 43989

Table 1: Sensitivity to length of properties measured using several LTL benchmarks.



LTL under reductions with weaker conditions than stutter-invariance 13

4.2 A Study of Performances

Benchmark Setup. Among the LTL benchmarks presented in Table 1, we opted for the
MCC benchmark to evaluate the techniques presented in this paper. This benchmark
seems relevant since (1) it contains both academic and industrial models, (2) it has a huge
set of (random) formulae and (3) includes models so that we could measure the effect
of the approach in a model-checking setting. The model-checking competition (MCC)
is an annual event in its 10𝑡ℎ edition in 2021 where competing tools are evaluated on a
large benchmark. We use the formulae and models from the latest 2021 edition of the
contest, where Tapaal [3] was awarded the gold medal and ITS-Tools [21] was silver
in the LTL category of the contest. We evaluate both of these tools in the following
performance measures, showing that our strategy is agnostic to the back-end analysis
engine. Our experimental setup consists in two steps.

1. Parse the model and formula pair, and analyze the sensitivity of the formula. When
the formula is shortening or lengthening insensitive (but not both) output two
model/formula pairs : reduced and original. The "original" version does also benefit
from reduction rules, but we apply only rules that are compatible with full LTL.
The "reduced" version additionally benefits from rules that are reductions at the
language level, i.e. mainly pre and post agglomeration (but enacting these rules can
cause further simplifications). The original and reduced model/formula pairs that
result from this procedure are then exported in the same format the contest uses.
This step was implemented within ITS-tools.

2. Run an MCC compatible tool on both the reduced and original versions of each
model/formula pair and record the time performance and the verdict.

For the first step, using Spot [15], detecting that a formula is either shortening or
lengthening is straightforward since 99.81% of formulae are processed in less than 1
second. After this analysis, we obtain 12 227 model/formula pairs where the formula
is either shortening insensitive or lengthening insensitive (but not both). Among these
pairs, in 3005 cases (24.6%) the model was resistant to the structural reduction rules we
use. Since our strategy is not applicable when the model cannot be structurally reduced,
we retain the remaining 9 222 (75.4%) model/formula pairs in the performance plots of
figure 3. We measured that on average 34.19% of places and 32.69% of the transitions
of the models were discarded by reduction rules, though the spread is high as there
are models that are almost fully reducible and some that are barely so. Application of
reduction rules remains in complexity related to the size of the structure of the net so that
it takes less than 20 seconds for 95.5% of the models to compute. These 9222 examples
where our strategy is applicable constitute a significant portion (21%) of the original
43989 model/formula pairs of the MCC. All these example are formulae for which, until
now, there was no existing reduction technique to ease model-checking.

For the second step, we measured the solution time for both reduced and original
model/formula pairs using the two best tools according to the MCC’2021 contest on this
benchmark. A full tool using our strategy could first run on the reduced model/formula
pair hoping for a definitive answer, then if inconclusive run the normal decision proce-
dure on the original model. Or perhaps use a portfolio approach where the first reliable
answer is kept.



14 PPRT

Instead in these experiments we more neutrally measured the time for taking a
semi-decision on the reduced model vs. the time for taking a (complete) decision on
the original model. We then classify the results into two sets, decidable instances are
shown on the left of Fig. 3 and instances that are not decidable (by our procedure) are on
the right. On "decidable instances" our semi-decision procedure could have concluded
reliably because the formula is true and the property shortening insensitive or the formula
is false and the property lengthening insensitive. Non decidable instances shown on the
right are those where the verdict on the reduced model is not to be trusted (or both the
original and reduced procedures timed out).

With this workflow we show that our approach is generic and can be easily imple-
mented on top of any MCC compatible model-checking tool. All experiments were run
with a 950 seconds timeout (close to 15 minutes, which is generous when the contest
offers 1 hour for 16 properties). We used a heterogeneous cluster of machines with four
cores allocated to each experiment. We ensured that experiments concerning reduced
and original versions of a given model/formula were run on the same physical machine
so that they are comparable.

Figure 3 presents the results of these experiments. The results are all presented as
log-log scatter plots opposing a run on the original to a run on the reduced model/formula
pair. Each dot represents an experiment on a model/formula pair; a dot below the diagonal
indicates that the reduced version was faster to solve, while a point above it indicates a
case where the reduced model actually took longer to solve than the original (fortunately
there are relatively few). Points that timeout for one (or both) of the approaches are
plotted on the line at 950 seconds, we also indicate the number of points that are in this
line (or corner) next to it.

The plots on the left (a) and (c) correspond to "decidable instances" while those on
the right are not decidable by our procedure. The two plots on the top correspond to the
performance of ITS-tools, while those on the bottom give the results with Tapaal. The
general form of the results with both tools is quite similar confirming that our strategy is
indeed responsible for the measured gains in performance and that they are reproducible.
Reduced problems are generally easier to solve than the original. This gain is in the best
case exponential as is visible through the existence of spread of points reaching out
horizontally in this log-log space (particularly on the Tapaal plots).

The colors on the decidable instances reflect whether the verdict was true or false.
For false properties a counter-example was found by both procedures interrupting the
search, and while the search space of a reduced model is a priori smaller, heuristics and
even luck can play a role in finding a counter-example early. True answers on the other
hand generally require a full exploration of the state space so that the reductions should
play a major role in reducing the complexity of model-checking. The existence of True
answers where the reduction fails is surprising and might deserve further investigation.
On the other hand the points aligned to the right of the plots a) and c) (189 for ITS-tools
and 119 for Tapaal) correspond to cases where our procedure improved these state of
the art tools, allowing to reach a conclusion when the original method fails.

The plots on the right use orange to denote cases where the verdict on the reduced and
original models were the same; on these points the procedures had comparable behaviors
(either exploring a whole state space or exhibiting a counter-example). The blue color



LTL under reductions with weaker conditions than stutter-invariance 15

189

40

   1

  10

 100

1000

   1   10  100 1000
Time (in sec.) for original models

T
im

e 
(in

 s
ec

.)
 fo

r 
re

du
ce

d 
m

od
el

s

FALSE

TRUE

ITS−Tools: runs where the semi−decision proc. could conclude

(a) ITS-tools on decidable instances

345

94

9

   1

  10

 100

1000

   1   10  100 1000
Time (in sec.) for original models

T
im

e 
(in

 s
ec

.)
 fo

r 
re

du
ce

d 
m

od
el

s

at least one timeout

consistent verdict

inconsistent verdict

ITS−Tools: runs where no conclusive verdict is provided

(b) ITS-tools on non decidable instances

119

23

   0.1

   1.0

  10.0

 100.0

1000.0

   0.1    1.0   10.0  100.0 1000.0
Time (in sec.) for original models

T
im

e 
(in

 s
ec

.)
 fo

r 
re

du
ce

d 
m

od
el

s

FALSE

TRUE

Tapaal: runs where the semi−decision proc. could conclude

(c) Tapaal on decidable instances

443

49

6

   0.1

   1.0

  10.0

 100.0

1000.0

   0.1    1.0   10.0  100.0 1000.0
Time (in sec.) for original models

T
im

e 
(in

 s
ec

.)
 fo

r 
re

du
ce

d 
m

od
el

s

at least one timeout

consistent verdict

inconsistent verdict

Tapaal: runs where no conclusive verdict is provided

(d) Tapaal on non decidable instances

Fig. 3: Experiments on the MCC’2021 LTL benchmark using the two best tool of the
MCC contest: Tapaal and ITS-tools. Figures (a) and (c) contain the cases where the
verdict of the semi-decisions procedures is reliable, and distinguish cases where the
output is True (empty product) and False (non empty product). (b) and (d) display
the cases where the verdict is not reliable and distinguish cases where the output is
inconsistent with the ground truth from cases where they agree.

denotes points where the two procedures disagree, with several blue points above the
diagonal reflecting cases where the reduced procedure explored the whole state space
and thought the property was true while the original procedure found a counter-example
(this is the worst case). Surprisingly, even though on these non decidable plots b) and



16 PPRT

d) our procedure should not be trusted, it mostly agrees (in 95% of the cases) with the
decision reached on the original.

Out of the 9222 experiments in total, for ITS-tools 5901 runs reached a trusted
decision (64 %), 2227 instances reached an untrusted verdict (32 %), and the reduced
procedure timed out in 394 instances (4 %). Tapaal reached a trusted decision in 5866
instances (64 %), 2884 instances reached an untrusted verdict (31 %), and the reduced
procedure timed out in 472 instances (5 %). On this benchmark of formulae we thus
reached a trusted decision in almost two thirds of the cases using the reduced procedure.

5 Related Work

Partial order vs structural reductions. Partial order reduction (POR) [18, 23, 17, 8] is
a very popular approach to combat state explosion for stutter insensitive formulae. These
approaches use diverse strategies (stubborn sets, ample sets, sleep sets. . . ) to consider
only a subset of events at each step of the model-checking while still ensuring that at
least one representative of each stutter equivalent class of runs is explored. Because the
preservation criterion is based on equivalence classes of runs, this family of approaches
is limited only to the stutter insensitive fragment of LTL (see Fig.2). However the
structural reduction rules used in this paper are compatible and can be stacked with
POR when the formula is stutter insensitive; this is the setting in which most structural
reduction rules were originally defined.
Structural reductions in the literature. The structural reductions rules we used in the
performance evaluation are defined on Petri nets where the literature on the subject is
rich [1, 19, 6, 9, 2, 22]. However there are other formalism where similar reduction rules
have been defined such as [16] using "atomic" blocks in Promela, transaction reductions
for the widely encompassing intermediate language PINS of LTSmin [13], and even
in the context of multi-threaded programs [7]. All these approaches are structural or
syntactic, they are run prior to model-checking per se.
Non structural reductions in the literature. Other strategies have been proposed that
instead of structurally reducing the system, dynamically build an abstraction of the
Kripke structure where less observable stuttering occurs. These strategies build a KS
whose language is a reduction of the language of the original KS (in the sense of Def. 7),
that can then be presented to the emptiness check algorithm with the negation of the
formula. They are thus also compatible with the approach proposed in this paper. Such
strategies include the Covering Step Graph (CSG) construction of [25] where a "step" is
performed (instead of firing a single event) that includes several independent transitions.
The Symbolic Observation Graph of [11] is another example where states of the original
KS are computed (using BDDs) and aggregated as long as the atomic proposition values
do not evolve; in practice it exhibits to the emptiness check only shortest runs in each
equivalence class hence it is a reduction.

6 Conclusion

To combat the state space explosion problem that LTL model-checking meets, structural
reductions have been proposed that syntactically compact the model so that it exhibits



LTL under reductions with weaker conditions than stutter-invariance 17

less interleaving of non observable actions. Prior to this work, all of these approaches
were limited to the stutter-insensitive fragment of the logic. We bring a semi-decision
procedure that widens the applicability of these strategies to formulae which are short-
ening insensitive or lengthening insensitive. The experimental evidence presented shows
that the fragment of the logic covered by these new categories is quite useful in practice.
An extensive measure using the models, formulae and the two best tools of the model-
checking competition 2021 shows that our strategy can improve the decision power of
state of the art tools, and confirm that in the best case an exponential speedup of the
decision procedure can be attained. We also identified several other strategies that are
compatible with our approach since they construct a reduced language. In further work
we are investigating how non trusted counter-examples of the reduced model could be
confirmed on the original model.

References
1. Berthelot, G.: Checking properties of nets using transformation. In: Applications and Theory

in Petri Nets. LNCS, vol. 222, pp. 19–40. Springer (1985)
2. Berthomieu, B., Le Botlan, D., Dal Zilio, S.: Counting Petri net markings from reduction

equations. International Journal on Software Tools for Technology Transfer (Apr 2019)
3. David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K.Y., Møller, M.H., Srba, J.: Tapaal 2.0:

Integrated development environment for timed-arc petri nets. In: Flanagan, C., König, B.
(eds.) Tools and Algorithms for the Construction and Analysis of Systems. pp. 492–497.
Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

4. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for finite-
state verification. In: Ardis, M. (ed.) Proceedings of the 2nd Workshop on For-
mal Methods in Software Practice (FMSP’98). pp. 7–15. ACM Press (Mar 1998).
https://doi.org/10.1145/298595.298598

5. Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In: Palamidessi, C. (ed.) Pro-
ceedings of the 11th International Conference on Concurrency Theory (Concur’00). LNCS,
vol. 1877, pp. 153–167. Springer-Verlag, Pennsylvania, USA (2000)

6. Evangelista, S., Haddad, S., Pradat-Peyre, J.: Syntactical colored Petri nets reductions. In:
ATVA. LNCS, vol. 3707, pp. 202–216. Springer (2005)

7. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In: PLDI. pp. 338–349.
ACM (2003)

8. Godefroid, P., Wolper, P.: A partial approach to model checking. Inf. Comput. 110(2), 305–
326 (1994)

9. Haddad, S., Pradat-Peyre, J.: New efficient Petri nets reductions for parallel programs verifi-
cation. Parallel Processing Letters 16(1), 101–116 (2006)

10. Howar, F., Jasper, M., Mues, M., Schmidt, D., Steffen, B.: The rers challenge: towards
controllable and scalable benchmark synthesis. International Journal on Software Tools for
Technology Transfer pp. 1–14 (06 2021). https://doi.org/10.1007/s10009-021-00617-z

11. Klai, K., Poitrenaud, D.: MC-SOG: an LTL model checker based on symbolic observation
graphs. In: van Hee, K.M., Valk, R. (eds.) Applications and Theory of Petri Nets, 29th
International Conference, PETRI NETS 2008, Xi’an, China, June 23-27, 2008. Proceedings.
LNCS, vol. 5062, pp. 288–306. Springer (2008)

12. Kordon, F., Bouvier, P., Garavel, H., Hillah, L.M., Hulin-Hubard, F., Amat., N., Amparore,
E., Berthomieu, B., Biswal, S., Donatelli, D., Galla, F., , Dal Zilio, S., Jensen, P., He, C., Le
Botlan, D., Li, S., , Srba, J., Thierry-Mieg, Y., Walner, A., Wolf, K.: Complete Results for the
2021 Edition of the Model Checking Contest. http://mcc.lip6.fr/2021/results.php (June 2021)



18 PPRT

13. Laarman, A.: Stubborn transaction reduction. In: NFM. LNCS, vol. 10811, pp. 280–298.
Springer (2018)

14. Lipton, R.J.: Reduction: A method of proving properties of parallel programs. Commun.
ACM 18(12), 717–721 (1975)

15. Michaud, T., Duret-Lutz, A.: Practical stutter-invariance checks for 𝜔-regular languages. In:
SPIN. LNCS, vol. 9232, pp. 84–101. Springer (2015)

16. Pajault, C., Pradat-Peyre, J., Rousseau, P.: Adapting petri nets reductions to promela specifi-
cations. In: FORTE. LNCS, vol. 5048, pp. 84–98. Springer (2008)

17. Peled, D.A.: Combining partial order reductions with on-the-fly model-checking. In: CAV.
LNCS, vol. 818, pp. 377–390. Springer (1994)

18. Peled, D.A., Pratt, V.R., Holzmann, G.J. (eds.): Partial Order Methods in Verification, Pro-
ceedings of a DIMACS Workshop, Princeton, New Jersey, USA, July 24-26, 1996, DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, vol. 29. DIMACS/AMS
(1996)

19. Poitrenaud, D., Pradat-Peyre, J.: Pre- and post-agglomerations for LTL model checking. In:
ICATPN. LNCS, vol. 1825, pp. 387–408. Springer (2000)

20. Somenzi, F., Bloem, R.: Efficient Büchi automata for LTL formulæ. In: Proceedings of the
12th International Conference on Computer Aided Verification (CAV’00). LNCS, vol. 1855,
pp. 247–263. Springer-Verlag, Chicago, Illinois, USA (2000)

21. Thierry-Mieg, Y.: Symbolic model-checking using its-tools. In: TACAS. LNCS, vol. 9035,
pp. 231–237. Springer (2015)

22. Thierry-Mieg, Y.: Structural reductions revisited. In: Petri Nets. LNCS, vol. 12152, pp.
303–323. Springer (2020)

23. Valmari, A.: A stubborn attack on state explosion. In: CAV. LNCS, vol. 531, pp. 156–165.
Springer (1990)

24. Vardi, M.Y.: Automata-theoretic model checking revisited. In: VMCAI. LNCS, vol. 4349,
pp. 137–150. Springer (2007)

25. Vernadat, F., Michel, F.: Covering step graph preserving failure semantics. In: Azéma, P.,
Balbo, G. (eds.) Application and Theory of Petri Nets 1997, 18th International Conference,
ICATPN ’97, Toulouse, France, June 23-27, 1997, Proceedings. LNCS, vol. 1248, pp. 253–
270. Springer (1997)


